JP2016117918A - Electrolytic plating method and electrolytic plating apparatus - Google Patents

Electrolytic plating method and electrolytic plating apparatus Download PDF

Info

Publication number
JP2016117918A
JP2016117918A JP2014256517A JP2014256517A JP2016117918A JP 2016117918 A JP2016117918 A JP 2016117918A JP 2014256517 A JP2014256517 A JP 2014256517A JP 2014256517 A JP2014256517 A JP 2014256517A JP 2016117918 A JP2016117918 A JP 2016117918A
Authority
JP
Japan
Prior art keywords
electrode
anode chamber
plating
plating solution
chamber side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014256517A
Other languages
Japanese (ja)
Other versions
JP6485029B2 (en
Inventor
健志 八田
Kenji Hatta
健志 八田
琢磨 片瀬
Takuma Katase
琢磨 片瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014256517A priority Critical patent/JP6485029B2/en
Publication of JP2016117918A publication Critical patent/JP2016117918A/en
Application granted granted Critical
Publication of JP6485029B2 publication Critical patent/JP6485029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a burden on waste water treatment by increasing the efficiency of use of plating solution.SOLUTION: An electrolytic plating method is provided in which a plating film is formed on a plating target while supplying metal ions to an anode chamber side plating solution from a soluble electrode by applying an electric current between the plating target placed in the cathode chamber of a plating tank divided by a cation exchange membrane and the soluble electrode placed in an anode chamber. The electrolytic plating method includes a regeneration step of regenerating the anode chamber side plating solution used for electrolytic plating. The regeneration step comprises: shielding a space between the cathode chamber side plating solution and the anode chamber side plating solution; placing a regeneration electrode in the anode chamber; and applying an electric current between the regeneration electrode and the soluble electrode to reduce the metal ions in the anode chamber side plating solution and precipitate them on the soluble electrode.SELECTED DRAWING: Figure 2

Description

本発明は、基板等にSn−Ag系合金、Sn−Cu系合金等を電解めっきする方法及び装置に関する。   The present invention relates to a method and apparatus for electrolytically plating a Sn-Ag alloy, a Sn-Cu alloy, or the like on a substrate or the like.

半導体装置の実装には、はんだバンプを利用して半導体素子を回路基板に接続することが行われている。このはんだバンプとして、近年では、Pbフリー化に伴って、Sn−Pb系合金はんだに代えてSn−Ag系合金等のはんだが使用されるようになってきている。
このSn−Ag系合金を電解めっきする場合、アノードにSnを用いると、AgがSnより貴であるために、アノード面にAgが置換析出する。これを避けるため、Pt等の不溶性アノードを用いて電解めっきする場合が多いが、アノード面に水素が発生し、電解を損なうおそれがある。このため、可溶性アノードにおいてAgを置換析出させないようにする工夫が試みられている。
For mounting a semiconductor device, a semiconductor element is connected to a circuit board using solder bumps. In recent years, as the solder bumps, solders such as Sn—Ag alloys have been used in place of Sn—Pb alloy solders as Pb free.
When electrolytically plating this Sn—Ag alloy, if Sn is used for the anode, Ag is deposited on the anode surface because Ag is nobler than Sn. In order to avoid this, electrolytic plating is often performed using an insoluble anode such as Pt, but hydrogen is generated on the anode surface, which may impair electrolysis. For this reason, attempts have been made to prevent substitution deposition of Ag in the soluble anode.

特許文献1には、被めっき物を電気めっき槽内に収容した鉛フリーの電気錫合金めっき浴中に浸漬して、該被めっき物を陰極として電気めっきを行うに際し、めっき槽内で陽極をカチオン交換膜で形成されたアノードバック又はボックスで隔離して電気めっきを行うことが開示されている。この方法によれば、アノードボックス内のめっき液のSnイオンが交換膜を通ってめっき槽に移動し、Snイオンが安定して供給され、アノードとしてSn等の可溶性電極を使用した場合においても、カチオンの移動により、アノードに対する金属析出を防ぐことができるとされている。   In Patent Document 1, when an object to be plated is immersed in a lead-free electrotin alloy plating bath accommodated in an electroplating tank and electroplating is performed using the object to be plated as a cathode, an anode is provided in the plating tank. It is disclosed to perform electroplating in isolation with an anode bag or box formed of a cation exchange membrane. According to this method, even when Sn ions of the plating solution in the anode box move to the plating tank through the exchange membrane, Sn ions are stably supplied, and when a soluble electrode such as Sn is used as the anode, It is said that metal migration to the anode can be prevented by the movement of cations.

特開2004−131767号公報JP 2004-131767 A 特開平11−100699号公報Japanese Patent Application Laid-Open No. 11-1000069

ところで、アノードから溶出したSnイオンが陽イオン交換膜を通ってカソード室側に移動することにより、カソード室側で析出によって減少しためっき液中のSnイオンの補給が行われるが、陽イオン交換膜の透過効率が100%でないため、電解めっきの進行に伴いアノード室側にSnイオンが蓄積する。このめっき液中のSnイオン濃度が高くなり過ぎると、通電できなくなるため、それらは最終的に廃液として処理されていた。この廃液の処理コストは高いうえに、大量の廃液を処理することにより環境への負荷が大きくなる。また、めっき装置にとっても、液交換によるコストが大きい。   By the way, Sn ions eluted from the anode move to the cathode chamber side through the cation exchange membrane, so that Sn ions in the plating solution reduced by precipitation are replenished on the cathode chamber side. Therefore, Sn ions accumulate on the anode chamber side as the electroplating progresses. If the Sn ion concentration in the plating solution becomes too high, current cannot be supplied, so that they were finally treated as a waste solution. The treatment cost of this waste liquid is high, and the burden on the environment is increased by treating a large amount of waste liquid. Also, the cost for liquid exchange is high for the plating apparatus.

本発明は、このような事情に鑑みてなされたもので、めっき液の使用効率を高め、廃液処理の負担を軽減することができる電解めっき方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrolytic plating method and apparatus that can increase the use efficiency of the plating solution and reduce the burden of waste liquid treatment.

本発明の電解めっき方法は、陽イオン交換膜により区画されためっき槽のカソード室内に設置した被めっき物とアノード室内に設置した可溶性電極との間で通電することにより前記可溶性電極からアノード室側めっき液に金属イオンを供給しつつ被めっき物にめっき膜を形成する電解めっき方法であって、電解めっきに使用した前記アノード室側めっき液を再生処理する再生工程を有し、該再生工程は、カソード室側めっき液と前記アノード室側めっき液との間を遮蔽するとともに、前記アノード室内に再生用電極を設置し、該再生用電極と前記可溶性電極との間で通電して前記アノード室側めっき液中の前記金属イオンを還元して前記可溶性電極に析出させる。   In the electrolytic plating method of the present invention, a current is passed between an object to be plated installed in a cathode chamber of a plating tank partitioned by a cation exchange membrane and a soluble electrode installed in an anode chamber, so that the anode electrode side from the soluble electrode. An electrolytic plating method for forming a plating film on an object to be plated while supplying metal ions to a plating solution, comprising a regeneration step for regenerating the anode chamber side plating solution used for electrolytic plating, the regeneration step The anode chamber side plating solution and the anode chamber side plating solution are shielded, and a regeneration electrode is installed in the anode chamber, and the anode chamber is energized between the regeneration electrode and the soluble electrode. The metal ions in the side plating solution are reduced and deposited on the soluble electrode.

本発明の電解めっき装置は、陽イオン交換膜によりアノード室とカソード室とに区画されためっき槽と、前記アノード室内に設置された可溶性電極と、前記可溶性電極と前記カソード室内に設置した被めっき物との間で通電して前記可溶性電極からアノード室側めっき液に金属イオンを供給させつつ前記被めっき物にめっき膜を形成するためのめっき用通電手段と、カソード室側めっき液と前記アノード室側めっき液との間を遮蔽可能な遮蔽手段と、前記遮蔽手段により遮蔽された前記アノード室側めっき液中に設置可能な再生用電極と、該再生用電極と前記可溶性電極との間で通電して前記アノード室側めっき液中の金属イオンを前記可溶性電極上で還元するための再生用通電手段とを備える。   The electrolytic plating apparatus of the present invention includes a plating tank partitioned into an anode chamber and a cathode chamber by a cation exchange membrane, a soluble electrode installed in the anode chamber, and a plating target installed in the soluble electrode and the cathode chamber. A plating energizing means for forming a plating film on the object to be plated while supplying metal ions from the soluble electrode to the anode chamber side plating solution from the soluble electrode, a cathode chamber side plating solution and the anode A shielding means capable of shielding between the chamber side plating solution, a regeneration electrode which can be installed in the anode chamber side plating solution shielded by the shielding means, and between the regeneration electrode and the soluble electrode A regeneration energizing means for energizing and reducing metal ions in the anode chamber side plating solution on the soluble electrode.

電解めっきにより、可溶性電極からアノード室側めっき液に金属イオンが供給されるが、前述したように陽イオン交換膜の透過効率が100%でないため、電解めっきの進行に伴い金属イオンがアノード室内に蓄積し、アノード室側めっき液の金属イオン濃度が上昇する。そこで、再生工程においては、アノード室内に再生用電極を設置し、めっき工程における可溶性電極をカソードとし、再生用電極をアノードとして電解することで、アノード室側めっき液中の金属イオンを可溶性電極上で還元して、再度可溶性電極に析出させる。これにより、可溶性電極の重量が増加して一部再生されるとともに、アノード室側めっき液の金属イオン濃度が低くなる。また、この再生処理において、遮蔽手段によりカソード室とアノード室との間でめっき液を遮蔽することにより、可溶性電極における添加成分等の析出の問題は回避される。
再生工程後、アノード室側めっき液の金属イオン濃度は低下するので、再生された可溶性電極によって再び電解めっき処理することが可能になる。
Electrolytic plating supplies metal ions from the soluble electrode to the anode chamber side plating solution. However, as described above, the cation exchange membrane does not have a transmission efficiency of 100%. Accumulation increases the metal ion concentration of the anode chamber side plating solution. Therefore, in the regeneration process, a regenerative electrode is installed in the anode chamber, and electrolysis is performed using the soluble electrode in the plating process as a cathode and the regenerating electrode as an anode. And then deposited again on the soluble electrode. This increases the weight of the soluble electrode and partially regenerates it, and lowers the metal ion concentration of the anode chamber side plating solution. Further, in this regeneration treatment, the plating solution is shielded between the cathode chamber and the anode chamber by the shielding means, thereby avoiding the problem of precipitation of added components and the like in the soluble electrode.
After the regeneration step, the metal ion concentration in the anode chamber side plating solution is lowered, so that it is possible to perform electrolytic plating again with the regenerated soluble electrode.

本発明によれば、電解めっき後の再生工程において、アノード室側めっき液の金属イオンを還元して可溶性電極上に析出することにより、アノード室側めっき液の金属イオン濃度の低下と可溶性電極の再生とを行うことができ、めっき液及び可溶性電極の使用効率を高めることができるとともに、廃液処理の負担を軽減することができる。また、再生工程においては、カソード室とアノード室内との間で遮蔽するので、可溶性電極における添加成分等の析出の問題も回避することができる。   According to the present invention, in the regeneration step after electrolytic plating, the metal ions in the anode chamber side plating solution are reduced and deposited on the soluble electrode, thereby reducing the metal ion concentration in the anode chamber side plating solution and the soluble electrode. Regeneration can be performed, the use efficiency of the plating solution and the soluble electrode can be increased, and the burden of waste liquid treatment can be reduced. Further, in the regeneration process, since shielding is provided between the cathode chamber and the anode chamber, it is possible to avoid the problem of precipitation of added components and the like in the soluble electrode.

本発明の電解めっき装置の一実施形態におけるめっき処理中の概略構成を示す図である。It is a figure which shows schematic structure in the plating process in one Embodiment of the electroplating apparatus of this invention. 図1の電解めっき装置において再生処理中の概略構成示す図である。FIG. 2 is a diagram showing a schematic configuration during a regeneration process in the electrolytic plating apparatus of FIG. 1.

以下、本発明の実施形態を図面を参照しながら説明する。
図1及び図2は、本発明をSn−Ag合金めっき、Sn−Cu合金めっき等のSn系合金めっきのための電解めっき装置に適用した一実施形態を示している。このSn合金電解めっき装置は、めっき槽1の上下方向の中間位置に水平に陽イオン交換膜2が設けられていることにより、めっき槽1内が上下に区画されており、陽イオン交換膜2の下方の空間がアノード室3、上方の空間がカソード室4として構成されている。
アノード室3は、別に設けられたタンク5に接続され、アノード室3内のめっき液(アノード室側めっき液という)をポンプ6によって循環することができるように構成されている。カソード室4は、アノード室3と同様に別に設けたタンク7に接続され、カソード室4内のめっき液(カソード室側めっき液という)をポンプ8によって循環することができるように構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
1 and 2 show an embodiment in which the present invention is applied to an electroplating apparatus for Sn-based alloy plating such as Sn—Ag alloy plating and Sn—Cu alloy plating. In this Sn alloy electroplating apparatus, the cation exchange membrane 2 is horizontally provided at an intermediate position in the vertical direction of the plating tank 1, so that the inside of the plating tank 1 is partitioned vertically. The space below is an anode chamber 3, and the space above is a cathode chamber 4.
The anode chamber 3 is connected to a tank 5 provided separately, and is configured such that a plating solution (referred to as an anode chamber side plating solution) in the anode chamber 3 can be circulated by a pump 6. The cathode chamber 4 is connected to a tank 7 provided separately in the same manner as the anode chamber 3, and is configured such that a plating solution (referred to as a cathode chamber side plating solution) in the cathode chamber 4 can be circulated by a pump 8. .

また、アノード室3の底部には例えば円板状のSn製電極(本発明の可溶性電極)11が水平に配置され、カソード室4の上部にはウエハ(被めっき物)12を水平に載置状態に支持するワーク支持部13が設けられており、このワーク支持部13に、ウエハ12を支持したときにこのウエハ12に接触する電極が設けられている。そして、このワーク支持部13の電極とSn製電極11との間に電源14が接続されることにより、ウエハ12をカソードとして電解めっきする構成である。本発明のめっき用通電手段は、この電源14及びこれをSn製電極11及びウエハ12に接続する配線経路を指す。
この場合、ウエハ12はカソード室側めっき液の液面付近に水平に配置され、タンク7からカソード室4の下方にノズル15によって供給されるカソード室側めっき液の噴流が破線で示すようにウエハ12の下面に供給されるようになっており、めっき槽1の上方を覆う蓋体16がウエハ12に上方から錘として作用している。ウエハ12の下面に供給されたカソード室側めっき液はめっき槽1からオーバーフロー流路17に導かれ、タンク7に戻される。
なお、陽イオン交換膜2としては、例えば、デュポン株式会社のナフィオン424を用いることができる。
Further, for example, a disk-shaped Sn electrode (the soluble electrode of the present invention) 11 is horizontally disposed on the bottom of the anode chamber 3, and a wafer (to-be-plated object) 12 is horizontally disposed on the cathode chamber 4. A workpiece support portion 13 for supporting the wafer 12 is provided, and the workpiece support portion 13 is provided with an electrode that contacts the wafer 12 when the wafer 12 is supported. The power supply 14 is connected between the electrode of the work support portion 13 and the Sn electrode 11 to perform electrolytic plating using the wafer 12 as a cathode. The energizing means for plating of the present invention refers to the power source 14 and a wiring path that connects the power source 14 to the Sn electrode 11 and the wafer 12.
In this case, the wafer 12 is horizontally arranged near the surface of the cathode chamber side plating solution, and the jet of the cathode chamber side plating solution supplied from the tank 7 to the lower portion of the cathode chamber 4 by the nozzle 15 is indicated by a broken line. The lid 16 covering the upper part of the plating tank 1 acts on the wafer 12 as a weight from above. The cathode chamber side plating solution supplied to the lower surface of the wafer 12 is guided from the plating tank 1 to the overflow channel 17 and returned to the tank 7.
In addition, as the cation exchange membrane 2, for example, Nafion 424 manufactured by DuPont can be used.

また、この電解めっき装置は、電解めっき処理だけでなく、電解めっき処理後にアノード室側めっき液の再生処理も行うことができるようになっており、その再生処理時に用いられる再生用電極21、及びこの再生用電極21とSn製電極11との間に接続される再生用電源22を有している。
この再生用電極21としては、例えば、チタン(Ti)を基体として白金(Pt)をめっきしてなる不溶性電極が用いられる。また、この再生用電極21は、めっき処理時には用いられないが、再生処理時に、図2に示すように、めっき槽1の陽イオン交換膜2の直下にめっき槽1を横断するように挿入される。この再生用電極21の挿入のため、めっき槽1は陽イオン交換膜2の直下で上下に分離可能であり、再生処理時には、これらの間に再生用電極21を配置した状態に組み立てられる。したがって、この再生用電極21によってアノード室3とカソード室4との間でめっき液を遮蔽した状態とすることができ、本実施形態では、この再生用電極21がカソード室側めっき液とアノード室側めっき液との間を遮蔽する遮蔽手段を構成している。
また、再生用電源22は、再生用電極21をアノードとし、Sn製電極11をカソードとするように接続される。本発明の再生用通電手段は、この再生用電源22及びこれをSn製電極11及び再生用電極21に接続する配線経路を指す。
The electroplating apparatus can perform not only the electroplating process but also the regeneration process of the anode chamber side plating solution after the electroplating process, and the regeneration electrode 21 used during the regeneration process, and A regeneration power source 22 connected between the regeneration electrode 21 and the Sn electrode 11 is provided.
As the regeneration electrode 21, for example, an insoluble electrode formed by plating platinum (Pt) with titanium (Ti) as a base is used. The regeneration electrode 21 is not used during the plating process, but is inserted so as to cross the plating tank 1 immediately below the cation exchange membrane 2 of the plating tank 1 as shown in FIG. The Due to the insertion of the regeneration electrode 21, the plating tank 1 can be separated vertically below the cation exchange membrane 2 and is assembled in a state in which the regeneration electrode 21 is disposed between them during the regeneration process. Accordingly, the plating solution can be shielded between the anode chamber 3 and the cathode chamber 4 by the regeneration electrode 21, and in this embodiment, the regeneration electrode 21 is connected to the cathode chamber side plating solution and the anode chamber. The shielding means which shields between the side plating solutions is comprised.
The regeneration power supply 22 is connected so that the regeneration electrode 21 is an anode and the Sn electrode 11 is a cathode. The regeneration energizing means of the present invention refers to the regeneration power source 22 and a wiring path that connects the regeneration power source 22 to the Sn electrode 11 and the regeneration electrode 21.

このように構成されるめっき装置によりウエハ12にSn−Ag合金めっきを施し、めっき処理後にアノード室側めっき液を再生することができる。以下、めっき工程と再生工程とに分けて説明する。
<めっき工程>
このSn−Ag合金のためのめっき液(カソード室側めっき液)としては、メタンスルホン酸、エタンスルホン酸といったアルキルスルホン酸等の酸と、めっき金属イオン(Sn2+,Ag)の他、平滑化等のための酸化防止剤や界面活性剤等の添加剤、錯化剤等が配合される。本実施形態で使用されるSn−Ag合金のカソード室側めっき液は、例えば以下の配合で構成される。
The plating apparatus configured as described above can perform Sn—Ag alloy plating on the wafer 12 and regenerate the anode chamber side plating solution after the plating process. Hereinafter, the description will be divided into a plating step and a regeneration step.
<Plating process>
As a plating solution (cathode chamber side plating solution) for this Sn-Ag alloy, an acid such as alkyl sulfonic acid such as methanesulfonic acid and ethanesulfonic acid, plating metal ions (Sn 2+ , Ag + ), and a smooth Additives such as antioxidants and surfactants for complexation, complexing agents and the like are blended. The cathode chamber side plating solution of Sn—Ag alloy used in the present embodiment is composed of, for example, the following composition.

アルキルスルホン酸;100〜150g/L
Sn2+;40〜90g/L
Ag;0.1〜3.0g/L
錯化剤;180〜220g/L
添加剤;40〜60ml/L
なお、アノード室側めっき液としては、カソード室側めっき液と同じ酸に、Sn2+の金属イオン、平滑化等のための添加剤が配合される。
Alkyl sulfonic acid; 100 to 150 g / L
Sn 2+ ; 40-90 g / L
Ag + ; 0.1-3.0 g / L
Complexing agent: 180-220 g / L
Additive; 40-60ml / L
As the anode chamber side plating solution, Sn 2+ metal ions and additives for smoothing are blended in the same acid as the cathode chamber side plating solution.

そして、図1に示すように、ウエハ12をカソード室4のワーク支持部13に支持して電源14により通電すると、電解によりカソード室4ではカソード室側めっき液に接触しているウエハ12の下面にSn−Ag合金が析出し、アノード室3ではSn製電極11からSnイオン(Sn2+)がアノード室側めっき液に供給される。このSnイオンは陽イオンであるので、陽イオン交換膜2を通過することができ、めっきの進行に伴うカソード室4内のSnイオンの濃度低下に応じてアノード室3からカソード室4に供給される。
この電解めっき処理において、前述したように、陽イオン交換膜2の透過効率が100%でないことから、アノード室側めっき液にSnイオンが徐々に蓄積し、アノード室側めっき液のSnイオン濃度が上昇する。このSnイオン濃度が高くなり過ぎると電解めっきが困難になる。そこで、アノード室側めっき液のSnイオン濃度が例えば120g/Lを超えたら、電解めっきを終了し、アノード室側めっき液の再生処理を行う。
As shown in FIG. 1, when the wafer 12 is supported by the work support portion 13 of the cathode chamber 4 and energized by the power supply 14, the lower surface of the wafer 12 that is in contact with the cathode chamber side plating solution in the cathode chamber 4 by electrolysis. Sn—Ag alloy is deposited on the anode chamber 3, and Sn ions (Sn 2+ ) are supplied from the Sn electrode 11 to the anode chamber side plating solution in the anode chamber 3. Since this Sn ion is a cation, it can pass through the cation exchange membrane 2 and is supplied from the anode chamber 3 to the cathode chamber 4 in accordance with the decrease in the Sn ion concentration in the cathode chamber 4 as the plating proceeds. The
In this electrolytic plating process, as described above, since the transmission efficiency of the cation exchange membrane 2 is not 100%, Sn ions gradually accumulate in the anode chamber side plating solution, and the Sn ion concentration of the anode chamber side plating solution is To rise. If this Sn ion concentration becomes too high, electrolytic plating becomes difficult. Therefore, when the Sn ion concentration of the anode chamber side plating solution exceeds, for example, 120 g / L, the electrolytic plating is finished and the anode chamber side plating solution is regenerated.

<再生工程>
アノード室側めっき液の再生工程においては、図2に示すように、まず、アノード室3内に再生用電極21を設置する。この再生用電極21が設置されると、めっき液は、アノード室3とカソード室4との間で遮蔽された状態となる。このため、カソード室4からアノード室3への金属イオンの通過が妨げられ、電解めっきされていないときのSn製電極11上でのAgイオンの置換析出は抑制される。
<Regeneration process>
In the regeneration process of the anode chamber side plating solution, as shown in FIG. 2, first, a regeneration electrode 21 is installed in the anode chamber 3. When the regeneration electrode 21 is installed, the plating solution is shielded between the anode chamber 3 and the cathode chamber 4. For this reason, the passage of metal ions from the cathode chamber 4 to the anode chamber 3 is hindered, and substitution deposition of Ag ions on the Sn electrode 11 when not electroplated is suppressed.

そして、タンク5との間でアノード室側めっき液を循環しながら、アノード室3内の再生用電極21とSn製電極11との間に再生用電源22を接続して通電する。この場合、めっき処理時とは逆にSn製電極11をカソードとし、再生用電極21をアノードとするように通電する。これら電極11,21間に通電することにより、アノード室側めっき液中のSnイオンがカソードであるSn製電極11に集まり、Sn製電極11表面で還元されSnとなって析出する。したがって、この再生処理を継続することにより、アノード室側めっき液中のSnイオン濃度が低下し、その分、Sn製電極11のSn量が増加する。再生処理を所定時間継続すると、アノード室側めっき液中のSnイオン濃度がほぼめっき処理前の初期状態にまで低下するので、再生処理を終了する。再生処理終了時には、Sn製電極11の重量も増加しているが、アノード室側めっき液中の全体のSnイオンの量はめっき処理により消費されているので、再生後のSn製電極11の重量はめっき処理前の重量より少ない。
この再生処理において、アノード室側めっき液に前述したように平滑化のための添加剤を添加しておいたことにより、Sn製電極11上でデンドライト状に析出することが抑制され、良好な表面のSn製電極11に再生することができる。
Then, while circulating the anode chamber side plating solution to and from the tank 5, the regeneration power source 22 is connected between the regeneration electrode 21 and the Sn electrode 11 in the anode chamber 3 and energized. In this case, power is supplied so that the Sn electrode 11 serves as a cathode and the regeneration electrode 21 serves as an anode, contrary to the plating process. By energizing between these electrodes 11 and 21, Sn ions in the anode chamber side plating solution gather at the Sn electrode 11 as the cathode, and are reduced and deposited as Sn on the surface of the Sn electrode 11. Therefore, by continuing this regeneration process, the Sn ion concentration in the anode chamber side plating solution decreases, and the Sn amount of the Sn-made electrode 11 increases accordingly. When the regeneration process is continued for a predetermined time, the Sn ion concentration in the anode chamber side plating solution is reduced to the initial state before the plating process, and thus the regeneration process is terminated. At the end of the regeneration process, the weight of the Sn electrode 11 is also increased. However, since the total amount of Sn ions in the anode chamber side plating solution is consumed by the plating process, the weight of the Sn electrode 11 after the regeneration is increased. Is less than the weight before plating.
In this regeneration process, the addition of the smoothing additive to the anode chamber side plating solution as described above suppresses the dendrite-like precipitation on the Sn electrode 11 and provides a good surface. It can reproduce | regenerate to the electrode 11 made from Sn.

このようにしてアノード室側めっき液及びSn製電極11を再生したら、再生用電極21をめっき槽1から取り外し、新たなめっき処理を実施する。この場合、アノード室側めっき液のSnイオン濃度がほぼ前回のめっき処理前の状態に戻っているので、本実施形態の場合は、前回のめっき処理で消費されたAgイオンを補う若干量のAgイオン補給液や添加剤等を供給することにより、必要な濃度のめっき液に調整することができる。
なお、以上のめっき工程と再生工程とを複数回繰り返すと、Sn製電極11の量が少なくなるため、Sn製電極(アノード)11は交換或いは補充する必要がある。
また、アノード室3のめっき液は、再生工程を行わない場合は、所定のSn濃度に達した段階で廃液処理される必要があるが、本再生工程を行う場合においては、アノード室3のめっき液も継続して使用できるため、例えば、4回の再生工程を行うと廃液量は従来の1/4に削減されることとなる。
When the anode chamber side plating solution and the Sn electrode 11 are regenerated in this way, the regenerating electrode 21 is removed from the plating tank 1 and a new plating process is performed. In this case, since the Sn ion concentration of the anode chamber side plating solution has almost returned to the state before the previous plating process, in this embodiment, a slight amount of Ag that supplements the Ag ions consumed in the previous plating process. By supplying an ion replenisher, an additive, or the like, the plating solution can be adjusted to a required concentration.
If the above plating step and regeneration step are repeated a plurality of times, the amount of the Sn electrode 11 decreases, so the Sn electrode (anode) 11 needs to be replaced or supplemented.
Further, when the regeneration process is not performed, the plating solution in the anode chamber 3 needs to be disposed of at a stage where the predetermined Sn concentration is reached. However, when the regeneration process is performed, the plating in the anode chamber 3 is performed. Since the liquid can be used continuously, for example, if the regeneration process is performed four times, the amount of the waste liquid is reduced to 1/4 of the conventional amount.

以上のように、この電解めっき装置においては、電解めっき処理と再生処理とを交互に繰り返してめっき液を使用することができ、アノードの使用効率を高めるとともに、廃液処理量を低減することで、コストの削減を行うことができる。   As described above, in this electroplating apparatus, the plating solution can be used by alternately repeating the electroplating process and the regeneration process, and while increasing the use efficiency of the anode and reducing the waste liquid treatment amount, Cost can be reduced.

アノライト(アノード)室とカソライト(カソード)室を陽イオン交換膜で隔てた機構のめっき装置において、カソード室側めっき液として三菱マテリアル株式会社製Sn−Ag合金めっき液「TS−140HS」を40L貯留するとともに、アノード室側めっき液としてアノード専用液20Lを貯留し、30kgの純Sn電極(可溶性電極)を設置した。アノード専用液は、「TS−140HS」と同濃度のSn2+及び添加剤を含有(Sn2+=80g/L, 三菱マテリアル株式会社製添加剤「TS−140AD−HS」=50ml/L)し、さらに「TS−140HS」に含まれる酸成分アルキルスルホン酸によって、pHが約1になるように調整された液である。
これを用いて電解によってSn−Agめっきを約4000AHの電解量分処理したところ、アノード専用液のSn2+濃度は約160g/Lに上昇していた。その際の純Sn電極重量は約21kgであった。
In a plating apparatus with a mechanism in which the anolite (anode) chamber and the catholite (cathode) chamber are separated by a cation exchange membrane, 40 L of Sn-Ag alloy plating solution “TS-140HS” manufactured by Mitsubishi Materials Corporation is stored as the cathode chamber side plating solution. At the same time, the anode exclusive solution 20L was stored as the anode chamber side plating solution, and a 30 kg pure Sn electrode (soluble electrode) was installed. The anode exclusive liquid contains Sn 2+ and additives having the same concentration as “TS-140HS” (Sn 2+ = 80 g / L, additive “TS-140AD-HS” manufactured by Mitsubishi Materials Corporation = 50 ml / L), Furthermore, it is a liquid adjusted to have a pH of about 1 with the acid component alkylsulfonic acid contained in “TS-140HS”.
When Sn—Ag plating was treated by electrolysis using an amount of about 4000 AH by electrolysis, the Sn 2+ concentration of the anode exclusive solution was increased to about 160 g / L. The pure Sn electrode weight at that time was about 21 kg.

次に、アノード室内にPt/Tiの電極板(再生用電極)を設置し、電極板をアノード、純Sn製電極をカソードとして電解による再生処理を行った。約800AHの電解処理をしたところ、アノード専用液のSnイオン濃度は80g/Lに戻り、純Sn製電極の重量は約22.5kgとなった。
その後、純Sn製電極をアノードとして再度Sn−Agめっき処理を行ったところ、Sn−Agめっきのめっき性も従来と変わらない性能を得ることが出来た。
Next, a Pt / Ti electrode plate (regeneration electrode) was installed in the anode chamber, and a regeneration process by electrolysis was performed using the electrode plate as an anode and a pure Sn electrode as a cathode. When electrolytic treatment of about 800 AH was performed, the Sn ion concentration of the anode exclusive solution returned to 80 g / L, and the weight of the pure Sn electrode was about 22.5 kg.
Thereafter, when Sn-Ag plating treatment was performed again using a pure Sn electrode as an anode, the plating performance of Sn-Ag plating was able to obtain the same performance as the conventional one.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、再生処理時に挿入する再生用電極によってアノード室とカソード室とのめっき液を遮蔽したが、再生用電極とは別に遮蔽手段を設けてもよい。その遮蔽手段としては、めっき液に対して耐性を有する合成樹脂等からなる板、陰イオン交換膜などにより構成することができる。
これらの板や膜を配置することに代えて、アノード室のアノード室側めっき液を一部排出して、その液面を陽イオン交換膜に接触させないようにすることにより、カソード室側めっき液とアノード室側めっき液との間を遮蔽するようにしてもよい。
また、めっき槽を上下に分割可能にして、再生工程では再生用電極を挿入する構成としたが、この再生用電極をめっき槽内に駆動シリンダ等によって出し入れできる機構をめっき槽に設けておくことも可能である。さらに、再生用電極を格子状に形成してめっき液が上下に流通できる形状とすることにより、めっき槽の陽イオン交換膜の下に常時設置しておくことも可能である。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above embodiment, the plating solution in the anode chamber and the cathode chamber is shielded by the regeneration electrode inserted during the regeneration process, but a shielding means may be provided separately from the regeneration electrode. The shielding means can be constituted by a plate made of a synthetic resin having resistance to the plating solution, an anion exchange membrane, or the like.
Instead of arranging these plates and membranes, the cathode chamber side plating solution is discharged by partially discharging the anode chamber side plating solution of the anode chamber so that the liquid surface does not come into contact with the cation exchange membrane. And the anode chamber side plating solution may be shielded.
In addition, the plating tank can be divided into upper and lower parts, and a regeneration electrode is inserted in the regeneration process. However, a mechanism that allows the regeneration electrode to be taken in and out by a drive cylinder or the like is provided in the plating tank. Is also possible. Furthermore, it is also possible to always install the regeneration electrode under a cation exchange membrane in a plating tank by forming the regeneration electrode in a lattice shape so that the plating solution can flow vertically.

また、両実施形態では水平な陽イオン交換膜によりめっき槽を上下に区画したが、垂直な陽イオン交換膜により左右に区画してもよい。
また、Sn系合金めっき以外にも、Cu合金の電解めっきに本発明を適用することもできる。Cu合金の電解めっきに適用する場合も、上記実施形態と同様に、陽イオン交換膜にてめっき槽をアノード室とカソード室とに区画し、アノード室にCu製電極を設置し、カソード室内の被めっき物に電解めっきし、再生処理においては、アノード室内に挿入した再生用電極とCu製電極との間で通電し、Cu製電極の表面で還元してCuを析出させる。この再生処理時に、めっき液中に含有される添加剤が再生処理中にCu製電極を侵食しないようにするために、アノード室とカソード室との間でめっき液を遮蔽することが行われる。
Further, in both embodiments, the plating tank is partitioned up and down by a horizontal cation exchange membrane, but may be partitioned by a vertical cation exchange membrane.
In addition to Sn-based alloy plating, the present invention can also be applied to electrolytic plating of Cu alloys. When applied to the electrolytic plating of Cu alloy, as in the above embodiment, the cation exchange membrane partitions the plating tank into an anode chamber and a cathode chamber, and a Cu electrode is installed in the anode chamber. Electroplating is performed on the object to be plated, and in the regeneration process, electricity is applied between the regeneration electrode inserted in the anode chamber and the Cu electrode, and reduction is performed on the surface of the Cu electrode to precipitate Cu. During the regeneration process, the plating solution is shielded between the anode chamber and the cathode chamber so that the additive contained in the plating solution does not erode the Cu electrode during the regeneration process.

1 めっき槽
2 陽イオン交換膜
3 アノード室
4 カソード室
11 Sn製電極(可溶性電極)
12 ウエハ(被めっき物)
13 ワーク支持部
14 電源
15 ノズル
16 蓋体
21 再生用電極(遮蔽手段)
22 再生用電源
DESCRIPTION OF SYMBOLS 1 Plating tank 2 Cation exchange membrane 3 Anode chamber 4 Cathode chamber 11 Sn electrode (soluble electrode)
12 Wafer (Substance to be plated)
13 Work support part 14 Power supply 15 Nozzle 16 Lid 21 Reproduction electrode (shielding means)
22 Power supply for playback

Claims (2)

陽イオン交換膜により区画されためっき槽のカソード室内に設置した被めっき物とアノード室内に設置した可溶性電極との間で通電することにより前記可溶性電極からアノード室側めっき液に金属イオンを供給しつつ被めっき物にめっき膜を形成する電解めっき方法であって、電解めっきに使用した前記アノード室側めっき液を再生処理する再生工程を有し、該再生工程は、カソード室側めっき液と前記アノード室側めっき液との間を遮蔽するとともに、前記アノード室内に再生用電極を設置し、該再生用電極と前記可溶性電極との間で通電して前記アノード室側めっき液中の前記金属イオンを還元して前記可溶性電極に析出させることを特徴とする電解めっき方法。   Metal ions are supplied from the soluble electrode to the anode chamber side plating solution by energizing between the object to be plated installed in the cathode chamber of the plating tank partitioned by the cation exchange membrane and the soluble electrode installed in the anode chamber. An electrolytic plating method for forming a plating film on an object to be plated while having a regeneration step of regenerating the anode chamber side plating solution used for the electrolytic plating, the regeneration step comprising: The metal ions in the anode chamber side plating solution are shielded from the anode chamber side plating solution, and a regeneration electrode is installed in the anode chamber, and electricity is passed between the regeneration electrode and the soluble electrode. An electrolytic plating method characterized by reducing the amount and depositing on the soluble electrode. 陽イオン交換膜によりアノード室とカソード室とに区画されためっき槽と、前記アノード室内に設置された可溶性電極と、前記可溶性電極と前記カソード室内に設置した被めっき物との間で通電して前記可溶性電極からアノード室側めっき液に金属イオンを供給させつつ前記被めっき物にめっき膜を形成するためのめっき用通電手段と、カソード室側めっき液と前記アノード室側めっき液との間を遮蔽可能な遮蔽手段と、前記遮蔽手段により遮蔽された前記アノード室側めっき液中に設置可能な再生用電極と、該再生用電極と前記可溶性電極との間で通電して前記アノード室側めっき液中の金属イオンを前記可溶性電極上で還元するための再生用通電手段とを備えることを特徴とする電解めっき装置。
Energization is performed between a plating tank partitioned into an anode chamber and a cathode chamber by a cation exchange membrane, a soluble electrode installed in the anode chamber, and an object to be plated installed in the soluble electrode and the cathode chamber. A current-carrying means for forming a plating film on the object to be plated while supplying metal ions from the soluble electrode to the anode chamber side plating solution, and between the cathode chamber side plating solution and the anode chamber side plating solution Shielding means that can be shielded, a regeneration electrode that can be installed in the anode chamber side plating solution shielded by the shielding means, and the anode chamber side plating by energizing between the regeneration electrode and the soluble electrode An electroplating apparatus comprising: a regenerative energizing means for reducing metal ions in the liquid on the soluble electrode.
JP2014256517A 2014-12-18 2014-12-18 Electrolytic plating method and electrolytic plating apparatus Active JP6485029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256517A JP6485029B2 (en) 2014-12-18 2014-12-18 Electrolytic plating method and electrolytic plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256517A JP6485029B2 (en) 2014-12-18 2014-12-18 Electrolytic plating method and electrolytic plating apparatus

Publications (2)

Publication Number Publication Date
JP2016117918A true JP2016117918A (en) 2016-06-30
JP6485029B2 JP6485029B2 (en) 2019-03-20

Family

ID=56243791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256517A Active JP6485029B2 (en) 2014-12-18 2014-12-18 Electrolytic plating method and electrolytic plating apparatus

Country Status (1)

Country Link
JP (1) JP6485029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041795B1 (en) * 2021-12-20 2022-03-24 株式会社荏原製作所 How to maintain the plating equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316895A (en) * 2000-05-08 2001-11-16 Tokyo Electron Ltd Electrolytic plating device and electrolytic plating method
JP2003273056A (en) * 2002-03-18 2003-09-26 Ebara Corp Method and apparatus for treating substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316895A (en) * 2000-05-08 2001-11-16 Tokyo Electron Ltd Electrolytic plating device and electrolytic plating method
JP2003273056A (en) * 2002-03-18 2003-09-26 Ebara Corp Method and apparatus for treating substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7041795B1 (en) * 2021-12-20 2022-03-24 株式会社荏原製作所 How to maintain the plating equipment
CN115087764A (en) * 2021-12-20 2022-09-20 株式会社荏原制作所 Maintenance method of plating apparatus
CN115087764B (en) * 2021-12-20 2023-02-28 株式会社荏原制作所 Maintenance method of plating apparatus
WO2023119347A1 (en) * 2021-12-20 2023-06-29 株式会社荏原製作所 Maintenance method for plating device
KR102549747B1 (en) * 2021-12-20 2023-07-03 가부시키가이샤 에바라 세이사꾸쇼 Maintenance method of plating equipment

Also Published As

Publication number Publication date
JP6485029B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
TWI609100B (en) Cleaning electroplating substrate holders using reverse current deplating
JP6502628B2 (en) Electroplating system
TWI625766B (en) Electroplating apparatus and process for wafer level packaging
US6132586A (en) Method and apparatus for non-contact metal plating of semiconductor wafers using a bipolar electrode assembly
US7964506B1 (en) Two step copper electroplating process with anneal for uniform across wafer deposition and void free filling on ruthenium coated wafers
JP6585434B2 (en) Plating method
US20050081744A1 (en) Electroplating compositions and methods for electroplating
US20150140814A1 (en) Alkaline pretreatment for electroplating
KR101848971B1 (en) METHOD FOR Sn-ALLOY ELECTROLYTIC PLATING AND Sn-ALLOY ELECTROLYTIC PLATING APPARATUS
JP2016186127A (en) Pretreatment of nickel and cobalt liners for electrodeposition of copper into through-silicon vias
KR20110127617A (en) Through silicon via filling using an electrolyte with a dual state inhibitor
JP6485029B2 (en) Electrolytic plating method and electrolytic plating apparatus
US20190345627A1 (en) System for treating solution for use in electroplating application and method for treating solution for use in electroplating application
WO2019026578A1 (en) Positive electrode for electrolytic copper plating and electrolytic copper plating apparatus using same
JP2007297652A (en) Plating method and plating apparatus
JP3641372B2 (en) Electrolytic plating method and electrolytic plating apparatus
CN219470241U (en) High film thickness electroplating anode conductive structure for continuously plating nickel layer of IC lead frame in reel-to-reel manner
JP2015214736A (en) Sn ALLOY ELECTROLYSIS PLATING METHOD AND PLATING APPARATUS
JP2014001410A (en) Plating method and plating apparatus
JP6079368B2 (en) Sn alloy plating method, Sn alloy plating solution recycling method, and apparatuses thereof
TW201533279A (en) Methods for electrochemical deposition of multi-component solder using cation permeable barrier
KR20080012530A (en) Electro-chemical plating apparatus, and copper wire forming method of semiconductor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150