JP2016118078A - Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system - Google Patents

Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system Download PDF

Info

Publication number
JP2016118078A
JP2016118078A JP2014259559A JP2014259559A JP2016118078A JP 2016118078 A JP2016118078 A JP 2016118078A JP 2014259559 A JP2014259559 A JP 2014259559A JP 2014259559 A JP2014259559 A JP 2014259559A JP 2016118078 A JP2016118078 A JP 2016118078A
Authority
JP
Japan
Prior art keywords
geothermal
extraction
heat
power generation
promoting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014259559A
Other languages
Japanese (ja)
Inventor
貴行 志田
Takayuki Shida
貴行 志田
廣明 松島
Hiroaki Matsushima
廣明 松島
康晴 川端
Yasuharu Kawabata
康晴 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solution Creators Inc
Original Assignee
Solution Creators Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solution Creators Inc filed Critical Solution Creators Inc
Priority to JP2014259559A priority Critical patent/JP2016118078A/en
Publication of JP2016118078A publication Critical patent/JP2016118078A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To provide a promotion method of geothermal heat extraction capable of stably extracting much geothermal heat for a long term, and a closed loop circulation type geothermal power generation system applying the geothermal heat extraction promotion method.SOLUTION: A hot-dry rock 1 or the inside of a high temperature stratum is fractured by hydraulic pressure to form a fracture 14, and then a heat conduction promotion proppant 14 is mixed to support the fracture 14. Also, a geothermal heat transfer path is constituted by press-fit penetration of a heat conduction promotion proppant 15 in the fracture 14. After that, a heat exchange promotion porous body 10 constituted of a heat resisting material with high thermal conductivity or a geothermal heat extraction promotion heat exchanger 3 having an aggregate of multiple heat exchange plates is inserted to make it adhere with a geothermal heat transfer path. Accordingly, a geothermal heat extraction area is increased, and the heat conduction of the geothermal heat from the hot-dry rock 1 or the inside of the high temperature stratum to the geothermal heat extraction heat exchanger 3 is improved, and thereby the geothermal heat extraction and the heat exchange are promoted.SELECTED DRAWING: Figure 1

Description

本発明は、地熱発電の発電出力増大や適用箇所の拡大につながる、地熱抽出の促進方法に関する。 The present invention relates to a method for promoting geothermal extraction, which leads to an increase in power generation output of geothermal power generation and expansion of application locations.

特に、高温岩体発電に代表されるEGS発電(Engineered Geothermal System power generation)における、高温岩体からの地熱抽出方法及び、当該地熱抽出方法を利用した閉ループ循環型の高温岩体発電システムに関する。 In particular, the present invention relates to a geothermal extraction method from a high temperature rock body in EGS power generation (Engineered Geothermal System power generation) typified by high temperature rock power generation, and a closed loop circulation type high temperature rock power generation system using the geothermal extraction method.

温泉熱や地熱蒸気、または高温岩体などの地熱を利用して発電を行う地熱発電は、地球の高温マグマ層を熱源とし、発電の過程で燃料消費や温室効果ガスの排出を伴わないことから、エネルギー自給率の向上や温暖化防止に資する発電手段として注目されている。   Geothermal power generation, which generates electricity using hot spring heat, geothermal steam, or geothermal heat such as high-temperature rocks, uses the Earth's high-temperature magma layer as a heat source, and does not involve fuel consumption or greenhouse gas emissions during the power generation process. It is attracting attention as a means of power generation that contributes to improving the energy self-sufficiency rate and preventing global warming.

従来の地熱発電システムでは、地熱地帯を掘削して地熱貯留槽から得られる蒸気を利用して発電するフラッシュ方式のほか、温泉井戸からの源泉湯や地熱蒸気により、ペンタンや代替フロン、アンモニア水といった低沸点の発電用媒体を加熱蒸発させて蒸気タービンを駆動する、バイナリー発電方式が広く知られている。 In the conventional geothermal power generation system, in addition to the flash system that generates electricity using the steam obtained from the geothermal storage tank by excavating the geothermal area, pentane, alternative chlorofluorocarbons, ammonia water, etc. are generated by hot spring water and geothermal steam from the hot spring well. A binary power generation method is widely known in which a steam turbine is driven by heating and evaporating a low-boiling power generation medium.

しかしながら、温泉地帯で新たに坑井掘削を行って多量の地熱蒸気や温泉を生産したり、既存の蒸気や温泉の汲み上げ量を増量する場合には、温泉の湧出量や地下水量が減少する懸念が生じるほか、地熱地帯でコストと時間をかけて掘削を行っても、亀裂や流体の不足により、地熱は得られても充分な地熱蒸気や温泉湧出が得られない、いわゆるカラ井戸を掘削するリスクもあるため、新規の地熱蒸気生産や汲み上げ増量を行うことなく、また、地熱は得られても蒸気や温泉が得られないカラ井戸であっても地熱発電を可能とする技術、すなわち地下の高温地熱だけを効率よく抽出して利用する地熱発電技術が期待されている。 However, if new well drilling is performed in the hot spring area to produce a large amount of geothermal steam or hot springs, or if the amount of existing steam or hot springs is increased, there is a concern that the hot spring discharge or groundwater volume will decrease. Drilling a so-called Kara well where geothermal heat cannot be obtained due to lack of cracks and fluids, but sufficient geothermal steam and hot springs cannot be obtained due to lack of cracks and fluids. There are also risks, so technology that enables geothermal power generation without the need for new geothermal steam production or increased pumping, and even in a well where steam and hot springs cannot be obtained even if geothermal heat is obtained, that is, underground Geothermal power generation technology that efficiently extracts and uses only high-temperature geothermal heat is expected.

近年、これらの課題解決に繋がる技術として、特許文献1に記載されている、閉ループ循環型の地熱発電が提案されている。本技術は、既存温泉への影響懸念とスケール付着による故障発生リスクを同時に軽減できるほか、蒸気や温泉が得られなかったカラ井戸の有効活用にもつながる、温泉地域共生型の地熱発電技術である。 In recent years, as a technique for solving these problems, closed loop circulation type geothermal power generation described in Patent Document 1 has been proposed. This technology is a symbiotic geothermal power generation technology that can reduce the risk of damage to existing hot springs and the risk of failure due to scale adhesion, as well as the effective use of empty wells where steam and hot springs were not available. .

特開2014−202149号公報JP 2014-202149 A

また、カラ井戸のように亀裂や流体といった地熱発電要素の一部が充分でない場合に、不足要素を工学的な手法によって克服することで実現する地熱発電の手法として、EGS発電(Engineered Geothermal System power generation)が期待されている。 In addition, as a geothermal power generation technique that is realized by overcoming the shortage element by an engineering method when a part of the geothermal power generation element such as a crack or a fluid is not sufficient as in the case of a color well, EGS power generation (Engineered Geothermal System power) generation) is expected.

このEGS発電の代表例として高温岩体発電が挙げられるが、これは地下の高温岩体を水圧破砕して人工亀裂システムを構築するとともに、地上の注入井から人工亀裂システムに多量の注水を行って地熱蒸気を発生させ、これを生産井から回収して発電を行った後に、再び注水利用することで、熱水循環系を人工的に構築して地熱発電を行うものである。 A typical example of this EGS power generation is high-temperature rock power generation, which constructs an artificial cracking system by hydraulically crushing the underground high-temperature rocky body, and also injects a large amount of water from the ground injection well into the artificial cracking system. Then, after generating geothermal steam, collecting it from the production well and generating electricity, water is injected again to construct a hydrothermal circulation system for geothermal power generation.

また、前記の高温岩体発電に係る課題である、注入水の地下逸水による損失と、注水に伴う誘発地震の発生を抑制しながら効率よく発電を行う方法として、特許文献2に示された発電方法が提案されている。本技術は、人工注水の逸水に伴う蒸気回収量の減少による発電出力低下や、多量の注水により地下が刺激されて誘発される地震のリスクを抑制できる、新たなEGS発電技術である。   In addition, Patent Document 2 discloses a method for efficiently generating power while suppressing the loss caused by underground underground water discharge, which is a problem related to the high-temperature rock power generation, and the occurrence of induced earthquakes associated with water injection. A power generation method has been proposed. This technology is a new EGS power generation technology that can reduce the power generation output drop due to a decrease in the amount of steam recovered due to the loss of artificial water injection and the risk of earthquakes induced by the underground being stimulated by a large amount of water injection.

特開2014−51856号公報JP 2014-51856 A

前記の通り、特許文献1に示された従来技術によれば、周囲温泉への影響懸念やスケール付着によるリスクを大幅に軽減しながら、地熱蒸気や温泉湧出を伴わないカラ井戸でも地熱発電が可能となるものの、解決すべき3つの課題がある。 As described above, according to the prior art disclosed in Patent Document 1, geothermal power generation is possible even in a Kara well that does not involve geothermal steam or hot spring discharge, while greatly reducing the risk of impact on surrounding hot springs and the risk of scale adhesion. However, there are three issues to be solved.

一つは坑井に挿入された熱交換器のうち、高温地熱を抽出する坑底付近の高温地熱層や高温岩体と接する熱交換面積が小さいため、深部地熱帯から熱交換器への熱流束が限定的となって地熱の抽熱量が限定され、大きな発電出力が得られ難いという課題がある。 One of the heat exchangers inserted in the wells has a small heat exchange area in contact with the high-temperature geothermal layer near the bottom of the well where high-temperature geothermal heat is extracted and the high-temperature rocks, so the heat flow from the deep tropics to the heat exchanger There is a problem that the bundle is limited, the amount of extraction of geothermal heat is limited, and it is difficult to obtain a large power output.

また、仮に深部地熱帯と接する熱交換面積が充分であったとしても、地中や岩石内の熱伝導率が1.3〜7W/m・K程度と、炭化ケイ素(純度に応じ、100〜350W/m・K程度)や黒鉛(純度に応じ、119〜165W/m・K程度)、金属(元素に応じて、13〜380W/m・K程度)などの工業的な熱交換器用材料より低いため、地下の深部から伝わる地熱を、坑底に設置した熱交換器の外壁に伝熱する際の地熱の抽熱効率が低く、安定的に抽熱できる地熱量が限定され、大きな発電出力が得られ難いという課題がある。 Moreover, even if the heat exchange area in contact with the deep underground is sufficient, the thermal conductivity in the ground or in the rock is about 1.3 to 7 W / m · K, and silicon carbide (100 to 100 depending on the purity). From industrial heat exchanger materials such as 350 W / m · K), graphite (depending on purity, about 119 to 165 W / m · K), metal (depending on the element, about 13 to 380 W / m · K) Because it is low, the extraction efficiency of geothermal heat when transferring geothermal heat from deep underground to the outer wall of the heat exchanger installed at the bottom of the well is low, the amount of geothermal heat that can be extracted stably is limited, and large power output There is a problem that it is difficult to obtain.

加えて、深部地熱帯内に挿入された地中熱交換器の先端内部は、円筒壁面のみで充分な熱交換面積を有していないため、熱交換器管の外壁から充分な熱流束が得られたとしても、熱交換器管の内部に流下する発電媒体の昇温や気化を効率よく行えず、循環流体が充分であっても発電利用できる地熱量が限定され、発電出力が限定されてしまう課題がある。 In addition, since the inside of the tip of the underground heat exchanger inserted into the deep tropical zone is only a cylindrical wall surface and does not have a sufficient heat exchange area, a sufficient heat flux can be obtained from the outer wall of the heat exchanger tube. Even if the circulating fluid is sufficient, the amount of geothermal heat that can be used for power generation is limited, and the power generation output is limited. There is a problem.

以上3つの課題により、特に高温岩体発電において最も重要となる、長期間に渡り多量かつ安定的に地熱を抽出して効率良く発電に利用する、という課題のうち、多量に地熱を抽出して効率よく発電に利用する課題に充分な対応ができず、地熱の抽出量と、抽出した地熱の利用量が限定されることで、大きな発電出力が得られ難いという課題がある。 Due to the above three issues, among the issues that are most important especially in high-temperature rock power generation, that is to extract geothermal heat stably over a long period and efficiently use it for power generation, extract a large amount of geothermal heat. There is a problem that it is difficult to sufficiently deal with the problem of efficiently using power generation, and it is difficult to obtain a large power generation output by limiting the extraction amount of geothermal heat and the use amount of extracted geothermal heat.

一方、特許文献2に示された従来技術によれば、逸水による発電出力の減少や注水に伴う誘発地震の発生リスクを抑制できるものの、本技術にも解決すべき3つの課題がある。 On the other hand, according to the prior art disclosed in Patent Document 2, although it is possible to reduce the power generation output reduction due to water loss and the risk of occurrence of induced earthquakes associated with water injection, there are also three problems to be solved by this technology.

一つは、本方式では注入井と生産井の2つの坑井を掘削する必要があり、特許文献1に示された1つの坑井で実現可能な方式よりも坑井掘削コストが上昇し、開発期間も長期化するという課題がある。 First, in this method, it is necessary to drill two wells, an injection well and a production well, and the well drilling cost is higher than the method that can be realized with one well shown in Patent Document 1, There is a problem that the development period is also prolonged.

さらに、前記注入井の掘削深度は2〜5kmまでの深度であり、2kmを超える大深度での掘削を要することから、坑井一本あたりの掘削コストが高く、掘削期間も長期化するという課題がある。 Furthermore, since the drilling depth of the injection well is 2 to 5 km and requires drilling at a depth exceeding 2 km, the drilling cost per well is high and the drilling period is prolonged. There is.

また、深度3〜4kmの掘削により本方式を実現しうる火山帯が、東日本、フィリピン、インドネシアおよびカムチャッカなどの短縮テクトニクス場の火山帯に限定されるため、本件技術を適用できる地域が限定的されるという課題もある。 In addition, since the volcanic zone that can realize this method by excavation at a depth of 3 to 4 km is limited to volcanic zones of shortened tectonics fields such as East Japan, the Philippines, Indonesia, and Kamchatka, the area where this technology can be applied is limited. There is also a problem that.

本発明は、このような課題に鑑みてなされたものであり、その目的は、高温岩体発電をはじめとするEGS発電において、最重要課題とされている多量地熱の長期安定的抽出と、得られた地熱を効率よく利用して発電出力を高めることにより、掘削深度が浅く、亀裂などによる逸水リスクのある地熱帯であっても、また坑底温度が高くても流体不足で従来型の地熱発電が困難なカラ井戸であっても、坑井一本で高効率な地熱発電を実現できるようにすることで、地熱発電のコスト削減と適用範囲の拡大を可能とする、新たな地熱の抽出方法と、本抽熱方法を応用した閉ループ循環型の新たな地熱発電システムを提供することである。   The present invention has been made in view of such problems, and its purpose is to obtain a stable and long-term extraction of a large amount of geothermal heat, which is regarded as the most important issue in EGS power generation including high-temperature rock power generation. By efficiently using the generated geothermal heat to increase the power generation output, even in geotropics where the drilling depth is shallow and there is a risk of water loss due to cracks, etc. Even for Kara wells, where geothermal power generation is difficult, by making it possible to realize highly efficient geothermal power generation with a single well, it is possible to reduce the cost of geothermal power generation and expand the scope of application. It is to provide a new geothermal power generation system of the closed loop circulation type applying the extraction method and this extraction heat method.

上記課題を解決するため、請求項1に記載の発明は、
坑井を通して流体を高温岩体または高温の地層中に圧入し、高温岩体を破砕してフラクチャーを形成するか、高温の地層中に流体を浸透させて地熱抽熱経路を形成する工程と、
形成されたフラクチャーまたは地層中の地熱抽熱経路を半永久的に支持しながら、坑井までの地熱伝導経路を確保するとともに、地熱伝導経路における地熱の熱伝導率を高めるため、地熱抽出促進用プロパントを流体中に混合して圧入浸透させる工程と、
地熱抽出促進用プロパントが充填されたフラクチャーまたは地層中の地熱抽熱経路と、坑井内に設置する地熱抽出促進用熱交換器との間に熱伝導経路を形成するよう、流体圧入後の坑井内に地熱抽出促進用熱交換器を挿入設置して、フラクチャーまたは地層中の地熱抽熱経路と密着させる工程により、
高温岩体または高温の地層中から地熱を抽出する際の熱交換面積を拡大させて地熱抽熱量を増大させるとともに、形成した地熱抽熱経路内の熱伝導率と、個々の地熱抽熱経路と坑井内に設置した地熱抽出促進用熱交換器との間の熱伝導率を高めることで、
地熱抽出量の増大と地熱抽出効率の向上を実現する地熱抽出ネットワークを地中に構成することを特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1
Pressing a fluid through a well into a hot rock or a hot formation and crushing the hot rock to form a fracture, or infiltrating the fluid into the hot formation to form a geothermal extraction path;
Propant for promoting geothermal extraction in order to secure the geothermal conduction path to the well and improve the thermal conductivity of geothermal heat in the geothermal conduction path while semipermanently supporting the geothermal extraction path in the formed fractures or formations. Mixing in a fluid and infiltrating it,
Inside the well after fluid injection so as to form a heat conduction path between the geothermal extraction path in the fracture or formation filled with proppant for geothermal extraction promotion and the geothermal extraction promotion heat exchanger installed in the well By inserting and installing a heat exchanger for promoting geothermal extraction into the geothermal heat extraction path in the fracture or the formation,
While increasing the amount of geothermal extraction by expanding the heat exchange area when extracting geothermal heat from hot rocks or high-temperature formations, the thermal conductivity in the formed geothermal extraction path and the individual geothermal extraction paths By increasing the thermal conductivity between the heat exchanger for promoting geothermal extraction installed in the well,
It is characterized in that a geothermal extraction network that realizes an increase in geothermal extraction amount and improvement in geothermal extraction efficiency is constructed in the ground.

請求項2に記載の発明は、
請求項1に記載の地熱抽出促進用プロパント粒子の少なくとも一部が、地熱層内の岩石や地層よりも高い熱伝導性と耐熱性を有する、炭化ケイ素、金属、または黒鉛を含んでいることを特徴とする。
The invention described in claim 2
It is preferable that at least a part of the proppant particles for promoting geothermal extraction according to claim 1 includes silicon carbide, metal, or graphite having higher thermal conductivity and heat resistance than rocks and geological layers in the geothermal layer. Features.

請求項3に記載の発明は、
請求項1に記載の地熱抽出促進用熱交換器の一部または全部が、高い熱伝導性と耐熱性を有する炭化ケイ素、金属、または黒鉛を含む多孔体か、これらの材料で構成された複数の熱交換板の集合体で構成されていることを特徴とする。
The invention according to claim 3
A part or all of the heat exchanger for promoting geothermal extraction according to claim 1 is a porous body containing silicon carbide, metal, or graphite having high thermal conductivity and heat resistance, or a plurality of these materials. It is characterized by comprising an aggregate of heat exchange plates.

請求項4に記載の発明は、
請求項1に記載の地熱抽出促進用プロパントを含む流体中に、請求項2に記載の地熱抽出促進用プロパントと、フラクチャー内または地熱抽熱経路内の地熱抽出促進用プロパントの固定化と、請求項3に記載の地熱抽出促進用熱交換器との固着または接触を促進するための熱硬化剤を混入させることを特徴とする。
The invention according to claim 4
Immobilization of the proppant for promoting geothermal extraction according to claim 2 and the proppant for promoting geothermal extraction in a fracture or a geothermal extraction path in a fluid containing the proppant for promoting geothermal extraction according to claim 1; A heat curing agent for promoting fixation or contact with the heat exchanger for promoting geothermal extraction according to Item 3 is mixed.

請求項5に記載の発明は、
請求項1〜4の何れか一つ以上の地熱抽出促進方法を用いて抽出した地熱で発電媒体を加熱上昇させて地上の発電装置で発電させた後に、発電後の媒体を凝縮液化させて同一の坑井内に還元流下させて再び加熱する、同軸二重管を利用した閉ループ循環流路を構成し、地熱抽出を促進させた地中熱交換系で閉ループ循環型の地熱発電を行うことを特徴とする。
The invention described in claim 5
The power generation medium is heated and raised with geothermal heat extracted using one or more of the geothermal extraction promotion methods according to any one of claims 1 to 4, and the power generation apparatus on the ground generates electric power, and then the medium after power generation is condensed and liquefied. A closed-loop circulation channel using a coaxial double pipe that is heated again by reducing the flow into the well of this site is constructed, and closed-loop circulation type geothermal power generation is performed with a geothermal heat exchange system that promotes geothermal extraction And

本発明によれば、閉ループ循環型地熱発電における最大の課題である地熱の抽出・利用量の増大を実現し、坑底温度が高いものの、多量の地熱蒸気や温泉湧出が得られず、従来型の地熱発電が困難な高温岩体や高温の地層中でも、既存温泉への影響や注水に伴う地震誘発への懸念と、坑井内へのスケール析出や注入水の逸水損失による性能低下リスクを軽減しながら、高効率かつ低コストで、適用範囲の広い地熱発電を実施できるようになる。 According to the present invention, the extraction and use of geothermal heat, which is the biggest problem in closed-loop circulation geothermal power generation, is realized, and although the bottom temperature is high, a large amount of geothermal steam and hot springs cannot be obtained, and the conventional type Even in high-temperature rock formations and high-temperature formations where geothermal power generation is difficult, there are concerns about the impact on existing hot springs and the occurrence of earthquakes due to water injection, and the risk of performance degradation due to scale deposition in wells and lost water loss of injected water However, geothermal power generation with a wide application range can be implemented with high efficiency and low cost.

本発明に係る第1実施形態である、地熱抽出促進型閉ループ循環地熱発電システムの概略構成を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows schematic structure of the geothermal extraction promotion type closed loop circulation geothermal power generation system which is 1st Embodiment which concerns on this invention. 図1の地熱抽出促進領域を構築する作業手順のうち、フラクチャー形成支持用の熱交換促進用粗粒プロパントを圧入して水圧破砕を行う工程を示す模式図である。It is a schematic diagram which shows the process of carrying out the hydraulic crushing by press-fitting the coarse proppant for heat exchange promotion for fracture formation support among the work procedures which construct the geothermal extraction promotion area | region of FIG. 図1の地熱抽出促進領域を構築する作業手順のうち、フラクチャー浸透充填用の熱交換促進用細粒プロパントを圧入した後に、多段水圧破砕装置を坑井から引き出した後の地熱抽出促進領域の状態を示す模式図である。In the work procedure for constructing the geothermal extraction promotion region of FIG. 1, the state of the geothermal extraction promotion region after the multi-stage hydraulic fracturing device is pulled out from the well after injecting the fine proppant for heat exchange promotion for fracture infiltration filling It is a schematic diagram which shows. 図1の地熱抽出促進領域を構築する作業手順のうち、坑底に地熱抽出促進用熱交換器を圧入してフラクチャー内に熱交換促進用細粒プロパントを再び浸透充填させつつ、個々のフラクチャー内に形成された地熱抽出経路と地熱抽出促進用熱交換器とを密着固定化させる工程を示す模式図である。Among the work procedures for constructing the geothermal extraction promotion region of FIG. 1, while inserting a geothermal extraction promotion heat exchanger into the bottom of the well and refilling the fracture with fine heat propellants for promoting heat exchange, It is a schematic diagram which shows the process of closely_contact | adhering and fixing the geothermal extraction path | route and heat exchanger for a geothermal extraction promotion which were formed in this. 図1の発電用媒体の加熱促進用多孔体および発電用媒体の媒体分離ガイド板が一体化された地熱抽出促進用熱交換器を、上面から見た模式図である。It is the schematic diagram which looked at the heat exchanger for a geothermal extraction acceleration | stimulation with which the porous body for the heating promotion of the electric power generation medium of FIG. 1 and the medium separation guide plate of the electric power generation medium were integrated from the upper surface.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、本実施形態に限定されるものではない。 The best mode for carrying out the present invention will be described below with reference to the drawings. The scope of the present invention is described in the scope of claims, and is not limited to this embodiment.

(第1実施形態) (First embodiment)

まず、本発明の第1実施形態に係る、地熱抽出促進型閉ループ循環地熱発電システムの概略構成および機能について、図に基づいて説明する。 First, a schematic configuration and function of a geothermal extraction promotion closed loop circulation geothermal power generation system according to a first embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の地熱発電システムは、本発明の地熱抽出促進方法によって、高温岩体1中に構成された地熱抽出促進領域2と、当該地熱抽出促進領域内に挿入された、地熱抽出促進用熱交換器3と、当該熱交換器に接続して地熱流体の閉ループ循環を行う同軸二重管4と、当該同軸二重管が挿入された坑井5と、当該坑井の地上近傍に設置され、前記熱交換器を介して地熱吸熱により得られる高温の地熱流体により、蒸気タービン等を利用して発電を行う発電装置6と、発電後の媒体を冷却凝縮する発電媒体の凝縮液化装置7と、液化した発電媒体を還元する循環ポンプ8を利用して、前記の同軸二重管を通じて地熱抽出促進用熱交換器へと発電媒体を還流させる還元流路9で構成されている。 As shown in FIG. 1, the geothermal power generation system of the present invention is inserted into the geothermal extraction promotion region 2 configured in the high-temperature rock body 1 and the geothermal extraction promotion region by the geothermal extraction promotion method of the present invention. , A heat exchanger 3 for promoting geothermal extraction, a coaxial double pipe 4 connected to the heat exchanger to perform closed loop circulation of the geothermal fluid, a well 5 in which the coaxial double pipe is inserted, and the well A power generation device 6 that generates power using a steam turbine or the like using a high-temperature geothermal fluid obtained by geothermal heat absorption through the heat exchanger, and a power generation medium that cools and condenses the medium after power generation Using a condensing and liquefying device 7 and a circulation pump 8 for reducing the liquefied power generation medium, and a reduction flow path 9 for returning the power generation medium to the heat exchanger for promoting geothermal extraction through the coaxial double pipe. ing.

ここで、地熱抽出促進用熱交換器3は、高温岩体内または高温地熱層内での耐久性と熱交換効率を高めるため、高い耐熱性と耐食性に、高い熱伝導率を兼ね備えた、純度の高い炭化ケイ素で製造された片側閉止管で構成されている。 Here, the heat exchanger 3 for promoting geothermal extraction has a high purity with high heat resistance and corrosion resistance and high thermal conductivity in order to enhance durability and heat exchange efficiency in a high temperature rock body or a high temperature geothermal layer. It consists of a single-sided closed tube made of high silicon carbide.

また、この先端管の内部には、片側閉止管の内壁と一体化した高純度炭化ケイ素の熱交換促進用多孔体10が内蔵されており、片側閉止管外壁からの多量の地熱を先端管内部の多孔体に効率良く伝えるとともに、同軸二重管を介して流下した発電用媒体の接触面積を増大し、熱伝導率を高めることで、発電用媒体を効率よく加熱させるよう構成されている。 In addition, a porous body 10 for promoting heat exchange of high-purity silicon carbide integrated with the inner wall of the one-side closing tube is built in the tip tube, and a large amount of geothermal heat from the outer wall of the one-side closing tube is absorbed inside the tip tube. The power generating medium is efficiently heated by increasing the contact area of the power generating medium flowing down through the coaxial double pipe and increasing the thermal conductivity.

加えて、前記多孔体による発電用媒体加熱部の上部には、加熱された発電用媒体を同軸二重管の内側断熱管に集める一方、還元された加熱前の発電媒体を同軸二重管内壁に沿う円弧状スリット11から前記多孔体に流下させる、高純度炭化ケイ素製の発電媒体流下用スリット付き媒体分離ガイド板12が設けられ、このガイド板の中央上部に挿入された、同軸二重管を構成する内側断熱管内を、加熱された発電用媒体が上昇する構成としている。 In addition, the heated power generating medium is collected in the inner heat insulating pipe of the coaxial double pipe at the upper part of the power generating medium heating section by the porous body, while the reduced power generation medium before heating is coaxially inner wall of the coaxial double pipe A medium separation guide plate 12 with a slit for power generation medium flow made of high-purity silicon carbide is provided, which is made to flow down from the arc-shaped slit 11 along the line to the porous body, and is inserted into the center upper portion of this guide plate. The heated power generation medium is configured to rise in the inner heat insulating pipe constituting the.

なお、前記の先端閉止管と管内部の多孔体および媒体分離ガイド板で構成される地熱抽出促進用熱交換器は、近年開発された炭化ケイ素材料の3次元印刷技術(3Dプリンタ技術)を利用することで、複雑な形状の多孔体や媒体分離ガイド板を含む全ての構成要素を、耐熱性と耐食性が高く、かつ熱伝導率の高い、高純度の炭化ケイ素で一体成形させている。 Note that the heat exchanger for promoting geothermal extraction, which is composed of the above-mentioned closed end tube, porous body inside the tube, and medium separation guide plate, utilizes the recently developed three-dimensional printing technology (3D printer technology) of silicon carbide material. By doing so, all the components including the porous body having a complicated shape and the medium separation guide plate are integrally formed with high-purity silicon carbide having high heat resistance and corrosion resistance and high thermal conductivity.

ただし、前記の先端閉止管の管壁には充分な緻密性が必要となるため、高い緻密性を有する先端閉止円管を3次元印刷技術で製造できない場合には、公知の技術で製造された高純度炭化ケイ素材料で製造された先端閉止管を利用し、この閉止管内部の底面に、公知の技術で製造された、高純度炭化ケイ素製の多孔体と、多孔体上部に配置するスペーサー管と、このスペーサー管で支持される媒体分離ガイド板を挿入し、それぞれを前記の閉止管内部に固定することで、従来技術を用いた成形品の組み合わせで構成してもよい。   However, since the tube wall of the tip closing tube needs to be sufficiently dense, when the tip closing circular tube having high denseness cannot be produced by a three-dimensional printing technique, it is produced by a known technique. A high-purity silicon carbide porous body manufactured by a well-known technique and a spacer pipe disposed on the top of the porous body are formed on the bottom surface inside the closed pipe using a tip closed pipe made of a high-purity silicon carbide material. In addition, a medium separation guide plate supported by the spacer tube may be inserted, and each may be fixed inside the closed tube, thereby forming a combination of molded products using conventional techniques.

次に、公知の技術で地下の高温岩体まで掘削し、ケーシング施工された坑井5と、前記の地熱抽出促進用熱交換器3、および地熱流体の閉ループ循環を行う同軸二重管4を利用して地熱抽出促進領域2を構成し、当該地熱抽出促進領域と前記の地熱抽出促進用熱交換器を密着固定して地熱伝熱経路を構成する、地熱抽出促進方法を図2〜4にて示す。 Next, a well 5 excavated to a high temperature underground rock by a known technique, a casing constructed, a heat exchanger 3 for promoting geothermal extraction, and a coaxial double pipe 4 for performing a closed loop circulation of a geothermal fluid are provided. The geothermal extraction promotion area | region 2 is comprised using, the geothermal extraction promotion area | region and the said heat exchanger for geothermal extraction promotion are closely_contact | adhered and fixed, and the geothermal extraction promotion method which comprises a geothermal heat-transfer path | route in FIGS. Show.

はじめに、高温岩体や高温地熱層を有する地熱地帯において、公知の技術によって掘削とケーシングを行って仕上げる坑井5を施工する。当該坑井は、閉ループ循環発電を行うことから地熱蒸気や温泉湧出を伴う必要はないが、地熱抽出を行う坑底部に挿入する地熱抽出促進用熱交換器3の外径を極力拡大し、その周囲に形成する地熱抽出促進領域2の範囲を広げるため、極力大きなケーシング内径を有する大口径の坑井であることが望ましい。 First, in a geothermal zone having a high-temperature rock body and a high-temperature geothermal layer, a well 5 that is finished by excavation and casing by a known technique is constructed. The well does not need to be accompanied by geothermal steam or hot springs because it performs closed-loop circulation power generation, but expands the outer diameter of the heat exchanger 3 for promoting geothermal extraction inserted into the bottom of the well where geothermal extraction is performed. In order to expand the range of the geothermal extraction promoting region 2 formed in the surroundings, it is desirable that the well has a large bore having a casing inner diameter as large as possible.

なお、前記の通り、当該坑井は地熱蒸気や温泉の湧出を伴う必要がないことから、既存の温泉掘削井などで亀裂や流体がなく、地熱蒸気や温泉湧出が得られなかった、いわゆるカラ井戸をそのまま利用したり、カラ井戸を拡大掘削したり増掘して利用しても良い。   As mentioned above, the well does not need to be accompanied by geothermal steam or hot springs, so there are no cracks or fluids in the existing hot spring drilling wells. The well may be used as it is, or the Kara well may be expanded or expanded for use.

次に、前記の坑井5に水圧破砕を行うための多段水圧破砕装置13を挿入し、当該水圧破砕装置を介して高粘性流体であるジェルを圧入して高温岩体を破砕し、高温岩体中に複数のフラクチャー14を形成させる。   Next, a multistage hydraulic fracturing device 13 for hydraulic fracturing is inserted into the well 5, and a high-viscosity fluid gel is pressed through the hydraulic fracturing device to crush the high-temperature rock body. A plurality of fractures 14 are formed in the body.

ここで、高温岩体中へのフラクチャー形成方法としては、公知の方法を利用すれば良いが、フラクチャーの形成方向としては、地下深部の地熱を効率よく抽熱するため、坑底から鉛直下方向のほか、鉛直斜め下の方向に向けて、複数個所でジェル圧入を行うことで、高温岩体内の幅広い範囲に複数のフラクチャーを形成させるとともに、個々のフラクチャーの長さや幅を大きくすることが望ましい。   Here, a known method may be used as a fracture formation method in the high-temperature rock body. However, as the formation direction of the fracture, in order to extract the geothermal heat in the deep underground efficiently, the vertical downward direction from the bottom of the well In addition to this, by gel injection at multiple locations in the direction of the diagonally downward direction, multiple fractures can be formed in a wide range within the hot rock body, and the length and width of each fracture can be increased. desirable.

また、前記の方法で形成するフラクチャーの長さや幅が充分でない場合には、必要に応じて公知の方法による傾斜・水平掘削技術や多段水圧破砕技術を利用して、高温岩体内の広範囲にフラクチャーを形成させても良いし、フラクチャーの形成方法として、水圧破砕よりもLPG破砕を行う方が好適であれば、ジェルに替えてLPGを使用してもよい。   In addition, if the length and width of the fracture formed by the above method are not sufficient, if necessary, it can be applied to a wide range of hot rocks by using known methods such as tilting / horizontal excavation or multistage hydraulic fracturing. Fracture may be formed, and LPG may be used in place of gel if it is preferable to perform LPG crushing rather than hydraulic crushing as a fracture forming method.

次に、図3に示す通り、形成したフラクチャーを半永久的に支持するため、熱伝導促進用プロパント15をジェルに混ぜて圧入を継続する。ここで熱伝導促進用プロパントとは、フラクチャー支持だけでなく、フラクチャーから地熱抽出促進用熱交換器3への熱伝導を促進するため、一般的に利用されている砂粒やアルミナといったプロパント粒子ではなく、耐熱性や耐食性のほかに、高い熱伝導性も有する材料で構成されたプロパント粒子である。   Next, as shown in FIG. 3, in order to support the formed fracture semipermanently, the heat conduction promoting proppant 15 is mixed with the gel and the press-fitting is continued. Here, the propellant for promoting heat conduction is not only the support for the fracture, but also promotes the heat conduction from the fracture to the heat exchanger 3 for promoting geothermal extraction. In addition to heat resistance and corrosion resistance, these are proppant particles made of a material having high thermal conductivity.

具体的には、炭化ケイ素や黒鉛、金属などの粒子が好適であるが、このうち最適なものは、高い耐熱性と耐食性および熱伝導率を兼ね備えた高純度の炭化ケイ素である。また、粒子の径としては、プロパント混入初期はフラクチャーの拡大と支持を主目的とすることから、平均粒子径が1000μm程度で球形度が0.8以上の球形であることが望ましいが、これらの要件を満たす目的やプロパント混入流体の随伴性等を向上させるため、必要に応じて公知の技術による樹脂コーティングを行ったり、ゲル化剤や溶剤等の公知技術による添加剤とあわせて混入することが望ましい。   Specifically, particles of silicon carbide, graphite, metal, and the like are suitable, but among them, the most suitable is high-purity silicon carbide that has high heat resistance, corrosion resistance, and thermal conductivity. As for the particle size, since the initial purpose of proppant mixing is mainly to expand and support the fracture, it is desirable that the average particle size is about 1000 μm and the sphericity is 0.8 or more. In order to improve the purpose of satisfying the requirements and admissibility of proppant-mixed fluids, resin coating by known techniques may be performed as necessary, or mixed with additives by known techniques such as gelling agents and solvents. desirable.

続いて、前記の熱伝導促進用プロパントの粒子径を、平均粒子径50〜100μm程度の小さなものに変更しながら、プロパントの混入濃度を高めていくことで、熱伝導促進用プロパントをフラクチャー全体に浸透させて地熱抽出促進領域2を形成し、規定量のプロパント圧入を終えた段階で圧入ポンプを停止して、挿入した水圧破砕装置13を坑井から引き出す。   Subsequently, while changing the particle size of the proppant for promoting heat conduction to a small one having an average particle size of about 50 to 100 μm, the proppant for promoting heat conduction is increased throughout the fracture by increasing the concentration of proppant mixed therein. The geothermal extraction promotion region 2 is formed by infiltration, and when the prescribed amount of proppant press-in is completed, the press-in pump is stopped and the inserted hydraulic crushing device 13 is pulled out from the well.

この時、圧入されたジェルは地熱により分解されて高温岩体内に浸み込むか、フラクチャーを通じて坑井内に逆流して滞留するため、予めジェル内に緩効性で高い熱伝導率を有する熱硬化剤を添加しておくことで、フラクチャー内に熱伝導促進用プロパントを固定化させ、地熱抽熱経路を形成することができる。   At this time, the injected gel is decomposed by geothermal heat and soaks into the hot rock body, or flows back into the well through the fracture and stays in the well, so heat that has a slow and high thermal conductivity in the gel in advance. By adding a curing agent, the heat conduction promoting proppant can be fixed in the fracture, and a geothermal extraction path can be formed.

次に、坑井最下部のケーシング内径に合わせた外径を有する地熱抽出促進用熱交換器3を坑底部まで挿入して固定する。この時、前記の通り、一部の熱伝導促進用プロパントを含む圧入ジェルが坑井内に逆流して滞留していることも考えられるが、地熱抽出促進用熱交換器を圧入固定する過程で、坑底に逆流滞留したジェルが再びフラクチャー内へと圧入浸透されるとともに、地熱抽出促進用熱交換器と熱伝導促進用プロパントが浸透した個々のフラクチャーとが密着固化することで、形成した個々のフラクチャーを介して抽出する地熱を効率よく地熱抽出用熱交換器に伝えることが可能となる。   Next, the geothermal extraction promoting heat exchanger 3 having an outer diameter matched with the casing inner diameter at the bottom of the well is inserted and fixed to the bottom of the well. At this time, as described above, it is conceivable that the press-fitting gel containing a part of the propellant for promoting heat conduction stays in the well, but in the process of press-fitting and fixing the heat exchanger for promoting geothermal extraction, The gel staying in the bottom of the borehole is pressed and penetrated again into the fracture, and the heat exchanger for promoting geothermal extraction and the individual fractures penetrated by the propellant for promoting heat conduction are intimately solidified. It becomes possible to efficiently transmit the geothermal heat extracted through the fracture to the heat exchanger for geothermal heat extraction.

すなわち本方法によって、高温岩体中に幅広く形成された地熱抽出面から得られた地熱が、高温岩体よりも高い熱伝導率を有する地熱抽出経路を通じて、坑井内に設置した地熱抽出促進用熱交換器に集中して安定的に伝わり続ける、地熱抽熱ネットワークを形成することで、高温岩体からの地熱抽熱を促進し、抽熱量を大幅に増加させることが可能となる。   In other words, the geothermal heat obtained from the geothermal extraction surface widely formed in the high-temperature rocks by this method is used for geothermal extraction promotion heat installed in the well through a geothermal extraction path with higher thermal conductivity than the high-temperature rocks. By forming a geothermal extraction network that continues to be transmitted stably in a concentrated manner in the exchanger, geothermal extraction from the high-temperature rock body can be promoted, and the amount of extraction heat can be greatly increased.

次に、前記の地熱抽出促進用熱交換器3の内部に構成された媒体分離ガイド板12の上部に、断熱性の高い内管15を挿入接続し、坑井壁を利用して内管を途中支持しながら地上まで延長することで、熱交換器内で加熱された発電用媒体を、前記の内側断熱管を通じて上昇させ、蒸気タービン発電装置6に導入して発電を行うとともに、発電後に凝縮液化した発電用媒体を、坑井内壁と前記内管との間に構成される管路内に還流させる還元流路9を設け、還元された発電用媒体が、前記媒体分離ガイド板12の外周部にあるスリット11から流下させるように構成することで、発電用媒体の閉ループ循環流路を構成させる。   Next, the inner pipe 15 having high heat insulation is inserted and connected to the upper part of the medium separation guide plate 12 configured in the heat exchanger 3 for promoting geothermal extraction, and the inner pipe is connected using the well wall. By extending to the ground while supporting in the middle, the power generation medium heated in the heat exchanger is raised through the inner heat insulating pipe and introduced into the steam turbine power generation device 6 to generate power and condense after power generation. A reduction flow path 9 is provided for refluxing the liquefied power generation medium into a pipe line formed between the inner wall of the well and the inner pipe, and the reduced power generation medium is an outer periphery of the medium separation guide plate 12. By making it flow down from the slit 11 in the section, a closed loop circulation channel of the power generation medium is formed.

なお、前記の内管16には、高温高圧の発電媒体を常時連続的に流通させるための耐熱性や強度に加え、発電媒体上昇過程での温度低下を極力低減させるために断熱性が高く、また耐スチーム性に優れた材料で製造された円管を利用することが好ましい。これら要件を満たす内管材料としては、例えばポリエーテルエーテルケトン(PEEK)樹脂やポリエーテルサルフォン(PES)樹脂などのエンジニアリングプラスチックが考えられる。   In addition to the heat resistance and strength for constantly circulating a high-temperature and high-pressure power generation medium at all times, the inner pipe 16 has high heat insulation to reduce temperature drop in the power generation medium rising process as much as possible, Further, it is preferable to use a circular pipe made of a material excellent in steam resistance. As an inner tube material satisfying these requirements, for example, engineering plastics such as polyether ether ketone (PEEK) resin and polyether sulfone (PES) resin can be considered.

こうして、構築した地熱抽熱ネットワークを利用して発電媒体を継続的に加熱する地熱抽出促進型閉ループ循環流路の地上部に、前記の発電装置6や発電用媒体の凝縮液化装置7および液化した発電用媒体を圧入還流させる循環ポンプ8を構成することで、地熱抽出促進型閉ループ循環地熱発電システムを構築することができる。   In this way, the power generation device 6 and the power generation medium condensing and liquefying device 7 are liquefied on the ground part of the geothermal extraction promoting closed loop circulation channel that continuously heats the power generation medium using the constructed geothermal extraction network. By configuring the circulation pump 8 that press-fits and recirculates the power generation medium, it is possible to construct a closed-loop circulation geothermal power generation system that promotes geothermal extraction.

なお、本システムで発電を行う方法としては、循環させる発電用媒体を純水にして蒸気タービンを駆動させる方法のほか、地熱の抽熱量が少ない場合には、閉ループ循環流路内を減圧して純水の気化を促す方法のほか、循環させる発電用媒体をペンタンや代替フロン、アンモニア水などの低沸点媒体とするなど、公知の発電技術を利用することができる。   As a method of generating power with this system, in addition to the method of driving a steam turbine using pure water as the power generation medium to be circulated, when the amount of extracted heat of geothermal heat is small, the inside of the closed-loop circulation channel is depressurized. In addition to a method for promoting vaporization of pure water, a known power generation technique such as a low-boiling point medium such as pentane, alternative chlorofluorocarbon, or ammonia water can be used as the power generation medium to be circulated.

また、前記の地熱抽出促進方法により得られる地熱流体の量が少ない場合には、同様な閉ループ循環坑井を地熱地域に複数施工し、得られる地熱流体を集約して発電装置に供給した上で個々の坑井に還元することで、より規模の大きな発電を行うことも可能である。   In addition, when the amount of geothermal fluid obtained by the geothermal extraction promotion method is small, a plurality of similar closed loop circulation wells are constructed in the geothermal area, and the obtained geothermal fluid is aggregated and supplied to the power generator. It is also possible to generate electricity on a larger scale by returning to individual wells.

このように構成された本発明システムを活用すれば、閉ループ循環型地熱発電における最大の課題である地熱の抽出・利用量の増大を実現し、坑底温度が高いものの、多量の地熱蒸気や温泉湧出が得られず、従来型の地熱発電が困難な高温岩体や高温の地層中でも、既存温泉への影響や注水に伴う地震誘発への懸念と、坑井内へのスケール析出や注入水の逸水損失による性能低下リスクを軽減しながら、高効率かつ低コストで、適用範囲の広い地熱発電を実施できるようになる。 By utilizing the system of the present invention configured as described above, it is possible to increase the extraction and use of geothermal heat, which is the biggest problem in closed-loop circulation geothermal power generation, and although the bottom temperature is high, a large amount of geothermal steam and hot springs Even in hot rocks and hot formations where conventional geothermal power generation is difficult due to the lack of springs, there are concerns about the effects of existing hot springs and the induction of earthquakes associated with water injection, scale deposition into wells, and While reducing the risk of performance degradation due to water loss, geothermal power generation with a wide range of applications can be implemented with high efficiency and low cost.

本発明は、前記の実施形態に限定されるものではなく、例えば蒸気生産量が減少または停止した坑井を再利用して実施する地熱発電をはじめ、地熱を効率良く抽出することで得られる高温媒体を利用した温室栽培や冬季のロードヒーティングといった発電以外の温熱利用や、高温媒体を利用する吸着式冷凍機等を活用した冷熱利用でも適用が可能である。 The present invention is not limited to the above-described embodiment. For example, geothermal power generation is performed by reusing a well in which steam production is reduced or stopped, and a high temperature obtained by efficiently extracting geothermal heat. It can also be applied to heat utilization other than power generation such as greenhouse cultivation using a medium and road heating in winter, and cold utilization using an adsorption refrigeration machine using a high-temperature medium.

このように、前記実施形態は例示であり、本発明の特許請求範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 As described above, the above-described embodiment is an exemplification, and what has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect is any type. Are also included in the technical scope of the present invention.

1・・・・高温岩体
2・・・・地熱抽出促進領域
3・・・・地熱抽出促進用熱交換器
4・・・・同軸二重管
5・・・・坑井
6・・・・発電装置
7・・・・発電媒体の凝縮液化装置
8・・・・循環ポンプ
9・・・・還元流路
10・・・熱交換促進用多孔体
11・・・発電媒体流下用スリット
12・・・発電媒体流下用スリット付き媒体分離ガイド板
13・・・多段水圧破砕装置
14・・・フラクチャー
15・・・熱伝導促進用プロパント
16・・・内管
































DESCRIPTION OF SYMBOLS 1 ... High temperature rock body 2 ... Geothermal extraction promotion area 3 ... Heat exchanger 4 for geothermal extraction promotion ... Coaxial double pipe 5 ... Well 6 ... Power generator
7... Power generation medium condensing and liquefying device 8... Circulation pump 9... Reduction channel 10 .. Heat exchange promoting porous body 11. Medium separation guide plate 13 with slit for medium flow ... Multistage hydraulic crusher 14 Fracture 15 Propant 16 for heat conduction ... Inner tube
































Claims (5)

坑井を通して流体を高温岩体または高温の地層中に圧入し、高温岩体を破砕してフラクチャーを形成するか、高温の地層中に流体を浸透させて地熱抽熱経路を形成する工程と、
形成されたフラクチャーまたは地層中の地熱抽熱経路を半永久的に支持しながら、坑井までの地熱伝導経路を確保するとともに、地熱伝導経路における地熱の熱伝導率を高めるため、地熱抽出促進用プロパントを流体中に混合して圧入浸透させる工程と、
地熱抽出促進用プロパントが充填されたフラクチャーまたは地層中の地熱抽熱経路と、坑井内に設置する地熱抽出促進用熱交換器との間に熱伝導経路を形成するよう、流体圧入後の坑井内に地熱抽出促進用熱交換器を挿入設置して、フラクチャーまたは地層中の地熱抽熱経路と密着させる工程により、
高温岩体または高温の地層中から地熱を抽出する際の熱交換面積を拡大させて地熱抽熱量を増大させるとともに、形成した地熱抽熱経路内の熱伝導率と、個々の地熱抽熱経路と坑井内に設置した地熱抽出促進用熱交換器との間の熱伝導率を高めることで、
地熱抽出量の増大と地熱抽出効率の向上を実現する地熱抽出ネットワークを地中に構成することを特徴とする、地熱抽出の促進方法
Pressing a fluid through a well into a hot rock or a hot formation and crushing the hot rock to form a fracture, or infiltrating the fluid into the hot formation to form a geothermal extraction path;
Propant for promoting geothermal extraction in order to secure the geothermal conduction path to the well and improve the thermal conductivity of geothermal heat in the geothermal conduction path while semipermanently supporting the geothermal extraction path in the formed fractures or formations. Mixing in a fluid and infiltrating it,
Inside the well after fluid injection so as to form a heat conduction path between the geothermal extraction path in the fracture or formation filled with proppant for geothermal extraction promotion and the geothermal extraction promotion heat exchanger installed in the well By inserting and installing a heat exchanger for promoting geothermal extraction into the geothermal heat extraction path in the fracture or the formation,
While increasing the amount of geothermal extraction by expanding the heat exchange area when extracting geothermal heat from hot rocks or high-temperature formations, the thermal conductivity in the formed geothermal extraction path and the individual geothermal extraction paths By increasing the thermal conductivity between the heat exchanger for promoting geothermal extraction installed in the well,
A method of promoting geothermal extraction, characterized by comprising a geothermal extraction network in the ground that realizes an increase in geothermal extraction amount and improvement of geothermal extraction efficiency
請求項1に記載の地熱抽出促進用プロパント粒子の少なくとも一部が、地熱層内の岩石や地層よりも高い熱伝導性と耐熱性を有する、炭化ケイ素、金属、または黒鉛を含んでいることを特徴とする、地熱抽出促進用プロパント It is preferable that at least a part of the proppant particles for promoting geothermal extraction according to claim 1 includes silicon carbide, metal, or graphite having higher thermal conductivity and heat resistance than rocks and geological layers in the geothermal layer. Propant for promoting geothermal extraction 請求項1に記載の地熱抽出促進用熱交換器の一部または全部が、高い熱伝導性と耐熱性を有する炭化ケイ素、金属、または黒鉛を含む多孔体か、これらの材料で構成された複数の熱交換板の集合体で構成されていることを特徴とする、地熱抽出促進用熱交換器 A part or all of the heat exchanger for promoting geothermal extraction according to claim 1 is a porous body containing silicon carbide, metal, or graphite having high thermal conductivity and heat resistance, or a plurality of these materials. A heat exchanger for promoting geothermal extraction, characterized by comprising an assembly of heat exchange plates 請求項1に記載の地熱抽出促進用プロパントを含む流体中に、請求項2に記載の地熱抽出促進用プロパントと、フラクチャー内または地熱抽熱経路内の地熱抽出促進用プロパントの固定化と、請求項3に記載の地熱抽出促進用熱交換器との固着または接触を促進するための熱硬化剤を混入させることを特徴とする、地熱抽出促進用プロパント輸送流体 Immobilization of the proppant for promoting geothermal extraction according to claim 2 and the proppant for promoting geothermal extraction in a fracture or a geothermal extraction path in a fluid containing the proppant for promoting geothermal extraction according to claim 1; Item 5. A proppant transport fluid for promoting geothermal extraction, wherein a thermosetting agent for promoting fixation or contact with the heat exchanger for promoting geothermal extraction according to item 3 is mixed. 請求項1〜4の何れか一つ以上の地熱抽出促進方法を用いて抽出した地熱で発電媒体を加熱上昇させて地上の発電装置で発電させた後に、発電後の媒体を凝縮液化させて同一の坑井内に還元流下させて再び加熱する、同軸二重管を利用した閉ループ循環流路を構成し、地熱抽出を促進させた地中熱交換系で閉ループ循環型の地熱発電を行うことを特徴とする、地熱抽出促進型閉ループ循環地熱発電システム


The power generation medium is heated and raised with geothermal heat extracted using one or more of the geothermal extraction promotion methods according to any one of claims 1 to 4, and the power generation apparatus on the ground generates electric power, and then the medium after power generation is condensed and liquefied. A closed-loop circulation channel using a coaxial double pipe that is heated again by reducing the flow into the well of this site is constructed, and closed-loop circulation type geothermal power generation is performed with a geothermal heat exchange system that promotes geothermal extraction Geothermal extraction promotion type closed-loop circulation geothermal power generation system


JP2014259559A 2014-12-23 2014-12-23 Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system Pending JP2016118078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259559A JP2016118078A (en) 2014-12-23 2014-12-23 Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259559A JP2016118078A (en) 2014-12-23 2014-12-23 Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system

Publications (1)

Publication Number Publication Date
JP2016118078A true JP2016118078A (en) 2016-06-30

Family

ID=56242847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259559A Pending JP2016118078A (en) 2014-12-23 2014-12-23 Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system

Country Status (1)

Country Link
JP (1) JP2016118078A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908475A (en) * 2017-04-07 2017-06-30 中国能源建设集团科技发展有限公司 Ground rock heat transduction assay system and method
CN106940098A (en) * 2017-04-17 2017-07-11 山西泰杰地能干热岩有限公司 Ground energy hot dry rock heat-exchanger rig and its heat-exchange method
CN106996658A (en) * 2017-05-02 2017-08-01 中能服能源科技股份有限公司 A kind of ultradeep well hot dry rock steam turbine formula heat pump waste heat recovery heating system
CN108507206A (en) * 2018-04-08 2018-09-07 山东达尔玛新能源科技有限公司 A kind of system and its application method acquiring hot dry rock thermal energy by U-shaped well
CN108661567A (en) * 2018-05-04 2018-10-16 张辰生 A kind of efficient combined-type geothermal well well casing structure
CN108678722A (en) * 2018-07-06 2018-10-19 中国地质调查局水文地质环境地质调查中心 A kind of more well joint hot dry rocks are manually warm to store up building system and method for construction
CN108775275A (en) * 2018-05-28 2018-11-09 中国石油大学(华东) Individual well closed cycle underground thermoelectric heat generation system and method
CN108799024A (en) * 2018-05-28 2018-11-13 中国石油大学(华东) U-tube heat exchange closed cycle underground thermoelectric heat generation system and method
CN108869207A (en) * 2018-05-28 2018-11-23 中国石油大学(华东) Shaft type heat exchange closed cycle underground thermoelectric heat generation system and method
CN108979609A (en) * 2018-07-04 2018-12-11 中国石油大学(北京) The method of deep hot dry rock high/low temperature fluid alternating spray auxiliary hydraulic fracturing seam
CN110005386A (en) * 2019-03-18 2019-07-12 西安宏冠能源科技有限公司 A kind of geothermal energy resources single-well injection-production circulation utilization method and device
CN110425771A (en) * 2019-08-29 2019-11-08 常熟理工学院 Heat pump solar energy photo-thermal photovoltaic integrating device based on infiltration type heat exchanger
WO2019223164A1 (en) * 2018-05-21 2019-11-28 西南石油大学 Hot-dry rock robot explosion-hydraulic composite fracturing well drilling and completion system and method
JP2020007902A (en) * 2018-07-04 2020-01-16 エバー・テクノロジーズ・インコーポレーテッド Method for forming high efficiency geothermal wellbores
CN111173485A (en) * 2018-11-12 2020-05-19 中国石油化工股份有限公司 Method for increasing hot dry rock heat storage transformation volume
WO2020113914A1 (en) * 2018-12-05 2020-06-11 田振林 Process for improving heat production capacity of geothermal well
CN112412717A (en) * 2020-12-09 2021-02-26 四川大学 Multi-zone composite in-situ geothermal power generation system
CN113236189A (en) * 2021-05-21 2021-08-10 中国地质科学院勘探技术研究所 Efficient lossless heat-taking geothermal exploitation system and method
CN114033346A (en) * 2021-10-26 2022-02-11 中国地质大学(武汉) Deep geothermal exploitation method based on carbon dioxide medium
CN115573687A (en) * 2022-11-12 2023-01-06 利丰新能源技术(山东)股份有限公司 Method for segmented manufacturing and totally-enclosed development of hot dry rock
US11656002B2 (en) * 2016-12-23 2023-05-23 Element Coil Services Inc. Enhancing geothermal energy production in a well

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656002B2 (en) * 2016-12-23 2023-05-23 Element Coil Services Inc. Enhancing geothermal energy production in a well
CN106908475A (en) * 2017-04-07 2017-06-30 中国能源建设集团科技发展有限公司 Ground rock heat transduction assay system and method
CN106940098A (en) * 2017-04-17 2017-07-11 山西泰杰地能干热岩有限公司 Ground energy hot dry rock heat-exchanger rig and its heat-exchange method
CN106940098B (en) * 2017-04-17 2022-11-18 山西泰杰地能干热岩有限公司 Geothermal energy dry and hot rock heat exchange device and heat exchange method thereof
CN106996658A (en) * 2017-05-02 2017-08-01 中能服能源科技股份有限公司 A kind of ultradeep well hot dry rock steam turbine formula heat pump waste heat recovery heating system
CN108507206A (en) * 2018-04-08 2018-09-07 山东达尔玛新能源科技有限公司 A kind of system and its application method acquiring hot dry rock thermal energy by U-shaped well
CN108661567A (en) * 2018-05-04 2018-10-16 张辰生 A kind of efficient combined-type geothermal well well casing structure
WO2019223164A1 (en) * 2018-05-21 2019-11-28 西南石油大学 Hot-dry rock robot explosion-hydraulic composite fracturing well drilling and completion system and method
CN108775275A (en) * 2018-05-28 2018-11-09 中国石油大学(华东) Individual well closed cycle underground thermoelectric heat generation system and method
CN108799024A (en) * 2018-05-28 2018-11-13 中国石油大学(华东) U-tube heat exchange closed cycle underground thermoelectric heat generation system and method
CN108869207A (en) * 2018-05-28 2018-11-23 中国石油大学(华东) Shaft type heat exchange closed cycle underground thermoelectric heat generation system and method
JP2020007902A (en) * 2018-07-04 2020-01-16 エバー・テクノロジーズ・インコーポレーテッド Method for forming high efficiency geothermal wellbores
CN108979609B (en) * 2018-07-04 2019-05-28 中国石油大学(北京) The method of deep hot dry rock high/low temperature fluid alternating spray auxiliary hydraulic fracturing seam
CN108979609A (en) * 2018-07-04 2018-12-11 中国石油大学(北京) The method of deep hot dry rock high/low temperature fluid alternating spray auxiliary hydraulic fracturing seam
US11242726B2 (en) 2018-07-04 2022-02-08 Eavor Technologies Inc. Method for forming high efficiency geothermal wellbores
CN108678722B (en) * 2018-07-06 2024-03-15 中国地质调查局水文地质环境地质调查中心 Multi-well combined dry-hot rock artificial thermal storage building system and building method
CN108678722A (en) * 2018-07-06 2018-10-19 中国地质调查局水文地质环境地质调查中心 A kind of more well joint hot dry rocks are manually warm to store up building system and method for construction
CN111173485B (en) * 2018-11-12 2021-09-21 中国石油化工股份有限公司 Method for increasing hot dry rock heat storage transformation volume
CN111173485A (en) * 2018-11-12 2020-05-19 中国石油化工股份有限公司 Method for increasing hot dry rock heat storage transformation volume
WO2020113914A1 (en) * 2018-12-05 2020-06-11 田振林 Process for improving heat production capacity of geothermal well
CN110005386A (en) * 2019-03-18 2019-07-12 西安宏冠能源科技有限公司 A kind of geothermal energy resources single-well injection-production circulation utilization method and device
CN110425771A (en) * 2019-08-29 2019-11-08 常熟理工学院 Heat pump solar energy photo-thermal photovoltaic integrating device based on infiltration type heat exchanger
CN110425771B (en) * 2019-08-29 2023-11-24 常熟理工学院 Heat pump solar photo-thermal photovoltaic integrated device based on permeation type heat exchanger
CN112412717A (en) * 2020-12-09 2021-02-26 四川大学 Multi-zone composite in-situ geothermal power generation system
CN113236189A (en) * 2021-05-21 2021-08-10 中国地质科学院勘探技术研究所 Efficient lossless heat-taking geothermal exploitation system and method
CN114033346A (en) * 2021-10-26 2022-02-11 中国地质大学(武汉) Deep geothermal exploitation method based on carbon dioxide medium
CN114033346B (en) * 2021-10-26 2023-02-28 中国地质大学(武汉) Deep geothermal exploitation method based on carbon dioxide medium
CN115573687A (en) * 2022-11-12 2023-01-06 利丰新能源技术(山东)股份有限公司 Method for segmented manufacturing and totally-enclosed development of hot dry rock

Similar Documents

Publication Publication Date Title
JP2016118078A (en) Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system
Song et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells
CN102105755B (en) System and method of capturing geothermal heat from within a drilled well to generate electricity
AU2020302974B2 (en) Operational protocol for harvesting a thermally productive formation
JP7260953B2 (en) Processes and methods for generating geothermal heat
US5515679A (en) Geothermal heat mining and utilization
US20180283735A1 (en) Hydrothermal geothermal development method of multilateral well closed circulation
US9482109B2 (en) Compressed gas energy storage and release system
Rybach Geothermal sustainability
US20070245729A1 (en) Directional geothermal energy system and method
US20110232858A1 (en) Geothermal well using graphite as solid conductor
CN102704902B (en) Natural gas hydrate exploiting method
US20100276115A1 (en) System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model
LT5472B (en) Method of developing and producing deep geothermal reservoirs
US9803626B1 (en) Thermosiphoning supercritical CO2 in geothermal energy production
CN114033346B (en) Deep geothermal exploitation method based on carbon dioxide medium
US20150204171A1 (en) Carbon dioxide energy storage and enhanced oil recovery
WO2015175142A1 (en) System and method for utilizing oil and gas wells for geothermal power generation
CN104533372A (en) Method for exploiting geothermal energy by means of oriented fracturing technology
US20170247994A1 (en) Thermally Assisted Oil Production Wells
CN106839478A (en) A kind of method of construction of deep geothermal heat heat transfer root system
Xin et al. Numerical investigation on the effects of the fracture network pattern on the heat extraction capacity for dual horizontal wells in enhanced geothermal systems
Gao et al. A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China
WO2012023881A1 (en) Method and device for producing energy from petrothermal sources
WO2010144073A1 (en) System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model