JP2016117923A - Sputtering apparatus - Google Patents

Sputtering apparatus Download PDF

Info

Publication number
JP2016117923A
JP2016117923A JP2014256798A JP2014256798A JP2016117923A JP 2016117923 A JP2016117923 A JP 2016117923A JP 2014256798 A JP2014256798 A JP 2014256798A JP 2014256798 A JP2014256798 A JP 2014256798A JP 2016117923 A JP2016117923 A JP 2016117923A
Authority
JP
Japan
Prior art keywords
plate
target
substrate
electrode plate
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014256798A
Other languages
Japanese (ja)
Other versions
JP6509553B2 (en
Inventor
小風 豊
Yutaka Kokaze
豊 小風
純一 濱口
Junichi Hamaguchi
純一 濱口
靖 樋口
Yasushi Higuchi
靖 樋口
徳康 佐々木
Noriyasu Sasaki
徳康 佐々木
琢巳 湯瀬
Takumi Yuse
琢巳 湯瀬
寿浩 寺澤
Hisahiro Terasawa
寿浩 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014256798A priority Critical patent/JP6509553B2/en
Publication of JP2016117923A publication Critical patent/JP2016117923A/en
Application granted granted Critical
Publication of JP6509553B2 publication Critical patent/JP6509553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering apparatus capable of suppressing the inactivation of ions on a regulation plate to improve the directivity of ions without spoiling a function of preventing sputtering particles from being obliquely incident on a substrate edge part.SOLUTION: A sputtering apparatus SM comprises: a vacuum chamber 1 in which a substrate W to be processed and a target 21 are arranged to face each other; a regulation plate 6 having a plurality of through-holes 61 for regulating incidence angles of sputtering particles on the substrate W to an angle of a predetermined range between the substrate W and the target 21; an electrode plate 8 in which a plurality of through-holes 81 are opened between the target 21 and the regulation plate 6, the through-holes 81 having the same hole axes 81a as the hole axes 61a of the through-holes of the regulation plate 6; and holding means E3 for holding the potential of the electrode plate 8 higher than that of the regulation plate 6.SELECTED DRAWING: Figure 1

Description

本発明は、スパッタリング装置に関し、より詳しくは、高アスペクト比を有する微細なホールの内面にカバレッジよく薄膜を成膜することに適したものに関する。   The present invention relates to a sputtering apparatus, and more particularly to an apparatus suitable for forming a thin film with good coverage on the inner surface of a fine hole having a high aspect ratio.

半導体デバイスの製造工程には、所定のアスペクト比を有するビアホールやコンタクトホールの内面(内壁面及び底面)にCu膜からなるシード層を成膜する工程があり、このようなCu膜の成膜に用いる成膜装置として、スパッタリング装置が例えば特許文献1で知られている。このものでは、処理すべき基板とターゲットとが対向配置される真空チャンバを備え、真空チャンバ内にスパッタガスを導入し、ターゲットに電力投入して基板とターゲットとの間にプラズマを形成し、ターゲットをスパッタリングして飛散したスパッタ粒子(CuラジカルやCuイオン)を基板に付着、堆積することでCu膜が成膜される。   The semiconductor device manufacturing process includes a step of forming a seed layer made of a Cu film on the inner surface (inner wall surface and bottom surface) of a via hole or contact hole having a predetermined aspect ratio. As a film forming apparatus to be used, for example, a sputtering apparatus is known from Patent Document 1. This includes a vacuum chamber in which a substrate to be processed and a target are arranged to face each other, a sputtering gas is introduced into the vacuum chamber, power is applied to the target, and plasma is formed between the substrate and the target. A Cu film is formed by adhering and depositing sputtered particles (Cu radicals or Cu ions) sputtered on the substrate.

近年の半導体デバイスの更なる高集積化や微細化に伴い、Cu膜が成膜されるホールにはアスペクト比が3以上である高アスペクト比のものがある。高アスペクト比のホールの内面にCu膜を成膜する場合、基板のエッジ部ではターゲット中央部から飛散したスパッタ粒子が斜入射し、エッジ部のホール内面にカバレッジ(被覆性)よく成膜することができない。上記従来例のものでは、基板とターゲットとの間に、スパッタ粒子の基板への入射角度を所定範囲の角度に規制する複数の透孔を有する規制板を配置し、エッジ部でのスパッタ粒子の斜入射を防止している。   Along with the further high integration and miniaturization of semiconductor devices in recent years, some holes having a high aspect ratio with an aspect ratio of 3 or more are formed in Cu holes. When forming a Cu film on the inner surface of a hole with a high aspect ratio, sputter particles scattered from the center of the target are obliquely incident on the edge of the substrate, and the film is formed with good coverage (coverage) on the hole inner surface of the edge. I can't. In the above-mentioned conventional example, a regulating plate having a plurality of through holes for regulating the incident angle of the sputtered particles to the substrate within a predetermined range is arranged between the substrate and the target, and the sputtered particles at the edge portion are arranged. Oblique incidence is prevented.

しかしながら、上記従来例のように規制板を配置すると、成膜レートが著しく低下することが判明した。そこで、本願発明の発明者は、鋭意研究を重ね、規制板がアース電位に保持されていると、規制板でCuイオンが失活し、Cuイオンの指向性が低下することに起因するとの知見を得た。   However, it has been found that when the regulating plate is arranged as in the above-described conventional example, the film formation rate is significantly reduced. Therefore, the inventors of the present invention have made extensive studies and found that if the regulation plate is held at the ground potential, Cu ions are deactivated by the regulation plate and the directivity of Cu ions is reduced. Got.

特公平6−60391号公報Japanese Patent Publication No. 6-60391

本発明は、上記点に鑑み、基板エッジ部へのスパッタ粒子の斜入射を防止するという機能を損なうことなく、規制板におけるイオンの失活を抑制してイオンの指向性を向上させることができるスパッタリング装置を提供することをその課題とするものである。   In view of the above points, the present invention can improve ion directivity by suppressing ion deactivation in the regulating plate without impairing the function of preventing the oblique incidence of sputtered particles on the substrate edge. It is an object of the present invention to provide a sputtering apparatus.

上記課題を解決するために、処理すべき基板とターゲットとが対向配置される真空チャンバを備え、真空チャンバ内にスパッタガスを導入し、ターゲットに電力投入して基板とターゲットとの間にプラズマを形成し、ターゲットをスパッタリングして飛散したスパッタ粒子を基板に付着、堆積させる本発明のスパッタリング装置は、基板とターゲットとの間に、スパッタ粒子の基板への入射角度を所定範囲の角度に規制する複数の透孔を有する規制板を備え、ターゲットと規制板との間に、規制板の透孔の孔軸と同じ孔軸を有する透孔が複数開設された電極板と、電極板の電位を規制板の電位よりも高く保持する保持手段とを更に備えることを特徴とする。   In order to solve the above problems, a vacuum chamber is provided in which a substrate to be processed and a target are arranged to face each other, a sputtering gas is introduced into the vacuum chamber, power is supplied to the target, and plasma is generated between the substrate and the target. The sputtering apparatus according to the present invention, which forms and sputters a target to deposit and deposits sputtered particles on a substrate, regulates the incident angle of the sputtered particles to the substrate within a predetermined range between the substrate and the target. A regulation plate having a plurality of through holes, an electrode plate having a plurality of through holes having the same hole axis as the through hole of the restriction plate between the target and the regulation plate, and the potential of the electrode plate It further comprises holding means for holding higher than the potential of the regulating plate.

本発明によれば、ターゲットと規制板との間に配置した電極板の電位を規制板の電位よりも高く保持することで、電極板と規制板との間に電位差が形成される。この電位差により、ターゲットから飛散したスパッタ粒子を構成するイオンが加速され、規制板の透孔を通過してホール内面を含む基板表面に到達するため、イオンが規制板において失活することを抑制でき、イオンの指向性を向上させることができる。しかも、電極板と規制板に夫々開設された透孔を通過したスパッタ粒子は、基板への入射角度が所定の角度範囲に規制されるため、基板エッジ部へのスパッタ粒子の斜入射を防止できるという機能は損なわれない。   According to the present invention, a potential difference is formed between the electrode plate and the regulating plate by holding the potential of the electrode plate arranged between the target and the regulating plate higher than the potential of the regulating plate. Due to this potential difference, the ions constituting the sputtered particles scattered from the target are accelerated and pass through the through holes of the regulating plate to reach the substrate surface including the inner surface of the hole, so that the ions can be prevented from being deactivated in the regulating plate. , Ion directivity can be improved. In addition, since the incident angles of the sputtered particles that have passed through the through holes provided in the electrode plate and the restricting plate are restricted to a predetermined angle range, it is possible to prevent the oblique incidence of the sputtered particles on the substrate edge portion. This function is not impaired.

本発明において、前記電極板の板厚は、前記規制板の板厚よりも薄いことが好ましく、前記電極板の板厚は5〜15mmの範囲内であることが好ましい。また、前記保持手段は、電極板と規制板との間の電位差が70V以上160V以下になるように前記電極板の電位を保持することが好ましい。   In the present invention, the plate thickness of the electrode plate is preferably smaller than the plate thickness of the regulating plate, and the plate thickness of the electrode plate is preferably in the range of 5 to 15 mm. The holding means preferably holds the potential of the electrode plate so that a potential difference between the electrode plate and the regulating plate is 70V or more and 160V or less.

本発明の実施形態のスパッタリング装置を示す模式的断面図。The typical sectional view showing the sputtering device of the embodiment of the present invention. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention.

以下、図面を参照して、処理すべき基板Wを、シリコンウェハの表面にシリコン酸化物膜を所定の膜厚で形成し、このシリコン酸化物膜にアスペクト比が3以上である微細なホールを形成したものとし、このホールの内面にCu膜を形成する場合に用いられるものを例として、本発明の実施形態のスパッタリング装置について説明する。   Hereinafter, referring to the drawings, a substrate W to be processed is formed with a silicon oxide film having a predetermined thickness on the surface of a silicon wafer, and fine holes having an aspect ratio of 3 or more are formed in the silicon oxide film. The sputtering apparatus according to the embodiment of the present invention will be described by taking as an example what is formed and used when forming a Cu film on the inner surface of the hole.

図1を参照して、SMは、マグネトロン方式のスパッタ装置であり、このスパッタ装置SMは、処理室1aを画成する真空チャンバ1を備える。真空チャンバ1の天井部にはカソードユニットCが取付けられている。以下においては、図1中、真空チャンバ1の天井部側を向く方向を「上」とし、その底部側を向く方向を「下」として説明する。   Referring to FIG. 1, SM is a magnetron type sputtering apparatus, and this sputtering apparatus SM includes a vacuum chamber 1 that defines a processing chamber 1a. A cathode unit C is attached to the ceiling of the vacuum chamber 1. In the following description, in FIG. 1, the direction facing the ceiling portion side of the vacuum chamber 1 is referred to as “up” and the direction facing the bottom portion side is described as “down”.

カソードユニットCは、ターゲットアッセンブリ2と、ターゲットアッセンブリ2の上方に配置された磁石ユニット3とから構成されている。ターゲットアッセンブリ2は、基板Wの輪郭に応じて、公知の方法で平面視円形の板状に形成されたCu製のターゲット21と、ターゲット21の上面にインジウム等のボンディング材(図示省略)を介して接合されるバッキングプレート22とで構成され、スパッタによる成膜中、バッキングプレート22の内部に冷媒(冷却水)を流すことでターゲット21を冷却できるようになっている。ターゲット21を装着した状態でバッキングプレート22下面の周縁部が、絶縁体I1を介して真空チャンバ1の上部に取り付けられる。ターゲット21にはDC電源や高周波電源等のスパッタ電源E1からの出力が接続され、成膜時、ターゲット21に負の電位を持った電力が投入される。   The cathode unit C includes a target assembly 2 and a magnet unit 3 disposed above the target assembly 2. The target assembly 2 includes a Cu target 21 formed in a circular plate shape in a plan view according to a contour of the substrate W and a bonding material (not shown) such as indium on the upper surface of the target 21. The target 21 can be cooled by flowing a coolant (cooling water) through the inside of the backing plate 22 during film formation by sputtering. With the target 21 mounted, the peripheral edge of the lower surface of the backing plate 22 is attached to the upper portion of the vacuum chamber 1 via the insulator I1. An output from a sputtering power source E1 such as a DC power source or a high frequency power source is connected to the target 21, and power having a negative potential is applied to the target 21 during film formation.

磁石ユニット3は、ターゲット21の下面をスパッタ面21aとし、スパッタ面21aの下方空間に磁場を発生させ、スパッタ時にスパッタ面21aの下方で電離した電子等を捕捉してターゲット21から飛散したスパッタ粒子を効率よくイオン化する公知の構造を有するものであり、ここでは詳細な説明を省略する。   The magnet unit 3 uses the lower surface of the target 21 as a sputter surface 21 a, generates a magnetic field in the space below the sputter surface 21 a, captures electrons etc. ionized below the sputter surface 21 a during sputtering, and sputtered particles scattered from the target 21. Has a well-known structure for efficiently ionizing, and detailed description thereof is omitted here.

真空チャンバ1内には、ターゲット2の周囲を覆って下方に延びる筒状のシールド部材4が配置され、スパッタ粒子のイオンが基板Wへと放出されることをアシストしている。   In the vacuum chamber 1, a cylindrical shield member 4 that covers the periphery of the target 2 and extends downward is arranged to assist the release of ions of sputtered particles to the substrate W.

真空チャンバ1の底部には、ターゲット21のスパッタ面21aに対向させてステージ5が配置され、基板Wがその成膜面を上側にして位置決め保持されるようにしている。ステージ5は高周波電源E2に接続され、ステージ5ひいては基板Wにバイアス電位が印加され、スパッタ粒子のイオンを基板Wに引き込む役割を果たす。尚、ターゲット21と基板Wとの間の間隔は、生産性や散乱回数等を考慮して45〜800mmの範囲に設定することができる。   A stage 5 is disposed at the bottom of the vacuum chamber 1 so as to face the sputtering surface 21a of the target 21, and the substrate W is positioned and held with its film-forming surface facing upward. The stage 5 is connected to a high-frequency power source E2, and a bias potential is applied to the stage 5 and thus the substrate W, so that ions of sputtered particles are attracted to the substrate W. In addition, the space | interval between the target 21 and the board | substrate W can be set to the range of 45-800 mm in consideration of productivity, the frequency | count of scattering, etc.

真空チャンバ1の底部には、ターボ分子ポンプやロータリーポンプなどからなる真空排気手段Pに通じる排気管11が接続されている。また、真空チャンバ1の側壁には、アルゴン等の希ガスたるスパッタガスを導入するガス管12が接続され、ガス管12にはマスフローコントローラ12aが介設され、図示省略のガス源に連通している。これにより、流量制御されたスパッタガスが、後述する真空排気手段Pにより一定の排気速度で真空引きされている処理室1a内に導入でき、成膜中、処理室1aの圧力(全圧)が略一定に保持されるようにしている。   Connected to the bottom of the vacuum chamber 1 is an exhaust pipe 11 communicating with a vacuum exhaust means P such as a turbo molecular pump or a rotary pump. A gas pipe 12 for introducing a sputtering gas which is a rare gas such as argon is connected to the side wall of the vacuum chamber 1, and a mass flow controller 12a is interposed in the gas pipe 12 so as to communicate with a gas source (not shown). Yes. Thereby, the sputter gas whose flow rate is controlled can be introduced into the processing chamber 1a which is evacuated at a constant pumping speed by the vacuum evacuation means P described later, and the pressure (total pressure) of the processing chamber 1a is increased during film formation. It is kept substantially constant.

また、基板Wとターゲット21との間には、スパッタ粒子の通過を許容する透孔61が複数開設された規制板6が配置され、スパッタ粒子の基板Wへの入射角度を所定の角度範囲に規制し、これにより、基板Wのエッジ部へのスパッタ粒子の斜入射を防止している。規制板6の板厚は、30mm〜200mmの範囲に設定することができる。規制板6は、真空チャンバ1の側壁内側に配置された防着板7aの内面に支持部材62を介して固定されている。防着板7aを接地することにより、規制板6は接地電位に保持される。尚、防着板7aの下方には、他の防着板7b,7cが配置されている。   Further, a regulating plate 6 having a plurality of through holes 61 that allow the passage of sputtered particles is disposed between the substrate W and the target 21 so that the incident angle of the sputtered particles on the substrate W falls within a predetermined angle range. Thus, the oblique incidence of the sputtered particles on the edge portion of the substrate W is prevented. The plate | board thickness of the control board 6 can be set to the range of 30 mm-200 mm. The regulating plate 6 is fixed to the inner surface of the deposition preventing plate 7 a disposed inside the side wall of the vacuum chamber 1 via a support member 62. By grounding the deposition preventing plate 7a, the regulating plate 6 is held at the ground potential. In addition, the other adhesion prevention plates 7b and 7c are arrange | positioned under the adhesion prevention plate 7a.

ここで、規制板6を配置することで基板Wのエッジ部へのスパッタ粒子の斜入射を防止できるものの、規制板6が接地電位に保持されると、規制板6にてCuイオンが失活してCuイオンの指向性が低下する。本実施形態では、ターゲット21と規制板6との間に、規制板6の透孔61の孔軸61aと同じ孔軸81aを有する透孔81が複数開設された電極板8を配置した。電極板8は、シールド部材4の内面に固定され、シールド部材4に直流電源E3から正の電位を印加することで、電極板8の電位を規制板6の電位よりも高く保持している。直流電源E3が本発明の「保持手段」を構成する。電極板8と規制板6との間の電位差は、例えば20V〜160Vの範囲に設定することができる。電極板8の板厚は、規制板6の板厚よりも薄くすることが好ましく、例えば、3mm〜50mmの範囲に設定することができる。電極板8は、その上面が処理室1aでプラズマが形成される領域よりも下方に位置するように配置することが好ましい。電極板8と規制板6との間の隙間dは、例えば、5mm〜45mmの範囲に設定することが好ましく、10mm〜20mmの範囲に設定することがより好ましい。隙間dが5mmより短いと規制板6に堆積したCuにより、Cuイオンの透過特性の変動が顕著になるという不具合がある一方で、45mmより長いとCuイオンが規制板6で失活するという不具合がある。   Here, although the regulation plate 6 can prevent the oblique incidence of sputtered particles to the edge portion of the substrate W, Cu ions are deactivated by the regulation plate 6 when the regulation plate 6 is held at the ground potential. As a result, the directivity of Cu ions decreases. In the present embodiment, the electrode plate 8 in which a plurality of through holes 81 having the same hole axis 81 a as the hole axis 61 a of the through hole 61 of the restriction plate 6 is provided between the target 21 and the restriction plate 6 is disposed. The electrode plate 8 is fixed to the inner surface of the shield member 4, and the potential of the electrode plate 8 is kept higher than the potential of the regulating plate 6 by applying a positive potential to the shield member 4 from the DC power source E <b> 3. The DC power supply E3 constitutes the “holding means” of the present invention. The potential difference between the electrode plate 8 and the regulating plate 6 can be set in the range of 20V to 160V, for example. The plate thickness of the electrode plate 8 is preferably thinner than the plate thickness of the regulating plate 6, and can be set in a range of 3 mm to 50 mm, for example. The electrode plate 8 is preferably arranged so that its upper surface is located below the region where plasma is formed in the processing chamber 1a. For example, the gap d between the electrode plate 8 and the regulating plate 6 is preferably set in the range of 5 mm to 45 mm, and more preferably set in the range of 10 mm to 20 mm. When the gap d is shorter than 5 mm, there is a problem that the Cu ion permeation characteristics fluctuate significantly due to Cu deposited on the regulating plate 6, while when the gap d is longer than 45 mm, the Cu ion is deactivated by the regulating plate 6. There is.

尚、透孔61,81の平面視の形状は、任意であり、例えば円で構成したり、また六角形で構成してハニカム構造とすることができる。また、規制板6は、その中央部の透孔61の深さがエッジ部の透孔61の深さよりも深くなるように構成して、成膜レートの面内分布を向上させてもよい。   In addition, the shape of the through holes 61 and 81 in a plan view is arbitrary, and may be configured as, for example, a circle or a hexagonal shape to form a honeycomb structure. Further, the regulating plate 6 may be configured such that the depth of the through hole 61 in the center portion is deeper than the depth of the through hole 61 in the edge portion, thereby improving the in-plane distribution of the film formation rate.

上記スパッタリング装置SMは、特に図示しないが、マイクロコンピュータやシーケンサ等を備えた公知の制御手段9を有し、制御手段9により電源E1,E2,E3の稼働、マスフローコントローラ12aの稼働や真空排気手段Pの稼働等を統括管理するようになっている。   Although not particularly shown, the sputtering apparatus SM has known control means 9 including a microcomputer, a sequencer, and the like. The control means 9 operates the power supplies E1, E2, E3, the mass flow controller 12a, and the vacuum exhaust means. It is designed to manage the operation of P.

次に、処理すべき基板Wをアスペクト比が3以上のホールが形成されたシリコンウェハとし、上記スパッタリング装置SMを用いて上記ホールの内面を含む基板W表面にCu膜を成膜する場合を例に成膜方法について説明する。   Next, the substrate W to be processed is a silicon wafer in which holes having an aspect ratio of 3 or more are formed, and a Cu film is formed on the surface of the substrate W including the inner surfaces of the holes by using the sputtering apparatus SM. Next, a film forming method will be described.

先ず、ターゲット21が組み付けられた真空チャンバ1内のステージ5に基板Wをセットし、その後、真空排気手段Pを作動させて処理室1a内を所定の真空度(例えば、1×10−5Pa)まで真空引きする。処理室1a内が所定圧力に達すると、マスフローコントローラ12aを制御してアルゴンガスを所定の流量で導入する。アルゴンガスの流量は0〜20sccmの範囲に設定することができる(このとき、処理室1aの圧力は約1×10−5Pa〜0.4Paの範囲となる)。これと併せて、スパッタ電源E1からターゲット21に負の電位を持つ直流電力を例えば10〜30kW投入して処理室1a内にプラズマを形成する。これにより、ターゲット21のスパッタ面21aをスパッタし、飛散したスパッタ粒子が基板Wに向かって飛行する。 First, the substrate W is set on the stage 5 in the vacuum chamber 1 in which the target 21 is assembled, and then the vacuum exhaust means P is operated to move the inside of the processing chamber 1a to a predetermined degree of vacuum (for example, 1 × 10 −5 Pa). ) To a vacuum. When the inside of the processing chamber 1a reaches a predetermined pressure, the mass flow controller 12a is controlled to introduce argon gas at a predetermined flow rate. The flow rate of the argon gas can be set in the range of 0 to 20 sccm (at this time, the pressure in the processing chamber 1a is in the range of about 1 × 10 −5 Pa to 0.4 Pa). At the same time, for example, 10 to 30 kW of DC power having a negative potential is applied to the target 21 from the sputtering power source E1 to form plasma in the processing chamber 1a. As a result, the sputtering surface 21 a of the target 21 is sputtered and the sputtered particles scattered fly toward the substrate W.

本実施形態によれば、電極板8の電位を規制板6の電位よりも高く保持することで、両者の間に電位差が形成され、この電位差によりターゲット21からのスパッタ粒子を構成するCuイオンが加速され、規制板6の透孔61を通過してホール内面を含む基板W表面に到達する。このため、Cuイオンが規制板6において失活することを抑制でき、Cuイオンの指向性を向上させることができる。しかも、電極板8の透孔81と規制板6の透孔61とを通過したスパッタ粒子(Cu粒子)は基板Wへの入射角度が所定の角度範囲に規制されるため、基板エッジ部への斜入射を防止できるという機能は損なわれない。   According to the present embodiment, by holding the potential of the electrode plate 8 higher than the potential of the regulating plate 6, a potential difference is formed between them, and Cu ions constituting the sputtered particles from the target 21 are caused by this potential difference. It is accelerated and passes through the through hole 61 of the regulating plate 6 and reaches the surface of the substrate W including the inner surface of the hole. For this reason, it can suppress that Cu ion deactivates in the control board 6, and can improve the directivity of Cu ion. Moreover, since the incident angle of the sputtered particles (Cu particles) that have passed through the through holes 81 of the electrode plate 8 and the through holes 61 of the regulating plate 6 to the substrate W is regulated within a predetermined angle range, The function of preventing oblique incidence is not impaired.

以上、本発明の実施形態について説明したが、本発明は上記に限定されるものではない。上記実施形態においては、Cuターゲット21をスパッタしてCu膜を成膜する場合について説明したが、スパッタ粒子にイオンが多く含まれるようなターゲット、例えば、Ti、Al、Ta、Ag、Cr、Mo及びWから選択される金属または合金からなるターゲットを用いる場合にも本発明を適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited above. In the above-described embodiment, the case where the Cu target 21 is sputtered to form the Cu film has been described. The present invention can also be applied when using a target made of a metal or alloy selected from W and W.

次に、上記効果を確認するために、上記スパッタリング装置SMを用いて次の実験を行った。本実験では、上記スパッタリング装置SMを用いてCu膜をスパッタリング法により成膜する場合において、規制板6におけるCuイオンの透過率と、規制板6の透孔61からのCuイオンの吹き出し角度(発散角、つまり、基板Wへの入射角度)との電位差依存性をシミュレーションにより求めた。ここで、規制板6の板厚を45mm、電極板8の板厚を15mmとし、両者の隙間dを15mmとし、透孔61,81の径を13mmとし、アルゴンガスの流量を20sccm(このときの処理室1a内の圧力は0.4Pa)、ターゲット21に投入する直流電力を20kW、基板Wに投入するバイアス電力を13.56MHz、400Wに設定した。そして、規制板6と電極板8との間の電位差を40〜160Vで変化させて求めたCuイオンの透過率及び吹き出し角度を図2に示す。これによれば、電位差を70V〜100V程度に設定すれば、75%以上の透過率と1°前後の吹き出し角度を実現できることが判った。電極板8の板厚を15mmから5mmに変更した点を除き、上記と同様にシミュレーションを行った結果を図3に示す。これによれば、電位差を70V以上に設定すれば100%の透過率を実現できる、すなわち、規制板6でのCuイオンの失活を防止できることが判った。また、電位差を70〜160Vに設定すれば、2°以下の吹き出し角度を実現でき、90V〜110Vに設定すれば、0.5°以下の吹き出し角度を実現できることが判った。   Next, in order to confirm the effect, the following experiment was performed using the sputtering apparatus SM. In this experiment, when the Cu film is formed by the sputtering method using the sputtering apparatus SM, the transmittance of Cu ions in the regulation plate 6 and the blowing angle of the Cu ions from the through holes 61 of the regulation plate 6 (divergence). The potential difference dependency with respect to the angle, that is, the incident angle to the substrate W) was obtained by simulation. Here, the plate thickness of the regulating plate 6 is 45 mm, the plate thickness of the electrode plate 8 is 15 mm, the gap d between them is 15 mm, the diameter of the through holes 61 and 81 is 13 mm, and the flow rate of argon gas is 20 sccm (at this time) The pressure in the processing chamber 1a was 0.4 Pa), the DC power input to the target 21 was set to 20 kW, and the bias power input to the substrate W was set to 13.56 MHz and 400 W. And the transmittance | permeability and blowing angle of Cu ion calculated | required by changing the electric potential difference between the control board 6 and the electrode plate 8 at 40-160V are shown in FIG. According to this, it was found that if the potential difference is set to about 70V to 100V, a transmittance of 75% or more and a blowing angle of about 1 ° can be realized. FIG. 3 shows the results of simulation similar to the above except that the thickness of the electrode plate 8 was changed from 15 mm to 5 mm. According to this, it was found that if the potential difference is set to 70 V or more, 100% transmittance can be realized, that is, Cu ion deactivation in the regulation plate 6 can be prevented. It was also found that if the potential difference is set to 70 to 160V, a blowing angle of 2 ° or less can be realized, and if the potential difference is set to 90V to 110V, a blowing angle of 0.5 ° or less can be realized.

SM…スパッタリング装置、W…基板、1…真空チャンバ、6…規制板、61…規制板6の透孔、61a…透孔61の孔軸、8…電極板、81…電極板8の透孔、81a…透孔81の孔軸、E3…保持手段。   SM ... Sputtering apparatus, W ... Substrate, 1 ... Vacuum chamber, 6 ... Restriction plate, 61 ... Through hole in restriction plate 6, 61a ... Hole axis of through hole 61, 8 ... Electrode plate, 81 ... Through hole in electrode plate 8 , 81a: hole axis of the through hole 81, E3: holding means.

Claims (4)

処理すべき基板とターゲットとが対向配置される真空チャンバを備え、真空チャンバ内にスパッタガスを導入し、ターゲットに電力投入して基板とターゲットとの間にプラズマを形成し、ターゲットをスパッタリングして飛散したスパッタ粒子を基板に付着、堆積させるスパッタリング装置であって、
基板とターゲットとの間に、スパッタ粒子の基板への入射角度を所定の角度範囲に規制する複数の透孔を有する規制板を備えるものにおいて、
ターゲットと規制板との間に、規制板の透孔の孔軸と同じ孔軸を有する透孔が複数開設された電極板と、電極板の電位を規制板の電位よりも高く保持する保持手段とを更に備えることを特徴とするスパッタリング装置。
A vacuum chamber is provided in which a substrate to be processed and a target are arranged to face each other, a sputtering gas is introduced into the vacuum chamber, power is supplied to the target, plasma is formed between the substrate and the target, and the target is sputtered. A sputtering apparatus for adhering and depositing scattered sputtered particles on a substrate,
In what comprises a regulating plate having a plurality of through holes for regulating the incident angle of the sputtered particles to the substrate within a predetermined angle range between the substrate and the target,
An electrode plate having a plurality of through holes having the same hole axis as the hole axis of the through hole of the restriction plate between the target and the restriction plate, and a holding means for holding the potential of the electrode plate higher than the potential of the restriction plate And a sputtering apparatus.
前記電極板の板厚は、前記規制板の板厚よりも薄いことを特徴とする請求項1記載のスパッタリング装置。   The sputtering apparatus according to claim 1, wherein a thickness of the electrode plate is thinner than a thickness of the regulation plate. 前記電極板の板厚は5〜15mmの範囲内であることを特徴とする請求項1または2記載のスパッタリング装置。   The sputtering apparatus according to claim 1 or 2, wherein a thickness of the electrode plate is in a range of 5 to 15 mm. 前記保持手段は、電極板と規制板との間の電位差が70V以上160V以下になるように前記電極板の電位を保持することを特徴とする請求項1〜3のいずれか1項記載のスパッタリング装置。
4. The sputtering according to claim 1, wherein the holding means holds the potential of the electrode plate so that a potential difference between the electrode plate and the regulating plate is 70 V or more and 160 V or less. apparatus.
JP2014256798A 2014-12-19 2014-12-19 Sputtering device Active JP6509553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256798A JP6509553B2 (en) 2014-12-19 2014-12-19 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256798A JP6509553B2 (en) 2014-12-19 2014-12-19 Sputtering device

Publications (2)

Publication Number Publication Date
JP2016117923A true JP2016117923A (en) 2016-06-30
JP6509553B2 JP6509553B2 (en) 2019-05-08

Family

ID=56243762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256798A Active JP6509553B2 (en) 2014-12-19 2014-12-19 Sputtering device

Country Status (1)

Country Link
JP (1) JP6509553B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122211A (en) * 2019-01-31 2020-08-13 株式会社アルバック Sputtering apparatus and sputtering method
WO2023011509A1 (en) * 2021-08-04 2023-02-09 北京北方华创微电子装备有限公司 Magnetron sputtering apparatus

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020440A (en) * 1983-07-14 1985-02-01 Tokyo Daigaku Ion beam machining device
JPH07286271A (en) * 1994-02-23 1995-10-31 Samsung Electron Co Ltd Collimeter and its preparation
JPH07316806A (en) * 1994-05-26 1995-12-05 Tokyo Electron Ltd Sputtering device
JPH08227856A (en) * 1995-02-21 1996-09-03 Nec Corp Forming method of metal thin film
JPH08293470A (en) * 1995-04-21 1996-11-05 Sony Corp Film formation device and method
JPH09272972A (en) * 1996-04-08 1997-10-21 Oki Electric Ind Co Ltd Formation of compound film
JPH09324265A (en) * 1996-03-07 1997-12-16 Applied Materials Inc Target on physical vapor development system
JPH1092767A (en) * 1996-09-17 1998-04-10 Ricoh Co Ltd Collimator for sputtering, sputtering equipment and semiconductor device using the same
JPH111771A (en) * 1997-02-19 1999-01-06 Canon Inc Thin film forming apparatus and thin film formation using the same
JP2001028244A (en) * 1999-07-14 2001-01-30 Ebara Corp Beam source
JP2002069634A (en) * 2000-08-29 2002-03-08 Canon Inc Thin film forming method and equipment for the same
US6827824B1 (en) * 1996-04-12 2004-12-07 Micron Technology, Inc. Enhanced collimated deposition
WO2009157439A1 (en) * 2008-06-26 2009-12-30 株式会社アルバック Sputtering apparatus and sputtering method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020440A (en) * 1983-07-14 1985-02-01 Tokyo Daigaku Ion beam machining device
JPH07286271A (en) * 1994-02-23 1995-10-31 Samsung Electron Co Ltd Collimeter and its preparation
JPH07316806A (en) * 1994-05-26 1995-12-05 Tokyo Electron Ltd Sputtering device
JPH08227856A (en) * 1995-02-21 1996-09-03 Nec Corp Forming method of metal thin film
JPH08293470A (en) * 1995-04-21 1996-11-05 Sony Corp Film formation device and method
JPH09324265A (en) * 1996-03-07 1997-12-16 Applied Materials Inc Target on physical vapor development system
JPH09272972A (en) * 1996-04-08 1997-10-21 Oki Electric Ind Co Ltd Formation of compound film
US6827824B1 (en) * 1996-04-12 2004-12-07 Micron Technology, Inc. Enhanced collimated deposition
JPH1092767A (en) * 1996-09-17 1998-04-10 Ricoh Co Ltd Collimator for sputtering, sputtering equipment and semiconductor device using the same
JPH111771A (en) * 1997-02-19 1999-01-06 Canon Inc Thin film forming apparatus and thin film formation using the same
JP2001028244A (en) * 1999-07-14 2001-01-30 Ebara Corp Beam source
JP2002069634A (en) * 2000-08-29 2002-03-08 Canon Inc Thin film forming method and equipment for the same
WO2009157439A1 (en) * 2008-06-26 2009-12-30 株式会社アルバック Sputtering apparatus and sputtering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122211A (en) * 2019-01-31 2020-08-13 株式会社アルバック Sputtering apparatus and sputtering method
JP7262235B2 (en) 2019-01-31 2023-04-21 株式会社アルバック Sputtering apparatus and sputtering method
WO2023011509A1 (en) * 2021-08-04 2023-02-09 北京北方华创微电子装备有限公司 Magnetron sputtering apparatus

Also Published As

Publication number Publication date
JP6509553B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
US11309169B2 (en) Biasable flux optimizer / collimator for PVD sputter chamber
US9543126B2 (en) Collimator for use in substrate processing chambers
KR101926677B1 (en) Film forming device and film forming method
TWI780173B (en) Sputtering device
JP6509553B2 (en) Sputtering device
JP2007197840A (en) Ionized sputtering apparatus
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JP7262235B2 (en) Sputtering apparatus and sputtering method
JP5914786B1 (en) Insulator target
TWI770421B (en) Sputtering apparatus and sputtering method
JP5265309B2 (en) Sputtering method
JP5558020B2 (en) Deposition method
TWI839710B (en) Biasable flux optimizer/collimator for pvd sputter chamber
JP7193369B2 (en) Sputtering equipment
JPH10130832A (en) Low-pressure remote sputtering system
TW200811303A (en) Vent groove modified sputter target assembly and apparatus containing same
JP2015178653A (en) Sputtering device and sputtering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6509553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250