JP2016121609A - Direct-injection internal combustion engine control device - Google Patents

Direct-injection internal combustion engine control device Download PDF

Info

Publication number
JP2016121609A
JP2016121609A JP2014261534A JP2014261534A JP2016121609A JP 2016121609 A JP2016121609 A JP 2016121609A JP 2014261534 A JP2014261534 A JP 2014261534A JP 2014261534 A JP2014261534 A JP 2014261534A JP 2016121609 A JP2016121609 A JP 2016121609A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
cylinder
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014261534A
Other languages
Japanese (ja)
Inventor
高橋 宏典
Hironori Takahashi
宏典 高橋
岡本 拓人
Takuto Okamoto
拓人 岡本
健太郎 志賀
Kentaro Shiga
健太郎 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014261534A priority Critical patent/JP2016121609A/en
Publication of JP2016121609A publication Critical patent/JP2016121609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform combustion under the most suitable air-fuel ratio by calculating a fuel injection amount for combustion in consideration of fuel adhered at the time of cutting ignition and fuel injection time.SOLUTION: This invention relates to a cylinder direct-injection internal combustion engine control device that is applied for the cylinder direct-injection internal combustion engine comprising starting control means for performing a direct injection of fuel from a fuel injection valve into a combustion chamber, igniting mixture gas formed by this fuel injection by a spark plug to ignite the mixture gas, determining whether or not fuel is present in the cylinder that can be applied for combustion therein when the internal combustion engine starts under ultra low temperature, if fuel that can contribute to the combustion is present, prohibiting cutting of ignition or limiting the number of times of igniting cutting. There are provided: means for measuring a temperature of the cylinder direct-injection internal combustion engine; means for specifying the cylinder for limiting the number of times of ignition cutting; and means for measuring soaking time ranging from a stop time to a starting time of the cylinder direct-injection internal combustion engine. A fuel injection amount for every cylinder is corrected in response to the soaking time when the temperature is less than a predetermined value and the soaking time corresponds to the starting time of the internal combustion engine within a predetermined time.SELECTED DRAWING: Figure 4

Description

本発明は、直噴内燃機関の制御装置に係り、特に、極低温下における内燃機関の始動時に点火カットを行う直噴内燃機関の制御装置に関する。   The present invention relates to a control device for a direct injection internal combustion engine, and more particularly to a control device for a direct injection internal combustion engine that performs ignition cut when starting the internal combustion engine at a cryogenic temperature.

従来の直噴内燃機関の制御装置として,例えば-25度以下の極低温下における内燃機関のクランキングによる始動時において,点火カットを行うことで筒内に燃料を充填させることで燃料を十分に気化してから良好な着火を行い,内燃機関の始動性を良くする制御が知られている。(例えば,特許文献1参照)
一方で,極低温下において,短期間中に内燃機関の始動と停止を繰り返す際に点火カットを行うと,気筒内に燃料が過度に充填されオーバーリッチとなり,プラグかぶりやプラグくすぶりを引き起こされ,内燃機関の始動不能となることがある。この状態を回避するために,気筒内が極低温下における内燃機関の再始動時や,点火カット中に内燃機関停止後の極低温再始動時に点火カットを禁止する制御が知られている。(例えば,特許文献2参照)
As a control device for a conventional direct injection internal combustion engine, for example, at the start of cranking of an internal combustion engine at a cryogenic temperature of -25 degrees or less, sufficient fuel can be supplied by filling the cylinder with fuel by performing an ignition cut. Control is known that performs good ignition after vaporization and improves the startability of the internal combustion engine. (For example, see Patent Document 1)
On the other hand, if ignition is cut when the internal combustion engine is repeatedly started and stopped in a short period of time at extremely low temperatures, fuel is excessively filled into the cylinder, resulting in over-richness, causing plug fogging and plug smoldering. It may become impossible to start the internal combustion engine. In order to avoid this state, there is known a control for prohibiting ignition cut when restarting the internal combustion engine in a cylinder at a cryogenic temperature, or during cryogenic restart after stopping the internal combustion engine during ignition cut. (For example, see Patent Document 2)

特開2000−097071号公報JP 2000-097071 A 特開2007−32383号公報JP 2007-32383 A

ところで,特許文献2では筒内暖機状態にあるときの極低温再始動や点火カット中停止後の極低温再始動の際の筒内燃料のオーバーリッチを回避することで空燃比がずれる課題があった。   By the way, in Patent Document 2, there is a problem that the air-fuel ratio is shifted by avoiding over-richness of in-cylinder fuel at the time of cryogenic restart when in-cylinder warm-up state or cryogenic restart after stopping during ignition cut. there were.

そこで、本発明では、点火カット時燃料噴射時に付着する燃料を考慮し、燃焼についての燃料噴射量を算出して最適な空燃比で燃焼することができる直噴内燃機関の制御装置を提供することを目的とする。   Accordingly, the present invention provides a control device for a direct injection internal combustion engine that can calculate the fuel injection amount for combustion and burn at an optimal air-fuel ratio in consideration of the fuel adhering during fuel injection during ignition cut. With the goal.

上記課題を解決するため,本発明の内燃機関の制御装置は,燃料噴射弁から燃焼室内に燃料を直接噴射し,この燃料噴射で形成された混合気を点火プラグにより点火して燃焼させる筒内直噴内燃機関に適用され,前記内燃機関の極低温始動の際に、気筒内に燃焼に寄与できる燃料が有るか否かを判定し,燃焼に寄与できる燃料が有るときには、前記点火カットを禁止または点火カット回数を制限する始動制御手段を備える筒内直噴内燃機関の制御装置であって、前記筒内直噴内燃機関の温度を計測する手段と、前記点火カット回数を制限した気筒を特定する手段と、前記筒内直噴内燃機関の停止時間から開始時間までのソーク時間を計測する手段を設け,前記温度が所定値以下であり,且つ前記ソーク時間が所定時間内での内燃機関の始動時である時は,ソーク時間に応じて,気筒毎の燃料噴射量を補正することを特徴とする。   In order to solve the above-mentioned problems, an internal combustion engine control apparatus according to the present invention is an in-cylinder engine in which fuel is directly injected from a fuel injection valve into a combustion chamber, and an air-fuel mixture formed by the fuel injection is ignited by an ignition plug and burned. Applied to a direct injection internal combustion engine, when the internal combustion engine is started at a cryogenic temperature, it is determined whether or not there is fuel that can contribute to combustion in the cylinder, and if there is fuel that can contribute to combustion, the ignition cut is prohibited. Alternatively, a control device for a direct injection internal combustion engine having a start control means for limiting the number of ignition cuts, the means for measuring the temperature of the direct injection internal combustion engine, and a cylinder for which the number of ignition cuts is limited And a means for measuring a soak time from a stop time to a start time of the in-cylinder direct injection internal combustion engine, wherein the temperature is equal to or lower than a predetermined value and the soak time is within a predetermined time. When starting When present, depending on the soak time, and corrects the fuel injection amount for each cylinder.

本発明によれば,極低温下での極低温時の燃料のオーバーリッチを回避することが可能になるとともに,燃料補正をかけることでエミッション向上に寄与することができる。   According to the present invention, it is possible to avoid fuel over-richness at cryogenic temperatures at cryogenic temperatures, and to contribute to improving emissions by applying fuel correction.

直噴内燃機関の構成図Configuration diagram of direct injection internal combustion engine 直噴内燃機関の構成図Configuration diagram of direct injection internal combustion engine ソークタイマのフローチャート図Flow chart of soak timer 燃料補正のフローチャート図Flow chart of fuel correction 前回点火カット時燃料補正量算出マップ図Fuel correction amount calculation map for the previous ignition cut 前回点火カット禁止時燃料補正量算出マップ図Fuel correction amount calculation map when the previous ignition cut is prohibited

以下、本発明の実施例について図面を用いて説明する。本発明は、車両等に搭載される筒内直噴内燃機関の制御装置に関し、さらに詳しくは、内燃機関を極低温で始動する際に燃焼室内の混合気への点火を停止する点火カットを制御する筒内直噴内燃機関の制御装置に関する。   Embodiments of the present invention will be described below with reference to the drawings. The present invention relates to a control device for an in-cylinder direct injection internal combustion engine mounted on a vehicle or the like, and more specifically, controls an ignition cut that stops ignition of an air-fuel mixture in a combustion chamber when the internal combustion engine is started at a cryogenic temperature. The present invention relates to a control device for a direct injection internal combustion engine.

図1〜6はこの発明の実施例を示すものである。以下図面に基づいてこの発明の実施例を詳細に説明する。   1 to 6 show an embodiment of the present invention. Embodiments of the present invention will be described below in detail with reference to the drawings.

最初に図1と図2を用いて本発明の直噴内燃機関(以下エンジン)の始動制御が行われる制御システムの構成を説明する。   First, the configuration of a control system for performing start control of a direct injection internal combustion engine (hereinafter referred to as an engine) according to the present invention will be described with reference to FIGS. 1 and 2.

図1のエンジンにおいて,24は内燃機関,3は吸気通路,16は排気通路である。   In the engine of FIG. 1, 24 is an internal combustion engine, 3 is an intake passage, and 16 is an exhaust passage.

3の吸気通路には,空気吸入量を調整するスロットル4とエアフローメータ2が備えられ,吸気弁8を介し燃焼室9に通じている。この吸気弁8を開閉駆動することにより、吸気通路3と燃焼室9とが連通または遮断される。   The intake passage 3 is provided with a throttle 4 and an air flow meter 2 for adjusting the air intake amount, and communicates with the combustion chamber 9 via an intake valve 8. By opening and closing the intake valve 8, the intake passage 3 and the combustion chamber 9 are communicated or blocked.

前記燃焼室9には燃料噴射装置であるインジェクタ13と,イグナイタ23からの指令で点火を行う点火プラグ14が複数の気筒毎に設けられ、排気弁26を介して前記排気通路16の上流側に通じている。この排気弁26を開閉駆動することにより、吸気通路3と燃焼室9とが連通または遮断される。これら吸気弁8及び排気弁26の開閉駆動は、クランクシャフト19の回転が伝達される吸気カムシャフト30及び排気カムシャフト31の各回転によって行われる。   The combustion chamber 9 is provided with an injector 13 as a fuel injection device and a spark plug 14 for igniting according to a command from the igniter 23 for each of the plurality of cylinders, and is disposed upstream of the exhaust passage 16 via an exhaust valve 26. Communicates. By opening and closing the exhaust valve 26, the intake passage 3 and the combustion chamber 9 are communicated or blocked. The opening / closing drive of the intake valve 8 and the exhaust valve 26 is performed by each rotation of the intake camshaft 30 and the exhaust camshaft 31 to which the rotation of the crankshaft 19 is transmitted.

前記インジェクタ13には、燃料供給管(以下フューエルレール)36によって燃料タンク10の燃料が送られる。前記フューエルレール36の途中には,燃料の圧力を調整する図示していない燃料圧力ポンプが設けられている。この高圧ポンプより燃焼室9へ直接噴射されることにより,前記吸気弁8から吸気した空気と燃料とが混合された混合気が形成され,その混合器が前記点火プラグ14にて点火され燃焼室9で燃焼される。この燃焼によりピストン35が往復運動をしてクランクシャフト19が回転する。   The fuel in the fuel tank 10 is sent to the injector 13 by a fuel supply pipe (hereinafter referred to as a fuel rail) 36. In the middle of the fuel rail 36, a fuel pressure pump (not shown) for adjusting the fuel pressure is provided. By directly injecting into the combustion chamber 9 from this high-pressure pump, an air-fuel mixture is formed in which the air sucked from the intake valve 8 and fuel are mixed, and the mixer is ignited by the spark plug 14 and the combustion chamber. 9 is burned. By this combustion, the piston 35 reciprocates and the crankshaft 19 rotates.

また,燃焼室9の外側のウォータジャケット29を循環する冷却水の温度(冷却水温)を検出する水温センサ31が配置されている。   Further, a water temperature sensor 31 for detecting the temperature of the cooling water circulating through the water jacket 29 outside the combustion chamber 9 (cooling water temperature) is disposed.

以上のエンジンの運転状態は,電源IC100によって起動するECU101によって制御される。ECU101は,CPU102,ROM103,RAM104,バックアップRAM105,及び,後述するソーク時間などをカウントするカウンタ106を備えている。   The engine operating state is controlled by the ECU 101 that is activated by the power supply IC 100. The ECU 101 includes a CPU 102, a ROM 103, a RAM 104, a backup RAM 105, and a counter 106 that counts a soak time that will be described later.

ROM103は,読み出し専用の各種制御プログラムを実行する際に参照されるデータが記憶されている。RAM104はCPU102での演算結果や各デバイスから入力されたデータを一時的に記憶するメモリあり,バックアップRAM104は図1のエンジン停止時に必要なデータを記憶する不揮発性のメモリである。これら全ては図示していないバスを介し互いに接続され,外部入力,外部出力と接続されている。   The ROM 103 stores data that is referred to when various read-only control programs are executed. The RAM 104 is a memory that temporarily stores the calculation results of the CPU 102 and data input from each device, and the backup RAM 104 is a non-volatile memory that stores data required when the engine is stopped in FIG. All of these are connected to each other via a bus (not shown), and are connected to an external input and an external output.

外部入力は,イグニッションスイッチ21,エアフローセンサ2,吸気温センサ42,油温センサ43,クランク角センサ44,アクセル開度センサ45,スロットルセンサ46,空燃比センサ20,ニュートラルスイッチ31等が接続されている。外部出力はインジェクタ13,イグナイタ23,バルブタイミング可変機構47,フューエルポンプ48等が接続されている。   The external input is connected to the ignition switch 21, the air flow sensor 2, the intake air temperature sensor 42, the oil temperature sensor 43, the crank angle sensor 44, the accelerator opening sensor 45, the throttle sensor 46, the air-fuel ratio sensor 20, the neutral switch 31, and the like. Yes. The external output is connected to the injector 13, the igniter 23, the variable valve timing mechanism 47, the fuel pump 48, and the like.

また,カウンタ106では,図1のエンジン停止時からの経過時間を図3のフローチャートに示す方法で測定する。まずステップS101でエンジン停止時かを判定し,停止時であればステップS102においてタイマをカウントアップする。そしてステップS103でイグニッションスイッチがONとなったかを判定した結果,ONであればステップS104でタイマをバックアップRAMへ保存し,ステップS105でタイマをクリアしてこのルーチンを終了する。   The counter 106 measures the elapsed time from when the engine is stopped in FIG. 1 by the method shown in the flowchart of FIG. First, in step S101, it is determined whether the engine is stopped. If it is stopped, the timer is counted up in step S102. As a result of determining whether or not the ignition switch is turned on in step S103, if it is ON, the timer is stored in the backup RAM in step S104, the timer is cleared in step S105, and this routine is terminated.

そして,ECU101は,エアフローセンサ2,吸気温センサ42,油温センサ43,クランク角センサ44,アクセル開度センサ45,スロットルセンサ46,空燃比センサ20,等各種センサとソークタイマの値に基づき,下記極低温時のエンジン始動制御を行う。   The ECU 101 is based on various sensors such as an air flow sensor 2, an intake air temperature sensor 42, an oil temperature sensor 43, a crank angle sensor 44, an accelerator opening sensor 45, a throttle sensor 46, an air-fuel ratio sensor 20, and soak timer values as follows. Performs engine start control at extremely low temperatures.

ECU101で実行する極低温始動制御を図4のフローチャートと図5と図6を参照して説明する。   The cryogenic start control executed by the ECU 101 will be described with reference to the flowchart of FIG. 4 and FIGS. 5 and 6.

まず,ステップS201で水温センサ31の値から極低温時のエンジン始動であるか否かを判定し,極低温であると判断した場合はステップS102に進む。否定判定である場合はこのルーチンを終了する。   First, in step S201, it is determined from the value of the water temperature sensor 31 whether or not the engine has been started at a very low temperature. If it is determined that the temperature is extremely low, the process proceeds to step S102. If the determination is negative, this routine is terminated.

ステップS202では公知である要求点火カット回数を算出する。(特許文献2)そして,ステップS203で,水温センサ31の値を入力として図5のエンジン水温による燃料噴射量の補正係数301Aを,ソークタイマの値を入力として図6のソーク時間による燃料噴射量の補正係数301Bを算出する。図5,図6にはそれぞれ前回点火カット禁止,前回点火カット時の2つの補正係数のマップを用意し,両方の燃料噴射量の補正係数を算出する。これは,前回点火カットを禁止した履歴がある場合と,前回点火カットを実施した履歴が有る場合とでは気筒内の燃焼寄与可能な燃料量が変わるためである。また,この時ソーク時間が短ければ短いほど,気筒内に燃焼寄与可能な燃料が残っていると推定出来るため,ソーク時間が短ければ燃料補正を小さな値(>0)とし,ソーク時間が所定値以上で燃料補正を1とし,ソーク時間による燃料補正を無効化する。さらに,エンジン水温が例えば0度以下の低温領域から,例えばー25度以下の極低温領域において,温度が低ければ低いほど,筒内の燃焼寄与可能な燃料量は少ないため,エンジン水温による燃料補正量を1に近づけエンジン水温による燃料補正を無効化し,エンジン水温が高ければ高いほど,筒内の燃焼寄与可能な燃料は多いと推定できるため,エンジン水温による燃料補正を小さな値(>0)とする。   In step S202, a known required number of ignition cuts is calculated. (Patent Document 2) Then, in step S203, the value of the water temperature sensor 31 is input and the correction coefficient 301A of the fuel injection amount based on the engine water temperature in FIG. 5 is input, and the value of the soak timer is input and the fuel injection amount based on the soak time in FIG. A correction coefficient 301B is calculated. 5 and 6, two correction coefficient maps for the previous ignition cut inhibition and the previous ignition cut are prepared, and the correction coefficients for both fuel injection amounts are calculated. This is because the amount of fuel that can contribute to combustion in the cylinder changes between when there is a history of prohibiting the previous ignition cut and when there is a history of executing the previous ignition cut. At this time, as the soak time is shorter, it can be estimated that the fuel that can contribute to combustion remains in the cylinder. Therefore, if the soak time is short, the fuel correction is set to a small value (> 0), and the soak time is a predetermined value. Thus, the fuel correction is set to 1, and the fuel correction based on the soak time is invalidated. Furthermore, since the lower the temperature, for example, from the low temperature region where the engine water temperature is 0 ° C. or less to the extremely low temperature region where the engine water temperature is −25 ° C. or less, the amount of fuel that can contribute to combustion in the cylinder is small, fuel correction based on the engine water temperature The amount of fuel correction due to engine water temperature is invalidated and the fuel correction due to engine water temperature is invalidated. It can be estimated that the higher the engine water temperature is, the more fuel can contribute to combustion in the cylinder, so the fuel correction due to engine water temperature is a small value (> 0). To do.

燃料噴射量の補正係数の算出が終わった後,ステップS204においてエンジンクランキングを行い,所定のエンジン回転数に到達しているかをステップS205のエンジン完爆判定を行う。完爆判定された時はステップS207の通常のエンジン始動制御を行い,完爆判定されない時はステップS206前回点火カット禁止履歴有無を判定する。前回点火カット禁止履歴が有る時は前回点火カットのエンジン水温による燃料噴射量の補正係数301A,ソーク時間による燃料噴射量の補正係数Bを用いて,ステップS208の燃料補正した燃料噴射量Xを,燃料補正前の燃料噴射量をCとした時,下記式によって算出し,燃料を噴射する。
X = 301A × 301B × C
After the calculation of the fuel injection amount correction coefficient is completed, engine cranking is performed in step S204, and it is determined whether the engine has reached a predetermined engine speed in step S205. When the complete explosion determination is made, normal engine start control in step S207 is performed, and when the complete explosion determination is not made, the presence or absence of the previous ignition cut prohibition history is determined in step S206. When there is a previous ignition cut prohibition history, the fuel injection amount X corrected in step S208 is corrected using the fuel injection amount correction coefficient 301A based on the engine water temperature of the previous ignition cut and the fuel injection amount correction coefficient B based on the soak time. When the fuel injection amount before fuel correction is C, it is calculated by the following formula and fuel is injected.
X = 301A × 301B × C

前回点火カット禁止履歴がない場合は前回点火カット禁止のエンジン水温による燃料噴射量の補正係数A,ソーク時間による燃料噴射量Bを用いて,同様にステップS209燃料補正した燃料噴射量を算出し,燃料を噴射する。   If there is no previous ignition cut prohibition history, the fuel injection amount corrected in step S209 is similarly calculated using the fuel injection amount correction coefficient A based on the engine water temperature of the previous ignition cut prohibition and the soak time. Inject fuel.

ステップS208,ステップS209の燃料補正した燃料噴射が終了した後,ステップS210の公知である点火カットを実施する。(特許文献2)
以上で極低温始動制御のルーチンを終了する。
After the fuel-corrected fuel injection in steps S208 and S209 is completed, a known ignition cut in step S210 is performed. (Patent Document 2)
This completes the cryogenic start control routine.

本実施形態に係る内燃機関の制御装置は、エンジンの停止時からの経過時間を測定すべく,エンジン停止からイグニッションONまでの時間を計測するカウンタ106を設けるとともに、内燃機関の完爆状態をエンジン回転数により判定する完爆判定手段を設け、気筒内に燃焼寄与可能な燃料が残っているかを推定すべく,エンジン水温センサ31を設け,前回点火カット履歴がある再始動の際の完爆前に,前回点火カット禁止履歴がある際はソーク時間とエンジン水温に応じた燃料噴射量の補正制御を行い,且つ前回点火カット禁止履歴が無い際も間爆判定していなければ,燃料噴射量の補正制御を行う。   The control apparatus for an internal combustion engine according to the present embodiment is provided with a counter 106 for measuring the time from the engine stop to the ignition ON in order to measure the elapsed time from the stop of the engine, and the complete explosion state of the internal combustion engine is determined by the engine. Before the complete explosion at the time of restart with the engine water temperature sensor 31 provided in order to estimate whether or not there is fuel that can contribute to combustion remaining in the cylinder by judging the rotational speed When there is a previous ignition cut prohibition history, correction control of the fuel injection amount is performed according to the soak time and engine water temperature. Perform correction control.

このような構成により極低温時の始動性を良くすることができる。すなわち、筒内暖機状態にあるときの極低温再始動時または点火カット中停止後の極低温再始動時には、気筒内に燃焼に寄与できる燃料が有るので、極低温始動時の点火カットによる燃料噴射を禁止または制限することにより、燃料のオーバーリッチを回避することができ、「プラグかぶり」や「プラグくすぶり」を抑制することができ、エミッションにも負荷を与えないようにすることができる。   With such a configuration, startability at an extremely low temperature can be improved. That is, at the time of cryogenic restart when the cylinder is warmed up or at the cryogenic restart after stopping during ignition cut, there is fuel that can contribute to combustion in the cylinder, so fuel by ignition cut at cryogenic start By prohibiting or restricting injection, it is possible to avoid fuel over-richness, to suppress “plug fogging” and “plug smoldering”, and to prevent emission from being loaded.

2…エアフローメータ
3…吸気通路
4…スロットル
8…吸気弁
9…燃焼室
10…燃料タンク
13…インジェクタ
14…点火プラグ
16…排気通路
19…クランクシャフト
23…イグナイタ
24…内燃機関
26…排気弁
29…ウォータジャケット
30…吸気カムシャフト
31…排気カムシャフト
35…ピストン
36…燃料配給管
100…電源IC
101…ECU
102…CPU
103…ROM
104…RAM
105…バックアップRAM
106…カウンタ
2 ... Air flow meter 3 ... Intake passage 4 ... Throttle 8 ... Intake valve 9 ... Combustion chamber 10 ... Fuel tank 13 ... Injector 14 ... Spark plug 16 ... Exhaust passage 19 ... Crankshaft 23 ... Igniter 24 ... Internal combustion engine 26 ... Exhaust valve 29 ... Water jacket 30 ... Intake camshaft 31 ... Exhaust camshaft 35 ... Piston 36 ... Fuel distribution pipe 100 ... Power supply IC
101 ... ECU
102 ... CPU
103 ... ROM
104 ... RAM
105 ... Backup RAM
106 ... Counter

Claims (3)

燃料噴射装置より気筒内へ燃料噴射弁を通し直接燃料を噴射して,吸気弁を介して吸気通路から気筒内に吸気した空気と前記噴射した燃料とを気筒内で混合し,点火装置により点火して燃焼させる直噴内燃機関の制御装置であって,
前記内燃機関を始動する際に,少なくとも1サイクルの間は点火を禁止すると同時に,筒内へ燃料を噴射する制御装置であって,気筒内に燃焼寄与可能な燃料が残っている場合は点火を禁止する回数を制限する手段を有し,前記内燃機関が停止してから始動するまでのソーク時間を測定する手段を有する制御装置であって,前記ソーク時間に応じて燃料噴射量補正をかけることを特徴とする直噴内燃機関の制御装置。
The fuel is directly injected into the cylinder from the fuel injection device through the fuel injection valve, and the air sucked into the cylinder from the intake passage through the intake valve and the injected fuel are mixed in the cylinder and ignited by the ignition device. A direct-injection internal combustion engine control device
When starting the internal combustion engine, a control device that prohibits ignition for at least one cycle and simultaneously injects fuel into the cylinder. If fuel that can contribute to combustion remains in the cylinder, ignition is performed. A control device having means for limiting the number of times of prohibition, and means for measuring a soak time from when the internal combustion engine is stopped to when it is started, and applying fuel injection amount correction according to the soak time A control apparatus for a direct injection internal combustion engine.
請求項1において,前記内燃機関の水温を測定する手段を有する制御装置であって,前記水温の温度に応じて燃料噴射量補正をかけることを特徴とする直噴内燃機関の制御装置。   2. The control device for a direct injection internal combustion engine according to claim 1, wherein the control device has means for measuring the water temperature of the internal combustion engine, and the fuel injection amount is corrected in accordance with the temperature of the water temperature. 請求項1において,前記点火を禁止した履歴と内燃機関の水温とソーク時間に応じた燃料噴射量を算出し燃料を噴射する直噴内燃機関の制御装置。   2. The control device for a direct injection internal combustion engine according to claim 1, wherein the fuel injection amount is calculated in accordance with a history of prohibiting the ignition, a water temperature of the internal combustion engine, and a soak time, and fuel is injected.
JP2014261534A 2014-12-25 2014-12-25 Direct-injection internal combustion engine control device Pending JP2016121609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261534A JP2016121609A (en) 2014-12-25 2014-12-25 Direct-injection internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261534A JP2016121609A (en) 2014-12-25 2014-12-25 Direct-injection internal combustion engine control device

Publications (1)

Publication Number Publication Date
JP2016121609A true JP2016121609A (en) 2016-07-07

Family

ID=56327217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261534A Pending JP2016121609A (en) 2014-12-25 2014-12-25 Direct-injection internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP2016121609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085990B1 (en) * 2018-12-05 2020-03-06 현대오트론 주식회사 Apparatus and method for controlling fuel injection amount

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085990B1 (en) * 2018-12-05 2020-03-06 현대오트론 주식회사 Apparatus and method for controlling fuel injection amount

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
JP2014234791A (en) Start control device for internal combustion engine
WO2014167832A1 (en) Start control device for internal combustion engines
WO2013150729A1 (en) Fuel injection control device
US6935312B2 (en) Internal combustion engine and ignition control method
JP2006291939A (en) Controller of engine
JP6287889B2 (en) Control device for multi-cylinder internal combustion engine
US9890722B2 (en) Fuel injection control method for internal combustion engine
JP2004028046A (en) Starting control device for internal combustion engine
JP5381733B2 (en) Control device for internal combustion engine
JPH08170557A (en) Electronic control fuel injection device
JP2006291940A (en) Controller of engine
JP2016121609A (en) Direct-injection internal combustion engine control device
JP4937287B2 (en) Control device for internal combustion engine
JP6841119B2 (en) Engine control
JP2006002610A (en) Engine starting performance improving device
JP2005155462A (en) Start control device of internal combustion engine
JP2019108824A (en) Fuel injection control apparatus
JP5946338B2 (en) Control device for internal combustion engine
JP5821748B2 (en) Start control device for internal combustion engine
JP6065857B2 (en) Control device for internal combustion engine
JP2014101848A (en) Control device for internal combustion engine
JP2017002812A (en) Control device of internal combustion engine
JP2016125353A (en) Rotation stop position controlling apparatus of engine
JP2013204520A (en) Start control device for internal combustion engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124