JP2016117029A - Method for producing hydrocarbon from carbon dioxide using organic group-modified zeolite catalyst - Google Patents

Method for producing hydrocarbon from carbon dioxide using organic group-modified zeolite catalyst Download PDF

Info

Publication number
JP2016117029A
JP2016117029A JP2014258596A JP2014258596A JP2016117029A JP 2016117029 A JP2016117029 A JP 2016117029A JP 2014258596 A JP2014258596 A JP 2014258596A JP 2014258596 A JP2014258596 A JP 2014258596A JP 2016117029 A JP2016117029 A JP 2016117029A
Authority
JP
Japan
Prior art keywords
catalyst
compound
zeolite
organic
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014258596A
Other languages
Japanese (ja)
Other versions
JP6338218B2 (en
Inventor
藤原 正浩
Masahiro Fujiwara
正浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014258596A priority Critical patent/JP6338218B2/en
Publication of JP2016117029A publication Critical patent/JP2016117029A/en
Application granted granted Critical
Publication of JP6338218B2 publication Critical patent/JP6338218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for producing C2+hydrocarbons from a mixed gas containing carbon dioxide and/or carbon monoxide and hydrogen in high yield.SOLUTION: There is provided a composite catalyst for synthesizing hydrocarbons having two or more carbon atoms from a mixed gas containing carbon dioxide and/or carbon monoxide and hydrogen, including a methanol synthesis catalyst and organic group-modified zeolite catalysts, in which the organic group-modified zeolite catalysts are composite catalysts obtained by reacting zeolite catalysts and an organic compound at a high temperature. There is also provided a composite catalyst in which the organic compound is at least one selected from an organosilane compound, an organoboron compound, an organoaluminum compound, an organotin compound, an organic oxygen-containing compound, an aromatic compound, a heteroaromatic compound and an aliphatic or alicyclic unsaturated compound.SELECTED DRAWING: Figure 2

Description

本発明は、有機基を修飾したゼオライト触媒をメタノール合成触媒と混合した複合触媒を用い、二酸化炭素と水素からの炭化水素製造方法に関し、詳しくは、炭素数が2以上の炭化水素を好収率で製造する炭化水素製造方法に関する。   The present invention relates to a method for producing hydrocarbons from carbon dioxide and hydrogen using a composite catalyst in which an organic group-modified zeolite catalyst is mixed with a methanol synthesis catalyst, and more specifically, hydrocarbons having 2 or more carbon atoms in good yield. It relates to a hydrocarbon production method produced by

二酸化炭素の水素化による種々の炭素化合物の合成は、地球温暖化の抑制や化石燃料に依存しない炭素化合物の製造方法として重要な技術である。この炭素化合物としては、メタノールが最も研究されているが、産業や生活用資材としての利用は、法的整備やインフラ等に関して十分に確立されているとは言えない。一方、炭化水素類は、すでに工業用燃料、化成品等の化学原料、および民生用燃料として幅広く利用されているため、二酸化炭素と水素から炭化水素を製造することは、既存の産業・民生インフラをそのまま使いながら、化石燃料に依存しない社会を構築することができる。しかしながら、炭素数1のメタンはメタンハイドレートやシェールガス等で供給でき、運搬・貯蔵性や他の物質への変換性に劣るため、二酸化炭素と水素からあえて製造する必要性は高くない。一方、炭素数が2以上の炭化水素(以後、「C2+炭化水素」ということがある)は、液化石油ガス(LPG)、ナフサ、ガソリン、軽油に代表されるように、エネルギー密度も高く運搬性・貯蔵性に優れており、また種々の有用な化合物・化成品原料への変換も容易で化学変換性も良い。そのため、二酸化炭素と水素から製造するに値する炭化水素類である。   Synthesis of various carbon compounds by hydrogenation of carbon dioxide is an important technique as a method for producing carbon compounds independent of global warming and not dependent on fossil fuels. Methanol is the most researched carbon compound, but it cannot be said that its use as an industrial or household material has been well established for legal development and infrastructure. On the other hand, since hydrocarbons are already widely used as industrial fuels, chemical raw materials for chemical products, and civilian fuels, it is difficult to produce hydrocarbons from carbon dioxide and hydrogen. It is possible to build a society that does not depend on fossil fuels. However, methane having 1 carbon atom can be supplied by methane hydrate, shale gas, etc., and is inferior in transportation / storage property and convertibility to other substances. Therefore, it is not necessary to produce it from carbon dioxide and hydrogen. On the other hand, hydrocarbons with 2 or more carbon atoms (hereinafter sometimes referred to as “C2 + hydrocarbons”) have high energy density and transportability, as represented by liquefied petroleum gas (LPG), naphtha, gasoline, and light oil. -It is excellent in storability, easily converted into various useful compounds and chemical raw materials, and has good chemical conversion properties. Therefore, they are hydrocarbons worthy of production from carbon dioxide and hydrogen.

二酸化炭素と水素から炭化水素を製造する技術は、鉄系触媒やコバルト系触媒等を用いたF−T(フィッシャー・トロプシュ)系の反応がよく研究されているが(特許文献1)、この反応では炭素数が1から10以上までの幅広い分布で炭化水素が製造され、かつメタンの選択率が高いという欠点もある。メタンの副生を抑制しながら特定留分のC2+炭化水素を製造できる方法として、ゼオライト類によるメタノール転化反応を利用する方法がある。このゼオライト触媒類によるメタノール転化反応は、その細孔構造や触媒特性によって、製造できる炭化水素の分布を制御することができる。生成物によりこの反応は、Methanol-To-Gasoline(MTG)反応、Methanol-To-Olefin(MTO反応)等と呼ばれている。このゼオライト触媒の特性を応用することで、F−T反応では困難な、メタンの生成を抑えながら特定成分の炭化水素を選択的に製造できるプロセスが知られている。二酸化炭素の水素化では、一度二酸化炭素からメタノールを製造し、そのメタノールをゼオライト触媒類上で反応させる2段法(非特許文献1、特許文献2)があるが、メタノール合成用触媒とゼオライト触媒とを混合して、一段反応で直接炭化水素を製造する方法も研究されている(非特許文献2)。代表例としては、銅−亜鉛系メタノール合成触媒をゼオライト触媒と粉末状態で物理混合した複合触媒を用いての炭化水素製造である(非特許文献3)。また、鉄−亜鉛系触媒とゼオライトから成る複合触媒の例もある(特許文献3,4、非特許文献4)。   As a technique for producing hydrocarbons from carbon dioxide and hydrogen, an FT (Fischer-Tropsch) reaction using an iron-based catalyst, a cobalt-based catalyst, or the like has been well studied (Patent Document 1). However, there are also disadvantages that hydrocarbons are produced in a wide distribution with 1 to 10 or more carbon atoms and that the selectivity of methane is high. As a method for producing C2 + hydrocarbons of a specific fraction while suppressing methane by-product, there is a method using a methanol conversion reaction by zeolites. In the methanol conversion reaction by these zeolite catalysts, the distribution of hydrocarbons that can be produced can be controlled by the pore structure and catalyst characteristics. Depending on the product, this reaction is called Methanol-To-Gasoline (MTG) reaction, Methanol-To-Olefin (MTO reaction) and the like. By applying the characteristics of this zeolite catalyst, a process is known that can selectively produce hydrocarbons of specific components while suppressing the production of methane, which is difficult with the FT reaction. In the hydrogenation of carbon dioxide, there is a two-stage method (non-patent document 1, patent document 2) in which methanol is once produced from carbon dioxide and the methanol is reacted on a zeolite catalyst. A method of directly producing hydrocarbons by mixing them with one-step reaction has also been studied (Non-patent Document 2). A typical example is hydrocarbon production using a composite catalyst obtained by physically mixing a copper-zinc-based methanol synthesis catalyst with a zeolite catalyst in a powder state (Non-patent Document 3). There are also examples of composite catalysts composed of an iron-zinc catalyst and zeolite (Patent Documents 3 and 4, Non-Patent Document 4).

このように、メタノール合成触媒とゼオライト触媒から成る複合触媒は活発に研究されているが、必ずしも良好な触媒性能を持っている訳ではない。最近、この複合触媒において、メタノール合成触媒とゼオライト触媒との間の固体間相互作用が触媒性能に大きな影響を与え、多くの場合、触媒性能を低下させるということが報告されている(非特許文献5〜8)。そのため、メタノール合成触媒をシリカ等の固体間での相互作用の少ない材料中にカプセル化することで、この相互作用の影響を低減する試みも行われている(非特許文献9,10)。また、ゼオライト表面に有機成分を修飾してゼオライトの材料や触媒としての性能を改良する試みもある(特許文献5,6、非特許文献11)。さらに、ゼオライト表面に有機ジシラン化合物類を修飾することでゼオライト細孔を閉鎖させ(非特許文献12,13)、細孔内部に気体類を貯蔵する技術もある(特許文献7、非特許文献14,15)。しかしながら、二酸化炭素の水素化用複合触媒に用いるゼオライトの表面を有機基等で修飾し、二酸化炭素からの炭化水素合成の収率や選択率を向上させる試みは、これまで行われていなかった。   Thus, although a composite catalyst comprising a methanol synthesis catalyst and a zeolite catalyst has been actively studied, it does not necessarily have a good catalyst performance. Recently, in this composite catalyst, it has been reported that the solid-solid interaction between the methanol synthesis catalyst and the zeolite catalyst greatly affects the catalyst performance, and in many cases, reduces the catalyst performance (Non-Patent Document). 5-8). For this reason, attempts have been made to reduce the influence of this interaction by encapsulating a methanol synthesis catalyst in a material such as silica that has little interaction between solids (Non-Patent Documents 9 and 10). There are also attempts to improve the performance of zeolite materials and catalysts by modifying organic components on the zeolite surface (Patent Documents 5 and 6, Non-Patent Document 11). Furthermore, there is also a technique for closing zeolite pores by modifying organodisilane compounds on the zeolite surface (Non-Patent Documents 12 and 13) and storing gases inside the pores (Patent Document 7 and Non-Patent Document 14). , 15). However, no attempt has been made to improve the yield and selectivity of hydrocarbon synthesis from carbon dioxide by modifying the surface of the zeolite used for the composite catalyst for hydrogenation of carbon dioxide with an organic group or the like.

特開平7-80309JP 7-80309 特開平4-122450JP 4-122450 A 特開2000-117108JP2000-117108 特開平10-192714JP-A-10-192714 特開2008-254954JP2008-254954 特開2007-277133JP2007-277133 特開2011-84445JP2011-84445

T. Inui, Catalysis Today, 29, 329 (1996)T. Inui, Catalysis Today, 29, 329 (1996) C. Li, X. Yuan, K. Fujimoto, Appl. Catal. A: General, 475, 155 (2014)C. Li, X. Yuan, K. Fujimoto, Appl. Catal. A: General, 475, 155 (2014) M. Fujiwara, Y. Souma, Chem. Commun., 767 (1992)M. Fujiwara, Y. Souma, Chem. Commun., 767 (1992) M. Fujiwara, H. Ando, M. Matsumoto, Y. Matsumura, M. Tanaka, Y. Souma, Chem. Lett., 839 (1995)M. Fujiwara, H. Ando, M. Matsumoto, Y. Matsumura, M. Tanaka, Y. Souma, Chem. Lett., 839 (1995) V. V. Ordomsky, M. Cai, V. Sushkevich, S. Moldovac, O. Ersen, C. Lancelot, V. Valtchev, A.Y. Khodakov, Appl. Catal. A: General, 486, 266 (2014)V. V. Ordomsky, M. Cai, V. Sushkevich, S. Moldovac, O. Ersen, C. Lancelot, V. Valtchev, A.Y. Khodakov, Appl. Catal. A: General, 486, 266 (2014) A. Garcia-Trenco, A. Vidal-Moya, A. Martinez, Catal. Today, 179, 43 (2012)A. Garcia-Trenco, A. Vidal-Moya, A. Martinez, Catal. Today, 179, 43 (2012) A. Garcia-Trenco, A. Martinez, Catal. Today, 227, 144 (2014)A. Garcia-Trenco, A. Martinez, Catal. Today, 227, 144 (2014) G. R. Moradi, M. Nazari, F. Yaripour, Fuel Process. Technol., 89, 1287 (2008)G. R. Moradi, M. Nazari, F. Yaripour, Fuel Process. Technol., 89, 1287 (2008) K. Pinkaew, G. Yang, T. Vitidsant, Y. Jin, C. Zeng, Y. Yoneyama, N. Tsubaki, Fuel, 111, 727 (2013)K. Pinkaew, G. Yang, T. Vitidsant, Y. Jin, C. Zeng, Y. Yoneyama, N. Tsubaki, Fuel, 111, 727 (2013) G. Yang, M. Thongkam, T. Vitidsant, Y. Yoneyama, Y. Tan, N. Tsubaki, Catal.Today, 171, 229 (2011)G. Yang, M. Thongkam, T. Vitidsant, Y. Yoneyama, Y. Tan, N. Tsubaki, Catal. Today, 171, 229 (2011) P. A. Zapata, Y. Huang, M. A. Gonzalez-Borja, D. E. Resasco, J. Catal., 308, 82 (2013)P. A. Zapata, Y. Huang, M. A. Gonzalez-Borja, D. E. Resasco, J. Catal., 308, 82 (2013) M. Fujiwara, T. Kitabayashi, K. Shiokawa, T. K. Moriuchi, Microporous Mesoporous Mater., 115, 556 (2008)M. Fujiwara, T. Kitabayashi, K. Shiokawa, T. K. Moriuchi, Microporous Mesoporous Mater., 115, 556 (2008) M. Fujiwara, T. Kitabayashi, K. Shiokawa, T. K. Moriuchi, Chem. Eng. J., 146, 520 (2009)M. Fujiwara, T. Kitabayashi, K. Shiokawa, T. K. Moriuchi, Chem. Eng. J., 146, 520 (2009) M. Fujiwara, Y. Fujio, Y. Sato, H. Sakurai, I. Kumakiri, Microporous Mesoporous Mater., 155, 34 (2012)M. Fujiwara, Y. Fujio, Y. Sato, H. Sakurai, I. Kumakiri, Microporous Mesoporous Mater., 155, 34 (2012) M. Fujiwara, Y. Fujio, H. Sakurai, H. Senoh, T. Kiyobayashi, Chem. Eng. Process. Process Intensif., 79, 1 (2014)M. Fujiwara, Y. Fujio, H. Sakurai, H. Senoh, T. Kiyobayashi, Chem. Eng. Process. Process Intensif., 79, 1 (2014)

本発明は、C2+炭化水素の合成収率を向上させる技術を提供することを主な目的とする。   The main object of the present invention is to provide a technique for improving the synthesis yield of C2 + hydrocarbons.

メタノール合成触媒とゼオライト触媒類から得られる複合触媒を用い、二酸化炭素と水素から高収率で炭化水素を製造する際には、二酸化炭素の水素化によるメタノール合成反応とゼオライト触媒類によるメタノールの炭化水素への転化反応の両反応を効果的に進行させる必要がある。特に後者のゼオライト触媒類によるメタノールの炭化水素への転化反応は、この反応が迅速に起きない場合、一度は二酸化炭素から生成したメタノールが一酸化炭素へと分解してしまい炭化水素は生成することはできなくなる(図1)。そのため、このゼオライト触媒類によるメタノールの炭化水素への転化反応を十分に活性化させることが、複合触媒の性能を決定づけることになる。また複合触媒中でのゼオライト触媒類の触媒性能は、複合触媒に共存させるメタノール合成触媒との固体間相互作用により強く影響され、その結果多くの場合劣化を起こすことが近年明らかになってきている。したがって、この固体間の相互作用を最小限に抑えることが、高性能な複合触媒の創出に必要である。そこで、ゼオライト触媒類の表面に、有機基を修飾することで、この固体間相互作用を抑制することで、二酸化炭素と水素から、炭化水素を好収率で合成できると考え、鋭意研究を行った。その結果、ゼオライト類の表面を有機シラン化合物類や他の有機化合物を用いて修飾することで、ゼオライト触媒類の触媒活性の劣化を防ぎ、二酸化炭素と水素から良好な収率でC2+炭化水素を製造できる複合触媒を創出することに成功し、本発明に至った(図2)。   When using a composite catalyst obtained from a methanol synthesis catalyst and zeolite catalysts to produce hydrocarbons in high yield from carbon dioxide and hydrogen, methanol synthesis reaction by hydrogenation of carbon dioxide and methanol carbonization by zeolite catalysts It is necessary to effectively proceed both reactions of the conversion to hydrogen. In particular, the conversion reaction of methanol to hydrocarbons by the latter zeolite catalysts is such that if this reaction does not occur rapidly, the methanol produced from carbon dioxide will be decomposed into carbon monoxide once and hydrocarbons will be produced. Cannot be performed (FIG. 1). Therefore, sufficiently activating the conversion reaction of methanol into hydrocarbons by these zeolite catalysts determines the performance of the composite catalyst. In recent years, it has become clear that the catalytic performance of zeolite catalysts in the composite catalyst is strongly influenced by the solid-solid interaction with the methanol synthesis catalyst coexisting in the composite catalyst, resulting in deterioration in many cases. . Therefore, minimizing the interaction between the solids is necessary for the creation of high performance composite catalysts. Therefore, we sought to synthesize hydrocarbons from carbon dioxide and hydrogen in good yield by suppressing the interaction between solids by modifying the organic group on the surface of the zeolite catalyst. It was. As a result, the surface of the zeolite is modified with organosilane compounds or other organic compounds to prevent the catalytic activity of the zeolite catalyst from being deteriorated, and C2 + hydrocarbons can be obtained from carbon dioxide and hydrogen in a good yield. The present inventors have succeeded in creating a composite catalyst that can be produced, leading to the present invention (FIG. 2).

本発明は、以下の複合触媒及び炭素数2以上の炭化水素の製造方法を提供するものである。
項1. メタノール合成触媒と有機基修飾ゼオライト触媒類を含む、一酸化炭素及び/又は二酸化炭素と水素を含む混合ガスから炭素数2以上の炭化水素を合成するための複合触媒。
項2. 前記有機基修飾ゼオライト触媒類が、ゼオライト触媒類と有機化合物を高温で反応させて得られるものである、項1に記載の複合触媒。
項3. 前記有機化合物が有機シラン化合物、有機ホウ素化合物、有機アルミニウム化合物、有機スズ化合物、有機含酸素化合物、芳香族化合物、ヘテロ芳香族化合物、脂肪族もしくは脂環式不飽和化合物からなる群から選ばれる少なくとも1種である、項2に記載の複合触媒。
項4. 一酸化炭素及び/又は二酸化炭素と水素を含む混合ガスを、項1〜3のいずれかに記載の複合触媒の存在下に反応させることを特徴とする、炭素数2以上の炭化水素の製造方法。
項5. 前記混合ガスが、一酸化炭素と水素を含む混合ガス、二酸化炭素と水素を含む混合ガス、一酸化炭素と二酸化炭素と水素を含む混合ガス、又はバイオマスガスである、項4に記載の炭化水素の製造方法。
The present invention provides the following composite catalyst and method for producing a hydrocarbon having 2 or more carbon atoms.
Item 1. A composite catalyst for synthesizing a hydrocarbon having 2 or more carbon atoms from a mixed gas containing carbon monoxide and / or carbon dioxide and hydrogen, comprising a methanol synthesis catalyst and an organic group-modified zeolite catalyst.
Item 2. Item 2. The composite catalyst according to Item 1, wherein the organic group-modified zeolite catalyst is obtained by reacting a zeolite catalyst with an organic compound at a high temperature.
Item 3. The organic compound is at least selected from the group consisting of an organic silane compound, an organic boron compound, an organic aluminum compound, an organic tin compound, an organic oxygen-containing compound, an aromatic compound, a heteroaromatic compound, an aliphatic or alicyclic unsaturated compound Item 3. The composite catalyst according to Item 2, which is one type.
Item 4. A method for producing a hydrocarbon having 2 or more carbon atoms, characterized by reacting a mixed gas containing carbon monoxide and / or carbon dioxide and hydrogen in the presence of the composite catalyst according to any one of Items 1 to 3. .
Item 5. Item 5. The hydrocarbon according to Item 4, wherein the mixed gas is a mixed gas containing carbon monoxide and hydrogen, a mixed gas containing carbon dioxide and hydrogen, a mixed gas containing carbon monoxide, carbon dioxide and hydrogen, or biomass gas. Manufacturing method.

本発明により、二酸化炭素と水素の混合ガスから、炭素数が2以上の炭化水素を一段の反応で製造することができる。すなわち、二酸化炭素の水素化によって生成したメタノールは、表面を有機基で修飾されることでメタノール合成触媒との固体間相互作用による活性劣化が抑制されたゼオライト触媒類上で迅速かつ効果的に反応し、C2+炭化水素へと変換される。これにより、二酸化炭素と水素から、単一の触媒および単一の反応器のみを用いることで、C2+炭化水素を高選択率、好収率で製造することができる。例えば、ゼオライトベータに仕込み時の重量比で3%〜10%のジシラン化合物1,4-bis(hydroxydimethylsilyl)benzeneを修飾したゼオライト触媒を、銅−亜鉛―アルミ触媒とそれぞれ0.9g、0.1gを物理的に混合した計1gの複合触媒を用い、反応圧力0.98MPa、温度300℃の条件下、二酸化炭素:水素=1:3の反応ガスを50mL/min(sccm、以下同じ)の流速で流した場合、二酸化炭素転化率約25%、収率7〜8%でC2+炭化水素を製造することができた。なお、当該有機基修飾処理を行わなかったゼオライトから得られる複合触媒では、同一条件下での触媒性能は、二酸化炭素転化率約23%、C2+炭化水素収率0.4〜0.6%であり、有機基修飾によってC2+炭化水素収率は10倍以上に向上した。   According to the present invention, a hydrocarbon having 2 or more carbon atoms can be produced from a mixed gas of carbon dioxide and hydrogen by a one-step reaction. In other words, methanol produced by hydrogenation of carbon dioxide reacts quickly and effectively on zeolite catalysts whose surface is modified with organic groups to suppress activity degradation due to solid-state interaction with the methanol synthesis catalyst. And converted to C2 + hydrocarbons. Thereby, C2 + hydrocarbons can be produced with high selectivity and good yield from carbon dioxide and hydrogen by using only a single catalyst and a single reactor. For example, a zeolite catalyst modified with 3% to 10% disilane compound 1,4-bis (hydroxydimethylsilyl) benzene by weight ratio at the time of charging into zeolite beta, and copper-zinc-aluminum catalyst and 0.9g and 0.1g respectively A total of 1 g of the composite catalyst was mixed and a reaction gas of carbon dioxide: hydrogen = 1: 3 was flowed at a flow rate of 50 mL / min (sccm, the same applies hereinafter) under a reaction pressure of 0.98 MPa and a temperature of 300 ° C. In this case, C2 + hydrocarbons could be produced with a carbon dioxide conversion of about 25% and a yield of 7-8%. Incidentally, in the composite catalyst obtained from the zeolite not subjected to the organic group modification treatment, the catalyst performance under the same conditions is about 23% carbon dioxide conversion, C2 + hydrocarbon yield 0.4 to 0.6%, The modification improved the C2 + hydrocarbon yield more than 10 times.

複合触媒での二酸化炭素の接触水素化反応の反応経路Reaction pathway of catalytic hydrogenation of carbon dioxide over composite catalysts 表面を有機基で修飾したゼオライト触媒から得られる複合触媒による二酸化炭素と水素からの炭化水素製造Production of hydrocarbons from carbon dioxide and hydrogen by a composite catalyst obtained from a zeolite catalyst whose surface is modified with organic groups ジシラン化合物を修飾したゼオライト類の拡散反射紫外可視スペクトルDiffuse reflection UV-visible spectra of zeolites modified with disilane compounds トルエン処理を行ったゼオライト類の拡散反射紫外可視スペクトルDiffuse reflection UV-visible spectra of zeolites treated with toluene

本発明の複合触媒を用いることで、二酸化炭素及び/又は一酸化炭素と水素を含む混合ガスからC2+炭化水素を良好な収率で製造することができる。   By using the composite catalyst of the present invention, C2 + hydrocarbons can be produced in a good yield from a mixed gas containing carbon dioxide and / or carbon monoxide and hydrogen.

本明細書において、炭素数2以上の炭化水素を製造するための原料である混合ガスとしては、一酸化炭素と水素を含む混合ガス、二酸化炭素と水素を含む混合ガス、一酸化炭素と二酸化炭素と水素を含む混合ガス、バイオマスガスなどが挙げられる。バイオマスガスは、植物等の生物由来の有機化合物を処理することで得られる気体成分であり、主に一酸化炭素、二酸化炭素、水素を含む混合ガスである。   In this specification, as a mixed gas which is a raw material for producing a hydrocarbon having 2 or more carbon atoms, a mixed gas containing carbon monoxide and hydrogen, a mixed gas containing carbon dioxide and hydrogen, carbon monoxide and carbon dioxide And mixed gas containing hydrogen and biomass. Biomass gas is a gas component obtained by processing organic compounds derived from organisms such as plants, and is a mixed gas mainly containing carbon monoxide, carbon dioxide, and hydrogen.

複合触媒の構成物は、二酸化炭素又は一酸化炭素と水素からメタノールを合成することができるメタノール合成触媒とメタノールを炭化水素類へと変換できるゼオライト触媒類である。ゼオライト触媒類は有機基で修飾されている。有機基による修飾は、共有結合であってもよく、吸着などの物理的な相互作用であってもよい。   The components of the composite catalyst are a methanol synthesis catalyst capable of synthesizing methanol from carbon dioxide or carbon monoxide and hydrogen, and a zeolite catalyst capable of converting methanol into hydrocarbons. Zeolite catalysts are modified with organic groups. The modification with an organic group may be a covalent bond or a physical interaction such as adsorption.

メタノール合成触媒は、二酸化炭素と水素から良好な性能でメタノールを合成することができるものであれば特に限定されず、公知の触媒でも良く、市販品を用いる、あるいは公知の文献等に従い製造しても良い。メタノール合成触媒の種類としては、例えば、銅系触媒、銅−亜鉛系触媒、銅−亜鉛―アルミ系触媒、銅−亜鉛−クロム系触媒、亜鉛−クロム系触媒、亜鉛−アルミ系触媒、鉄−クロム系触媒、鉄−アルミ系触媒、ニッケル系触媒、白金系触媒、金系触媒、パラジウム系触媒、ロジウム系触媒などを例示することができる。   The methanol synthesis catalyst is not particularly limited as long as it can synthesize methanol with good performance from carbon dioxide and hydrogen, and may be a known catalyst, using a commercially available product, or manufactured according to known literature, etc. Also good. Examples of the methanol synthesis catalyst include, for example, a copper catalyst, a copper-zinc catalyst, a copper-zinc-aluminum catalyst, a copper-zinc-chromium catalyst, a zinc-chromium catalyst, a zinc-aluminum catalyst, and an iron- Examples of the catalyst include a chromium-based catalyst, an iron-aluminum-based catalyst, a nickel-based catalyst, a platinum-based catalyst, a gold-based catalyst, a palladium-based catalyst, and a rhodium-based catalyst.

有機基を修飾する前のゼオライト触媒類としては、メタノールを良好にC2+炭化水素へと変換できる性能を持つものであれば特に限定されず、アルミノケイ酸塩であるゼオライトにも限定されない。例えば、ゼオライトとしては、A型ゼオライト、L型ゼオライト、X型ゼオライト、Y型ゼオライト、モルデナイト、ベータ型ゼオライト、ZSM−5、フェリオライト、MCM−22等を例示することができる。ゼオライトの酸触媒の元となるカチオン種はプロトンが最も好ましいが、メタノールをC2+炭化水素へと変換できる種であれば特に限定されない。また、ゼオライト以外では、アルミニウムの代わりに鉄が置換した類似の材料である鉄シリケート、アルミニウムの代わりに銅が置換した銅シリケート、アルミニウムの代わりにガリウムが置換したガロシリケート、アルミニウムの代わりにホウ素が置換したボロシリケート、アルミニウムの代わりにチタンが置換したチタノシリケート、アルミニウムの代わりにバナジウムが置換したバナドシリケート、アルミニウムの代わりにクロムが置換したクロモシリケート、アルミニウムの代わりにジルコニウムが置換したジルコノシリケートなどもゼオライト触媒類として例示できる。さらに、ゼオライト触媒は多孔性を持ったアルミノリン酸塩でもよく、例えば、SAPO−11やSAPO−34をゼオライト触媒類として例示することができる。   Zeolite catalysts before modifying the organic group are not particularly limited as long as they have a performance capable of converting methanol into C2 + hydrocarbons satisfactorily, and are not limited to zeolites that are aluminosilicates. For example, examples of zeolite include A-type zeolite, L-type zeolite, X-type zeolite, Y-type zeolite, mordenite, beta-type zeolite, ZSM-5, ferriolite, MCM-22, and the like. Proton is most preferable as the cation species that serves as the acid catalyst of the zeolite, but is not particularly limited as long as it is a species that can convert methanol into C2 + hydrocarbons. Other than zeolite, iron silicate is a similar material in which iron is substituted for aluminum, copper silicate in which copper is substituted in place of aluminum, gallosilicate in which gallium is substituted in place of aluminum, and boron in place of aluminum Substituted borosilicate, titanosilicate substituted with titanium instead of aluminum, vanadosilicate substituted with vanadium instead of aluminum, chromosilicate substituted with chromium instead of aluminum, zircono substituted with zirconium instead of aluminum Silicates can also be exemplified as zeolite catalysts. Furthermore, the zeolite catalyst may be a porous aluminophosphate. For example, SAPO-11 or SAPO-34 can be exemplified as zeolite catalysts.

上述のゼオライト触媒に修飾する有機化合物としては、特に限定されないが、有機シラン化合物、有機ホウ素化合物、有機アルミニウム化合物、有機スズ化合物等の有機金属化合物、有機含酸素化合物、芳香族化合物、ヘテロ芳香族化合物、脂肪族もしくは脂環式不飽和化合物などが挙げられる。   The organic compound for modifying the above zeolite catalyst is not particularly limited, but organic metal compounds such as organosilane compounds, organoboron compounds, organoaluminum compounds, organotin compounds, organic oxygenated compounds, aromatic compounds, heteroaromatics. Examples thereof include compounds, aliphatic or alicyclic unsaturated compounds.

ケイ素−炭素結合を持ち、かつゼオライト表面と反応する置換基を有している有機シラン化合物を用いることが好ましい。ケイ素−炭素結合部位に関しては、例えば、ケイ素−メチル基、ケイ素−エチル基、ケイ素−ブチル基、ケイ素−フェニル基、ケイ素−トリル基等を例示できるが、一つの有機基に複数のケイ素が結合していても良く、例えば、ジシリルベンゼンやジシリルジフェニル基等を例示できる。好ましい有機シラン化合物としては、1,4-bis(hydroxydimethylsilyl)benzene、1,4-bis(dimethylsilyl)benzene、1,4-bis(vinyldimethylsilyl)benzene等を例示できる。ゼオライト触媒表面と反応する置換基としては、ヒドロキシル基(Si-OH)、水素基(Si-H)、ビニル基(Si-CH=CH2)、メトキシ基(Si-OMe)、エトキシ基(Si-OEt)等を例示できる。 It is preferable to use an organosilane compound having a silicon-carbon bond and having a substituent that reacts with the zeolite surface. Examples of the silicon-carbon bonding site include a silicon-methyl group, a silicon-ethyl group, a silicon-butyl group, a silicon-phenyl group, a silicon-tolyl group, etc., but a plurality of silicon bonds to one organic group. For example, a disilylbenzene, a disilyldiphenyl group, etc. can be illustrated. Examples of preferable organosilane compounds include 1,4-bis (hydroxydimethylsilyl) benzene, 1,4-bis (dimethylsilyl) benzene, 1,4-bis (vinyldimethylsilyl) benzene, and the like. Substituents that react with the surface of the zeolite catalyst include hydroxyl group (Si-OH), hydrogen group (Si-H), vinyl group (Si-CH = CH 2 ), methoxy group (Si-OMe), ethoxy group (Si -OEt).

有機ホウ素化合物としては、トリメチルホウ素等が挙げられる。   Examples of the organic boron compound include trimethyl boron.

有機アルミニウム化合物としては、トリメチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムモノクロリド、メチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド等が挙げられる。   Examples of the organoaluminum compound include trimethylaluminum, triisobutylaluminum, diethylaluminum monochloride, methylaluminum sesquichloride, ethylaluminum dichloride, and the like.

有機スズ化合物としては、テトラメチルスズ、ジエチルジメチルスズ、テトラブチルスズ、テトラフェニルスズ等が挙げられる。   Examples of the organic tin compound include tetramethyltin, diethyldimethyltin, tetrabutyltin, and tetraphenyltin.

有機含酸素化合物としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトンなどのケトン類、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、グリオキサールなどのアルデヒド類、酢酸エチル、酢酸ブチル、プロぴオン酸メチルなどのエステル類などが挙げられる。   Organic oxygen-containing compounds include alcohols such as methanol, ethanol, propanol and butanol, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and acetyl acetone, formaldehyde and acetaldehyde Aldehydes such as propionaldehyde and glyoxal, and esters such as ethyl acetate, butyl acetate and methyl propionate.

芳香族化合物としては、ベンゼン、トルエン、キシレン、メシチレン、フェノール、アニソール、塩化ベンゼン、臭化ベンゼン、ヨウ化ベンゼン、ニトロベンゼン、シアノベンゼン、安息香酸、ナフタレン、フルオレン、ビフェニルエーテル、アセトフェノン、ベンゾフェノンなどが挙げられる。   Aromatic compounds include benzene, toluene, xylene, mesitylene, phenol, anisole, chlorobenzene, benzene bromide, benzene iodide, nitrobenzene, cyanobenzene, benzoic acid, naphthalene, fluorene, biphenyl ether, acetophenone, benzophenone, etc. It is done.

ヘテロ芳香族化合物としては、ピリジン、ピロール、イミダゾール、オキサゾール、イソオキサゾール、ピリミジン、ピリダジン、キノリン、イソキノリン、キノキサリンなどが挙げられる。   Examples of the heteroaromatic compound include pyridine, pyrrole, imidazole, oxazole, isoxazole, pyrimidine, pyridazine, quinoline, isoquinoline, quinoxaline and the like.

脂肪族もしくは脂環式不飽和化合物としては、エチレン、アセチレン、プロペン、ブテン、ブタジエン、ペンテン、ヘキセン、シクロヘキセン、シクロヘキサジエンなどが挙げられる。   Examples of the aliphatic or alicyclic unsaturated compound include ethylene, acetylene, propene, butene, butadiene, pentene, hexene, cyclohexene, and cyclohexadiene.

ゼオライト触媒表面に修飾する有機基としては、ゼオライト触媒表面に有効に吸着し、容易には脱離しないものならば特に限定されない。   The organic group for modifying the zeolite catalyst surface is not particularly limited as long as it effectively adsorbs on the zeolite catalyst surface and does not easily desorb.

ゼオライト表面に修飾する方法も特に限定されないが、液体あるいは溶液状態でゼオライト表面と吸着や反応させるよりは固体状態で吸着や反応させる方が好ましい。例えば、有機化合物を修飾させる場合は、まず有機化合物を適当な溶媒に溶解させた溶液を、室温でゼオライト触媒類と十分に馴染ませる。この際の時間は特に限定されないが、10分〜3時間程度が好ましく、20分〜2時間程度がより好ましい。その後、減圧下で溶媒を留去して得た固体粉末を、その状態で加熱処理すれば良い。この加熱処理は、るつぼやビーカー等に入れた開放系で行っても良いが、オートクレーブ等の密閉容器内で行うことがより好ましい。この加熱処理時の温度は、80〜300℃が好ましく、より好ましくは100〜250℃、さらに好ましくは120〜220℃である。この加熱処理の時間は、有機基がゼオライト表面に十分に修飾されるならば特に限定されないが、10〜200時間が好ましく、より好ましくは20〜150時間である。有機化合物が有機シラン化合物の場合、好ましい有機シラン化合物の修飾量は特に限定されないが、原料の仕込みで両者の重量比は、ゼオライト触媒類:有機化合物で、好ましくは100:0.5〜100、より好ましくは100:1〜50程度、さらに好ましくは100:1〜20程度である。有機シラン化合物の実際の修飾量は、表1に示すように初期添加量より減少するが、ゼオライトに対して0.5〜20質量%程度修飾することができれば特に限定されない。その後、ゼオライト触媒類に修飾されていない有機シラン化合物は、必ずしも必須ではないが溶媒洗浄により除去することが好ましい。除去方法は、有機シラン化合物が容易に溶解し、ゼオライトと反応等起こさない溶媒ならば特に限定されないが、有機シラン化合物を修飾させる場合に用いた溶媒を用いることが好ましい。洗浄回数も特に限定されないが、ゼオライト触媒類1gに対して、20〜200mLを用いることが好ましく、より好ましくは40〜100mLである。洗浄回数も特に限定されないが、1〜6回が好ましく、2〜5回がより好ましい。他の有機金属化合物は、有機シラン化合物と同様の条件でゼオライトを修飾することができる。ゼオライト表面に修飾するものが有機シラン化合物ではなく、メタノール等の反応性の弱い有機化合物の場合は、この有機化合物の液体あるいは溶解させた溶液を、ゼオライト触媒類が十分に浸る量用いれば良く、その後の処理は、上述の有機シラン化合物と同じで良い。   The method for modifying the zeolite surface is not particularly limited, but it is preferable to adsorb or react in the solid state rather than adsorbing or reacting with the zeolite surface in the liquid or solution state. For example, when modifying an organic compound, first, a solution in which the organic compound is dissolved in a suitable solvent is sufficiently mixed with the zeolite catalyst at room temperature. The time at this time is not particularly limited, but is preferably about 10 minutes to 3 hours, more preferably about 20 minutes to 2 hours. Thereafter, the solid powder obtained by distilling off the solvent under reduced pressure may be heat-treated in that state. This heat treatment may be performed in an open system placed in a crucible, a beaker or the like, but is more preferably performed in a closed container such as an autoclave. The temperature during the heat treatment is preferably 80 to 300 ° C, more preferably 100 to 250 ° C, and further preferably 120 to 220 ° C. The time for this heat treatment is not particularly limited as long as the organic group is sufficiently modified on the zeolite surface, but is preferably 10 to 200 hours, more preferably 20 to 150 hours. When the organic compound is an organic silane compound, the preferred amount of modification of the organic silane compound is not particularly limited, but the weight ratio of both of the raw materials is zeolite catalyst: organic compound, preferably 100: 0.5 to 100, More preferably, it is about 100: 1-50, More preferably, it is about 100: 1-20. The actual modification amount of the organosilane compound is smaller than the initial addition amount as shown in Table 1, but is not particularly limited as long as it can be modified by about 0.5 to 20% by mass with respect to the zeolite. Thereafter, the organic silane compound not modified to the zeolite catalyst is not necessarily essential, but is preferably removed by solvent washing. The removal method is not particularly limited as long as the organic silane compound is easily dissolved and does not react with the zeolite. However, it is preferable to use the solvent used for modifying the organic silane compound. Although the number of washings is not particularly limited, it is preferable to use 20 to 200 mL, more preferably 40 to 100 mL, with respect to 1 g of the zeolite catalyst. The number of washings is not particularly limited, but is preferably 1 to 6 times, and more preferably 2 to 5 times. Other organometallic compounds can modify the zeolite under the same conditions as the organosilane compound. If the surface of the zeolite is not an organic silane compound but a weakly reactive organic compound such as methanol, a liquid or dissolved solution of this organic compound may be used in such an amount that the zeolite catalyst is sufficiently immersed. Subsequent treatment may be the same as the above-described organosilane compound.

ゼオライト触媒類に有機シラン化合物や他の有機化合物類(有機金属化合物を含む)を修飾させることの効果は、複合触媒の触媒活性が向上するならば特に限定されないが、例えば、以下のことが考えられる。銅−亜鉛系触媒のようなメタノール合成触媒の多くは金属酸化物を主体とした塩基性固体であり、一方ゼオライト触媒類は固体酸である。したがって、両触媒を混合する過程、水素等による前還元過程および触媒反応を行う過程等において、酸と塩基による固体−固体の相互作用を起き、この効果によって、例えば銅イオンや亜鉛イオンがゼオライトに混入しイオン交換を起こし、ゼオライト類の酸触媒としての活性を劣化させることが考えられている。そこで、ゼオライト触媒類の表面を金属イオン等と親和性の低い有機化合物類で修飾すれば、ゼオライト触媒類へのイオンの移動を抑制し、活性劣化を起こさないようにできると考えられる。また、ゼオライト触媒類表面の有機物修飾によって当該物質の細孔内を疎水性にすることで、酸触媒としての性能を向上させることも考えられる。さらに、ゼオライト類の表面修飾によって、メタノール合成触媒側がゼオライト触媒類から受ける劣化要因、例えば、ゼオライトの酸による触媒活性種の分解による反応性低減効果、および、非特許文献においても指摘されている(M. Fujiwara, R. Kieffer, H. Ando, Y. Souma, Appl. Catal. A, 121, 113 (1995)、M. Fujiwara, R. Kieffer, H. Ando, Q. Xu, Y. Souma, Appl. Catal. A, 154, 87 (1997))、複合触媒中の銅触媒や鉄触媒の活性サイトの表面積の低下を抑制することによる効果等で、メタノール合成触媒側の性能を維持・向上させていることも考えられる。図3、4に示すように、有機シラン化合物や有機化合物を修飾したゼオライト触媒類には、元のゼオライト触媒類にはない紫外線や可視光の吸収が観測でき、有機系物質が修飾されている。この有機系物質が、上述のメタノール合成触媒とゼオライト触媒類間の固体−固体の相互作用を抑制することで、複合触媒の触媒性能が向上できたと考えられる。 The effect of modifying the zeolite catalyst with an organosilane compound or another organic compound (including an organometallic compound) is not particularly limited as long as the catalytic activity of the composite catalyst is improved. For example, the following may be considered. It is done. Many methanol synthesis catalysts such as copper-zinc catalysts are basic solids based on metal oxides, while zeolite catalysts are solid acids. Therefore, in the process of mixing both catalysts, the pre-reduction process with hydrogen, etc., and the process of performing a catalytic reaction, a solid-solid interaction with an acid and a base occurs, and this effect causes, for example, copper ions and zinc ions to enter the zeolite. It is considered to cause ion exchange by mixing to deteriorate the activity of zeolites as an acid catalyst. Therefore, it is considered that if the surface of the zeolite catalyst is modified with an organic compound having a low affinity for metal ions or the like, the movement of ions to the zeolite catalyst can be suppressed and the deterioration of the activity can be prevented. It is also conceivable to improve the performance as an acid catalyst by making the pores of the substance hydrophobic by modifying the surface of the zeolite catalyst with organic substances. Furthermore, the surface modification of zeolites causes deterioration factors that the methanol synthesis catalyst side receives from zeolite catalysts, for example, the reactivity reduction effect due to decomposition of catalytically active species by zeolite acid, and non-patent literature ( M. Fujiwara, R. Kieffer, H. Ando, Y. Souma, Appl. Catal. A, 121 , 113 (1995), M. Fujiwara, R. Kieffer, H. Ando, Q. Xu, Y. Souma, Appl Catal. A, 154 , 87 (1997)), maintaining and improving the performance of the methanol synthesis catalyst due to the effect of suppressing the decrease in the surface area of the active site of the copper catalyst and iron catalyst in the composite catalyst. It is also possible that As shown in FIGS. 3 and 4, the organic silane compound and the zeolite catalyst modified with the organic compound can observe absorption of ultraviolet rays and visible light, which is not found in the original zeolite catalyst, and the organic substance is modified. . It is considered that the catalyst performance of the composite catalyst was improved by suppressing the solid-solid interaction between the methanol synthesis catalyst and the zeolite catalyst described above.

メタノール合成触媒とゼオライト触媒類から複合触媒を調製するための混合方法も、この混合の段階で両者が強い固体間相互作用を及ぼさない限り、特に限定されない。最も簡単な混合方法は、両触媒の粉末を乳鉢等で混合する方法を例示することができるが、これ以外の方法でも良い。また両者の混合比も特に限定されないが、メタノール合成触媒:メゼオライト触媒類の重量比は、好ましくは1:0.5〜50、より好ましくは1:1〜20、さらに好ましくは1:2〜15である。   The mixing method for preparing the composite catalyst from the methanol synthesis catalyst and the zeolite catalyst is not particularly limited as long as they do not exert a strong solid-solid interaction at this mixing stage. The simplest mixing method can be exemplified by a method of mixing powders of both catalysts in a mortar or the like, but other methods may be used. The mixing ratio of the two is not particularly limited, but the weight ratio of the methanol synthesis catalyst to the mezeolite catalyst is preferably 1: 0.5 to 50, more preferably 1: 1 to 20, and still more preferably 1: 2. 15.

触媒反応の条件も特に限定されないが、多くのメタノール合成反応や類似の複合触媒での反応で採用されている条件を踏襲すれば良い。好ましい温度等の条件は、充填する触媒の種類によって異なる。すなわち、メタノール合成触媒がメタノール合成に高い活性を有する温度、およびゼオライト触媒類がメタノール転化反応に高い活性を有する温度を基本に設定すれば良い。例えば、温度に関しては150℃〜450℃の範囲が例示されるが、銅−亜鉛−アルミ等金属系触媒の場合は、200〜450℃が好ましく、250〜400℃がより好ましく、280〜380℃がさらに好ましい。反応圧力は、メタノール合成反応は圧力が高いほど収率が良くなるため高いほど良いが、実際には低圧下での反応でも良い。例えば、常圧〜10MPaが好ましく、良好な触媒性能が発揮されるならば、常圧〜1MPa未満でも良い。   There are no particular limitations on the conditions for the catalytic reaction, but the conditions employed in many methanol synthesis reactions and reactions with similar composite catalysts may be followed. Preferred conditions such as temperature vary depending on the type of catalyst to be filled. That is, a temperature at which the methanol synthesis catalyst has high activity for methanol synthesis and a temperature at which the zeolite catalyst has high activity in methanol conversion reaction may be basically set. For example, the temperature ranges from 150 ° C. to 450 ° C., but in the case of a metal catalyst such as copper-zinc-aluminum, 200 to 450 ° C. is preferable, 250 to 400 ° C. is more preferable, and 280 to 380 ° C. Is more preferable. The higher the pressure in the methanol synthesis reaction, the better the yield because the higher the pressure, the better the reaction pressure. For example, normal pressure to 10 MPa is preferable, and normal pressure to less than 1 MPa may be used as long as good catalyst performance is exhibited.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

実施例1 メタノール合成触媒の調製
本技術で、複合触媒に用いる銅−亜鉛−アルミニウム触媒は以下の方法で調製した。29gの硝酸銅(Cu(NO・3HO)、17.9gの硝酸亜鉛(Zn(NO・6HO)および7.5g硝酸アルミニウム(Al(NO・9HO)を200mLのイオン交換水に溶かした水溶液を、25.4gの炭酸ナトリウム(NaCO)を240mLのイオン交換水に溶かした水溶液へ、溶液温度を約80℃にしながら一度に加え、生成した混合溶液を80℃で1時間撹拌した。その後、生成した沈殿をろ別し、2Lのイオン交換水で5回洗浄した後、80℃で約12時間乾燥処理をした。得られた銅−亜鉛−アルミニウムの複合炭酸塩は、350℃で3時間焼成し、銅−亜鉛−アルミニウム触媒を得た。
Example 1 Preparation of Methanol Synthesis Catalyst A copper-zinc-aluminum catalyst used in the composite catalyst in the present technology was prepared by the following method. 29g of copper nitrate (Cu (NO 3) 3 · 3H 2 O), zinc nitrate of 17.9g (Zn (NO 3) 2 · 6H 2 O) and 7.5g of aluminum nitrate (Al (NO 3) 3 · 9H the 2 O) aqueous solution dissolved in ion-exchanged water 200 mL, the aqueous solution prepared by dissolving sodium carbonate 25.4g of (Na 2 CO 3) in ion-exchanged water 240 mL, was added in one portion while the solution temperature at about 80 ° C. The resulting mixed solution was stirred at 80 ° C. for 1 hour. Thereafter, the produced precipitate was filtered off, washed 5 times with 2 L of ion exchange water, and then dried at 80 ° C. for about 12 hours. The obtained copper-zinc-aluminum composite carbonate was calcined at 350 ° C. for 3 hours to obtain a copper-zinc-aluminum catalyst.

実施例2 ゼオライトへの有機ジシラン化合物の修飾
事前にゼオライトベータ[HB(東ソー社製、HSZ−931HOA、SiO/Al=28.5]は500℃で6時間焼成し、吸着成分を除去した。このゼオライトベータ2.5gを150℃で3時間乾燥処理し、メタノール18.75mLに所定量のジシラン化合物[1,4-bis(hydroxydimethylsilyl)benzene]を溶解させた溶液へ加えて、30分間室温で撹拌の後、減圧下でメタノールを留去した。テフロン容器を内包したオートクレーブに移して密閉し、150℃、24時間加熱処理した。その後、150mLのメタノールで3回洗浄を行い、室温で2日以上空気乾燥させた。得られた有機基修飾ゼオライトの細孔構造は、Belsorp Mini(日本ベル社製)を用いた窒素吸着等温線より評価した。代表的な触媒の結果を表1に示す。
Example 2 Modification of Organic Disilane Compound to Zeolite Zeolite Beta [HB (manufactured by Tosoh Corporation, HSZ-931HOA, SiO 2 / Al 2 O 3 = 28.5]] was calcined at 500 ° C. for 6 hours in advance, This zeolite beta 2.5 g was dried at 150 ° C. for 3 hours, added to a solution of a predetermined amount of a disilane compound [1,4-bis (hydroxydimethylsilyl) benzene] in 18.75 mL of methanol, After stirring at room temperature for a minute, methanol was distilled off under reduced pressure, transferred to an autoclave containing a Teflon container, sealed, and heat-treated at 150 ° C. for 24 hours, and then washed with 150 mL of methanol three times. The pore structure of the resulting organic group-modified zeolite was evaluated from the nitrogen adsorption isotherm using Belsorp Mini (Bell Japan). . Table 1 shows the results of a representative catalyst.

Figure 2016117029
Figure 2016117029

[1] 原料仕込み重量比:ジシラン化合物/ゼオライト触媒(%)、[2] BET法、[3] MP法、[4]TGA分析による、[5]メタノールのみを用いて処理、[6]トルエンのみを用いて処理  [1] Raw material charge weight ratio: disilane compound / zeolite catalyst (%), [2] BET method, [3] MP method, [4] TGA analysis, [5] treatment with methanol only, [6] toluene Processing with only

実施例3 ゼオライトへの有機化合物の修飾
実施例2と同様の方法で、ジシラン化合物等を用いず、メタノールやトルエン等の有機溶媒のみをゼオライトに加え、30分間室温で撹拌の後、減圧下で有機溶媒を留去した。オートクレーブに移して密閉し、150℃、24時間加熱反応させた。その後、容器より回収した固体は、洗浄処理を行わず、室温で2日以上空気乾燥させた。得られた有機基修飾ゼオライトの細孔構造は、Belsorp Mini(日本ベル社製)を用いての窒素吸着等温線より評価した。代表的結果を表1に示す。
Example 3 Modification of organic compound to zeolite In the same manner as in Example 2, only an organic solvent such as methanol or toluene was added to the zeolite without using a disilane compound or the like, stirred for 30 minutes at room temperature, and then under reduced pressure. The organic solvent was distilled off. It moved to the autoclave and sealed, and it was made to heat-react at 150 degreeC for 24 hours. Thereafter, the solid recovered from the container was air-dried at room temperature for 2 days or more without performing a washing treatment. The pore structure of the obtained organic group-modified zeolite was evaluated from a nitrogen adsorption isotherm using Belsorp Mini (Bell Japan). Representative results are shown in Table 1.

実施例4 複合触媒の調製
実施例1で調製した銅−亜鉛−アルミニウム触媒0.1gと実施例2および3で得たゼオライト触媒類0.9gをメノウ製乳鉢内で、100回混合することで、複合触媒を得た。
Example 4 Preparation of composite catalyst 0.1 g of the copper-zinc-aluminum catalyst prepared in Example 1 and 0.9 g of the zeolite catalyst obtained in Examples 2 and 3 were mixed 100 times in an agate mortar. A composite catalyst was obtained.

実施例5 複合触媒を用いた二酸化炭素と水素からの炭化水素製造
内径約1cmのステンレス製の触媒反応管に実施例4で作成した複合触媒を1g充填し、100%の水素を流速40mL/minの速度で流して、250℃で約16時間触媒を前還元処理した。その後に、反応ガスである二酸化炭素と水素の混合ガス(H/CO=3)を導入し、圧力0.98MPa、温度300℃、マスフローコントローラで制御したガス流速50mL/min(sccm)の条件下反応させ、1時間後に反応ガスを採取し、反応生成物等をオンラインのガスクロマトグラフィーにより分析した。この結果を表2に示す。表2の結果からわかるように、有機基を全く修飾していないゼオライトを用いた場合、C2+炭化水素の収率は約0.5%であったが、有機基を修飾したゼオライトからなる複合触媒では、C2+炭化水素収率は明らかに向上した。3%の有機シラン化合物を修飾したゼオライトを用いた場合、C2+炭化水素収率は8%以上となった。また、メタノールやトルエンのみを修飾した場合もC2+炭化水素収率の向上が見られ、トルエンの場合の収率は約8.5%であった。
Example 5 Hydrocarbon production from carbon dioxide and hydrogen using composite catalyst 1 g of the composite catalyst prepared in Example 4 was charged into a stainless steel catalyst reaction tube having an inner diameter of about 1 cm, and 100% hydrogen was flowed at a flow rate of 40 mL / min. The catalyst was prereduced at 250 ° C. for about 16 hours. Thereafter, a mixed gas of carbon dioxide and hydrogen (H 2 / CO 2 = 3), which is a reaction gas, is introduced, and the pressure is 0.98 MPa, the temperature is 300 ° C., and the gas flow rate is 50 mL / min (sccm) controlled by the mass flow controller. The reaction was conducted under the conditions, and the reaction gas was collected after 1 hour, and the reaction product and the like were analyzed by online gas chromatography. The results are shown in Table 2. As can be seen from the results in Table 2, the yield of C2 + hydrocarbons was about 0.5% when using a zeolite with no organic group modification, but with a composite catalyst comprising a zeolite with organic group modification, The C2 + hydrocarbon yield was clearly improved. When a zeolite modified with 3% of an organosilane compound was used, the C2 + hydrocarbon yield was 8% or more. Further, when only methanol and toluene were modified, the C2 + hydrocarbon yield was improved, and the yield in the case of toluene was about 8.5%.

Figure 2016117029
Figure 2016117029

反応条件:銅−亜鉛−アルミ(6:3:1)触媒0.1g+ゼオライト触媒類0.9g、300℃、0.98MPa、反応ガス(二酸化炭素:水素=1:3)流速50mL/min、[1]メタノール+ジメチルエーテル Reaction conditions: copper-zinc-aluminum (6: 3: 1) catalyst 0.1 g + zeolite catalyst 0.9 g, 300 ° C., 0.98 MPa, reaction gas (carbon dioxide: hydrogen = 1: 3) flow rate 50 mL / min, [1 ] Methanol + dimethyl ether

実施例6 複合触媒を用いたバイオマスガスからの炭化水素製造
実施例5と同様の方法で、反応ガスを二酸化炭素と水素の混合ガスに代えて、報告されているバイオマスガスの一つの組成である、二酸化炭素20%、一酸化炭素40%、水素30%、窒素10%の混合ガス(T. Hanaoka, T. Miyazawa, M. Nurunnabi, S. Hirata, K. Sakanishi, J. Jpn. Inst. Energy, 90, 1072 (2011))を、複合触媒を用いて、圧力0.98MPa、温度300℃、ガス流速50mL/minの条件下反応させた。この結果を表3に示す。表3の結果からわかるように、ジシラン化合物を全く修飾していないゼオライトを用いた場合、C2+炭化水素は約1.5%であったが、有機基を修飾したゼオライトからなる複合触媒ではC2+炭化水素収率は明らかに向上し、3%の有機シラン化合物を修飾したゼオライトを用いた場合はC2+炭化水素収率は4.7%となり、非修飾のゼオライトを用いた場合の収率と比べ、3倍以上になった。また、トルエンのみを修飾した場合もC2+炭化水素収率の向上が見られ、収率は約3.5%であった。
Example 6 Hydrocarbon Production from Biomass Gas Using Composite Catalyst In the same manner as in Example 5, the reaction gas is replaced with a mixed gas of carbon dioxide and hydrogen, and this is one composition of biomass gas that has been reported. , 20% carbon dioxide, 40% carbon monoxide, 30% hydrogen, 10% nitrogen (T. Hanaoka, T. Miyazawa, M. Nurunnabi, S. Hirata, K. Sakanishi, J. Jpn. Inst. Energy , 90 , 1072 (2011)) were reacted under the conditions of a pressure of 0.98 MPa, a temperature of 300 ° C., and a gas flow rate of 50 mL / min using the composite catalyst. The results are shown in Table 3. As can be seen from the results in Table 3, when using a zeolite in which the disilane compound was not modified at all, the C2 + hydrocarbon was about 1.5%. However, in the composite catalyst composed of the zeolite modified with an organic group, the C2 + hydrocarbon yield was reduced. The rate is clearly improved and the yield of C2 + hydrocarbons is 4.7% when using a zeolite modified with 3% organosilane compound, which is 3 times the yield when using unmodified zeolite. That's it. Further, when only toluene was modified, the C2 + hydrocarbon yield was improved and the yield was about 3.5%.

Figure 2016117029
Figure 2016117029

反応条件:銅−亜鉛−アルミ(6:3:1)触媒0.1g+ゼオライト触媒類0.9g、300℃、0.98MPa、ガス組成比:CO:CO:H:N=2:4:3:1、流速50mL/min、[1]メタノール+ジメチルエーテル Reaction conditions: copper-zinc-aluminum (6: 3: 1) catalyst 0.1 g + zeolite catalyst 0.9 g, 300 ° C., 0.98 MPa, gas composition ratio: CO 2 : CO: H 2 : N 2 = 2: 4: 3: 1, flow rate 50 mL / min, [1] methanol + dimethyl ether

実施例7 拡散反射紫外可視スペクトルによるゼオライト触媒類の分析−1
ゼオライトに修飾された有機化合物の状態を解析するために、ゼオライト粉末の拡散反射紫外可視スペクトルを測定した。日本分光社製の分光光度計V−550に積分球ISV−469を取り付けて、種々のゼオライト触媒類の拡散反射紫外可視スペクトルを測定した。図3に示す様に、実施例2で調製したジシラン化合物修飾ゼオライトには、ジシラン化合物由来の270nm近傍の吸収が観測された。また、この吸収と共に、ゼオライトやジシラン化合物にはない320〜330nmの吸収も観測された。表2で高い活性を示したゼオライト2〜5では、実施例2の処理によりジシラン化合物が単にゼオライト表面に吸着しただけではなく、この処理によりジシラン化合物から320〜330nmに吸収を持つ化合物が形成され、当該化合物によってゼオライトが修飾されていることがわかった。
Example 7 Analysis of Zeolite Catalysts by Diffuse Reflection UV-Vis Spectrum-1
In order to analyze the state of the organic compound modified with zeolite, the diffuse reflection ultraviolet-visible spectrum of the zeolite powder was measured. An integrating sphere ISV-469 was attached to a spectrophotometer V-550 manufactured by JASCO Corporation, and diffuse reflection UV-visible spectra of various zeolite catalysts were measured. As shown in FIG. 3, in the disilane compound-modified zeolite prepared in Example 2, absorption near 270 nm derived from the disilane compound was observed. Along with this absorption, an absorption of 320 to 330 nm which is not found in zeolite or disilane compound was also observed. In zeolites 2 to 5 which showed high activity in Table 2, the disilane compound was not simply adsorbed on the zeolite surface by the treatment of Example 2, but a compound having an absorption at 320 to 330 nm was formed from the disilane compound by this treatment. It was found that the zeolite was modified by the compound.

実施例8 拡散反射紫外可視スペクトルによるゼオライト触媒類の分析−2
日本分光社製の分光光度計V−550に積分球ISV−469を取り付けて、種々のゼオライト類の拡散反射紫外可視スペクトルを測定した。図4に示す様に、実施例3で調製したトルエン修飾ゼオライトには、トルエン由来の250〜260nmの吸収と共に、処理前のゼオライトにはない450nmに明確な吸収が観測された。一方、密閉容器を用い室温でトルエンを飽和吸着処理させたゼオライトには、トルエン由来の250〜260nmの吸収はあるものの、450nmには全く吸収は観測されなかった。表2で高い活性を示したゼオライト7では、実施例3の処理によりトルエンが単にゼオライト表面に吸着しただけではなく、この処理によりトルエンから450nmに吸収を持つ化合物が形成され、当該化合物によってゼオライトが修飾されていることがわかった。
Example 8 Analysis of Zeolite Catalysts by Diffuse Reflection UV-Vis Spectrum-2
An integrating sphere ISV-469 was attached to a spectrophotometer V-550 manufactured by JASCO Corporation, and diffuse reflection UV-visible spectra of various zeolites were measured. As shown in FIG. 4, in the toluene-modified zeolite prepared in Example 3, a clear absorption was observed at 450 nm, which is not in the zeolite before the treatment, together with the absorption of 250 to 260 nm derived from toluene. On the other hand, although the zeolite subjected to saturated adsorption treatment of toluene at room temperature using a sealed container has absorption of 250 to 260 nm derived from toluene, no absorption was observed at 450 nm. In zeolite 7, which showed high activity in Table 2, not only toluene was adsorbed on the zeolite surface by the treatment of Example 3, but also a compound having an absorption at 450 nm was formed from the toluene by this treatment. It was found to be modified.

実施例9 熱分析法によるゼオライト中の有機成分の分析
島津製作所製の熱分析装置TGA−50を用い、白金セルにゼオライト試料を充填し、空気の30mL/minの気流下、昇温速度3℃/minで約20℃の室温から800℃まで温度を上げて重量減少をモニターし、150℃までの重量減少は吸着物の脱離による減少とし、また150〜600℃での重量減少分を修飾された有機成分に相当するものと考え、種々のゼオライトの有機成分量を解析した。有機基非修飾のゼオライト(ゼオライト1)の150〜600℃での減少量は0.972%であり、この減少量より多い分を修飾された有機化合物由来の有機成分とした。例えば、仕込み量10%で有機ジシラン化合物を修飾したゼオライト5において、同様に計算した150〜600℃での重量減少分は2.889%であるため、ゼオライト5中の修飾有機基の重量は1.917%とした。同様の計算で得られた結果は表1にまとめた。
Example 9 Analysis of Organic Components in Zeolite by Thermal Analysis Method Using a thermal analyzer TGA-50 manufactured by Shimadzu Corporation, a platinum sample was filled in a zeolite sample, and the temperature rising rate was 3 ° C. in an air stream of 30 mL / min. Monitor the weight loss by increasing the temperature from about 20 ° C to 800 ° C at / min. The weight loss up to 150 ° C is considered to be due to desorption of adsorbate, and the weight loss at 150 to 600 ° C is modified. The amount of organic components in various zeolites was analyzed. The reduction amount of the organic group-unmodified zeolite (zeolite 1) at 150 to 600 ° C. was 0.972%, and the amount exceeding this reduction amount was regarded as the organic component derived from the modified organic compound. For example, in the zeolite 5 in which the organodisilane compound is modified with a charging amount of 10%, the weight loss at 150 to 600 ° C. calculated in the same manner is 2.889%, so the weight of the modified organic group in the zeolite 5 is 1.917%. did. The results obtained from similar calculations are summarized in Table 1.

本発明のゼオライト触媒類を用いることで、二酸化炭素と水素から、1MPa以下の低圧条件下においても、単一の触媒反応層で、有用なC2+炭化水素類を良好な収率で製造することができる。これにより、二酸化炭素を炭素資源として利用し、地球温暖化の抑制と二酸化炭素から種々の炭化水素化合物の製造が可能となる。   By using the zeolite catalysts of the present invention, useful C2 + hydrocarbons can be produced in good yield from carbon dioxide and hydrogen in a single catalytic reaction layer even under low pressure conditions of 1 MPa or less. it can. Thereby, carbon dioxide is used as a carbon resource, and global warming can be suppressed and various hydrocarbon compounds can be produced from carbon dioxide.

Claims (5)

メタノール合成触媒と有機基修飾ゼオライト触媒類を含む、一酸化炭素及び/又は二酸化炭素と水素を含む混合ガスから炭素数2以上の炭化水素を合成するための複合触媒。 A composite catalyst for synthesizing a hydrocarbon having 2 or more carbon atoms from a mixed gas containing carbon monoxide and / or carbon dioxide and hydrogen, comprising a methanol synthesis catalyst and an organic group-modified zeolite catalyst. 前記有機基修飾ゼオライト触媒類が、ゼオライト触媒類と有機化合物を高温で反応させて得られるものである、請求項1に記載の複合触媒。 The composite catalyst according to claim 1, wherein the organic group-modified zeolite catalyst is obtained by reacting a zeolite catalyst and an organic compound at a high temperature. 前記有機化合物が有機シラン化合物、有機ホウ素化合物、有機アルミニウム化合物、有機スズ化合物、有機含酸素化合物、芳香族化合物、ヘテロ芳香族化合物、脂肪族もしくは脂環式不飽和化合物からなる群から選ばれる少なくとも1種である、請求項2に記載の複合触媒。 The organic compound is at least selected from the group consisting of an organic silane compound, an organic boron compound, an organic aluminum compound, an organic tin compound, an organic oxygen-containing compound, an aromatic compound, a heteroaromatic compound, an aliphatic or alicyclic unsaturated compound The composite catalyst of Claim 2 which is 1 type. 一酸化炭素及び/又は二酸化炭素と水素を含む混合ガスを、請求項1〜3のいずれかに記載の複合触媒の存在下に反応させることを特徴とする、炭素数2以上の炭化水素の製造方法。 A mixed gas containing carbon monoxide and / or carbon dioxide and hydrogen is reacted in the presence of the composite catalyst according to any one of claims 1 to 3, to produce a hydrocarbon having 2 or more carbon atoms Method. 前記混合ガスが、一酸化炭素と水素を含む混合ガス、二酸化炭素と水素を含む混合ガス、一酸化炭素と二酸化炭素と水素を含む混合ガス、又はバイオマスガスである、請求項4に記載の炭化水素の製造方法。 The carbonization according to claim 4, wherein the mixed gas is a mixed gas containing carbon monoxide and hydrogen, a mixed gas containing carbon dioxide and hydrogen, a mixed gas containing carbon monoxide, carbon dioxide and hydrogen, or biomass gas. A method for producing hydrogen.
JP2014258596A 2014-12-22 2014-12-22 Process for producing hydrocarbons from carbon dioxide using organic group-modified zeolite catalyst Active JP6338218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014258596A JP6338218B2 (en) 2014-12-22 2014-12-22 Process for producing hydrocarbons from carbon dioxide using organic group-modified zeolite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014258596A JP6338218B2 (en) 2014-12-22 2014-12-22 Process for producing hydrocarbons from carbon dioxide using organic group-modified zeolite catalyst

Publications (2)

Publication Number Publication Date
JP2016117029A true JP2016117029A (en) 2016-06-30
JP6338218B2 JP6338218B2 (en) 2018-06-06

Family

ID=56242577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014258596A Active JP6338218B2 (en) 2014-12-22 2014-12-22 Process for producing hydrocarbons from carbon dioxide using organic group-modified zeolite catalyst

Country Status (1)

Country Link
JP (1) JP6338218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209260A (en) * 2018-06-05 2019-12-12 国立研究開発法人産業技術総合研究所 Catalyst for producing hydrocarbon from oxygen-containing organic compound, and method for producing hydrocarbon using said catalyst
JP2021109854A (en) * 2020-01-14 2021-08-02 株式会社豊田中央研究所 Hydrocarbon production apparatus and method for producing hydrocarbon compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239873A1 (en) 2021-05-13 2022-11-17 イーセップ株式会社 Co2 conversion device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124542A (en) * 1982-01-14 1983-07-25 ソシエテ・シミク・ド・ラ・グランド・パロワス・アゾツト・エ・プロデユイ・シミク Catalyst for converting synthetic gas to organic compound
JPS5962348A (en) * 1982-09-30 1984-04-09 Showa Shell Sekiyu Kk Production of high silica zeolite catalyst modified with amine
US4500646A (en) * 1982-01-14 1985-02-19 Societe Chimique De La Grande Paroisse, Azote Et Producits Chimiques Conversion catalysts for synthesis gas
JPS60181192A (en) * 1984-02-28 1985-09-14 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon from synthesis gas
JPS6123688A (en) * 1984-07-12 1986-02-01 Hiroo Tominaga Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas
JPS6144829A (en) * 1984-08-09 1986-03-04 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon
US4595702A (en) * 1984-01-20 1986-06-17 Mobil Oil Corporation Conversion of synthesis gas to liquid hydrocarbons
US20060009349A1 (en) * 2004-07-07 2006-01-12 Kaoru Fujimoto Catalyst and process for LPG production
JP2007277133A (en) * 2006-04-05 2007-10-25 Idemitsu Kosan Co Ltd Manufacturing method of olefins
JP2014051472A (en) * 2012-09-10 2014-03-20 Kitakyushu Foundation For The Advancement Of Industry Science And Technology Method for producing hydrocarbon

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124542A (en) * 1982-01-14 1983-07-25 ソシエテ・シミク・ド・ラ・グランド・パロワス・アゾツト・エ・プロデユイ・シミク Catalyst for converting synthetic gas to organic compound
US4500646A (en) * 1982-01-14 1985-02-19 Societe Chimique De La Grande Paroisse, Azote Et Producits Chimiques Conversion catalysts for synthesis gas
JPS5962348A (en) * 1982-09-30 1984-04-09 Showa Shell Sekiyu Kk Production of high silica zeolite catalyst modified with amine
US4595702A (en) * 1984-01-20 1986-06-17 Mobil Oil Corporation Conversion of synthesis gas to liquid hydrocarbons
JPS60181192A (en) * 1984-02-28 1985-09-14 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon from synthesis gas
JPS6123688A (en) * 1984-07-12 1986-02-01 Hiroo Tominaga Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas
JPS6144829A (en) * 1984-08-09 1986-03-04 Res Assoc Petroleum Alternat Dev<Rapad> Production of hydrocarbon
US20060009349A1 (en) * 2004-07-07 2006-01-12 Kaoru Fujimoto Catalyst and process for LPG production
JP2006021100A (en) * 2004-07-07 2006-01-26 Nippon Gas Gosei Kk Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
JP2007277133A (en) * 2006-04-05 2007-10-25 Idemitsu Kosan Co Ltd Manufacturing method of olefins
JP2014051472A (en) * 2012-09-10 2014-03-20 Kitakyushu Foundation For The Advancement Of Industry Science And Technology Method for producing hydrocarbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019209260A (en) * 2018-06-05 2019-12-12 国立研究開発法人産業技術総合研究所 Catalyst for producing hydrocarbon from oxygen-containing organic compound, and method for producing hydrocarbon using said catalyst
JP7220447B2 (en) 2018-06-05 2023-02-10 国立研究開発法人産業技術総合研究所 Catalyst for producing hydrocarbons from oxygen-containing organic compounds and method for producing hydrocarbons using said catalyst
JP2021109854A (en) * 2020-01-14 2021-08-02 株式会社豊田中央研究所 Hydrocarbon production apparatus and method for producing hydrocarbon compounds
JP7324150B2 (en) 2020-01-14 2023-08-09 株式会社豊田中央研究所 Hydrocarbon production apparatus and method for producing hydrocarbon compound

Also Published As

Publication number Publication date
JP6338218B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
Zhang et al. Metal sites in zeolites: synthesis, characterization, and catalysis
Cui et al. Selective production of aromatics directly from carbon dioxide hydrogenation
Wei et al. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons
Gao et al. Direct production of lower olefins from CO2 conversion via bifunctional catalysis
Ye et al. Synthesis of robust MOF-derived Cu/SiO2 catalyst with low copper loading via sol–gel method for the dimethyl oxalate hydrogenation reaction
Liu et al. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34
Pan et al. Oxide–zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer–Tropsch synthesis
Maeno et al. Isolated indium hydrides in CHA zeolites: speciation and catalysis for nonoxidative dehydrogenation of ethane
Zhao et al. Reductive transformation of layered‐double‐hydroxide nanosheets to Fe‐based heterostructures for efficient visible‐light photocatalytic hydrogenation of CO
Wang et al. One‐pot process for hydrodeoxygenation of lignin to alkanes using Ru‐based bimetallic and bifunctional catalysts supported on zeolite Y
Saravanan et al. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts
Guo et al. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C 2+ hydrocarbons
Munnik et al. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts
Zha et al. Cu–Zn–Al oxide cores packed by metal-doped amorphous silica–alumina membrane for catalyzing the hydrogenation of carbon dioxide to dimethyl ether
Cui et al. Incorporation of active metal species in crystalline porous materials for highly efficient synergetic catalysis
Galadima et al. Advances in catalyst design for the conversion of methane to aromatics: a critical review
Prech et al. Core–shell metal zeolite composite catalysts for in situ processing of Fischer–Tropsch hydrocarbons to gasoline type fuels
Martín et al. MOF‐derived/zeolite hybrid catalyst for the production of light olefins from CO2
AU2011232735A1 (en) A high-selectivity catalyst for the production of high-quality gasoline fractions from syngas and its preparation method
JP5820818B2 (en) Olefin production catalyst and olefin production method
Li et al. Design and Synthesis of Bioinspired ZnZrO x &Bio-ZSM-5 Integrated Nanocatalysts to Boost CO2 Hydrogenation to Light Olefins
JP6338218B2 (en) Process for producing hydrocarbons from carbon dioxide using organic group-modified zeolite catalyst
Zhang et al. Syngas to olefins over a CrMnGa/SAPO-34 bifunctional catalyst: effect of Cr and Cr/Mn ratio
Tang et al. Characterization of Cu− Mn/zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO− H2
Zhu et al. Hydrophobic modification of ZSM-5-encapsulated uniform Pt nanoparticles for catalytic oxidation of volatile organic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6338218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250