JP2016123330A - Method for decreasing chloropropanol in edible oil and fat - Google Patents

Method for decreasing chloropropanol in edible oil and fat Download PDF

Info

Publication number
JP2016123330A
JP2016123330A JP2014266356A JP2014266356A JP2016123330A JP 2016123330 A JP2016123330 A JP 2016123330A JP 2014266356 A JP2014266356 A JP 2014266356A JP 2014266356 A JP2014266356 A JP 2014266356A JP 2016123330 A JP2016123330 A JP 2016123330A
Authority
JP
Japan
Prior art keywords
oil
activated carbon
chloropropanols
mass
mcpd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266356A
Other languages
Japanese (ja)
Other versions
JP6441072B2 (en
Inventor
正敏 梅澤
Masatoshi Umezawa
正敏 梅澤
憲孝 大石
Noritaka Oishi
憲孝 大石
玲 佐々木
Rei Sasaki
玲 佐々木
智 塚原
Satoshi Tsukahara
智 塚原
一洋 浜本
Kazuhiro Hamamoto
一洋 浜本
隆 石黒
Takashi Ishiguro
隆 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Yushi KK
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Yushi KK, Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Yushi KK
Priority to JP2014266356A priority Critical patent/JP6441072B2/en
Publication of JP2016123330A publication Critical patent/JP2016123330A/en
Application granted granted Critical
Publication of JP6441072B2 publication Critical patent/JP6441072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for decreasing chloropropanols being 3-MCPD, 3-MCPDE or the like in edible oils and fats easily and efficiently.SOLUTION: When the edible oils and fats are produced from raw material oil by hardening treatment, at any step before the hardening treatment is performed, at the time when the hardening treatment is performed, and after the hardening treatment is performed, at least one selected from the group consisting of white clay having the pH equal to or higher than 7.0, wood-based activated carbon having the pH equal to or higher than 7.0, sodium carbonate and calcium carbonate is added.SELECTED DRAWING: None

Description

本発明は、食用油脂中のクロロプロパノール類を低減する方法に関する。   The present invention relates to a method for reducing chloropropanols in edible fats and oils.

クロロプロパノール類は、プロパノールに塩素が結合した物質の総称であり、その1つである3−クロロ−1,2−プロパンジオール(3−MCPD)はアミノ酸液や醤油等を製造する際に副産物として生成することが知られている。FAO(国際連合食糧農業機関)/WHO(世界保健機関)によるリスク評価の結果、3−MCPDには遺伝毒性や発がん性は認められないものの、長期間にわたり大量に摂取した場合、腎臓に悪影響を及ぼすことが懸念されている。我が国においては、食品衛生法に基づく基準は設定されていないが、農林水産省では醤油等に対しては、製造法による低減の推進を指導している。また、諸外国においては、EU(ヨーロッパ連合)が0.02mg/kg体重(乾物ベース)、CODEX(国際食品規格委員会)が0.4mg/kg体重の規制を設定している。   Chloropropanol is a general term for substances in which chlorine is bonded to propanol, and 3-chloro-1,2-propanediol (3-MCPD), one of which is a by-product in the production of amino acid solutions, soy sauce, and the like. It is known to generate. As a result of risk assessment by FAO (United Nations Food and Agriculture Organization) / WHO (World Health Organization), although 3-MCPD does not show genotoxicity or carcinogenicity, it causes adverse effects on the kidneys when ingested in large quantities over a long period of time. There are concerns about the effects. In Japan, standards based on the Food Sanitation Law have not been set, but the Ministry of Agriculture, Forestry and Fisheries has instructed the promotion of reduction of soy sauce by the manufacturing method. In other countries, the EU (European Union) sets a limit of 0.02 mg / kg body weight (dry matter base) and CODEX (International Food Standards Committee) sets a limit of 0.4 mg / kg body weight.

また、2000年代に入り、食用油脂中には、3−MCPDが脂肪酸と結合したエステル体(3−MCPDE)で存在していることが報告されている(非特許文献1)。この報告によれば、3−MCPDEを含む食品を人が摂取すると、体内でエステルが加水分解され、3−MCPDが生成されることが懸念されている。   In the 2000s, it has been reported that 3-MCPD is present in edible fats and oils in the form of an ester (3-MCPDE) bonded to a fatty acid (Non-patent Document 1). According to this report, there is a concern that when a person ingests a food containing 3-MCPDE, the ester is hydrolyzed in the body to produce 3-MCPD.

このような報告を踏まえ、現在も3−MCPDEが人体に及ぼす影響等について継続的に調査されている。   Based on such reports, the effects of 3-MCPDE on the human body are still being investigated.

実際、3−MCPDEについては、許容摂取量等が定められていないものの、欧州においては、3−MCPDEに結合する脂肪酸が全て遊離して、3−MCPDを生成するとみなす、ドイツ公定法(DGF Standard Methods C−III 18(09))による定量が広く行われている。この方法においては、クロロプロパノール類である3−MCPDや3−MCPDEおよびそれらの形成物質であるグリシドールやグリシドール脂肪酸エステルについても、3−MCPDへ変換して測定している。なお、グリシドールについては、WHOの外部組織であるIRAC(国際がん研究機関)により、人に対する発がん性がおそらくある、とされるグループ2Aの化合物に分類されており、その低減が望ましいとされている(非特許文献2)。このようにして定量された3−MCPD量に基づいて人体に及ぼす影響を評価する動きがある。   In fact, for 3-MCPDE, the allowable intake and the like are not defined, but in Europe, all fatty acids that bind to 3-MCPDE are released to form 3-MCPD, and the official German law (DGF Standard) Quantification by Methods C-III 18 (09)) is widely performed. In this method, 3-MCPD and 3-MCPDE which are chloropropanols and glycidol and glycidol fatty acid esters which are their forming substances are also converted into 3-MCPD and measured. Glicidol is classified as a group 2A compound that is probably carcinogenic to humans by the IRAC (International Agency for Research on Cancer), an external organization of WHO, and its reduction is desirable. (Non-Patent Document 2). There is a movement to evaluate the influence on the human body based on the amount of 3-MCPD determined in this way.

そこで、上記の3−MCPDに代表されるクロロプロパノール類を低減させる方法として、脱臭工程を経ていない食用油脂に相当するグリセリド組成物と、アルカリ白土とを接触させるアルカリ白土処理工程を含むクロロプロパノール類の低減方法が提案されている(特許文献1)。また、食用油脂に相当するグリセリド油脂が100℃以上に加熱される処理以前に、吸着剤処理および/またはアルカリ処理するクロロプロパノール類の低減方法も提案されている(特許文献2)。さらには、クロロプロパノール類を少なくとも1種含有し、および/または、脂肪酸を2つしか持たない食用油脂に相当するジグリセリドを3質量%以上含有するグリセリド油脂を、100℃〜240℃の温度条件にて脱臭処理するクロロプロパノール類の低減方法が提案されている(特許文献3)。また、食用油脂の脱臭工程を190℃〜230℃の温度範囲で行うクロロプロパノール類の低減方法が提案されている(特許文献4)。   Therefore, as a method for reducing chloropropanols typified by the above-mentioned 3-MCPD, chloropropanols comprising an alkaline clay treatment step in which a glyceride composition corresponding to edible fats and oils not subjected to a deodorizing step and alkaline clay are brought into contact with each other. Has been proposed (Patent Document 1). In addition, a method for reducing chloropropanols by adsorbent treatment and / or alkali treatment before treatment in which glyceride fat corresponding to edible fat is heated to 100 ° C. or higher has also been proposed (Patent Document 2). Furthermore, glyceride fats and oils containing at least one chloropropanols and / or diglycerides corresponding to edible fats and oils having only two fatty acids in an amount of 3% by mass or more are set to a temperature condition of 100 ° C. to 240 ° C. Thus, a method for reducing chloropropanols to be deodorized has been proposed (Patent Document 3). Moreover, the reduction method of chloropropanols which performs the deodorizing process of edible fats and oils in the temperature range of 190 to 230 degreeC is proposed (patent document 4).

特許第5216942号公報Japanese Patent No. 5216942 国際公開第2010/126136号International Publication No. 2010/126136 特開2011−74358号公報JP 2011-74358 A 特開2011−147636号公報JP 2011-147636 A

Zelinkova Z, Svejkovska B, Velisek J, Dolezal M.: Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit Contam. 2006 Dec;23(12):1290-1298Zelinkova Z, Svejkovska B, Velisek J, Dolezal M .: Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit Contam. 2006 Dec; 23 (12): 1290-1298 Dr.Rudiger Weisshaar/Fatty acid esters of 3−MCPD: Overview of occurrence in different types of foods (ILSI Europe Workshop in association with the European Commission:5-6 February 2009 Brussels, Belgium) (http://Europe.ilsi.org/ NR/rdonlyres/A1D194E7-BFA2-4a23-A673-15F1905300D5/0/Speaker6Weisshaar.pdf)Dr. Rudiger Weisshaar / Fatty acid esters of 3-MCPD: Overview of occurrence in different types of foods (ILSI Europe Workshop in association with the European Commission: 5-6 February 2009 Brussels, Belgium) (http://Europe.ilsi.org/ (NR / rdonlyres / A1D194E7-BFA2-4a23-A673-15F1905300D5 / 0 / Speaker6Weisshaar.pdf)

しかしながら、特許文献1、2に記載の方法は、硬化、脱臭といった温度処理を行う前にアルカリ白土やアルカリで処理する技術であり、当該工程で完全にクロロプロパノール類の生成を抑制することは困難である。また、硬化、脱臭といった高温処理工程を経るとクロロプロパノール類が僅かに生成してしまうことが指摘されていた。   However, the methods described in Patent Documents 1 and 2 are techniques for treating with alkali clay or alkali before performing temperature treatment such as curing and deodorization, and it is difficult to completely suppress the production of chloropropanols in this process. It is. In addition, it has been pointed out that chloropropanols are slightly produced through high-temperature treatment steps such as curing and deodorization.

特許文献3、4に記載の方法は、脱臭工程においてクロロプロパノール類を低減化する方法であるが、脱臭温度を通常よりも低くするため、臭気の除去が不十分であるという問題があった。   The methods described in Patent Documents 3 and 4 are methods for reducing chloropropanols in the deodorization step, but there is a problem that odor removal is insufficient because the deodorization temperature is lower than usual.

本発明は、以上の通りの事情に鑑みてなされたものであり、食用油脂中のクロロプロパノール類である3−MCPDや3−MCPDE等を簡便な方法で効率よく低減する方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and provides a method for efficiently reducing 3-MCPD, 3-MCPDE and the like, which are chloropropanols in edible fats and oils, by a simple method. It is an issue.

前記の課題を解決するために、本発明の食用油脂中のクロロプロパノール類を低減する方法は、硬化処理を含む原料油からの食用油脂の製造において、硬化処理前、硬化処理時および硬化処理後のうちのいずれかの工程において、pH7.0以上の白土、pH7.0以上の木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種を添加することを特徴としている。   In order to solve the above-mentioned problems, the method for reducing chloropropanols in edible fats and oils of the present invention is the production of edible fats and oils from raw material oils including a curing process, before the curing process, during the curing process, and after the curing process Is characterized by adding at least one selected from the group consisting of white clay having a pH of 7.0 or higher, woody activated carbon having a pH of 7.0 or higher, sodium carbonate and calcium hydroxide.

本発明の食用油脂中のクロロプロパノール類を低減する方法においては、炭酸ナトリウムおよび水酸化カルシウムは、粉状であることが好ましい。   In the method for reducing chloropropanols in the edible fat according to the present invention, the sodium carbonate and calcium hydroxide are preferably powdery.

本発明の食用油脂中のクロロプロパノール類を低減する方法においては、pH7.0以上の白土、pH7.0以上の木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種の添加量が、処理対象油に対し0.005質量%以上5質量%以下であることが好ましい。   In the method for reducing chloropropanols in edible fats and oils of the present invention, at least one selected from the group consisting of white clay having a pH of 7.0 or higher, woody activated carbon having a pH of 7.0 or higher, sodium carbonate and calcium hydroxide. The addition amount is preferably 0.005% by mass or more and 5% by mass or less with respect to the oil to be treated.

本発明の食用油脂中のクロロプロパノール類を低減する方法においては、pH7.0以上の白土およびpH7.0以上の木質系活性炭は、ナトリウムメトキシドおよび水酸化ナトリウムからなる群より選択される少なくとも1種と併用することが好ましい。   In the method for reducing chloropropanols in edible fats and oils of the present invention, at least 1 selected from the group consisting of sodium methoxide and sodium hydroxide is a clay of pH 7.0 or higher and woody activated carbon of pH 7.0 or higher. It is preferably used in combination with seeds.

本発明の食用油脂中のクロロプロパノール類を低減する方法においては、pH7.0以上の白土の二酸化ケイ素含量が、白土の全組成の65質量%以上であることが好ましい。   In the method for reducing chloropropanols in edible fats and oils of the present invention, the silicon dioxide content of the clay with a pH of 7.0 or more is preferably 65% by mass or more of the total composition of the clay.

本発明の食用油脂中のクロロプロパノール類を低減する方法においては、pH7.0以上の木質系活性炭の灰分が3質量%以上であることが好ましい。   In the method for reducing chloropropanols in edible fats and oils of the present invention, the ash content of the woody activated carbon having a pH of 7.0 or higher is preferably 3% by mass or higher.

本発明の食用油脂中のクロロプロパノール類を低減する方法においては、pH7.0以上の白土およびpH7.0以上の木質系活性炭は、あらかじめアルカリ処理されたものであることが好ましい。   In the method for reducing chloropropanols in edible fats and oils of the present invention, it is preferable that the white clay having a pH of 7.0 or more and the woody activated carbon having a pH of 7.0 or more have been previously alkali-treated.

本発明によれば、食用油脂中のクロロプロパノール類である3−MCPDや3−MCPDEおよびそれらの形成物質であるグリシドールやグリシドール脂肪酸エステルを簡便な方法で効率よく低減することができる。   According to the present invention, 3-MCPD and 3-MCPDE which are chloropropanols in edible fats and oils, and glycidol and glycidol fatty acid esters which are their forming substances can be efficiently reduced by a simple method.

以下に、本発明について詳細に説明する。なお、本発明では、クロロプロパノール類は、食用油脂中において生成された3−クロロ−1,2−プロパンジオール(3−MCPD)や3−クロロ−1,2−プロパンジオール脂肪酸エステル(3−MCPDE)およびそれらの形成物質であるグリシドールやグリシドール脂肪酸エステルを含むものとする。   The present invention is described in detail below. In the present invention, chloropropanols include 3-chloro-1,2-propanediol (3-MCPD) and 3-chloro-1,2-propanediol fatty acid ester (3-MCPDE) produced in edible fats and oils. And glycidol and glycidol fatty acid esters which are their forming substances.

本発明の食用油脂中のクロロプロパノール類を低減する方法は、硬化処理を含む原料油からの食用油脂の製造において、硬化処理前、硬化処理時および硬化処理後のうちのいずれかの工程において、pH7.0以上の白土、pH7.0以上の木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種を添加することを特徴としている。   The method for reducing chloropropanols in the edible fat of the present invention is the production of edible fats and oils from raw material oils including a curing process, in any step of the curing process, during the curing process and after the curing process, It is characterized by adding at least one selected from the group consisting of white clay having a pH of 7.0 or higher, woody activated carbon having a pH of 7.0 or higher, sodium carbonate and calcium hydroxide.

ここで、食用油脂の製造方法は、一般に、原料となる植物や動物油脂を圧搾、加熱、溶剤等で抽出した原料油を脱ガム処理、脱酸処理、脱色処理および脱臭処理を経ることで精製される一連の工程を含んでいる。また、上記の製造方法には、脱ろう処理を含む場合もある。そして、一般に硬化処理は脱ガム、脱酸、脱色等の精製した油脂、精製後脱臭した油脂等を使用できる。   Here, the method for producing edible fats and oils is generally refined by degreasing, deoxidizing, decolorizing and deodorizing raw material oils extracted from plants and animal fats and oils as raw materials by extraction, heating, and solvent. A series of steps to be performed are included. In addition, the above manufacturing method may include a dewaxing process. And generally the hardening process can use refined fats and oils, such as degumming, deoxidation, and decoloring, and deodorized fats and oils after refinement.

本発明では、原料油に対し、硬化処理前、硬化処理時および硬化処理後のうちのいずれの時点においてpH7.0以上の白土、pH7.0以上の木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種を添加することで、硬化反応中に生成するクロロプロパノール類を低減化する。   In the present invention, for the raw material oil, at any point of time before the curing process, at the time of the curing process, or after the curing process, from white clay having a pH of 7.0 or more, woody activated carbon having a pH of 7.0 or more, sodium carbonate and calcium hydroxide. By adding at least one selected from the group, chloropropanols generated during the curing reaction are reduced.

(pH7.0以上の白土)
白土は、カオリンやモンモリロン石と呼ばれる粘土鉱物を主成分とした酸性白土や、酸性白土を硫酸や塩酸などで活性化処理を施した活性白土であり、産地により、pHや成分が異なる。本発明において使用する白土は、pH7.0以上、好ましくはpH8.0以上のものが例示される。白土のpHの測定方法としては、JIS K 5101−17−1:2004 顔料試験方法等が例示される。
(Soil with pH 7.0 or higher)
The clay is an acid clay with a clay mineral called kaolin or montmorillonite as a main component, or an activated clay obtained by subjecting the acid clay to an activation treatment with sulfuric acid, hydrochloric acid, etc., and the pH and components differ depending on the production area. The clay used in the present invention is exemplified by those having a pH of 7.0 or more, preferably 8.0 or more. Examples of the method for measuring the pH of clay include JIS K 5101-17-1: 2004 pigment test method.

また、本発明において使用する白土の二酸化ケイ素(SiO)含量は、白土の全組成の65質量%〜85質量%であることが好ましく、より好ましくは68質量%〜83質量%の範囲が例示される。SiO含量が、上記の範囲内であれば、クロロプロパノール類の生成をより抑制することができる。このような白土の市販品としては、例えば、MIZUKA−ACE #300(pH8.5、SiO含量70.5%、水澤化学工業株式会社製)等が例示される。 The silicon dioxide (SiO 2 ) content of the clay used in the present invention is preferably 65% by mass to 85% by mass, more preferably 68% by mass to 83% by mass, based on the total composition of the clay. Is done. SiO 2 content is within the range described above, it is possible to suppress the formation of chloro propanols. Examples of such a white clay commercial product include MIZUKA-ACE # 300 (pH 8.5, SiO 2 content 70.5%, manufactured by Mizusawa Chemical Co., Ltd.).

さらにまた、白土は、予めアルカリ処理したものも好適に使用することができる。ここで、アルカリ処理とは、白土をアルカリ溶液と混合後、濾過や遠心分離により脱溶媒処理する工程を含む。   Furthermore, the clay that has been previously alkali-treated can be suitably used. Here, the alkali treatment includes a step of removing the solvent by filtration or centrifugation after mixing the clay with the alkali solution.

アルカリ処理に用いるアルカリ物質としては、例えば、アルカリ金属やアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、有機酸塩、アルコキシド化合物等が例示される。具体的には、炭酸ナトリウム、炭酸水素ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、トリポリリン酸ナトリウム等が例示される。特に、水酸化ナトリウムは、強アルカリであり、低添加量で所要の効果を発現するので好ましい。これらは単独で使用してもよく2種以上を併用してもよい。   Examples of the alkali substance used for the alkali treatment include alkali metal and alkaline earth metal hydroxides, carbonates, phosphates, organic acid salts, and alkoxide compounds. Specific examples include sodium carbonate, sodium bicarbonate, sodium methoxide, sodium ethoxide, calcium hydroxide, sodium hydroxide, potassium hydroxide, sodium tripolyphosphate and the like. In particular, sodium hydroxide is a strong alkali and is preferable because a required effect is exhibited with a low addition amount. These may be used alone or in combination of two or more.

このようなアルカリ物質は、白土と接触しやすいことから溶媒に溶解し、アルカリ溶液として使用することが好ましい。アルカリ物質の溶解に用いることができる溶媒としては、水、メタノールやエタノール等のアルコール類が例示される。溶媒としては単独で使用してもよく2種以上を併用してもよいが、水分が少ない方が好ましい。溶媒中の水分が少なければ、白土をよりアルカリ性とすることができる。アルカリ性を高めることにより、クロロプロパノール類をより低減化することができる。   Such an alkaline substance is preferably dissolved in a solvent and used as an alkaline solution because it easily comes into contact with clay. Examples of the solvent that can be used for dissolving the alkaline substance include water and alcohols such as methanol and ethanol. The solvent may be used alone or in combination of two or more, but preferably has less water. If the water content in the solvent is small, the clay can be made more alkaline. By increasing the alkalinity, chloropropanols can be further reduced.

アルカリ溶液の好ましい濃度としては、例えば、0.01mol/L〜5mol/Lの範囲が例示される。   As a preferable density | concentration of an alkaline solution, the range of 0.01 mol / L-5 mol / L is illustrated, for example.

また、pH7以上の白土は、ナトリウムメトキシドおよび水酸化ナトリウムからなる群より選択される少なくとも1種と併用することも可能である。   Moreover, the clay with a pH of 7 or higher can be used in combination with at least one selected from the group consisting of sodium methoxide and sodium hydroxide.

(pH7.0以上の木質系活性炭)
本発明で用いることができる活性炭としては、例えば、オガ屑、硬質の木材チップ、木炭(素灰)等を原料とする木質系活性炭が例示される。本発明においては、活性炭の形状については、特に制限はないが、原料油中での分散性が良好であって、かつ、原料油との接触面積が大きくなり、より効率的にクロロプロパノール類を低減させることから、粉状活性炭を用いることが好ましい。
(Woody activated carbon with a pH of 7.0 or higher)
Examples of the activated carbon that can be used in the present invention include wood-based activated carbon made from sawdust, hard wood chips, charcoal (raw ash), and the like. In the present invention, the shape of the activated carbon is not particularly limited, but the dispersibility in the raw material oil is good, and the contact area with the raw material oil is increased, so that the chloropropanols can be more efficiently used. From the viewpoint of reduction, it is preferable to use powdered activated carbon.

これらの活性炭は、賦活処理を施すことにより吸着能を高めることが可能である。活性炭の賦活方法としては、水蒸気、二酸化炭素、空気および燃焼ガス等によるガス賦活と塩化亜鉛やリン酸等を用いた薬品賦活等が例示される。なかでも水蒸気賦活を用いることが好ましい。また、活性炭は、賦活処理時の温度により、500℃以上の高温で賦活処理した塩基性活性炭と500℃未満の比較的低温で賦活処理した酸性活性炭に分類することができるが、本発明においては、塩基性活性炭を用いることが好ましい。本発明において使用する塩基性活性炭は、pH7.0以上、好ましくはpH8.0以上のものが例示される。活性炭のpHの測定方法は、JIS K 1474:2004 活性炭試験方法等が例示される。   These activated carbons can increase the adsorption capacity by applying an activation treatment. Examples of activated carbon activation methods include gas activation with water vapor, carbon dioxide, air, and combustion gas, and chemical activation with zinc chloride, phosphoric acid, and the like. Of these, steam activation is preferably used. Activated carbon can be classified into basic activated carbon activated at a high temperature of 500 ° C. or higher and acidic activated carbon activated at a relatively low temperature of less than 500 ° C. depending on the temperature during the activation treatment. It is preferable to use basic activated carbon. Examples of the basic activated carbon used in the present invention include those having a pH of 7.0 or more, preferably pH 8.0 or more. Examples of the method for measuring the pH of activated carbon include the JIS K 1474: 2004 activated carbon test method.

また、本発明において使用する活性炭の灰分は、3%〜8%であることが好ましく、より好ましくは4%〜7%の範囲が例示される。このような活性炭の市販品としては、例えば、梅蜂IE印活性炭(pH9.7、灰分4.4%、大平化学産業株式会社製)、PW−D(pH8.8、灰分4.2%、クラレケミカル株式会社製)、NORIT HB−PLUS(pH10.1、灰分7%、キャボットノリットジャパン株式会社製)等が例示される。   The ash content of the activated carbon used in the present invention is preferably 3% to 8%, and more preferably 4% to 7%. Examples of such activated carbon commercial products include plum bee IE-sign activated carbon (pH 9.7, ash content 4.4%, manufactured by Ohira Chemical Industry Co., Ltd.), PW-D (pH 8.8, ash content 4.2%, Kuraray Chemical Co., Ltd.), NORIT HB-PLUS (pH 10.1, ash content 7%, manufactured by Cabot Norit Japan Co., Ltd.) and the like.

さらに、活性炭の水分含量は低い方が好ましい。活性炭の水分含量が少なければ、原料油に対する活性炭の添加量が少なくて済み、また、油脂の加水分解を防ぐことも可能である。   Furthermore, the water content of the activated carbon is preferably low. If the water content of the activated carbon is low, the amount of activated carbon added to the raw material oil can be reduced, and hydrolysis of the fats and oils can be prevented.

pHが高い活性炭は、pHの低い活性炭を高温で賦活処理すること、アルカリ処理すること、または賦活処理後さらにアルカリ処理することによっても得ることができる。ここで、アルカリ処理とは、活性炭をアルカリ溶液と混合後、濾過や遠心分離により脱溶媒処理する工程を含む。   Activated carbon having a high pH can be obtained by subjecting activated carbon having a low pH to activation treatment at high temperature, alkali treatment, or further alkali treatment after activation treatment. Here, the alkali treatment includes a step of removing the solvent by filtration or centrifugation after mixing the activated carbon with the alkali solution.

アルカリ処理に用いるアルカリ物質としては、例えば、アルカリ金属やアルカリ土類金属の水酸化物、炭酸塩、リン酸塩、有機酸塩、アルコキシド化合物等が例示される。具体的には、炭酸ナトリウム、炭酸水素ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、トリポリリン酸ナトリウム等が例示される。特に、水酸化ナトリウムは、強アルカリであり、低添加量で効果を発現するので好ましい。これらは単独で使用してもよく2種以上を併用してもよい。   Examples of the alkali substance used for the alkali treatment include alkali metal and alkaline earth metal hydroxides, carbonates, phosphates, organic acid salts, and alkoxide compounds. Specific examples include sodium carbonate, sodium bicarbonate, sodium methoxide, sodium ethoxide, calcium hydroxide, sodium hydroxide, potassium hydroxide, sodium tripolyphosphate and the like. Particularly, sodium hydroxide is preferred because it is a strong alkali and exhibits an effect with a low addition amount. These may be used alone or in combination of two or more.

このようなアルカリ物質は、活性炭と接触しやすいことから溶媒に溶解し、アルカリ溶液として使用することが好ましい。アルカリ物質の溶解に用いることができる溶媒としては、水、メタノールやエタノール等のアルコール類が例示される。これらの溶媒は単独で使用してもよく2種以上を併用してもよいが、水分が少ない方が好ましい。溶媒中の水分が少なければ、活性炭をよりアルカリ性とすることができる。アルカリ性を高めることによりクロロプロパノール類をより低減化することができる。   Such an alkaline substance is preferably dissolved in a solvent and used as an alkaline solution because it easily comes into contact with activated carbon. Examples of the solvent that can be used for dissolving the alkaline substance include water and alcohols such as methanol and ethanol. These solvents may be used alone or in combination of two or more, but preferably have less water. If there is little water in a solvent, activated carbon can be made more alkaline. By increasing alkalinity, chloropropanols can be further reduced.

アルカリ溶液の好ましい濃度としては、例えば、0.01mol/L〜5mol/Lの範囲が例示される。   As a preferable density | concentration of an alkaline solution, the range of 0.01 mol / L-5 mol / L is illustrated, for example.

また、pH7以上の木質系活性炭は、ナトリウムメトキシドおよび水酸化ナトリウムからなる群より選択される少なくとも1種と併用することも可能である。   Further, the woody activated carbon having a pH of 7 or higher can be used in combination with at least one selected from the group consisting of sodium methoxide and sodium hydroxide.

(炭酸ナトリウムおよび水酸化カルシウム)
本発明においては、上記の白土および活性炭に加えて、特定のアルカリ物質を硬化処理前、硬化処理時または硬化処理後に添加することによっても、原料油中のクロロプロパノール類の低減化を図ることができる。
(Sodium carbonate and calcium hydroxide)
In the present invention, in addition to the clay and activated carbon, a specific alkaline substance may be added before, during or after the curing process to reduce chloropropanols in the raw material oil. it can.

アルカリ物質としては、炭酸ナトリウムおよび水酸化カルシウムを用いることができる。これらは食品や医薬品用として一般に用いられているもので良く、単独あるいは両方を組み合わせて用いることができる。   Sodium carbonate and calcium hydroxide can be used as the alkaline substance. These may be those generally used for foods and pharmaceuticals, and can be used alone or in combination.

炭酸ナトリウムおよび水酸化カルシウムは、原料油中での分散性が良好であって、かつ、原料油との接触面積が大きくなることから、粉状または顆粒状のものを用いることが好ましく、より好ましくは粉状である。   Sodium carbonate and calcium hydroxide are preferably used in the form of powder or granules, because dispersibility in the raw material oil is good and the contact area with the raw material oil is large. Is powdery.

(原料油への白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムの添加)
上記の白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムの添加は、硬化処理前、硬化処理時および硬化処理後のいずれの時点においても可能であるが、硬化処理前または硬化処理後に添加する場合、それぞれ硬化処理工程の前後いずれかに添加のための工程を追加する必要がある。一方、硬化処理時に添加する場合、従来の硬化処理工程と同時にクロロプロパノール類の低減が可能となるため、生産効率が良好となる。また、硬化処理時に添加すると、クロロプロパノール類の低減率が高くなるため好ましい。
(Addition of white clay, wood-based activated carbon, sodium carbonate and calcium hydroxide to raw oil)
The above clay, wood-based activated carbon, sodium carbonate and calcium hydroxide can be added at any time before the curing process, at the time of the curing process and after the curing process, but when added before or after the curing process. In addition, it is necessary to add a process for addition either before or after the curing treatment process. On the other hand, when added during the curing process, chloropropanols can be reduced at the same time as the conventional curing process, so that the production efficiency is improved. Moreover, when adding at the time of a hardening process, since the reduction rate of chloropropanols becomes high, it is preferable.

(硬化処理工程)
本発明は、硬化処理を行うものであり、硬化反応としては、例えば原料油に硬化触媒を添加したものを反応釜に投入し、真空下で加熱攪拌する。通常、原料油が120℃〜220℃、好ましくは130℃〜195℃未満の温度範囲に到達した時点で加熱をやめ、所要圧(0.01MPa〜2.0MPa)の水素を反応釜に送入し、水素添加反応を開始し、所望により水素を付加させる。硬化反応の終点としては、ヨウ素価、屈折率、融点、水素の消費量等の値を目安として反応の終点を見極め、水素を排気する。その後、油脂を冷却し、油脂中の触媒を除去する。
(Curing process)
In the present invention, a curing treatment is performed. As a curing reaction, for example, a raw material oil added with a curing catalyst is put into a reaction kettle and heated and stirred under vacuum. Usually, when the raw material oil reaches a temperature range of 120 ° C. to 220 ° C., preferably 130 ° C. to 195 ° C., heating is stopped and hydrogen of a required pressure (0.01 MPa to 2.0 MPa) is fed into the reaction kettle. The hydrogenation reaction is started and hydrogen is added as desired. As the end point of the curing reaction, the end point of the reaction is determined using values such as iodine value, refractive index, melting point, hydrogen consumption, etc., and hydrogen is exhausted. Thereafter, the fat is cooled and the catalyst in the fat is removed.

硬化反応に用いる触媒は、我が国の食品衛生法で認可されている食用油脂の硬化触媒であれば特に制限されない。例えば、ニッケルを珪藻土等の多孔質体担体に担持させたもの、あるいはこれを更に油脂で被覆してフレーク状、粒状等にしたもの等が例示される。   The catalyst used for the curing reaction is not particularly limited as long as it is a curing catalyst for edible fats and oils approved by the Japanese Food Sanitation Law. Examples thereof include those in which nickel is supported on a porous carrier such as diatomaceous earth, or those that are further coated with oils and fats to form flakes, granules, and the like.

市販のニッケル触媒としては、例えば、堺化学工業株式会社製のフレークニッケル触媒のSO−100A、SO−750R、SO−850等が例示される。   As a commercially available nickel catalyst, SO-100A, SO-750R, SO-850 etc. of the flake nickel catalyst by Sakai Chemical Industry Co., Ltd. are illustrated, for example.

ニッケル触媒の使用量は、原料油の0.05質量%〜1.0質量%の範囲内であることが好ましい。   The amount of the nickel catalyst used is preferably in the range of 0.05% by mass to 1.0% by mass of the raw material oil.

硬化処理前に白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを添加する場合、原料油に硬化処理前に白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを添加して5分以上180分以下、より好ましくは10分以上90分以下の範囲内で混合加熱して行われる。硬化処理前における加熱温度は、80℃〜250℃、好ましくは150℃〜250℃の範囲が例示される。   When adding clay, wood-based activated carbon, sodium carbonate and calcium hydroxide before hardening treatment, add clay, wood-based activated carbon, sodium carbonate and calcium hydroxide to the raw oil before hardening treatment, and add 5 to 180 minutes. More preferably, it is carried out by mixing and heating within the range of 10 minutes to 90 minutes. Examples of the heating temperature before the curing treatment include a range of 80 ° C. to 250 ° C., preferably 150 ° C. to 250 ° C.

その後、上記のとおりの硬化処理が行われるが、白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを濾過してから硬化処理を行ってもよいし、濾過せずに硬化処理を行い硬化後に濾過することも可能である。   Thereafter, the curing process is performed as described above, and the curing process may be performed after filtering the clay, the wooden activated carbon, the sodium carbonate, and the calcium hydroxide, or the curing process may be performed without filtering and the filtration may be performed after the curing. It is also possible to do.

また、上記のとおりの硬化処理時に白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを添加する場合、原料油に白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを添加して硬化反応が行われる。硬化処理時における加熱温度は、上記のとおり通常油脂の硬化反応が行われる温度範囲が例示される。なお、白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムは、硬化後に濾過することが好ましい。   In addition, when clay, wood-based activated carbon, sodium carbonate and calcium hydroxide are added during the curing treatment as described above, the curing reaction is performed by adding clay, wood-based activated carbon, sodium carbonate and calcium hydroxide to the raw material oil. . As for the heating temperature at the time of a hardening process, the temperature range in which hardening reaction of fats and oils is normally performed as above-mentioned is illustrated. In addition, it is preferable to filter white clay, wood type activated carbon, sodium carbonate, and calcium hydroxide after hardening.

さらに、上記のとおりの硬化処理後に白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを添加する場合、硬化した食用油脂に白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムを添加して5分以上180分以下、より好ましくは10分以上90分以下の範囲内で混合加熱して行われる。硬化処理後における加熱温度は、120℃〜250℃、好ましくは150℃〜250℃の範囲が例示される。なお、白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムは、所定の時間の経過後に濾過することが好ましい。   Furthermore, when adding clay, wood-based activated carbon, sodium carbonate and calcium hydroxide after the curing treatment as described above, adding clay, wood-based activated carbon, sodium carbonate and calcium hydroxide to the cured edible oil and fat for 5 minutes or more It is carried out by mixing and heating within a range of 180 minutes or less, more preferably 10 minutes or more and 90 minutes or less. Examples of the heating temperature after the curing treatment are 120 ° C. to 250 ° C., preferably 150 ° C. to 250 ° C. In addition, it is preferable to filter white clay, woody activated carbon, sodium carbonate, and calcium hydroxide after a predetermined time has elapsed.

なお、ヨウ素価は基準油脂分析試験法(公益社団法人日本油化学会)の2.3.4.1−2013(ウィイス−シクロヘキサン法)に従い測定することが例示される。   In addition, it is illustrated that the iodine value is measured according to 2.3.4.1-2013 (Wyeth-cyclohexane method) of the standard fat analysis method (Japan Oil Chemical Society).

また製造工程を考慮すると、硬化処理前(前処理時)の加熱温度と硬化開始温度が同じであること、硬化終了温度と硬化処理後(後処理時)の加熱温度が同じであることが好ましい。硬化処理前(前処理時)の加熱温度が硬化開始温度より高いと、硬化する際に冷却する必要があり、また、硬化処理前(前処理時)の加熱温度が硬化開始温度より低いと硬化する際に加熱する必要があり、生産が煩雑となる。同様に硬化処理後(後処理時)の温度が硬化終了温度より高いと、硬化終了後に一旦加熱する必要があり、また、硬化処理後(後処理時)の温度が硬化終了温度より低いと、硬化終了後に冷却工程が必要であり、生産が煩雑となる。   In consideration of the production process, it is preferable that the heating temperature before the curing treatment (during pretreatment) and the curing start temperature are the same, and the curing end temperature and the heating temperature after the curing treatment (during post-treatment) are the same. . If the heating temperature before the curing process (during pretreatment) is higher than the curing start temperature, cooling is required when curing, and if the heating temperature before the curing process (during pretreatment) is lower than the curing start temperature, curing is performed. When it is necessary to heat, production becomes complicated. Similarly, if the temperature after the curing treatment (at the time of post-processing) is higher than the curing end temperature, it is necessary to heat once after the completion of curing, and if the temperature after the curing treatment (at the time of post-processing) is lower than the curing end temperature, A cooling step is required after the curing is completed, and the production becomes complicated.

白土、木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムの添加量は、対油0.005質量%以上5質量%以下、好ましくは0.01質量%以上4質量%以下、より好ましくは0.01質量%以上3質量%以下の範囲が例示される。添加量が0.005質量%未満では、クロロプロパノール類の低減効果が低下し、5質量%を上回ると処理後の濾過に時間を要し生産効率の低下やコストの増加をもたらす。   The added amount of clay, wood-based activated carbon, sodium carbonate and calcium hydroxide is 0.005% by mass to 5% by mass, preferably 0.01% by mass to 4% by mass, more preferably 0.01% by mass. A range of not less than 3% and not more than 3% by mass is exemplified. If the addition amount is less than 0.005% by mass, the effect of reducing chloropropanols is reduced, and if it exceeds 5% by mass, it takes time for filtration after treatment, resulting in a decrease in production efficiency and an increase in cost.

(原料油)
原料油は、植物や動物から油を得る方法(圧搾、加熱、溶剤)で得られたものの他、食用油脂または2種以上の食用油脂を食用油脂分野において通常行われる水素添加、分別、エステル交換等を施した水素添加油、分別油、エステル交換油でよく、また、グリセリンと脂肪酸をエステル化したトリグリセリドでもよい。また、脱ガム、脱酸、脱色、脱ロウおよび脱臭等の各処理は食用油脂分野において通常行われる処理であってよい。
(Raw oil)
In addition to those obtained by the method of obtaining oil from plants and animals (pressing, heating, solvent), raw oil is edible fat or oil or two or more kinds of edible fats and oils usually used in the edible fat field, hydrogenation, fractionation, transesterification It may be a hydrogenated oil, a fractionated oil, a transesterified oil, or a triglyceride obtained by esterifying glycerin and a fatty acid. Further, each treatment such as degumming, deoxidation, decolorization, dewaxing and deodorization may be a treatment usually performed in the field of edible fats and oils.

本発明で利用される原料油は、食用油脂として用いられるものであれば特に制限はなく、また、常温で液体、固体等の形態は問わない。処理対象油の具体例としては、大豆油、菜種油、コーン油、ゴマ油、シソ油、亜麻仁油、落花生油、紅花油、高オレイン酸紅花油、ひまわり油、高オレイン酸ひまわり油、綿実油、ブドウ種子油、マカデミアナッツ油、ヘーゼルナッツ油、カボチャ種子油、クルミ油、椿油、茶実油、エゴマ油、ボラージ油、オリーブ油、米糠油、小麦胚芽油、ヤシ油、カカオ脂、パーム油、パーム核油および藻類油等の植物油、魚油、豚脂、牛脂、乳脂等の動物油が例示される。   The raw material oil used in the present invention is not particularly limited as long as it is used as an edible oil and fat, and may be in the form of liquid, solid, etc. at room temperature. Specific examples of oils to be treated include soybean oil, rapeseed oil, corn oil, sesame oil, perilla oil, linseed oil, peanut oil, safflower oil, safflower oil, sunflower oil, sunflower oil with high oleic acid, cottonseed oil, grape seeds Oil, macadamia nut oil, hazelnut oil, pumpkin seed oil, walnut oil, coconut oil, tea seed oil, sesame oil, borage oil, olive oil, rice bran oil, wheat germ oil, coconut oil, cocoa butter, palm oil, palm kernel oil and algae Examples include animal oils such as vegetable oils such as oil, fish oil, pork fat, beef tallow and milk fat.

本発明の製造方法により得られる食用油脂では、硬化油脂中のクロロプロパノール類の含有量が低減化されている。   In the edible oil / fat obtained by the production method of the present invention, the content of chloropropanols in the hardened oil / fat is reduced.

したがって、本発明の食用油脂の製造方法によれば、食用油脂中のクロロプロパノール類である3−MCPDや3−MCPDEおよびそれらの形成物質であるグリシドールやグリシドール脂肪酸エステルを簡便な方法で効率よく低減することができる。   Therefore, according to the method for producing edible fats and oils of the present invention, 3-MCPD and 3-MCPDE which are chloropropanols in edible fats and glycidol and glycidol fatty acid esters which are their forming substances are efficiently reduced by a simple method. can do.

以下、本発明の実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although it demonstrates still in detail based on the Example of this invention, this invention is not limited to these Examples at all.

なお、実施例においては、以下の処理工程の手順に従っている。   In addition, in the Example, the procedure of the following process steps is followed.

また、ヨウ素価は基準油脂分析試験法(公益社団法人日本油化学会)の2.3.4.1−2013(ウィイス−シクロヘキサン法)に従い測定した。   Moreover, the iodine value was measured according to 2.3.4.1-2013 (Wyeth-cyclohexane method) of the standard fats and oils analysis test method (Japan Oil Chemical Society).

<硬化処理前工程(前処理)>
魚油(ヨウ素価161)450gに表1に示した白土、表2に示した活性炭を添加し、各時間・各温度、真空下で加熱撹拌した後、白土、活性炭を吸引濾過し、前処理油脂を得た。その後、1リットルのオートクレーブに前処理した魚油(ヨウ素価=161)350g、ニッケル触媒(堺化学工業株式会社製SO−750R)を対油0.3質量%(1.05g)添加し、真空下で180℃まで加熱後、表の水素圧(ゲージ圧)、攪拌数750rpmで攪拌しながら水素添加反応を行い、油脂のヨウ素価が70に低下するまで硬化を行なった。その後ニッケル触媒を吸引濾過し硬化油を得た。
<Pre-curing process (pre-treatment)>
450 g of fish oil (iodine number 161) is added with the white clay shown in Table 1 and the activated carbon shown in Table 2. After heating and stirring at each temperature and temperature and under vacuum, the white clay and activated carbon are suction filtered and pretreated oil and fat Got. Thereafter, 350 g of fish oil (iodine number = 161) pretreated in a 1 liter autoclave and 0.3% by mass (1.05 g) of anti-oil were added to nickel catalyst (SO-750R manufactured by Sakai Chemical Industry Co., Ltd.) After heating to 180 ° C., the hydrogenation reaction was carried out while stirring at a hydrogen pressure (gauge pressure) in the table and a stirring speed of 750 rpm, and curing was carried out until the iodine value of the fat decreased to 70. Thereafter, the nickel catalyst was suction filtered to obtain a hardened oil.

上記で得た硬化油をドイツ公定法(DGF Standard Methods C−III 18(09))に準じて3−MCPDに換算した値としてクロロプロパノール類の総量を求めた。   The total amount of chloropropanols was determined as a value obtained by converting the hydrogenated oil obtained above into 3-MCPD according to the German official method (DGF Standard Methods C-III 18 (09)).

<硬化処理時工程(硬化中)>
1リットルのオートクレーブに魚油(ヨウ素価161)350g、ニッケル触媒(堺化学工業株式会社製SO−750R)を対油0.3質量%(1.05g)、表1に示した白土、表2〜4に示した活性炭、および表4、5に示したアルカリを添加し、真空下で表に示した硬化温度まで加熱後、表の水素圧(ゲージ圧)、攪拌数750rpmで攪拌しながら水素添加反応を行い、油脂のヨウ素価が70まで低下するまで硬化を行なった。その後ニッケル触媒および白土、活性炭、アルカリを吸引濾過し硬化油を得た。上記で得た硬化油をドイツ公定法(DGF Standard Methods C−III 18(09))に準じて3−MCPDに換算した値としてクロロプロパノール類の総量を求めた。
<Curing process (during curing)>
In a 1 liter autoclave, 350 g of fish oil (iodine number 161), nickel catalyst (SO-750R manufactured by Sakai Chemical Industry Co., Ltd.) 0.3 mass% (1.05 g) of oil, white clay shown in Table 1, Table 2 After adding the activated carbon shown in 4 and the alkali shown in Tables 4 and 5 to the curing temperature shown in the table under vacuum, hydrogenation was performed while stirring at a hydrogen pressure (gauge pressure) in the table and a stirring speed of 750 rpm. The reaction was carried out and curing was performed until the iodine value of the fat decreased to 70. Thereafter, nickel catalyst, clay, activated carbon, and alkali were suction filtered to obtain a hardened oil. The total amount of chloropropanols was determined as a value obtained by converting the hydrogenated oil obtained above into 3-MCPD according to the German official method (DGF Standard Methods C-III 18 (09)).

<硬化処理後(後処理)>
1リットルのオートクレーブに魚油(ヨウ素価161)350g、ニッケル触媒(堺化学工業株式会社製SO−750R)を対油0.3質量%(1.05g)添加し、真空下で表に示した硬化温度まで加熱後、表の水素圧(ゲージ圧)、攪拌数750rpmで攪拌しながら水素添加反応を行い、油脂のヨウ素価が70に低下するまで硬化を行なった。その後ニッケル触媒を吸引濾過した。上記で得た硬化油(処理前)に表2に示した活性炭、表5に示した水酸化カルシウムを添加し、真空下で、各温度で加熱を行なった後、活性炭、水酸化カルシウムを吸引濾過し硬化油(処理後)を得た。
<After curing (post treatment)>
350 g of fish oil (iodine number 161) and nickel catalyst (SO-750R manufactured by Sakai Chemical Industry Co., Ltd.) 0.3% by mass (1.05 g) of oil were added to a 1 liter autoclave and cured as shown in the table under vacuum. After heating to temperature, a hydrogenation reaction was performed while stirring at a hydrogen pressure (gauge pressure) in the table and a stirring speed of 750 rpm, and curing was performed until the iodine value of the fat decreased to 70. Thereafter, the nickel catalyst was suction filtered. Activated carbon shown in Table 2 and calcium hydroxide shown in Table 5 are added to the hardened oil obtained above (before treatment), heated at various temperatures under vacuum, and then the activated carbon and calcium hydroxide are sucked. Filtration gave a hardened oil (after treatment).

上記で得た硬化油をドイツ公定法(DGF Standard Methods C−III 18(09))に準じて3−MCPDに換算した値としてクロロプロパノール類の総量を求めた。   The total amount of chloropropanols was determined as a value obtained by converting the hydrogenated oil obtained above into 3-MCPD according to the German official method (DGF Standard Methods C-III 18 (09)).

(参考例1)
1リットルのオートクレーブに魚油(ヨウ素価161)350g、ニッケル触媒(堺化学工業株式会社製SO−750R)を対油0.3質量%(1.05g)添加し、水素圧0.5MPa(ゲージ圧)を維持するように水素を吹き込んで、攪拌数750rpmで攪拌しながら水素添加反応を行い、油脂のヨウ素価が70に低下するまで硬化を行なった。その後ニッケル触媒を吸引濾過し硬化油を得た。上記で得た硬化油をドイツ公定法(DGF Standard Methods C−III 18(09))に準じて3−MCPDに換算した値としてクロロプロパノール類の総量を求めた。(以下、3−MCPD生成量と表記する)
(参考例2)
水素圧0.12MPa(ゲージ圧)に変えた以外は参考例1と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Reference Example 1)
350 g of fish oil (iodine number 161), nickel catalyst (SO-750R manufactured by Sakai Chemical Industry Co., Ltd.) 0.3 mass% (1.05 g) of oil were added to a 1 liter autoclave, and hydrogen pressure 0.5 MPa (gauge pressure) The hydrogenation reaction was performed while stirring at a stirring speed of 750 rpm, and curing was performed until the iodine value of the fat decreased to 70. Thereafter, the nickel catalyst was suction filtered to obtain a hardened oil. The total amount of chloropropanols was determined as a value obtained by converting the hydrogenated oil obtained above into 3-MCPD according to the German official method (DGF Standard Methods C-III 18 (09)). (Hereinafter referred to as 3-MCPD generation amount)
(Reference Example 2)
Except for changing to a hydrogen pressure of 0.12 MPa (gauge pressure), it was cured in the same manner as in Reference Example 1, and then the amount of 3-MCPD produced in the cured oil was determined.

[白土による試験]
(実施例1)
前記の前処理の手順に従って、魚油に白土として対油3質量%の酸性白土(MIZUKA−ACE #300、以下MA300と表記、pH8.5、SiO含量70.5%、水澤化学工業株式会社製)を添加し、真空下100℃で20分処理した後、濾過により白土を取り除き、前処理油脂を得た。前処理油脂を参考例1と同様の条件で硬化し、3−MCPD生成量を求めた。
[Examination with white clay]
Example 1
According to the above pretreatment procedure, 3% by weight acid clay (MIZUKA-ACE # 300, hereinafter referred to as MA300, pH 8.5, SiO 2 content 70.5%, made by Mizusawa Chemical Co., Ltd.) ) And treated at 100 ° C. for 20 minutes under vacuum, and then the white clay was removed by filtration to obtain a pretreated oil and fat. The pretreated oil was cured under the same conditions as in Reference Example 1, and the amount of 3-MCPD produced was determined.

(実施例2)
あらかじめ活性白土(GALLEON EARTH V2、以下V2と表記、pH3.3、SiO含量79.8%、水澤化学工業株式会社製)に対して5倍量の1mol/L水酸化ナトリウム水溶液を加え、常温・常圧で30分間攪拌後、濾過により白土を回収し、その後真空下300℃で4時間乾燥させてアルカリ処理を行った。前記の硬化中の手順に従って、魚油に白土として対油0.46質量%のアルカリ処理したV2(pH11.1)を添加し、アルカリ処理白土を入れたまま参考例2と同様の条件で硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 2)
Add 5 mol of 1 mol / L sodium hydroxide aqueous solution in advance to activated clay (GALLEON EARTH V2, hereinafter referred to as V2, pH 3.3, SiO 2 content 79.8%, manufactured by Mizusawa Chemical Co., Ltd.) -After stirring for 30 minutes at normal pressure, the white clay was recovered by filtration, and then dried at 300 ° C under vacuum for 4 hours for alkali treatment. In accordance with the above curing procedure, V2 (pH 11.1) of 0.46% by mass of oil as a white clay was added to fish oil and cured under the same conditions as in Reference Example 2 while the alkali-treated white clay was left. Thereafter, the amount of 3-MCPD produced in the hardened fat was determined.

(実施例3)
あらかじめ酸性白土(MIZUKA−ACE #300、以下MA300と表記、pH8.5、SiO含量70.5%、水澤化学工業株式会社製)に対して5倍量の1mol/L水酸化ナトリウム水溶液を加え、常温・常圧で30分間攪拌後、濾過により白土を回収し、その後真空下300℃で4時間乾燥させてアルカリ処理を行った。前記の硬化中の手順に従って、白土としてアルカリ処理した酸性白土MA300(pH11.2)を、対油1.5質量%添加したこと以外は、実施例2と同様にして魚油を硬化させ、その後硬化油脂中のクロロプロパノール類の総量を3−MCPDに換算した値として求めた。
Example 3
Add 5 mol of 1 mol / L sodium hydroxide aqueous solution in advance to acid clay (MIZUKA-ACE # 300, hereinafter referred to as MA300, pH 8.5, SiO 2 content 70.5%, manufactured by Mizusawa Chemical Co., Ltd.) After stirring at room temperature and normal pressure for 30 minutes, the white clay was recovered by filtration, and then dried at 300 ° C. for 4 hours under vacuum to perform alkali treatment. According to the procedure during curing, acid oil clay MA300 (pH 11.2) treated with alkali as clay was added to the oil oil in the same manner as in Example 2 except that 1.5% by mass of the oil was added, and then cured. The total amount of chloropropanols in the oil was determined as a value converted to 3-MCPD.

実施例1における3−MCPDの低減率(%)は、参考例1における3−MCPD生成量(ppm)を基準として、実施例2、3における3−MCPDの低減率(%)は、参考例2における3−MCPD生成量(ppm)を基準として以下の計算式で算出された。   The reduction rate (%) of 3-MCPD in Example 1 is based on the 3-MCPD generation amount (ppm) in Reference Example 1, and the reduction rate (%) of 3-MCPD in Examples 2 and 3 is a reference example. Based on the 3-MCPD production amount (ppm) in 2, the following calculation formula was used.

3−MCPD低減率(%)=100−
{(各実施例での3−MCPD生成量(ppm))/
(参考例1または2での3−MCPD生成量(ppm))}×100
結果を表1に示す。
3-MCPD reduction rate (%) = 100-
{(3-MCPD production amount in each example (ppm)) /
(3-MCPD production amount (ppm) in Reference Example 1 or 2)} × 100
The results are shown in Table 1.

Figure 2016123330
Figure 2016123330

表1に示したように、実施例1では、硬化工程の前処理としてpH7以上の白土を原料油に添加することにより、添加なしの参考例1と比較して約20%程度クロロプロパノール類を低減可能であることが確認された。また、実施例2、3では、硬化工程時にアルカリ処理した白土を添加することで、実施例1よりもさらにクロロプロパノール類の低減率の向上が可能であることが示された。   As shown in Table 1, in Example 1, about 20% of chloropropanols were added to the raw material oil by adding white clay having a pH of 7 or more to the raw material oil as a pretreatment in the curing step. It was confirmed that it could be reduced. Moreover, in Example 2, 3, it was shown that the reduction rate of chloropropanols can be improved further than Example 1 by adding the white clay which carried out the alkali process at the time of a hardening process.

[活性炭添加による試験]
(実施例4)
前記の前処理の手順に従って、魚油に木質系活性炭として対油3質量%のアルカリ性活性炭(PW−D(pH8.8)、クラレケミカル株式会社製)を添加し、真空下180℃で1時間加熱撹拌した後、濾過により活性炭を取り除き、前処理油脂を得た。前処理油脂を参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
[Test by adding activated carbon]
Example 4
In accordance with the above pretreatment procedure, 3% by mass of alkaline activated carbon (PW-D (pH 8.8), manufactured by Kuraray Chemical Co., Ltd.) as a wood-based activated carbon is added to fish oil and heated at 180 ° C. for 1 hour under vacuum. After stirring, the activated carbon was removed by filtration to obtain a pretreated oil and fat. The pretreated oil and fat was cured in the same manner as in Reference Example 2, and then the amount of 3-MCPD produced in the cured oil and fat was determined.

(実施例5)
前記の硬化中の手順に従って、魚油に木質系活性炭として対油0.5質量%のPW−D(pH8.8)を添加し、参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 5)
According to the above-mentioned procedure during curing, 0.5% by mass of PW-D (pH 8.8) to the oil is added to the fish oil as a wood-based activated carbon, cured in the same manner as in Reference Example 2, and then 3- The amount of MCPD produced was determined.

(実施例6)
PW−Dの添加量を対油1質量%に増量したこと以外は、実施例5と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 6)
Fish oil was hardened in the same manner as in Example 5 except that the amount of PW-D added was increased to 1% by mass with respect to oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例7)
PW−Dの添加量を対油3質量%に増量したこと以外は、実施例5と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 7)
Fish oil was hardened in the same manner as in Example 5 except that the amount of PW-D added was increased to 3% by mass with respect to the oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例8)
参考例2と同様に硬化し硬化油脂を得た。前記の後処理の手順に従って、対油3質量%のPW−D(pH8.8)を添加して、100℃を維持したまま15分間攪拌混合した。続いて、15分かけて180℃まで昇温し、180℃を維持したまま15分間攪拌混合した後、濾過により活性炭を取り除き、後処理油脂を得た。その後硬化油脂中の3−MCPD生成量を求めた。
(Example 8)
Cured in the same manner as in Reference Example 2 to obtain a hardened fat. According to the post-treatment procedure, 3% by mass of PW-D (pH 8.8) with respect to oil was added, and the mixture was stirred and mixed for 15 minutes while maintaining 100 ° C. Then, it heated up to 180 degreeC over 15 minutes, and stirred and mixed for 15 minutes, maintaining 180 degreeC, Then, activated carbon was removed by filtration and the post-processing fats and oils were obtained. Thereafter, the amount of 3-MCPD produced in the hardened fat was determined.

(実施例9)
参考例2と同様に硬化し硬化油脂を得た。前記の後処理の手順に従って、硬化油脂と活性炭を180℃からさらに15分かけて220℃まで昇温し、220℃を維持したまま15分間攪拌混合したこと以外は、実施例8と同様にして硬化油脂中の3−MCPD生成量を求めた。
Example 9
Cured in the same manner as in Reference Example 2 to obtain a hardened fat. According to the post-treatment procedure, the hardened oil and activated carbon and activated carbon were heated from 180 ° C. to 220 ° C. over 15 minutes, and stirred and mixed for 15 minutes while maintaining 220 ° C. As in Example 8. The amount of 3-MCPD produced in the hardened fat was determined.

(実施例10)
前記の硬化中の手順に従って、魚油に木質系活性炭として対油0.3質量%の梅蜂IE印活性炭(以下梅蜂IE印と表記する、pH9.7、大平化学産業株式会社製)を添加し、参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 10)
According to the above curing procedure, add 0.3% by mass of oil-based activated carbon Plum Bee IE Marked Activated Carbon (hereinafter referred to as Plum Bee IE Mark, pH 9.7, manufactured by Ohira Chemical Industry Co., Ltd.) to the fish oil. Then, it was cured in the same manner as in Reference Example 2, and then the amount of 3-MCPD produced in the cured oil was determined.

(実施例11)
梅蜂IE印の添加量を対油0.5質量%に増量したこと以外は、実施例10と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 11)
Fish oil was hardened in the same manner as in Example 10 except that the addition amount of plum bee IE was increased to 0.5% by mass with respect to oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例12)
梅蜂IE印の添加量を対油1質量%に増量したこと以外は、実施例10と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 12)
The fish oil was hardened in the same manner as in Example 10 except that the addition amount of the plum bee IE mark was increased to 1% by mass with respect to the oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例13)
梅蜂IE印の添加量を対油3質量%に増量したこと以外は、実施例10と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 13)
The fish oil was hardened in the same manner as in Example 10 except that the addition amount of the plum bee IE mark was increased to 3% by mass with respect to the oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例14)
前記の硬化中の手順に従って、魚油に木質系活性炭として対油0.1質量%のNORIT HB−PLUS(以下HB−PLUSと表記する、pH10.1、キャボットノリットジャパン株式会社製)を添加し、参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 14)
In accordance with the above curing procedure, 0.1% by mass of NORIT HB-PLUS (hereinafter referred to as HB-PLUS, pH 10.1, manufactured by Cabot Norit Japan Co., Ltd.) as a wood-based activated carbon is added to the fish oil. Then, it was cured in the same manner as in Reference Example 2, and then the amount of 3-MCPD produced in the cured oil was determined.

(実施例15)
HB−PLUSの添加量を対油0.5質量%に増量したこと以外は、実施例14と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 15)
The fish oil was hardened in the same manner as in Example 14 except that the amount of HB-PLUS was increased to 0.5% by mass of the oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(比較例1)
木質系活性炭であるPW−Dの代わりに石炭系活性炭であるKW−P(pH9.2、クラレケミカル株式会社製)を用いたこと以外は、実施例5と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Comparative Example 1)
The fish oil is cured in the same manner as in Example 5 except that KW-P (pH 9.2, manufactured by Kuraray Chemical Co., Ltd.), which is a coal-based activated carbon, is used instead of PW-D, which is a wooden activated carbon. The amount of 3-MCPD produced in the hardened fat was determined.

(比較例2)
木質系活性炭であるPW−Dの代わりにヤシ殻由来活性炭であるGW−HP(pH7.5、クラレケミカル株式会社製)を用いたこと以外は、実施例5と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Comparative Example 2)
The fish oil is cured in the same manner as in Example 5 except that GW-HP (pH 7.5, manufactured by Kuraray Chemical Co., Ltd.), which is coconut shell-derived activated carbon, is used instead of PW-D, which is a wood-based activated carbon. Thereafter, the amount of 3-MCPD produced in the hardened fat was determined.

(比較例3)
木質系活性炭であるPW−Dの代わりにヤシ殻由来活性炭であるGW−P(pH8.5、クラレケミカル株式会社製)を用いたこと以外は、実施例5と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Comparative Example 3)
The fish oil is cured in the same manner as in Example 5 except that GW-P (pH 8.5, manufactured by Kuraray Chemical Co., Ltd.), which is coconut shell-derived activated carbon, is used instead of PW-D, which is a wood-based activated carbon. Thereafter, the amount of 3-MCPD produced in the hardened fat was determined.

(比較例4)
PW−Dの代わりに木質系活性炭であるA−W50(pH5.8、フタムラ化学株式会社製)を対油1%使用したこと以外は、実施例5と同様にして魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Comparative Example 4)
The fish oil was cured in the same manner as in Example 5 except that A-W50 (pH 5.8, manufactured by Phutamura Chemical Co., Ltd.), which is a wood-based activated carbon, was used instead of PW-D, and then cured. The amount of 3-MCPD produced in the fat was determined.

結果を表2に示す。   The results are shown in Table 2.

Figure 2016123330
Figure 2016123330

表2に示したように、pH7以上の木質系由来の活性炭を原料油に添加することにより、クロロプロパノール類の低減が可能であることが確認された。この効果は、硬化処理時に活性炭を添加した場合に特に顕著であることが示唆された。また、活性炭の添加量に量依存的にクロロプロパノール類の低減率が増大することも示唆された。さらに、活性炭の灰分が3%以上であることも、クロロプロパノール類の低減率に効果的であることが示唆された。   As shown in Table 2, it was confirmed that chloropropanols can be reduced by adding wood-based activated carbon having a pH of 7 or higher to the raw material oil. It was suggested that this effect is particularly remarkable when activated carbon is added during the curing process. It was also suggested that the reduction rate of chloropropanols increased depending on the amount of activated carbon added. Furthermore, it was suggested that the ash content of activated carbon being 3% or more is effective for the reduction rate of chloropropanols.

一方、比較例1〜4の結果から、活性炭が木質系由来以外のものである場合、また、活性炭のpHが7未満の場合、クロロプロパノール類の低減が認められなかった。   On the other hand, from the results of Comparative Examples 1 to 4, when the activated carbon was other than wood-based, or when the pH of the activated carbon was less than 7, no reduction of chloropropanols was observed.

[アルカリ処理した活性炭による試験]
(実施例16)
あらかじめ木質系活性炭であるHB−PLUSに、5倍量の1mol/Lの水酸化ナトリウム水溶液を加え、常温・常圧で60分間攪拌混合し、濾過により活性炭を回収後、80℃で210分間乾燥させてアルカリ処理を行った。前記の硬化中の手順に従って、魚油に活性炭として対油0.1質量%のアルカリ処理したHB−PLUS(pH10.8)を添加し、活性炭を入れたまま参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
[Testing with alkali-treated activated carbon]
(Example 16)
Add 5 times volume of 1 mol / L sodium hydroxide aqueous solution to HB-PLUS, which is a wood-based activated carbon, and stir and mix at room temperature and normal pressure for 60 minutes. Collect the activated carbon by filtration and dry at 80 ° C for 210 minutes. The alkali treatment was performed. According to the procedure during the curing described above, 0.1% by mass of alkali-treated HB-PLUS (pH 10.8) as an activated carbon was added to the fish oil, and cured in the same manner as in Reference Example 2 while the activated carbon was added. The amount of 3-MCPD produced in the hardened fat was determined.

(実施例17)
あらかじめ木質系活性炭であるHB−PLUSに、5倍量の1mol/Lの水酸化ナトリウム/エタノール溶液を加え、常温・常圧で3時間攪拌混合し、濾過により活性炭を回収後、70℃で60分間乾燥させてアルカリ処理を行った。前記の硬化中の手順に従って、魚油に活性炭として対油0.1質量%のアルカリ処理したHB−PLUS(pH11.9)を添加し、活性炭を入れたまま参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 17)
Add 5 times 1 mol / L sodium hydroxide / ethanol solution to wood based activated carbon HB-PLUS in advance, stir and mix at room temperature and pressure for 3 hours, collect the activated carbon by filtration, and then add 60% at 70 ° C. Alkali treatment was performed by drying for a minute. According to the procedure during the curing, 0.1% by mass of an oil-treated HB-PLUS (pH 11.9) as an activated carbon was added to the fish oil and cured in the same manner as in Reference Example 2 while the activated carbon was added. The amount of 3-MCPD produced in the hardened fat was determined.

Figure 2016123330
Figure 2016123330

表3に示すように、実施例17では、あらかじめpH7以上の木質系活性炭にアルカリ溶液処理することにより、クロロプロパノール類の低減率を増強可能であることが示唆された。実施例16では、アルカリ溶液の溶媒として水を用いているため、エタノールを用いた実施例17よりクロロプロパノール類の低減効果が減少したものと考えられる。   As shown in Table 3, in Example 17, it was suggested that the reduction rate of chloropropanols can be enhanced by previously treating the wood-based activated carbon having a pH of 7 or higher with an alkaline solution. In Example 16, since water was used as the solvent of the alkaline solution, it is considered that the effect of reducing chloropropanols was reduced compared to Example 17 using ethanol.

[活性炭とアルカリ物質の併用による試験]
(実施例18)
前記の硬化中の手順に従って、魚油に木質系活性炭として対油0.1質量%のHB−PLUSと対油0.1質量%の粉状の炭酸ナトリウム(関東化学株式会社製)を添加し、参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
[Test using activated carbon and alkaline substances in combination]
(Example 18)
According to the procedure during the curing, 0.1% by mass of HB-PLUS for oil and 0.1% by mass of powdered sodium carbonate (manufactured by Kanto Chemical Co., Ltd.) for oil as wood-based activated carbon are added to the fish oil, It hardened similarly to the reference example 2, and calculated | required 3-MCPD production amount in hardened fats and oils after that.

(実施例19)
炭酸ナトリウムの代わりに対油0.01質量%の粉状の水酸化カルシウムを添加したこと以外は、実施例18と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 19)
Fish oil was hardened in the same manner as in Example 18 except that 0.01% by mass of powdered calcium hydroxide for oil was added instead of sodium carbonate, and then the amount of 3-MCPD produced in the hardened fat was determined. .

(実施例20)
水酸化カルシウムの添加量を0.05質量%に増量したこと以外は、実施例19と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 20)
Fish oil was hardened in the same manner as in Example 19 except that the amount of calcium hydroxide added was increased to 0.05 mass%, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例21)
水酸化カルシウムの添加量を0.1質量%に増量したこと以外は、実施例19と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 21)
Fish oil was hardened in the same manner as in Example 19 except that the amount of calcium hydroxide added was increased to 0.1% by mass, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例22)
炭酸ナトリウムの代わりに対油0.01質量%の粉状のナトリウムメトキシドを添加したこと以外は、実施例18と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 22)
Fish oil was hardened in the same manner as in Example 18 except that 0.01% by mass of powdered sodium methoxide was added in place of sodium carbonate, and then the amount of 3-MCPD produced in the hardened fat was determined. .

(実施例23)
前記の硬化中の手順に従って、魚油に木質系活性炭として対油0.09質量%のHB−PLUSと粉状の水酸化ナトリウム(粒状の水酸化ナトリウム(関東化学株式会社製)を乳鉢ですり潰して得た)を対油0.01質量%添加し、参考例2と同様に硬化させ、その後硬化油脂中3−MCPD生成量を求めた。
(Example 23)
In accordance with the above-mentioned curing procedure, 0.09% by mass of HB-PLUS and oily sodium hydroxide (granular sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.)) as a wood-based activated carbon in fish oil is ground in a mortar. Obtained) was added in an amount of 0.01% by mass to the oil and cured in the same manner as in Reference Example 2, and then the amount of 3-MCPD produced in the cured oil was determined.

実施例18〜23における3−MCPDの低減率(%)は、参考例2における3−MCPD生成量(ppm)を基準として、白土による試験と同様の計算式で求められた。   The reduction rate (%) of 3-MCPD in Examples 18 to 23 was obtained by the same calculation formula as in the test using white clay, based on the 3-MCPD generation amount (ppm) in Reference Example 2.

結果を表4に示す。   The results are shown in Table 4.

Figure 2016123330
Figure 2016123330

表4に示すように、実施例14のpH7以上の木質系活性炭とアルカリとを併用することによって、実施例14に対して、クロロプロパノール類の低減率が約2〜5倍に増強されることが確認された。また、実施例19〜21の結果から、アルカリの添加量が増大するにつれてクロロプロパノール類の低減率も増強されることが示唆された。   As shown in Table 4, the reduction rate of chloropropanols is enhanced by about 2 to 5 times compared to Example 14 by using together woody activated carbon of pH 7 or more of Example 14 and alkali. Was confirmed. Moreover, from the results of Examples 19 to 21, it was suggested that the reduction rate of chloropropanols was enhanced as the amount of alkali added increased.

[アルカリ物質の添加による試験]
(実施例24)
前記の硬化中の手順に従って、魚油にアルカリ物質として対油0.1質量%の粉状の炭酸ナトリウム(関東化学株式会社製)を添加し、参考例2と同様に硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
[Test by adding alkaline substances]
(Example 24)
In accordance with the procedure during curing described above, 0.1% by mass of powdered sodium carbonate (manufactured by Kanto Chemical Co., Ltd.) as an alkaline substance is added to fish oil and cured in the same manner as in Reference Example 2, and then in the cured oil and fat. The amount of 3-MCPD produced was determined.

(実施例25)
炭酸ナトリウムを対油0.01質量%の粉状の水酸化カルシウムに変更したこと以外は、実施例24と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 25)
Fish oil was hardened in the same manner as in Example 24 except that sodium carbonate was changed to powdered calcium hydroxide with 0.01% by mass of oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例26)
水酸化カルシウムの添加量を0.025質量%に増量したこと以外は、実施例25と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 26)
Fish oil was hardened in the same manner as in Example 25 except that the amount of calcium hydroxide added was increased to 0.025% by mass, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例27)
水酸化カルシウムの添加量を0.05質量%に増量したこと以外は、実施例25と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 27)
Fish oil was hardened in the same manner as in Example 25 except that the amount of calcium hydroxide added was increased to 0.05 mass%, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例28)
水酸化カルシウムの添加量を0.1質量%に増量したこと以外は、実施例25と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Example 28)
Fish oil was hardened in the same manner as in Example 25 except that the amount of calcium hydroxide added was increased to 0.1% by mass, and then the amount of 3-MCPD produced in the hardened fat was determined.

(実施例29)
参考例2と同様に硬化し硬化油脂を得た。その後、前記の後処理の手順に従って、対油0.3質量%の粉状の水酸化カルシウムを添加して、180℃を維持したまま60分間攪拌混合した後、濾過により水酸化カルシウムを取り除き、後処理油脂を得た。その後硬化油脂中の3−MCPD生成量を求めた。
(Example 29)
Cured in the same manner as in Reference Example 2 to obtain a hardened fat. Thereafter, in accordance with the above-mentioned post-treatment procedure, 0.3% by mass of powdered calcium hydroxide with respect to oil was added, and after stirring and mixing for 60 minutes while maintaining 180 ° C., calcium hydroxide was removed by filtration, A post-treated oil was obtained. Thereafter, the amount of 3-MCPD produced in the hardened fat was determined.

(比較例5)
炭酸ナトリウムを対油0.1質量%の粉状の炭酸カルシウムに変更したこと以外は、実施例24と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Comparative Example 5)
Fish oil was hardened in the same manner as in Example 24 except that sodium carbonate was changed to powdery calcium carbonate with 0.1% by mass of oil, and then the amount of 3-MCPD produced in the hardened fat was determined.

(比較例6)
炭酸ナトリウムを対油0.1質量%の粉状のリン酸二水素カリウムに変更したこと以外は、実施例24と同様に魚油を硬化させ、その後硬化油脂中の3−MCPD生成量を求めた。
(Comparative Example 6)
Fish oil was hardened in the same manner as in Example 24 except that sodium carbonate was changed to powdered potassium dihydrogen phosphate with 0.1% by weight of oil, and then the amount of 3-MCPD produced in the hardened fat was determined. .

(比較例7)
実施例24と同様の処理において、炭酸ナトリウムを粉状の水酸化ナトリウム(粒状の水酸化ナトリウム(関東化学株式会社製)を乳鉢ですり潰して得た)を対油0.1質量%に変更し、硬化したが、ヨウ素価は低下せず、硬化反応は進まなかった。
(Comparative Example 7)
In the same treatment as in Example 24, sodium carbonate was changed to powdered sodium hydroxide (obtained by grinding granular sodium hydroxide (manufactured by Kanto Chemical Co., Ltd.) with a mortar) to 0.1% by mass of oil. However, the iodine value did not decrease and the curing reaction did not proceed.

(比較例8)
実施例24と同様の処理において、炭酸ナトリウムを対油0.01質量%の粉状のナトリウムメトキシドに変更し、硬化したがヨウ素価は低下せず、硬化反応は進まなかった。
(Comparative Example 8)
In the same treatment as in Example 24, sodium carbonate was changed to powdered sodium methoxide with an oil content of 0.01% by mass and cured, but the iodine value did not decrease and the curing reaction did not proceed.

(比較例9)
比較例8と同様の処理において、ナトリウムメトキシドの添加量を対油0.1質量%に増量し、硬化したがヨウ素価は低下せず、硬化反応は進まなかった。
(Comparative Example 9)
In the same treatment as in Comparative Example 8, the amount of sodium methoxide was increased to 0.1% by mass with respect to oil and cured, but the iodine value did not decrease and the curing reaction did not proceed.

実施例24〜29および比較例5〜6における3−MCPDの低減率(%)は、参考例2における3−MCPD生成量(ppm)を基準として、白土による試験と同様の計算式で求められた。   The reduction rate (%) of 3-MCPD in Examples 24 to 29 and Comparative Examples 5 to 6 is obtained by the same calculation formula as in the test using white clay based on the 3-MCPD generation amount (ppm) in Reference Example 2. It was.

結果を表5に示す。   The results are shown in Table 5.

Figure 2016123330
Figure 2016123330

表5に示すように、アルカリ物質として、原料油に炭酸ナトリウムと水酸化カルシウムを添加した場合、クロロプロパノール類を低減可能であることが示された。水酸化カルシウムに関しては、硬化工程時に添加量が増大するにつれて、クロロプロパノール類の低減作用も増大することが確認された。また、実施例25〜28と実施例29との対比から、硬化工程時にアルカリ物質を添加することで、クロロプロパノール類の低減効果が高まることが示唆された。すなわち、本発明は、硬化処理前や硬化処理後にアルカリ物質を添加する工程や、この工程のための新たな設備導入を追加しなくても、良好なクロロプロパノール類の低減効果を得ることができると考えられる。   As shown in Table 5, it was shown that chloropropanols can be reduced when sodium carbonate and calcium hydroxide are added to the raw material oil as an alkaline substance. Regarding calcium hydroxide, it was confirmed that the reducing effect of chloropropanols increased as the amount added increased during the curing step. Moreover, it was suggested from the comparison with Examples 25-28 and Example 29 that the reduction effect of chloropropanols increases by adding an alkaline substance at the time of a hardening process. That is, the present invention can obtain a good effect of reducing chloropropanols without adding a step of adding an alkaline substance before or after the curing treatment or introducing a new facility for this step. it is conceivable that.

一方、比較例5、6の結果から、アルカリ物質であっても、炭酸カルシウムを添加した場合や酸性物質であるリン酸二水素カリウムを添加した場合には、クロロプロパノール類の低減効果が認められなかった。また、比較例7〜9の結果から、水酸化ナトリウム粉末、ナトリウムメトキシドを添加した場合には、油脂の硬化反応自体が起こらなくなることが確認された。このことから、本発明は、単にアルカリ性の物質を添加するのではなく、特定のアルカリ性の物質を添加することが、クロロプロパノール類の低減には有効であることを示唆しているものと考えられる。
On the other hand, from the results of Comparative Examples 5 and 6, even if it is an alkaline substance, when calcium carbonate is added or when potassium dihydrogen phosphate, which is an acidic substance, is added, an effect of reducing chloropropanols is recognized. There wasn't. Further, from the results of Comparative Examples 7 to 9, it was confirmed that when the sodium hydroxide powder and sodium methoxide were added, the oil and fat curing reaction itself did not occur. From this, it is considered that the present invention suggests that the addition of a specific alkaline substance, not simply adding an alkaline substance, is effective in reducing chloropropanols. .

Claims (7)

硬化処理を含む原料油からの食用油脂の製造において、
前記硬化処理前、硬化処理時および硬化処理後のうちのいずれかの工程において、pH7.0以上の白土、pH7.0以上の木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種を添加することを特徴とする食用油脂中のクロロプロパノール類を低減する方法。
In the production of edible fats and oils from raw material oil including curing treatment,
In any step of the curing treatment, at the time of the curing treatment and after the curing treatment, selected from the group consisting of white clay having a pH of 7.0 or more, woody activated carbon having a pH of 7.0 or more, sodium carbonate and calcium hydroxide. A method for reducing chloropropanols in edible fats and oils, comprising adding at least one kind.
前記炭酸ナトリウムおよび水酸化カルシウムは、粉状であることを特徴とする請求項1に記載の食用油脂中のクロロプロパノール類を低減する方法。   The method for reducing chloropropanols in edible fats and oils according to claim 1, wherein the sodium carbonate and calcium hydroxide are powdery. 前記pH7.0以上の白土、pH7.0以上の木質系活性炭、炭酸ナトリウムおよび水酸化カルシウムからなる群より選択される少なくとも1種の添加量が、処理対象油に対し0.005質量%以上5質量%以下であることを特徴とする請求項1または2に記載の食用油脂中のクロロプロパノール類を低減する方法。   The added amount of at least one selected from the group consisting of the clay of pH 7.0 or higher, the woody activated carbon of pH 7.0 or higher, sodium carbonate and calcium hydroxide is 0.005% by mass or more 5 The method for reducing chloropropanols in edible fats and oils according to claim 1 or 2, wherein the content is less than or equal to mass%. 前記pH7.0以上の白土およびpH7.0以上の木質系活性炭は、ナトリウムメトキシドおよび水酸化ナトリウムからなる群より選択される少なくとも1種と併用することを特徴とする請求項1から3のいずれか一項に記載の食用油脂中のクロロプロパノール類を低減する方法。   4. The method according to claim 1, wherein the white clay having a pH of 7.0 or higher and the woody activated carbon having a pH of 7.0 or higher is used in combination with at least one selected from the group consisting of sodium methoxide and sodium hydroxide. A method for reducing chloropropanols in the edible fat according to claim 1. 前記pH7.0以上の白土の二酸化ケイ素含量が、白土の全組成の65質量%以上であることを特徴とする請求項1から4のいずれか一項に記載の食用油脂中のクロロプロパノール類を低減する方法。   The chloropropanols in edible fats and oils according to any one of claims 1 to 4, wherein the silicon dioxide content of the clay with a pH of 7.0 or more is 65% by mass or more of the total composition of the clay. How to reduce. 前記pH7.0以上の木質系活性炭の灰分が3質量%以上であることを特徴とする請求項1から5のいずれか一項に記載の食用油脂中のクロロプロパノール類を低減する方法。   The method for reducing chloropropanols in edible fats and oils according to any one of claims 1 to 5, wherein the ash content of the woody activated carbon having a pH of 7.0 or more is 3% by mass or more. 前記pH7.0以上の白土およびpH7.0以上の木質系活性炭は、あらかじめアルカリ処理されたものであることを特徴とする請求項1から6のいずれか一項に記載の食用油脂中のクロロプロパノール類を低減する方法。
The chloropropanol in edible fats and oils according to any one of claims 1 to 6, wherein the white clay having a pH of 7.0 or higher and the woody activated carbon having a pH of 7.0 or higher have been previously alkali-treated. To reduce the kind.
JP2014266356A 2014-12-26 2014-12-26 Method for reducing chloropropanols in edible fats and oils Active JP6441072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266356A JP6441072B2 (en) 2014-12-26 2014-12-26 Method for reducing chloropropanols in edible fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266356A JP6441072B2 (en) 2014-12-26 2014-12-26 Method for reducing chloropropanols in edible fats and oils

Publications (2)

Publication Number Publication Date
JP2016123330A true JP2016123330A (en) 2016-07-11
JP6441072B2 JP6441072B2 (en) 2018-12-19

Family

ID=56357070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266356A Active JP6441072B2 (en) 2014-12-26 2014-12-26 Method for reducing chloropropanols in edible fats and oils

Country Status (1)

Country Link
JP (1) JP6441072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016187211A (en) * 2010-08-17 2016-10-27 エム アンド ケー ホールディングス インコーポレイテッド Picture decoding device
CN110024870A (en) * 2018-01-12 2019-07-19 丰益(上海)生物技术研发中心有限公司 A method of control grease contamination
EP3556833A4 (en) * 2016-12-15 2020-05-20 The Nisshin OilliO Group, Ltd. Fat/oil composition
CN111330539A (en) * 2018-12-19 2020-06-26 丰益(上海)生物技术研发中心有限公司 Composite solid adsorbent and method for purifying grease
US10988705B2 (en) 2019-03-12 2021-04-27 Aptia Engineering Llc Remediation of pesticides from agricultural oils
IT202000032711A1 (en) * 2020-12-29 2022-06-29 Technoilogy S R L PROCESS FOR THE REMOVAL OF ORGANIC CHLORIDES FROM OILS AND FATS OF VEGETABLE AND ANIMAL ORIGIN AND FROM OILS PRODUCED IN WASTE TREATMENT
JP7408240B2 (en) 2020-03-19 2024-01-05 日清オイリオグループ株式会社 Method for producing re-refined palm oil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075278A1 (en) * 2007-12-12 2009-06-18 Fuji Oil Company, Limited Refined palm-based fat or oil and method of producing the same
JP2010504753A (en) * 2006-12-29 2010-02-18 インダストリー・アカデミック・コーオペレーション・ファウンデーション・オブ・ウソク・ユニバーシティ Process for preparing processed edible oils with highly enriched butter flavor and very low trans fatty acid content and processed edible oils prepared thereby
WO2010126136A1 (en) * 2009-04-30 2010-11-04 不二製油株式会社 Method for inhibiting production of chloropropanols and chloropropanol-forming substances in glyceride oils and fats
WO2011040539A1 (en) * 2009-09-30 2011-04-07 不二製油株式会社 Method for reducing chloropropanols and formative substance thereof, glycidol fatty acid esters, in glyceride oils
WO2011055732A1 (en) * 2009-11-06 2011-05-12 不二製油株式会社 Method for reducing chloropropanols and chloropropanol-forming substances in glyceride oil or fat
WO2013018412A1 (en) * 2011-07-29 2013-02-07 日清オイリオグループ株式会社 Purified glyceride composition and method for producing purified glyceride composition
WO2014034154A1 (en) * 2012-08-31 2014-03-06 日清オイリオグループ株式会社 Method for manufacturing refined oil or fat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504753A (en) * 2006-12-29 2010-02-18 インダストリー・アカデミック・コーオペレーション・ファウンデーション・オブ・ウソク・ユニバーシティ Process for preparing processed edible oils with highly enriched butter flavor and very low trans fatty acid content and processed edible oils prepared thereby
WO2009075278A1 (en) * 2007-12-12 2009-06-18 Fuji Oil Company, Limited Refined palm-based fat or oil and method of producing the same
WO2010126136A1 (en) * 2009-04-30 2010-11-04 不二製油株式会社 Method for inhibiting production of chloropropanols and chloropropanol-forming substances in glyceride oils and fats
WO2011040539A1 (en) * 2009-09-30 2011-04-07 不二製油株式会社 Method for reducing chloropropanols and formative substance thereof, glycidol fatty acid esters, in glyceride oils
WO2011055732A1 (en) * 2009-11-06 2011-05-12 不二製油株式会社 Method for reducing chloropropanols and chloropropanol-forming substances in glyceride oil or fat
WO2013018412A1 (en) * 2011-07-29 2013-02-07 日清オイリオグループ株式会社 Purified glyceride composition and method for producing purified glyceride composition
WO2014034154A1 (en) * 2012-08-31 2014-03-06 日清オイリオグループ株式会社 Method for manufacturing refined oil or fat

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016187211A (en) * 2010-08-17 2016-10-27 エム アンド ケー ホールディングス インコーポレイテッド Picture decoding device
JP2016213852A (en) * 2010-08-17 2016-12-15 エム アンド ケー ホールディングス インコーポレイテッド Intra-prediction mode decoding method
EP3556833A4 (en) * 2016-12-15 2020-05-20 The Nisshin OilliO Group, Ltd. Fat/oil composition
CN110024870A (en) * 2018-01-12 2019-07-19 丰益(上海)生物技术研发中心有限公司 A method of control grease contamination
CN110024870B (en) * 2018-01-12 2022-07-19 丰益(上海)生物技术研发中心有限公司 Method for controlling grease pollutants
CN111330539A (en) * 2018-12-19 2020-06-26 丰益(上海)生物技术研发中心有限公司 Composite solid adsorbent and method for purifying grease
CN111330539B (en) * 2018-12-19 2022-08-26 丰益(上海)生物技术研发中心有限公司 Composite solid adsorbent and method for purifying grease
US10988705B2 (en) 2019-03-12 2021-04-27 Aptia Engineering Llc Remediation of pesticides from agricultural oils
JP7408240B2 (en) 2020-03-19 2024-01-05 日清オイリオグループ株式会社 Method for producing re-refined palm oil
IT202000032711A1 (en) * 2020-12-29 2022-06-29 Technoilogy S R L PROCESS FOR THE REMOVAL OF ORGANIC CHLORIDES FROM OILS AND FATS OF VEGETABLE AND ANIMAL ORIGIN AND FROM OILS PRODUCED IN WASTE TREATMENT

Also Published As

Publication number Publication date
JP6441072B2 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6441072B2 (en) Method for reducing chloropropanols in edible fats and oils
KR101795819B1 (en) Method for reducing chloropropanols and formative substance thereof, glycidol fatty acid esters, in glyceride oils
JP6182067B2 (en) Removal of organic halo and oxirane species in carboxylic acid ester streams.
JP6134399B2 (en) Method for producing gamma-oryzanol-containing fat / oil
JP4588793B2 (en) Method for producing edible fats and oils
WO2010126136A1 (en) Method for inhibiting production of chloropropanols and chloropropanol-forming substances in glyceride oils and fats
JP5216942B1 (en) Purified glyceride composition and method for producing the purified glyceride composition
JP5399544B1 (en) Method for producing refined fats and oils
JPWO2011055732A1 (en) Method for reducing chloropropanols and substances formed in glyceride oils and fats
JP2011147435A (en) Method for producing edible oil-and-fat reduced in 3-mcpd-fs
Vispute et al. Refining of palm oil: A review on palm oil refining process, 3-MCPD esters in refined palm oil, and possible reduction tactics for 3-MCPD esters
WO2015146248A1 (en) Production method for purified palm oil and fat
JP6919755B2 (en) Edible fats and oils with reduced glycidol and glycidol fatty acid ester content and methods for producing them
JP6451447B2 (en) Method for producing refined palm oil with reduced monochloropropanediol-forming substance content
JP2016124963A (en) Method for decreasing chloropropanol in edible oil and fat
CN113122388A (en) Method for refining edible oil
JP5850647B2 (en) Luo oil and fat and ruo using the same
JP2021107531A (en) Production method of oil and fat, and reduction method of chloropropanol
JPWO2011081119A1 (en) Method for inhibiting the formation of chloropropanols and their forming substances in glyceride oils and fats
Pratik Vispute et al. Refining of palm oil: a review on palm oil refining process, 3-MCPD esters in refined palm oil, and possible reduction tactics for 3-MCPD esters.
CN114845556A (en) Edible oil and fat with reduced content of glycidol and fatty acid ester of glycidol, and its preparation method
JP6478630B2 (en) Method for producing hardened oil
JP2013199581A (en) Method of producing refined bleached deodorized palm oil (rbdpo) reduced in content of chloropropanols
JP2022120970A (en) Method for suppressing cooked odor of oil and fat composition
WO2020089603A1 (en) Metal removal process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250