JP2016114467A - Deep body temperature measurement system and deep body temperature measurement method - Google Patents

Deep body temperature measurement system and deep body temperature measurement method Download PDF

Info

Publication number
JP2016114467A
JP2016114467A JP2014253104A JP2014253104A JP2016114467A JP 2016114467 A JP2016114467 A JP 2016114467A JP 2014253104 A JP2014253104 A JP 2014253104A JP 2014253104 A JP2014253104 A JP 2014253104A JP 2016114467 A JP2016114467 A JP 2016114467A
Authority
JP
Japan
Prior art keywords
temperature
deep
thermal resistance
outside air
time point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014253104A
Other languages
Japanese (ja)
Inventor
正平 宮武
Shohei Miyatake
正平 宮武
濱本 辰雄
Tatsuo Hamamoto
辰雄 濱本
孝行 西垣
Takayuki Nishigaki
孝行 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cerebral and Cardiovascular Center
Geomatec Co Ltd
Original Assignee
National Cerebral and Cardiovascular Center
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cerebral and Cardiovascular Center, Geomatec Co Ltd filed Critical National Cerebral and Cardiovascular Center
Priority to JP2014253104A priority Critical patent/JP2016114467A/en
Publication of JP2016114467A publication Critical patent/JP2016114467A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deep body temperature measurement system and method with which it is possible to measure an accurate deep body temperature in even a state where a deep part temperature probe is worn continuously for a long time.SOLUTION: A non-heating type deep part temperature probe comprises: a body surface-side temperature sensor 13; an outside air-side temperature sensor 15 disposed opposite to the body surface side of this sensor via a heat insulator 11 of know thermal resistance; and external thermal resistance change means 2 for changing an external thermal resistance condition on the outside air side. The probe acquires a set of measured temperature values at a first point of time at which the measured temperature value of each sensor during initialization has become uniform; differentiates the external thermal resistance condition from the one at the first point of time using the external thermal resistance change means 2 during initialization, and acquires a set of measured temperature values at a second point of time at which the measured temperature value of each sensor has become uniform; calculates the thermal resistance of the subcutaneous tissue of the body using the measured temperature values at the first and second points of time; and calculates a deep body temperature at a discretionary point of time using the measured temperature value of each sensor at a discretionary point of time and the thermal resistance of the subcutaneous tissue of the body.SELECTED DRAWING: Figure 2

Description

本発明は、非侵襲の非加熱式深部温プローブを用いて深部体温を測定する深部体温測定システム及び深部体温測定方法に関する。   The present invention relates to a deep body temperature measuring system and a deep body temperature measuring method for measuring a deep body temperature using a non-invasive non-heated deep temperature probe.

体表に感温部を装着して非侵襲で深部体温を測定する体温計として、体表からの熱放散を電気的に検出して、熱放散を防ぎ、体外からも熱が流入しないよう体表近くに置いたヒータを自動制御する熱流補償法による加熱式の深部体温計(例えば、非特許文献1)が知られている。
加熱式の深部体温計は、簡易な測定法であるが、ヒータ用の電源や過熱防止等のための制御回路が必要であり、また、被測定者に加熱時の違和感を与えるものである。
そこで、ヒータを備えない非加熱式の深部体温計として、体表面に接触する測定面側から順に、断熱材を介して配置した一対の温度センサの組を、少なくとも二組具え、温度センサの組毎に、それら一対の温度センサ間の断熱材の熱抵抗値が異なるように構成したものが提案されている(例えば、特許文献1)。
As a thermometer that attaches a thermosensitive part to the body surface and measures the deep body temperature non-invasively, it detects the heat dissipation from the body surface electrically to prevent the heat dissipation and prevent the heat from flowing from outside the body surface. A heating-type deep thermometer (for example, Non-Patent Document 1) based on a heat flow compensation method for automatically controlling a heater placed nearby is known.
The heating-type deep body thermometer is a simple measurement method, but requires a heater power supply, a control circuit for preventing overheating, and the like, and gives the person to be measured uncomfortable feeling during heating.
Therefore, as a non-heating type deep thermometer without a heater, at least two pairs of temperature sensors arranged via a heat insulating material in order from the measurement surface side contacting the body surface are provided, and each temperature sensor set Moreover, what was comprised so that the thermal resistance value of the heat insulating material between these pair of temperature sensors might differ was proposed (for example, patent document 1).

特許文献1の非加熱型深部体温計は、一対の温度センサの組を少なくとも二組具えている。一対の温度センサの組毎に温度センサ間の断熱材の熱抵抗値が異なることを利用して、各組の一方側の温度センサが測定した温度(例えばT1、T2)と各組の他方側の温度センサが測定した温度(例えばT3、T4)と、各組の温度センサ間の熱抵抗値の比(例えばK)とから深部体温を求める。従って、非侵襲的に且つヒータを用いずして体の深部の体温を高精度に測定できる。また、ヒータ用の電源や過熱防止等のための制御回路が不要になるため、電池駆動での長時間計測や小型化が可能となり、携帯型の深部体温計に応用可能となる。   The non-heating type deep thermometer of Patent Document 1 includes at least two pairs of temperature sensors. Utilizing the fact that the thermal resistance value of the heat insulating material between the temperature sensors differs for each pair of temperature sensors, the temperature measured by the temperature sensor on one side of each pair (eg, T1, T2) and the other side of each pair The deep body temperature is obtained from the temperature measured by the temperature sensors (for example, T3 and T4) and the ratio of the thermal resistance values between the temperature sensors of each set (for example, K). Therefore, the body temperature in the deep part of the body can be measured with high accuracy non-invasively and without using a heater. In addition, since a heater power supply and a control circuit for preventing overheating are not required, it is possible to perform long-time measurement with a battery drive and miniaturization, and it can be applied to a portable deep thermometer.

しかし、特許文献1のように、一対の温度センサの組を複数備える深部体温計では、小型化にも限界があり、例えば、絆創膏タイプほど小さな深部体温計を構成することができない。
一方、温度センサの組を1組のみ備えた非加熱式の深部体温計が提案されている(例えば、特許文献2)。
特許文献2の深部体温計は、体表面側及び体表面逆側に第1、第2の温度センサがそれぞれ配された熱抵抗体と、熱抵抗体の体表面逆側の面を覆い、熱抵抗体よりも熱容量の大きい熱容量材を備えている。人体への貼り付け直後等に温度センサの温度が変化する過渡状態を利用し、人体への貼り付け直後の各検出温度と、その後所定時間経過後の各検出温度と、を用いて被検体の皮下組織の熱抵抗値を算出し、算出された熱抵抗値と、第1、第2の温度センサで検出された各温度を用いることにより、深部体温を算出する。
特許文献2の深部体温計によれば、温度センサを一対のみ備えるため、特許文献1の深部体温計よりも、小型化が可能である。また、温度センサの数を減らすことにより、深部体温計の省電力化が可能である。
However, as disclosed in Patent Document 1, a deep thermometer including a plurality of pairs of temperature sensors has a limit in miniaturization. For example, a deep thermometer as small as a bandage type cannot be configured.
On the other hand, a non-heating type thermometer with only one set of temperature sensors has been proposed (for example, Patent Document 2).
The deep thermometer of Patent Document 2 covers a thermal resistor in which first and second temperature sensors are arranged on the body surface side and the opposite side of the body surface, and a surface of the thermal resistor opposite to the body surface, It has a heat capacity material with a larger heat capacity than the body. Using a transient state in which the temperature of the temperature sensor changes immediately after application to the human body, etc., using each detection temperature immediately after application to the human body and each detection temperature after a predetermined time has passed, A deep body temperature is calculated by calculating the thermal resistance value of the subcutaneous tissue and using the calculated thermal resistance value and each temperature detected by the first and second temperature sensors.
According to the deep thermometer of Patent Document 2, since only one pair of temperature sensors is provided, it is possible to reduce the size compared to the deep thermometer of Patent Document 1. Further, by reducing the number of temperature sensors, it is possible to save power in the deep thermometer.

山崎とよ、「深部体温計による身体各部深部温の連続監視法とその臨床的評価」、東京女子医科大学雑誌、51(10):1441-1445、1981Toyo Yamazaki, “Continuous monitoring method and clinical evaluation of deep body temperature with deep thermometer”, Tokyo Women's Medical University Journal, 51 (10): 1441-1445, 1981

特開2007−212407号公報JP 2007-212407 A

特開2014−52350号公報Japanese Patent Laid-Open No. 2014-5350

しかし、特許文献2の深部体温計では、人体への貼り付け直後の過渡状態前後で検出された温度値の組を利用して初期設定し、この初期設定に基づき深部体温を測定するものであるため、貼り付け直後から長時間経過した後は、深部体温の測定値に誤差が大きくなっていた。
また、従来の深部体温計では、人体に装着する深部温プローブからの測定データを、ケーブルで連結された深部体温表示器に有線で送信し、表示、記録等する。従って、深部温プローブが移動できる範囲は、深部体温表示器からケーブルで接続できる範囲に限定され、深部体温計の使用可能範囲が、病室等に限定されていた。
However, in the deep body thermometer of Patent Document 2, the initial setting is performed using a set of temperature values detected before and after the transient state immediately after being attached to the human body, and the deep body temperature is measured based on this initial setting. After a long time immediately after pasting, errors in the measured values of deep body temperature were large.
Further, in a conventional deep body thermometer, measurement data from a deep body temperature probe attached to a human body is transmitted by wire to a deep body temperature indicator connected by a cable, and displayed, recorded, and the like. Therefore, the range in which the deep temperature probe can be moved is limited to a range in which the deep body temperature indicator can be connected with a cable, and the usable range of the deep body thermometer is limited to a hospital room or the like.

本発明は、上記の課題に鑑みてなされたものであり、本発明の目的は、連続して長時間深部温プローブを装着した状態でも正確な深部体温を測定可能な深部体温測定システム及び深部体温測定方法を提供することにある。
本発明の他の目的は、深部温プローブを装着後体表温度が一定になった定常期においても測定誤差が小さい深部体温測定システム及び深部体温測定方法を提供することにある。
本発明の更に他の目的は、深部温プローブから深部体温データを無線でコンピュータ等に送信してデータ管理可能な深部体温測定システム及び深部体温測定方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a deep body temperature measurement system and a deep body temperature that can accurately measure a deep body temperature even when the deep body temperature probe is continuously attached for a long time. It is to provide a measurement method.
Another object of the present invention is to provide a deep body temperature measuring system and a deep body temperature measuring method with a small measurement error even in a stationary phase where the body surface temperature becomes constant after mounting the deep temperature probe.
Still another object of the present invention is to provide a deep body temperature measurement system and a deep body temperature measurement method capable of managing data by wirelessly transmitting deep body temperature data from a deep temperature probe to a computer or the like.

前記課題は、本発明の深部体温測定システムによれば、非加熱型の深部温プローブを用いて身体の深部体温を測定する深部体温測定システムであって、前記深部温プローブは、前記身体の体表面側に配置された体表面側温度センサと、該体表面側温度センサよりも体表面逆側に対向して、既知の熱抵抗を有する断熱材を介して配置された外気側温度センサと、該外気側温度センサより外気側の外部熱抵抗条件を変更するための外部熱抵抗変更手段と、を備え、前記体表面側及び前記外気側温度センサからそれぞれ得られる温度測定値を用いて前記深部体温を算出する算出手段を備え、該算出手段は、初期設定中において前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第1の時点における、前記体表面側及び前記外気側温度センサの温度測定値を、第1の時点の温度測定値の組として取得する第1測定値取得手段と、前記初期設定中の前記第1の時点より前又は後に、前記外部熱抵抗変更手段を用いて前記第1の時点とは前記外部熱抵抗条件を異ならせ、前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第2の時点における前記体表面側及び前記外気側温度センサの温度測定値を、第2の時点の温度測定値の組として取得する第2測定値取得手段と、前記第1及び前記第2の時点の温度測定値の組を用いて、前記身体の皮下組織の熱抵抗を算出する初期設定値算出手段と、任意の時点における前記体表面側及び前記外気側温度センサのそれぞれの温度測定値と、前記身体の皮下組織の熱抵抗とを用いて、前記任意の時点における前記深部体温を算出する深部体温算出手段と、を備えること、により解決される。   According to the deep body temperature measurement system of the present invention, the subject is a deep body temperature measurement system that measures the body's deep body temperature using a non-heating type deep body temperature probe, wherein the deep body temperature probe is the body body temperature. A body surface side temperature sensor disposed on the surface side, and an outside air side temperature sensor disposed through a heat insulating material having a known thermal resistance, opposite to the body surface opposite side of the body surface side temperature sensor; External heat resistance changing means for changing an external heat resistance condition on the outside air side from the outside air temperature sensor, and using the temperature measurement values respectively obtained from the body surface side and the outside air temperature sensor, the deep part Calculating means for calculating a body temperature, the calculating means at the first time point when the temperature measurement values of the body surface side and the outside air temperature sensor become constant during initial setting; And A first measurement value acquisition means for acquiring a temperature measurement value of the outside air temperature sensor as a set of temperature measurement values at a first time point; and the external heat before or after the first time point during the initial setting. Using the resistance changing means, the external thermal resistance condition is made different from the first time point, and the temperature measurement values of the body surface side and the outside air temperature sensor become constant at the second time point. Second measurement value acquisition means for acquiring the temperature measurement values of the body surface side and the outside air temperature sensor as a set of temperature measurement values at a second time point; and temperature measurement values at the first and second time points. An initial set value calculating means for calculating a thermal resistance of the subcutaneous tissue of the body using a set, a temperature measurement value of each of the body surface side and the outside air temperature sensors at an arbitrary time point, and the subcutaneous tissue of the body The thermal resistance of A core temperature calculating means for calculating the core temperature at the time of, be provided with, it is solved by.

また、前記課題は、本発明の深部体温測定方法によれば、非加熱型の深部温プローブを用いて身体の深部体温を測定する深部体温測定方法であって、前記深部温プローブは、前記身体の体表面側に配置された体表面側温度センサと、該体表面側温度センサよりも体表面逆側に対向して、既知の熱抵抗を有する断熱材を介して配置された外気側温度センサと、該外気側温度センサより外気側の外部熱抵抗条件を変更するための外部熱抵抗変更手段と、を備え、初期設定中において前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第1の時点における、前記体表面側及び前記外気側温度センサの温度測定値を、第1の時点の温度測定値の組として取得する第1測定値取得手順と、前記初期設定中の前記第1の時点より前又は後に、前記外部熱抵抗変更手段を用いて前記第1の時点とは前記外部熱抵抗条件を異ならせ、前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第2の時点における前記体表面側及び前記外気側温度センサの温度測定値を、第2の時点の温度測定値の組として取得する第2測定値取得手順と、前記第1及び前記第2の時点の温度測定値の組を用いて、前記身体の皮下組織の熱抵抗を算出する初期設定値算出手順と、任意の時点における前記体表面側及び前記外気側温度センサのそれぞれの温度測定値と、前記身体の皮下組織の熱抵抗とを用いて、前記任意の時点における前記深部体温を算出する深部体温算出手順と、を備えること、により解決される。   In addition, according to the deep body temperature measuring method of the present invention, the subject is a deep body temperature measuring method for measuring a body deep body temperature using a non-heating type deep body temperature probe, wherein the deep body temperature probe A body surface side temperature sensor disposed on the body surface side of the body, and an outside air temperature sensor disposed through a heat insulating material having a known thermal resistance so as to face the body surface opposite to the body surface side temperature sensor. And an external thermal resistance changing means for changing an external thermal resistance condition on the outside air side from the outside air temperature sensor, and the temperature measurement of each of the body surface side and the outside air temperature sensor during initial setting A first measurement value acquisition procedure for acquiring the temperature measurement values of the body surface side and the outside air side temperature sensor at a first time point when the value becomes constant as a set of temperature measurement values at the first time point; The first time during initial setting Before or after, the external thermal resistance changing means is used to make the external thermal resistance condition different from the first time point, and the temperature measurement values of the body surface side and the outside air temperature sensor are made constant. A second measurement value acquisition procedure for acquiring the temperature measurement values of the body surface side and outside air temperature sensors at the second time point as a set of temperature measurement values at the second time point, and the first and the first An initial set value calculation procedure for calculating the thermal resistance of the subcutaneous tissue of the body using a set of temperature measurement values at two time points, and temperature measurements of the body surface side and the outside air temperature sensors at arbitrary time points And a deep body temperature calculation procedure for calculating the deep body temperature at the arbitrary time point using the value and the thermal resistance of the subcutaneous tissue of the body.

このように、断熱材の熱抵抗が既知であるという前提において、体表面側及び外気側温度センサを、異なる外部熱抵抗条件とした異なる時点におけるそれぞれの温度測定値を取得するので、初期設定値取得手段で、個体によって異なる身体の皮下組織の熱抵抗を初期設定値として算出することが可能となり、その結果、体表面側及び外気側温度センサの測定値を用いて、深部体温を算出することが可能となる。
深部体温の算出用の初期情報として必要とされる身体の皮下組織の熱抵抗値を取得するためには、体表面側及び外気側温度センサの測定値の組を、異なる外部熱抵抗条件について取得する必要がある。本発明では、体表面側及び外気側温度センサの測定値の組を、異なる時点で外部熱抵抗条件を異ならせることにより取得するため、従来の非加熱型の深部体温計のように、体表面側及び外気側温度センサの組自体を複数設置する必要がない。従って、一組の体表面側及び外気側温度センサだけで、皮下組織の熱抵抗値が取得可能となり、深部温プローブの小型化が可能となる。
In this way, on the assumption that the thermal resistance of the heat insulating material is known, the temperature measurement values at different points in time when the body surface side and outside air temperature sensors are set to different external thermal resistance conditions are acquired, so the initial setting value With the acquisition means, it becomes possible to calculate the thermal resistance of the subcutaneous tissue of the body, which varies depending on the individual, as an initial setting value, and as a result, the deep body temperature is calculated using the measured values of the body surface side and outside air side temperature sensors. Is possible.
To obtain the thermal resistance value of the body's subcutaneous tissue, which is required as the initial information for calculating the deep body temperature, obtain a set of measured values of the body surface side and outside air side temperature sensors for different external thermal resistance conditions There is a need to. In the present invention, a set of measured values of the body surface side and outside air side temperature sensors are acquired by changing the external thermal resistance conditions at different points in time, so that the body surface side, like a conventional non-heating type deep thermometer, is obtained. It is not necessary to install a plurality of outdoor air temperature sensor sets. Therefore, the thermal resistance value of the subcutaneous tissue can be acquired with only one set of body surface side and outside air side temperature sensors, and the deep temperature probe can be miniaturized.

また、体表面側及び外気側温度センサの組数を減少できるため、温度センサ用の必要電力を削減でき、深部温プローブの省電力化と、搭載する電池の削減による更なる小型化、低コスト化が可能となる。
また、深部温プローブの小型化によって、絆創膏型の無線式深部温プローブの提供が可能となり、外部コンピュータから無線で深部温プローブの温度センサの測定値を取得して、外部コンピュータ側で深部体温を算出、管理する無線の深部体温測定システムの提供が可能となる。その結果、有線式深部温プローブから、有線で接続された表示器に測定データを送って深部体温を計算する従来の深部体温計では、表示器からの物理的距離が限定され、深部体温が測定可能な物理的範囲が病院内等に限定されていたが、本発明によれば、無線式深部温プローブの提供が可能であるため、医療機関外で、仕事や余暇の活動などの日常生活を通常通り送りながら深部体温を測定することも可能となる。また、従来の有線式の深部体温計では、一つの表示器に対して使用できる深部温プローブの数も限定されていたが、本発明によれば、無線式深部温プローブの提供が可能であるため、一つの制御用外部コンピュータに対して、多数の深部温プローブを用いることも可能となり、深部体温測定システムを低コストで提供可能となる。
In addition, since the number of body surface side and outside air temperature sensors can be reduced, the required power for the temperature sensor can be reduced, power saving of the deep temperature probe, and further downsizing and cost reduction by reducing the number of batteries installed. Can be realized.
In addition, the miniaturization of the deep temperature probe makes it possible to provide a bandage-type wireless deep temperature probe, which obtains the measured value of the temperature sensor of the deep temperature probe wirelessly from an external computer and measures the deep body temperature on the external computer side. It is possible to provide a wireless deep body temperature measurement system for calculation and management. As a result, the conventional deep thermometer that calculates the deep body temperature by sending measurement data from the wired deep temperature probe to the wired display, the physical distance from the display is limited, and the deep body temperature can be measured However, according to the present invention, since a wireless deep temperature probe can be provided, daily life such as work and leisure activities is usually performed outside a medical institution. It is also possible to measure deep body temperature while passing through. In addition, in the conventional wired type thermometer, the number of deep temperature probes that can be used for one display is limited. However, according to the present invention, a wireless deep temperature probe can be provided. A large number of deep temperature probes can be used for one control external computer, and a deep body temperature measurement system can be provided at low cost.

また、深部温プローブは、外部熱抵抗条件を変更するための外部熱抵抗変更手段を備え、初期設定中の第1の時点より前又は後に、熱抵抗変更手段を用いて第1の時点とは外部熱抵抗条件を異ならせた後、体表面側及び外気側温度センサのそれぞれの温度測定値が一定になった第2の時点における体表面側及び外気側温度センサの温度測定値を、第2の時点の温度測定値の組として取得するため、外部熱抵抗条件を、いつでも、能動的に変更することが可能となり、初期設定をいつでも行うことができる。従って、深部温プローブを体表面に装着したままの状態でも、必要に応じて適宜初期設定ができ、長期間の間欠的な測定でも、誤差の少ない深部体温の測定値を得ることができる。
その結果、深部温プローブを装着したまま、連続した長期間の深部体温の間欠的測定が可能となる。
また、深部温プローブは、非加熱式であるため、加熱式の深部体温計のような、ヒータが不要である。従って、ヒータを制御する温度制御機構を設ける必要がなく、小型化が可能である。
Further, the deep temperature probe includes an external thermal resistance changing unit for changing the external thermal resistance condition, and the first time point is determined using the thermal resistance changing unit before or after the first time point during the initial setting. After changing the external thermal resistance conditions, the temperature measurement values of the body surface side and the outside air temperature sensor at the second time point when the temperature measurement values of the body surface side and the outside air temperature sensor become constant are the second Therefore, the external heat resistance condition can be actively changed at any time, and the initial setting can be performed at any time. Therefore, even when the deep body temperature probe is still attached to the body surface, initial settings can be made as needed, and a deep body temperature measurement value with less errors can be obtained even in intermittent measurements over a long period of time.
As a result, it is possible to intermittently measure the deep body temperature over a long period of time with the deep temperature probe attached.
Further, since the deep temperature probe is a non-heating type, a heater such as a heating type deep thermometer is unnecessary. Therefore, it is not necessary to provide a temperature control mechanism for controlling the heater, and the size can be reduced.

このとき、前記外部熱抵抗変更手段は、前記外気側から前記深部温プローブを被覆する着脱可能なカバーからなり、前記第2測定値取得手段では、前記第2の時点において、前記カバーで前記外気側から前記深部温プローブが被覆されることにより、前記第1の時点と前記第2の時点における前記外部熱抵抗条件が異なっていてもよい。
このように構成しているため、カバーにより、簡単に外部熱抵抗条件を変更でき、簡易な構成の深部体温測定システムを構築できる。また、外部熱抵抗条件の変更による初期設定に、着脱可能なカバーを用いるため、いつでも初期設定を行うことができ、長期間にわたって、誤差の少ない正確な深部体温の測定値を得ることができる。
At this time, the external thermal resistance changing unit includes a detachable cover that covers the deep temperature probe from the outside air side, and the second measurement value acquiring unit is configured to allow the outside air to pass through the cover at the second time point. The external thermal resistance condition at the first time point and the second time point may be different by covering the deep temperature probe from the side.
Since it comprises in this way, an external thermal resistance condition can be changed easily with a cover, and the deep body temperature measuring system of a simple structure can be constructed | assembled. In addition, since the removable cover is used for the initial setting by changing the external thermal resistance condition, the initial setting can be performed at any time, and an accurate measured value of the deep body temperature with little error can be obtained over a long period of time.

このとき、前記初期設定算出手段による前記身体の皮下組織の熱抵抗算出後、所定時間経過後に、前記初期設定算出手段による前記身体の皮下組織の熱抵抗算出を再度行うよう促す初期設定要求メッセージを表示する手段を備えていてもよい。
このように構成しているため、ユーザは、初期設定が必要なタイミングを自動で知ることができ、長期間にわたる誤差の少ない正確な深部体温の測定が可能となる。
At this time, after calculating the thermal resistance of the subcutaneous tissue of the body by the initial setting calculation means, an initial setting request message prompting the thermal setting of the subcutaneous tissue of the body to be calculated again by the initial setting calculation means after a predetermined time has elapsed. Means for displaying may be provided.
With this configuration, the user can automatically know the timing at which the initial setting is required, and can accurately measure the deep body temperature with little error over a long period of time.

このとき、前記深部温プローブと無線による情報送受信可能に接続されたコンピュータを備え、該コンピュータは、前記初期設定値取得手段及び前記深部体温算出手段を備えていてもよい。
このように構成しているため、物理的な制約がなくなり、深部体温の測定を、医療機関等の内部に限られず、行うことができる。その結果、日常生活を通常通り送りながら深部体温の測定を行うことも可能となる。更に、一つのコンピュータに、複数の被測定者の深部温プローブを対応させることも可能となり、深部体温測定のコストを低減させることができる。
At this time, a computer connected to the deep temperature probe so as to be able to transmit and receive information wirelessly is provided, and the computer may include the initial set value acquisition means and the deep body temperature calculation means.
Since it comprises in this way, there is no physical restriction and the measurement of the deep body temperature can be performed without being limited to the inside of a medical institution or the like. As a result, it is also possible to measure the deep body temperature while sending daily life as usual. Furthermore, it becomes possible to make the deep temperature probe of a plurality of measurement subjects correspond to one computer, and the cost of measuring the deep body temperature can be reduced.

このとき、前記初期設定値算出手段は、前記第1の時点における前記体表面側温度センサの温度測定値Ts11及び前記外気側温度センサの温度測定値Ts21と、前記第2の時点における前記体表面側温度センサの温度測定値Ts12及び前記外気側温度センサの温度測定値Ts22と、前記断熱材の前記既知の熱抵抗値Rsとを、式   At this time, the initial set value calculating means includes the temperature measurement value Ts11 of the body surface side temperature sensor and the temperature measurement value Ts21 of the outside air temperature sensor at the first time point, and the body surface at the second time point. The temperature measurement value Ts12 of the side temperature sensor, the temperature measurement value Ts22 of the outside air temperature sensor, and the known thermal resistance value Rs of the heat insulating material are expressed by the equation

Figure 2016114467
Figure 2016114467

Figure 2016114467
Figure 2016114467

に代入することにより、前記身体の皮下組織の熱抵抗値Rbを算出してもよい。
このように、簡単な数式により、深部体温を算出可能である。
By substituting into, the thermal resistance value Rb of the subcutaneous tissue of the body may be calculated.
Thus, the deep body temperature can be calculated by a simple mathematical formula.

このとき、前記深部体温算出手段は、前記任意の時点における前記体表面側温度センサの温度測定値Ts1n及び前記外気側温度センサの温度測定値Ts2nと、前記断熱材の前記既知の熱抵抗値Rsと、前記身体の皮下組織の熱抵抗値Rbとを、式   At this time, the deep body temperature calculation means includes the temperature measurement value Ts1n of the body surface side temperature sensor and the temperature measurement value Ts2n of the outside air temperature sensor at the arbitrary time point, and the known thermal resistance value Rs of the heat insulating material. And the thermal resistance value Rb of the subcutaneous tissue of the body

Figure 2016114467
Figure 2016114467

に代入することにより、前記任意の時点における前記深部体温Tbnを算出してもよい。   By substituting into, the deep body temperature Tbn at the arbitrary time point may be calculated.

本発明によれば、断熱材の熱抵抗が既知であるという前提において、体表面側及び外気側温度センサを、異なる外部熱抵抗条件とした異なる時点におけるそれぞれの温度測定値を取得するので、初期設定値取得手段で、個体によって異なる身体の皮下組織の熱抵抗を初期設定値として算出することが可能となり、その結果、体表面側及び外気側温度センサの測定値を用いて、深部体温を算出することが可能となる。
深部体温の算出用の初期情報として必要とされる身体の皮下組織の熱抵抗値を取得するためには、体表面側及び外気側温度センサの測定値の組を、異なる外部熱抵抗条件について取得する必要がある。本発明では、体表面側及び外気側温度センサの測定値の組を、異なる時点で外部熱抵抗条件を異ならせることにより取得するため、従来の非加熱型の深部体温計のように、体表面側及び外気側温度センサの組自体を複数設置する必要がない。従って、一組の体表面側及び外気側温度センサだけで、皮下組織の熱抵抗値が取得可能となり、深部温プローブの小型化が可能となる。
According to the present invention, on the assumption that the thermal resistance of the heat insulating material is known, the temperature measurement values at different points in time when the body surface side and outside air side temperature sensors are set to different external thermal resistance conditions are acquired, so that the initial With the set value acquisition means, it is possible to calculate the thermal resistance of the subcutaneous tissue of the body, which varies from individual to individual, as the initial set value, and as a result, the deep body temperature is calculated using the measured values of the body surface side and outside air side temperature sensors. It becomes possible to do.
To obtain the thermal resistance value of the body's subcutaneous tissue, which is required as the initial information for calculating the deep body temperature, obtain a set of measured values of the body surface side and outside air side temperature sensors for different external thermal resistance conditions There is a need to. In the present invention, a set of measured values of the body surface side and outside air side temperature sensors are acquired by changing the external thermal resistance conditions at different points in time, so that the body surface side, like a conventional non-heating type deep thermometer, is obtained. It is not necessary to install a plurality of outdoor air temperature sensor sets. Therefore, the thermal resistance value of the subcutaneous tissue can be acquired with only one set of body surface side and outside air side temperature sensors, and the deep temperature probe can be miniaturized.

また、深部温プローブは、外部熱抵抗条件を変更するための外部熱抵抗変更手段を備え、初期設定中の第1の時点より前又は後に、熱抵抗変更手段を用いて第1の時点とは外部熱抵抗条件を異ならせた後、体表面側及び外気側温度センサのそれぞれの温度測定値が一定になった第2の時点における体表面側及び外気側温度センサの温度測定値を、第2の時点の温度測定値の組として取得するため、外部熱抵抗条件を、いつでも、能動的に変更することが可能となり、初期設定をいつでも行うことができる。従って、深部温プローブを体表面に装着したままの状態でも、必要に応じて適宜初期設定ができ、長期間の間欠的な測定でも、誤差の少ない深部体温の測定値を得ることができる。
その結果、深部温プローブを装着したまま、連続した長期間の深部体温の間欠的測定が可能となる。
Further, the deep temperature probe includes an external thermal resistance changing unit for changing the external thermal resistance condition, and the first time point is determined using the thermal resistance changing unit before or after the first time point during the initial setting. After changing the external thermal resistance conditions, the temperature measurement values of the body surface side and the outside air temperature sensor at the second time point when the temperature measurement values of the body surface side and the outside air temperature sensor become constant are the second Therefore, the external heat resistance condition can be actively changed at any time, and the initial setting can be performed at any time. Therefore, even when the deep body temperature probe is still attached to the body surface, initial settings can be made as needed, and a deep body temperature measurement value with less errors can be obtained even in intermittent measurements over a long period of time.
As a result, it is possible to intermittently measure the deep body temperature over a long period of time with the deep temperature probe attached.

本発明の一実施形態に係る深部体温システムの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the deep body temperature system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る深部温プローブの縦断面の概略構造を示す説明図である。It is explanatory drawing which shows schematic structure of the longitudinal cross-section of the deep temperature probe which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレシーバのハード構成を示す説明図である。It is explanatory drawing which shows the hardware constitutions of the receiver which concerns on one Embodiment of this invention. 第1、第2の温度センサを備えた本実施形態の深部温プローブにおける熱流を、電気回路相似法を用いて電気回路として表現した図である。It is the figure which expressed the heat flow in the deep temperature probe of this embodiment provided with the 1st, 2nd temperature sensor as an electric circuit using the electric circuit similarity method. 深部体温測定プログラムによる初期設定の処理を示すフロー図である。It is a flowchart which shows the process of the initial setting by a deep body temperature measurement program. 深部体温測定プログラムによる深部体温測定の処理を示すフロー図である。It is a flowchart which shows the process of the deep body temperature measurement by a deep body temperature measurement program. 試験例1の実験系の構成図である。2 is a configuration diagram of an experimental system of Test Example 1. FIG. 試験例1の結果を示すグラフである。6 is a graph showing the results of Test Example 1.

以下、本発明の一実施形態に係る深部体温測定システムSについて、図1〜図6を参照しながら説明する。
本明細書において、深部体温測定システムS及び深部体温測定方法の測定対象となる身体とは、病院の入院患者、外来患者を含む患者、健康診断や検査を受ける被検者、臨床試験を受ける被験者、その他健常者を含む人の身体のほか、治療、健康診断、実験を受ける動物の身体も含む。
また、本明細書において、「温度測定値が一定」とは、温度測定値が、任意の値で変化しない定常期に達したことを意味し、所定時間内、例えば5秒間の温度変化が、所定の閾値、例えば、0.1℃を超えない状態をいう。
Hereinafter, a deep body temperature measurement system S according to an embodiment of the present invention will be described with reference to FIGS.
In this specification, the body to be measured by the deep body temperature measurement system S and the deep body temperature measurement method is a hospital inpatient, a patient including an outpatient, a subject undergoing a medical examination or examination, and a subject undergoing a clinical test. In addition to the human body, including healthy individuals, the body of animals undergoing treatment, medical examinations, and experiments is also included.
In the present specification, “the temperature measurement value is constant” means that the temperature measurement value has reached a stationary phase where it does not change at an arbitrary value, and a temperature change within a predetermined time, for example, 5 seconds, A state in which a predetermined threshold value, for example, 0.1 ° C. is not exceeded.

<深部体温測定システムS>
図1は、本実施形態の深部体温計としての深部温プローブ1を用いた深部体温測定システムSの概略構成を示す図である。
本実施の形態に係る深部体温測定システムSは、図1で示すように、人の体表面に装着される深部体温計としての深部温プローブ1と、深部温プローブ1の初期設定時に用いられる着脱式カバー2と、深部温プローブ1の温度センサの測定データを受信するレシーバ150と、レシーバ150から測定データを情報通信網N経由で受信する医療機関内サーバコンピュータ(以下、「サーバ」という。)101及びクラウドサーバ130と、医療機関内端末コンピュータ(以下、「端末」という。)120、被測定者の端末140と、を主要構成要素とする。
本実施形態の深部体温測定システムSでは、深部温プローブ1の一対の温度センサ13、15で測定された温度測定データが、レシーバ150に送信され、レシーバ150に格納された深部体温測定プログラムにより、深部体温が計算され、情報通信網N経由で医療機関内サーバ101、クラウドサーバ130に送信される。なお、深部体温測定プログラムを深部温プローブ1又は医療機関内サーバ101、クラウドサーバ130に格納し、深部温プローブ1又は医療機関内サーバ101、クラウドサーバ130で、深部体温を計算してもよい。
<Deep body temperature measurement system S>
FIG. 1 is a diagram showing a schematic configuration of a deep body temperature measurement system S using a deep body temperature probe 1 as a deep body thermometer of the present embodiment.
As shown in FIG. 1, the deep body temperature measurement system S according to the present embodiment includes a deep temperature probe 1 as a deep thermometer attached to the surface of a human body, and a detachable type used when the deep temperature probe 1 is initially set. The cover 2, the receiver 150 that receives the measurement data of the temperature sensor of the deep temperature probe 1, and the medical institution server computer (hereinafter referred to as “server”) 101 that receives the measurement data from the receiver 150 via the information communication network N. The cloud server 130, the medical institution terminal computer (hereinafter referred to as “terminal”) 120, and the measured person's terminal 140 are the main components.
In the deep body temperature measurement system S of the present embodiment, the temperature measurement data measured by the pair of temperature sensors 13 and 15 of the deep temperature probe 1 is transmitted to the receiver 150 and is stored in the receiver 150 by the deep body temperature measurement program. The deep body temperature is calculated and transmitted to the medical institution server 101 and the cloud server 130 via the information communication network N. The deep body temperature measurement program may be stored in the deep temperature probe 1 or the medical institution server 101 and the cloud server 130, and the deep body temperature may be calculated by the deep temperature probe 1 or the medical institution server 101 and the cloud server 130.

深部温プローブ1は、被測定者の体表面に接着剤や粘着テープで直接貼り付けられ、深部体温を測定する深部体温計である。深部温プローブ1の縦断面の概略構造を、図2に示す。
深部温プローブ1は、図1、2に示すように略円板状に形成されており、略円板状の断熱材11と、断熱材11の体表面側の面に設けられた円板状の熱伝導部材12と、熱伝導部材12の一方の面に形成された第1の温度センサ13と、断熱材11の体表面逆側の面に設けられた円板状の均熱材14と、均熱材14の体表面側の面に形成された第2の温度センサ15と、均熱材14の体表面逆側に設けられた回路基板16と、を備えている。
The deep-part temperature probe 1 is a deep-part thermometer that is directly attached to the body surface of a person to be measured with an adhesive or an adhesive tape and measures the deep part temperature. A schematic structure of a longitudinal section of the deep temperature probe 1 is shown in FIG.
The deep temperature probe 1 is formed in a substantially disc shape as shown in FIGS. 1 and 2, and is a disc-shaped heat insulating material 11 and a disk shape provided on the body surface side surface of the heat insulating material 11. , A first temperature sensor 13 formed on one surface of the heat conductive member 12, and a disc-shaped heat equalizing material 14 provided on the surface of the heat insulating material 11 opposite to the body surface. The second temperature sensor 15 formed on the body surface side of the heat equalizing material 14 and the circuit board 16 provided on the opposite side of the body surface of the heat equalizing material 14 are provided.

断熱材11は、発泡ゴムやポリウレタン等の公知の断熱素材から形成されている。
第1、第2の温度センサ13、15は、公知の温度センサ用金属材料からなる薄膜から形成されている。第1、第2の温度センサ13、15は、スパッタリング法、電子ビーム蒸着法、加熱蒸着法等の真空成膜法や、塗布法等を用いることができる。好ましくは、より薄く均一に薄膜を形成できる真空成膜法を用いるのがよい。更に好ましくは、均一に成膜ができるスパッタリング法を用いるのがよい。
The heat insulating material 11 is made of a known heat insulating material such as foam rubber or polyurethane.
The 1st, 2nd temperature sensors 13 and 15 are formed from the thin film which consists of a well-known metal material for temperature sensors. For the first and second temperature sensors 13 and 15, a vacuum film formation method such as a sputtering method, an electron beam evaporation method, or a heating evaporation method, a coating method, or the like can be used. It is preferable to use a vacuum film formation method that can form a thin film more thinly and uniformly. More preferably, a sputtering method capable of forming a film uniformly is used.

このように、第1、第2の温度センサ13、15を薄膜センサから構成しているため、深部温プローブ1の小型化が可能となる。また、薄膜センサは非剛性で、軟性であるため、温度センサ13、15を軟性部材として構成可能となり、身体の体表面に密着し易く、長期間の装着が可能で、装着している感覚を被測定者に与えない、装着感のない深部温プローブ1を構成可能となる。従って、例えば、絆創膏のように、被測定者の体表面に接着剤や粘着テープで貼付しても、被測定者の動きや衣服に引っ掛けることにより外れることのない深部温プローブ1を提供可能となる。その結果、1〜2日間、又は数日間、或いは1週間以上の長時間装着して、日常生活を普段通りに送りながら、無線で測定データをサーバ101、130に送信した深部体温の連続測定も可能となる。
なお、温度センサ13、15の代わりに、バルクの金属線からなる温度センサとしてもよい。
Thus, since the 1st, 2nd temperature sensors 13 and 15 are comprised from the thin film sensor, size reduction of the deep temperature probe 1 is attained. In addition, since the thin film sensor is non-rigid and flexible, the temperature sensors 13 and 15 can be configured as a soft member, can easily be in close contact with the body surface of the body, can be worn for a long period of time, and can feel the wearing feeling. It is possible to configure the deep temperature probe 1 that is not given to the subject and has no wearing feeling. Therefore, for example, a deep temperature probe 1 can be provided that does not come off due to the movement of the measurement subject or the clothes, even if affixed to the measurement subject's body surface with an adhesive or adhesive tape, such as a bandage. Become. As a result, continuous measurement of the deep body temperature that was worn for 1-2 days, several days, or more than a week, and sent measurement data wirelessly to the servers 101, 130 while sending daily life as usual It becomes possible.
Instead of the temperature sensors 13 and 15, a temperature sensor made of a bulk metal wire may be used.

均熱材14は、アルミニウム板等からなり、外部の急激な温度変化によって、第2の温度センサ15の測定値が不安定になるのを防ぐため、第2の温度センサ15に検出される温度を均一化するために備えられる。
均熱材14の体表面逆側には、所定の空間を置いて回路基板16が設けられている。回路基板16は、第1、第2の温度センサ13、15から温度の測定データを受け取って一時的に保存する記憶部と、外部の送受信機からデータ送信要求情報を受信し、記憶部から測定データを取得して外部の送受信機に送信する送受信部と、記憶部、送受信部等を制御する制御部と、を備えている。
なお、本実施形態では、第1、第2の温度センサ13、15の測定データをレシーバ150に送信しているが、これに限定されるものではなく、回路基板16に、第1、第2の温度センサ13、15の測定データから深部体温を計算する深部体温測定プログラムを格納し、回路基板16で深部体温を計算して、レシーバ150に送信するように構成してもよい。
The soaking material 14 is made of an aluminum plate or the like, and the temperature detected by the second temperature sensor 15 in order to prevent the measured value of the second temperature sensor 15 from becoming unstable due to a sudden external temperature change. It is provided to make uniform.
A circuit board 16 is provided on the opposite side of the body surface of the heat equalizing material 14 with a predetermined space. The circuit board 16 receives temperature measurement data from the first and second temperature sensors 13 and 15 and temporarily stores the data, and receives data transmission request information from an external transceiver and measures from the storage unit. A transmission / reception unit that acquires data and transmits the data to an external transceiver, and a control unit that controls the storage unit, the transmission / reception unit, and the like are provided.
In the present embodiment, the measurement data of the first and second temperature sensors 13 and 15 are transmitted to the receiver 150. However, the present invention is not limited to this, and the circuit board 16 may include the first and second data. The deep body temperature measurement program for calculating the deep body temperature from the measurement data of the temperature sensors 13 and 15 may be stored, and the deep body temperature may be calculated by the circuit board 16 and transmitted to the receiver 150.

着脱式カバー2は、発泡ゴムやポリウレタン等の公知の断熱素材から形成され、図1、図2に示すように、深部温プローブ1を内部に格納可能な凹部2が一方の面側に形成された略円板状体からなる。   The detachable cover 2 is formed of a known heat insulating material such as foamed rubber or polyurethane, and as shown in FIGS. 1 and 2, a concave portion 2 in which the deep temperature probe 1 can be stored is formed on one surface side. It consists of a substantially disk-shaped body.

レシーバ150は、被測定者自身が所持するスマートフォン、タブレット端末、メディアプレーヤ等の携帯デバイスや、病室に設置された無線送受信機等の情報通信機器であって、深部温プローブ1から第1、第2の温度センサ13、15の測定データを受信して、深部体温を計算し、保存する。
レシーバ150のハード構成を図3に示す。レシーバ150は、データの演算・制御処理装置としてのCPU71、記憶装置であるRAM72、ROM73、HDD74及び記憶媒体装置75を備えている。
The receiver 150 is an information communication device such as a mobile device such as a smartphone, a tablet terminal, a media player, etc. owned by the person to be measured, or a wireless transceiver installed in a hospital room. The measurement data of the two temperature sensors 13 and 15 are received, and the deep body temperature is calculated and stored.
The hardware configuration of the receiver 150 is shown in FIG. The receiver 150 includes a CPU 71 as a data calculation / control processing device, a RAM 72 as a storage device, a ROM 73, an HDD 74, and a storage medium device 75.

CPU71は、ROM73又はHDD74に記憶されているプログラムにしたがって各種の処理を実行するようになされている。RAM72には、CPU71が各種の処理を実行するために必要なデータなどが記憶される。
また、入力装置77は、タッチパネルやキーボード、マウス等からなり、CPU71に指令を入力するとき操作される。
The CPU 71 executes various processes according to programs stored in the ROM 73 or the HDD 74. The RAM 72 stores data necessary for the CPU 71 to execute various processes.
The input device 77 includes a touch panel, a keyboard, a mouse, and the like, and is operated when a command is input to the CPU 71.

表示装置78には、所定の書式で表示される情報、画像等が出力表示される。
記憶媒体装置75は、外付けハードディスク、光磁気ディスク、CD−R、DVD、メモリスティックなどにより構成され、情報通信網Nを介して送信されてきたデータを適宜記憶し、またこれを読み出すことができるようになされている。
通信装置76は、情報通信網Nに対してデータを送信し、また情報通信網Nを介して供給されたデータを受信するようになされている。
On the display device 78, information, images and the like displayed in a predetermined format are output and displayed.
The storage medium device 75 includes an external hard disk, a magneto-optical disk, a CD-R, a DVD, a memory stick, and the like, and appropriately stores and reads data transmitted via the information communication network N. It has been made possible.
The communication device 76 transmits data to the information communication network N and receives data supplied via the information communication network N.

HDD74には、深部体温測定方法を実行する深部体温測定プログラム、既知の断熱材11の熱抵抗値Rs、身体の皮下組織の熱抵抗値Rbを算出するための式(5)(6)、深部体温Tbを算出するための式(7)、深部体温測定プログラムの図5、6の処理で算出した身体の皮下組織の熱抵抗値Rb、深部体温Tbの値を格納する測定結果テーブルが、格納されている。   The HDD 74 includes a deep body temperature measurement program for executing the deep body temperature measurement method, equations (5) and (6) for calculating the thermal resistance value Rs of the known heat insulating material 11, and the thermal resistance value Rb of the subcutaneous tissue of the body, The measurement result table storing the equation (7) for calculating the body temperature Tb, the thermal resistance value Rb of the subcutaneous tissue of the body and the value of the deep body temperature Tb calculated in the processing of FIGS. 5 and 6 of the deep body temperature measurement program is stored. Has been.

情報通信網Nは、インターネット、イントラネット等の情報通信網からなる。
医療機関内サーバ101は、被測定者の深部体温測定を実行、管理する医療機関等の施設に設けられ、深部体温の計算値を、被測定者毎に蓄積し、端末120に、医師、看護師等の医療従事者が閲覧可能に表示するためのサーバコンピュータである。
医療機関内サーバ101は、医療機関の基幹サーバコンピュータと別体として設けられてもよいし、一体として設けられていてもよい。医療機関内サーバ101には、医療機関内のLAN(Local Area Network)により、端末120、レシーバ150が接続されている。
The information communication network N is composed of an information communication network such as the Internet or an intranet.
The medical institution server 101 is provided in a facility such as a medical institution that executes and manages the deep body temperature of the measurement subject, accumulates the calculated value of the deep body temperature for each measurement subject, and stores the doctor 120 It is a server computer for displaying so that medical personnel, such as a teacher, can browse.
The medical institution server 101 may be provided separately from the core server computer of the medical institution, or may be provided as an integral unit. A terminal 120 and a receiver 150 are connected to the medical institution server 101 via a local area network (LAN) in the medical institution.

医療機関内サーバ101は、データの演算・制御処理装置としてのCPU、記憶装置であるRAM、ROM、HDD、記憶媒体装置及び通信装置を備えている。
また、その他、入力装置である不図示のキーボードとマウスが、CPUに所定の指令を入力するとき適宜操作可能に設けられていてもよい。
さらに不図示の表示装置、プリンタが、所定の書式で表示される情報、画像等が出力表示可能に設けられていてもよい。
The medical institution server 101 includes a CPU as a data calculation / control processing device, a RAM, a ROM, an HDD, a storage medium device, and a communication device as storage devices.
In addition, a keyboard and a mouse (not shown) that are input devices may be provided so as to be appropriately operable when a predetermined command is input to the CPU.
Further, a display device and a printer (not shown) may be provided so that information, images, and the like displayed in a predetermined format can be output and displayed.

HDDには、医療機関の患者や健康診断受診者のうち、深部体温の被測定者を特定する患者・受診者IDと、被測定者の担当医師等の担当医療従事者の特定情報と、レシーバ150から定期的に受信した被測定者の深部体温の計算値と、深部体温を測定した日時の情報とが、紐付けられて登録された深部体温測定値テーブルが格納されている。   The HDD includes a patient / examinee ID for identifying a subject having a deep body temperature among patients at a medical institution or a medical checkup, identification information of a medical staff in charge such as a doctor in charge of the subject, a receiver A depth body temperature measurement value table in which the calculated value of the deep body temperature of the measurement subject periodically received from 150 and information on the date and time when the depth body temperature is measured is stored in association with each other is stored.

<深部体温計算方法>
深部温プローブ1を用いた深部体温の計算方法について、説明する。
図4は、第1、第2の温度センサ13、15を備えた本実施形態の深部温プローブ1における熱流を、電気回路相似法を用いて電気回路として表現した図である。
図4に示すように、熱流を電流i、温度を電圧T、熱抵抗を電気抵抗Rとすることで、深部温プローブ1における熱流は、図4の等価回路により表現することができる。
<Deep body temperature calculation method>
A method for calculating the deep body temperature using the deep temperature probe 1 will be described.
FIG. 4 is a diagram expressing the heat flow in the deep temperature probe 1 of the present embodiment including the first and second temperature sensors 13 and 15 as an electric circuit using an electric circuit similarity method.
As shown in FIG. 4, the heat flow in the deep temperature probe 1 can be expressed by the equivalent circuit of FIG. 4 by setting the heat flow as the current i, the temperature as the voltage T, and the heat resistance as the electric resistance R.

図4において、Tbは深部体温を、Rbは身体の皮下組織の熱抵抗値を、Ts1は第1の温度センサ13において検出された温度を、Rsは第1、第2の温度センサ13、15間の断熱材11の熱抵抗値を、Ts2は第2の温度センサ15において検出された温度を、Rcは、外部熱抵抗、つまり、第2の温度センサ15と外界の室温との間の熱抵抗値を、それぞれ表している。   4, Tb is the deep body temperature, Rb is the thermal resistance value of the subcutaneous tissue of the body, Ts1 is the temperature detected by the first temperature sensor 13, and Rs is the first and second temperature sensors 13, 15. The thermal resistance value of the insulating material 11 between them, Ts2 is the temperature detected by the second temperature sensor 15, and Rc is the external thermal resistance, that is, the heat between the second temperature sensor 15 and the ambient room temperature. Each resistance value is shown.

体表面の任意の領域を断熱材で覆うと、その部分では体表面からの熱放散が少なくなるので、外気に露出している部分よりも体表面の温度が高くなる。
従って、身体の体表面に深部温プローブ1を装着したとき、断熱材11および直下の皮下組織において、熱流iが一定で、体表面に対して垂直上向きであるとすると、熱流は断熱材11の熱抵抗値Rsと温度差(Ts1−Ts2)から求められる。同様に、断熱材11に覆われた部分の皮下組織内の深部温と体表面の温度差(Tb−Ts1)と身体の皮下組織の熱抵抗値Rbとからも熱流iは求められるため、深部体温Tbは、身体の皮下組織の熱抵抗値Rbと未知数としての断熱材11の体表面側及び外気側の温度Ts1、Ts2と熱抵抗値Rsとから求められる。
従って、図4の等価回路では、熱流iについて、
When an arbitrary region on the body surface is covered with a heat insulating material, heat dissipation from the body surface is reduced in that portion, so that the temperature of the body surface becomes higher than the portion exposed to the outside air.
Therefore, when the deep temperature probe 1 is mounted on the body surface of the body, if the heat flow i is constant and is vertically upward with respect to the body surface in the heat insulating material 11 and the underlying subcutaneous tissue, the heat flow is It is obtained from the thermal resistance value Rs and the temperature difference (Ts1-Ts2). Similarly, since the heat flow i is obtained from the deep temperature in the subcutaneous tissue of the portion covered with the heat insulating material 11, the temperature difference (Tb-Ts1) of the body surface, and the thermal resistance value Rb of the subcutaneous tissue of the body, The body temperature Tb is obtained from the thermal resistance value Rb of the subcutaneous tissue of the body, the temperatures Ts1 and Ts2 on the body surface side and the outside air side of the heat insulating material 11 as unknowns, and the thermal resistance value Rs.
Therefore, in the equivalent circuit of FIG.

Figure 2016114467
Figure 2016114467

が成り立つ。
身体の皮下組織の熱抵抗値Rbは個人差があり、また、頭部、腹部などの部位によっても異なるため、一定値に定めることは困難である。そこで、本実施形態では、身体の皮下組織の熱抵抗値Rbを予め定めるための初期設定を行う。
Holds.
Since the thermal resistance value Rb of the subcutaneous tissue of the body varies among individuals and varies depending on the site such as the head and abdomen, it is difficult to set a constant value. Therefore, in the present embodiment, initial setting is performed to predetermine the thermal resistance value Rb of the body subcutaneous tissue.

本実施形態の初期設定では、まず、深部温プローブ1が身体の体表面に装着され、深部温プローブ1を露出した第1の測定条件(外部熱抵抗条件1)で、第1、第2の温度センサ13、15の温度Ts1、Ts2が安定した定常状態において、第1、第2の温度センサ13、15の温度Ts11、Ts21の測定値を得る。
次いで、連続して、深部温プローブ1が身体の体表面に装着され、深部温プローブ1を着脱式カバー2で覆った第2の測定条件(外部熱抵抗条件2)で、第1、第2の温度センサ13、15の温度Ts12、Ts22の測定値を得る。
ここで、第1の測定条件と第2の測定条件とでは、第2の温度センサ15と外界の室温との間の外部熱抵抗Rcが異なる。これら外部熱抵抗Rcが相互に異なる第1、第2の測定条件を、外部熱抵抗条件1、2とする。
In the initial setting of this embodiment, first, the deep temperature probe 1 is mounted on the body surface of the body, and the first and second measurement conditions (external thermal resistance condition 1) in which the deep temperature probe 1 is exposed are first and second. In the steady state where the temperatures Ts1, Ts2 of the temperature sensors 13, 15 are stable, the measured values of the temperatures Ts11, Ts21 of the first and second temperature sensors 13, 15 are obtained.
Subsequently, the second and second measurement conditions (external thermal resistance condition 2) in which the deep temperature probe 1 is continuously attached to the body surface of the body and the deep temperature probe 1 is covered with the removable cover 2 are first and second. The measured values of the temperatures Ts12 and Ts22 of the temperature sensors 13 and 15 are obtained.
Here, the external thermal resistance Rc between the second temperature sensor 15 and the outside room temperature differs between the first measurement condition and the second measurement condition. The first and second measurement conditions in which the external thermal resistances Rc are different from each other are referred to as external thermal resistance conditions 1 and 2.

身体の皮下組織の熱抵抗値Rbが一定であるとして、外部熱抵抗Rcを変化させた二つの外部熱抵抗条件1、2とすることにより、それぞれの外部熱抵抗条件1、2について、身体の皮下組織の熱抵抗値Rbを未知数として、深部体温Tbを、第1、第2の温度センサ13、15の温度差と熱抵抗値Rsとから求め、それらの深部体温の式を連立させて身体の皮下組織の熱抵抗値Rbを消去すれば、深部体温Tbを求めることができる。   Assuming that the thermal resistance value Rb of the subcutaneous tissue of the body is constant, by setting the two external thermal resistance conditions 1 and 2 by changing the external thermal resistance Rc, Using the thermal resistance value Rb of the subcutaneous tissue as an unknown, the deep body temperature Tb is obtained from the temperature difference between the first and second temperature sensors 13 and 15 and the thermal resistance value Rs, and the body temperature equation is derived from these equations. If the thermal resistance value Rb of the subcutaneous tissue is erased, the deep body temperature Tb can be obtained.

つまり、外部熱抵抗条件1の場合、(1)式より、   That is, in the case of external thermal resistance condition 1, from equation (1):

Figure 2016114467
Figure 2016114467

となる。
但し、外部熱抵抗条件1における第1、第2の温度センサ13、15の検出温度をTs11、Ts21、深部体温をTb1とする。
(2)式を変形し、
It becomes.
However, the detected temperatures of the first and second temperature sensors 13 and 15 in the external thermal resistance condition 1 are Ts11 and Ts21, and the deep body temperature is Tb1.
(2)

Figure 2016114467
Figure 2016114467

が得られる。
一方、外部熱抵抗条件2の場合、(1)式より、
Is obtained.
On the other hand, in the case of external thermal resistance condition 2, from equation (1):

Figure 2016114467
Figure 2016114467

となる。
ここで、外部熱抵抗条件1と2における測定は、初期設定が行われる短期間の間、例えば10分程度の間に行うので、初期設定中、Tb1とTb2とは等しいとみなすことができ、
It becomes.
Here, since the measurement in the external thermal resistance conditions 1 and 2 is performed during a short period in which the initial setting is performed, for example, in about 10 minutes, Tb1 and Tb2 can be regarded as being equal during the initial setting.

Figure 2016114467
Figure 2016114467

に置き換えることができる。ここで、Tbiは、初期設定中における深部体温であって、初期設定における深部体温Tbの初期値である。
従って、(4)式と(3)式とから、
Can be replaced. Here, Tbi is the deep body temperature during the initial setting, and is the initial value of the deep body temperature Tb during the initial setting.
Therefore, from Equation (4) and Equation (3),

Figure 2016114467
Figure 2016114467

Figure 2016114467
Figure 2016114467

Figure 2016114467
Figure 2016114467

Figure 2016114467
Figure 2016114467

となる。
このTbiを、Tbi=Tb1として、初期設定におけるTbの初期値として(3)式に代入すると、身体の皮下組織の熱抵抗値Rbは、
It becomes.
Substituting this Tbi into the equation (3) as the initial value of Tb in the initial setting with Tbi = Tb1, the thermal resistance value Rb of the subcutaneous tissue of the body is

Figure 2016114467
Figure 2016114467

となる。
以降のn番目の測定値(T1n、T2n)において、深部体温Tbnは(2)式から
It becomes.
In subsequent n-th measured values (T1n, T2n), the deep body temperature Tbn is calculated from the equation (2).

Figure 2016114467
Figure 2016114467

より   Than

Figure 2016114467
Figure 2016114467

を得ることができる。
以上のように、深部温プローブ1が身体の体表面に装着され、第1、第2の温度センサ13、15の温度Ts1、Ts2が安定した定常状態において、外部熱抵抗値を変化させた二つのタイミングで、第1、第2の温度センサ13、15の温度Ts1、Ts2を測定することにより、身体の皮下組織の熱抵抗値Rbを得ることができる。その結果、その後の深部温を、身体の皮下組織の熱抵抗値Rbと、第1、第2の温度センサ13、15の測定値Ts1、Ts2から、計算することができる。
Can be obtained.
As described above, in the steady state where the deep temperature probe 1 is attached to the body surface of the body and the temperatures Ts1 and Ts2 of the first and second temperature sensors 13 and 15 are stable, the external thermal resistance value is changed. The thermal resistance value Rb of the subcutaneous tissue of the body can be obtained by measuring the temperatures Ts1 and Ts2 of the first and second temperature sensors 13 and 15 at one timing. As a result, the subsequent deep temperature can be calculated from the thermal resistance value Rb of the subcutaneous tissue of the body and the measured values Ts1, Ts2 of the first and second temperature sensors 13, 15.

なお、本実施形態では、外部熱抵抗条件1、2に外部熱抵抗値を変化させるために、外部熱抵抗条件1、2のうちの一方では、深部温プローブ1を露出した状態とし、他方では、深部温プローブ1に着脱式カバー2を被覆した状態としているが、これに限定されるものではなく、ほかの方法により、相互に異なる外部熱抵抗条件1、2を調整してもよい。
例えば、深部温プローブ1の外気側に設けたヒータにより、深部温プローブ1を外気側から加熱してもよいし、室温を変化させてもよい。
In the present embodiment, in order to change the external thermal resistance value to the external thermal resistance conditions 1 and 2, one of the external thermal resistance conditions 1 and 2 is in a state in which the deep temperature probe 1 is exposed, and the other Although the detachable cover 2 is covered with the deep temperature probe 1, it is not limited to this, and different external thermal resistance conditions 1 and 2 may be adjusted by other methods.
For example, the deep temperature probe 1 may be heated from the outside air by a heater provided on the outside air side of the deep temperature probe 1 or the room temperature may be changed.

<深部体温測定方法>
以下、本実施形態に係る深部体温測定方法について説明する。
本実施形態の深部体温測定方法では、まず、本実施形態の深部体温測定方法を実行する深部体温測定プログラムを、レシーバ150のHDD74に格納し、インストールする。
被測定者の体表面、例えば、腹部等の体表面に、深部温プローブ1を、公知の医療用接着剤又は粘着テープで貼付する。
<Deep body temperature measurement method>
Hereinafter, the deep body temperature measurement method according to the present embodiment will be described.
In the deep body temperature measurement method of the present embodiment, first, a deep body temperature measurement program for executing the deep body temperature measurement method of the present embodiment is stored in the HDD 74 of the receiver 150 and installed.
The deep part temperature probe 1 is affixed to the body surface of the measurement subject, for example, the body surface such as the abdomen, with a known medical adhesive or adhesive tape.

次いで、深部温プローブ1の初期設定を行う。深部温プローブ1の初期設定は、深部温プローブ1を装着したときに実行される。また、深部体温測定プログラムのアラーム機能で、例えば、1日毎、数時間毎等の所定時間ごとに、「初期設定してください」等のメッセージ表示及びアラーム音を鳴動するアラームを設定しておき、このアラームが起動したときに、実行してもよい。また、運動や入浴の前後等に初期設定を行ってもよい。
初期設定は、深部温プローブ1を身体に装着した後であれば、いつでも行うことができる。従って、本実施形態の深部体温測定システムSにより、数日間連続して間欠的に深部体温の測定データを取得したい場合には、例えば、一日一回など、定期的に図5の初期設定フローによる初期設定を行うことにより、より誤差の少ない深部体温の測定データを得ることが可能となる。
まず、深部温プローブ1の初期設定を行う操作者は、レシーバ150の表示装置78の画面上で、深部体温測定プログラムを立ち上げ、不図示の初期設定トップページを表示させる。
Next, initial setting of the deep temperature probe 1 is performed. The initial setting of the deep temperature probe 1 is executed when the deep temperature probe 1 is mounted. In addition, with the alarm function of the deep body temperature measurement program, for example, every day, every few hours, etc., set a message display such as “Please initialize” and an alarm that sounds an alarm sound, It may be executed when this alarm is activated. The initial setting may be performed before and after exercise or bathing.
The initial setting can be performed any time after the deep temperature probe 1 is attached to the body. Therefore, when it is desired to acquire the measurement data of the deep body temperature intermittently for several days continuously by the deep body temperature measurement system S of the present embodiment, for example, the initial setting flow of FIG. 5 periodically such as once a day. By performing the initial setting, it is possible to obtain measurement data of deep body temperature with less error.
First, the operator who performs the initial setting of the deep part temperature probe 1 starts the deep body temperature measurement program on the screen of the display device 78 of the receiver 150 and displays an initial setting top page (not shown).

不図示の初期設定トップページにおいて、「初期設定ボタン」をクリックすると、レシーバ150の画面上に、「初期設定:1回目の測定中です。動かずにお待ちください」との表示をし、図5の初期設定フローの処理をスタートする。図5の初期設定フローの処理は、レシーバ150のCPU71により、制御される。
まず、ステップS1で、Ts2の測定値が、上昇中又は下降中の過渡状態でない定常状態にあるか判定する。このステップの処理は、第2の温度センサ15の測定値Ts2を、所定時間毎、例えば2秒ごとに取得し、2秒前の測定値Ts2との差が0.2℃より小さいかを判定することにより行う。
When the “Initial setting button” is clicked on the initial setting top page (not shown), the message “Initial setting: The first measurement is in progress. Start the initial setting flow process. The processing of the initial setting flow in FIG. 5 is controlled by the CPU 71 of the receiver 150.
First, in step S1, it is determined whether the measured value of Ts2 is in a steady state that is not a transient state that is rising or falling. In this step, the measured value Ts2 of the second temperature sensor 15 is acquired every predetermined time, for example, every 2 seconds, and it is determined whether the difference from the measured value Ts2 of 2 seconds before is smaller than 0.2 ° C. To do.

Ts2の測定値が、上昇中又は下降中の過渡状態であって、定常状態でない場合(ステップS1:No)、ステップS1に戻り、Ts2の測定値が、上昇中又は下降中の過渡状態でない定常状態にあるか判定する。つまり、Ts2の測定値が上昇中又は下降中の過渡状態である場合には、ステップS1を繰り返し、Ts2の測定値が定常状態になるまで待つ。
Ts2の測定値が、定常状態にある場合(ステップS1:Yes)、つまり、Ts2の測定値と2秒前の測定値との差が0.2℃より小さい場合、ステップS2で、第1、第2の温度センサ13、15の測定値を取得し、外部熱抵抗条件1の測定温度の組Ts11、Ts21として、RAM72に保存する。
If the measured value of Ts2 is a transient state that is rising or descending and is not a steady state (step S1: No), the process returns to step S1, and the measured value of Ts2 is a steady state that is not a transient state that is rising or descending. Determine if it is in a state. That is, when the measured value of Ts2 is in a transient state where the measured value is increasing or decreasing, Step S1 is repeated and the process waits until the measured value of Ts2 becomes a steady state.
If the measured value of Ts2 is in a steady state (step S1: Yes), that is, if the difference between the measured value of Ts2 and the measured value two seconds before is smaller than 0.2 ° C., the first, The measurement values of the second temperature sensors 13 and 15 are acquired and stored in the RAM 72 as a set of measurement temperatures Ts11 and Ts21 of the external thermal resistance condition 1.

次いで、ステップS3で、レシーバ150の画面に、「着脱式カバー2を、深部温プローブ1に被せて下さい」との、外部熱抵抗条件の変更を指示する表示を行い、ステップS4で、Ts2の測定値が、外部熱抵抗条件変更前のTs21から変わったか判定する。このステップの処理は、第2の温度センサ15の測定値Ts2を取得し、この測定値Ts2とTs21との差が0.2℃より大きいかを判定することにより行う。
Ts2の測定値が、外部熱抵抗条件変更前のTs21から変わっていない場合(ステップS4:No)、ステップS5で、「着脱式カバー2の深部温プローブ1への被覆が検知されません。着脱式カバー2を、深部温プローブ1に被せて下さい」とのエラー表示をし、ステップS4に戻り、Ts2の測定値が、外部熱抵抗条件変更前のTs21から変わったか判定する。つまり、Ts2の測定値が外部熱抵抗条件変更前のTs21から0.2℃より大きい値で変わるまで、ステップS4、S5を繰り返し、Ts2が異なる外部熱抵抗条件に変更されるまで待つ。
Next, in step S3, a display instructing the external heat resistance condition to be changed is displayed on the screen of the receiver 150, such as "Please put the detachable cover 2 on the deep temperature probe 1." It is determined whether the measured value has changed from Ts21 before the external thermal resistance condition change. The processing in this step is performed by acquiring the measured value Ts2 of the second temperature sensor 15 and determining whether the difference between the measured value Ts2 and Ts21 is greater than 0.2 ° C.
When the measured value of Ts2 has not changed from Ts21 before the change in the external thermal resistance condition (step S4: No), in step S5, “the cover of the detachable cover 2 on the deep temperature probe 1 is not detected. An error message “Please cover the cover 2 on the deep temperature probe 1” is displayed, and the process returns to step S4 to determine whether the measured value of Ts2 has changed from Ts21 before the external thermal resistance condition change. That is, steps S4 and S5 are repeated until the measured value of Ts2 changes from Ts21 before changing the external thermal resistance condition to a value larger than 0.2 ° C., and the process waits until Ts2 is changed to a different external thermal resistance condition.

Ts2の測定値が、外部熱抵抗条件変更前のTs21から変わった場合(ステップS4:Yes)、つまり、Ts2の測定値が外部熱抵抗条件変更前のTs21から0.2℃より大きい値で変わった場合、ステップS6で、ステップS1と同様の判定により、Ts2の測定値が、上昇中又は下降中の過渡状態でない定常状態にあるか判定する。
Ts2の測定値が、上昇中又は下降中の過渡状態であって、定常状態でない場合(ステップS6:No)、ステップS6に戻り、Ts2の測定値が、上昇中又は下降中の過渡状態でない定常状態にあるか判定する。つまり、Ts2の測定値が上昇中又は下降中の過渡状態である場合には、ステップS6を繰り返し、Ts2の測定値が定常状態になるまで待つ。
Ts2の測定値が、定常状態にある場合(ステップS6:Yes)、ステップS7で、第1、第2の温度センサ13、15の測定値を取得し、外部熱抵抗条件2の測定温度の組Ts12、Ts22として、RAM72に保存する。
When the measured value of Ts2 has changed from Ts21 before the external thermal resistance condition change (step S4: Yes), that is, the measured value of Ts2 has changed from Ts21 before the external thermal resistance condition change to a value greater than 0.2 ° C. In Step S6, it is determined whether or not the measured value of Ts2 is in a steady state that is not a transient state that is rising or descending by the same determination as in Step S1.
If the measured value of Ts2 is a transient state that is rising or descending and is not a steady state (step S6: No), the process returns to step S6, and the measured value of Ts2 is a steady state that is not a transient state that is rising or descending. Determine if it is in a state. That is, when the measured value of Ts2 is in a transient state where the measured value is increasing or decreasing, step S6 is repeated and the process waits until the measured value of Ts2 becomes a steady state.
When the measured value of Ts2 is in a steady state (step S6: Yes), the measured value of the first and second temperature sensors 13 and 15 is acquired in step S7, and the set of measured temperatures of the external thermal resistance condition 2 The data is stored in the RAM 72 as Ts12 and Ts22.

次いで、ステップS8で、レシーバ150のHDD74に予め格納された二つの式   Next, in step S8, the two expressions stored in advance in the HDD 74 of the receiver 150.

Figure 2016114467
Figure 2016114467

Figure 2016114467
Figure 2016114467

と、断熱材11の熱抵抗値Rsの値を取得し、式(5)(6)、Rsの値、ステップS2、7で取得したTs11、Ts21、Ts12、Ts22の値を用いて、身体の皮下組織の熱抵抗値Rbを算出し、レシーバ150のHDD74の測定結果テーブルに、その時点の日時の情報を付して保存する。このとき、測定結果テーブルに、既にRbの値が保存されている場合には、前回初期設定時のRbの値であるため、ステップS8で算出した新しいRbの値で上書きをする。
その後、ステップS9で、レシーバ150の画面に、「初期設定を終了しました」との終了メッセージを表示し、図5の初期設定フローの処理を終了する。
And the value of the thermal resistance value Rs of the heat insulating material 11 is obtained, and using the values of the equations (5), (6), the value of Rs, and the values of Ts11, Ts21, Ts12, and Ts22 obtained in steps S2 and 7, The thermal resistance value Rb of the subcutaneous tissue is calculated, and the date and time information at that time is added to the measurement result table of the HDD 74 of the receiver 150 and stored. At this time, if the Rb value is already stored in the measurement result table, it is overwritten with the new Rb value calculated in step S8 because it is the Rb value at the previous initial setting.
Thereafter, in step S9, an end message “initialization has been completed” is displayed on the screen of the receiver 150, and the processing of the initial setting flow in FIG.

次いで、深部温プローブ1による深部体温測定を行う。深部体温測定は、図5の初期設定フローによる初期設定終了後又はレシーバ150の深部体温測定プログラムの不図示の画面上で深部体温測定の開始が指示された後、予め設定された時間毎に、自動で実行される。
図5の初期設定フローによる初期設定が終了したか、レシーバ150の深部体温測定プログラムの不図示の画面上で深部体温測定の開始が指示されたか、前回測定終了後予め設定された時間(例えば、30分、1時間、3時間、8時間、24時間等)が経過したことが、レシーバ150のタイマで検知された場合、図6の測定フローの処理をスタートする。図6の測定フローの処理は、レシーバ150のCPU71により、制御される。
ステップS21で、第1、第2の温度センサ13、15の測定値の組Ts1n、Ts2nを取得する。
次いで、ステップS22で、レシーバ150のHDD74に予め格納された式
Next, the deep body temperature is measured by the deep temperature probe 1. Deep body temperature measurement, after the initial setting by the initial setting flow of FIG. 5 or after the start of the deep body temperature measurement is instructed on the screen (not shown) of the deep body temperature measurement program of the receiver 150, every predetermined time, Automatically executed.
Whether the initial setting by the initial setting flow of FIG. 5 has been completed, the start of deep body temperature measurement has been instructed on the screen (not shown) of the deep body temperature measurement program of the receiver 150, or a preset time after the end of the previous measurement (for example, When the timer of the receiver 150 detects that 30 minutes, 1 hour, 3 hours, 8 hours, 24 hours, etc. have elapsed, the process of the measurement flow in FIG. 6 is started. The processing of the measurement flow in FIG. 6 is controlled by the CPU 71 of the receiver 150.
In step S21, a set of measurement values Ts1n and Ts2n of the first and second temperature sensors 13 and 15 is acquired.
Next, in step S22, the formula stored in advance in the HDD 74 of the receiver 150.

Figure 2016114467
Figure 2016114467

及び断熱材11の熱抵抗値Rsと、ステップS8で保存した身体の皮下組織の熱抵抗値Rbの値を取得し、取得したこれらの式及び値と、ステップS1で取得したTs1n、Ts2nの値を用いて、深部体温Tbを算出し、レシーバ150のHDD74に格納された測定テーブルに、その時点の日時の情報を付して保存する。また、レシーバ150の画面に、「〇年〇月〇日 ○時〇分の深部体温は、36.0℃です」など、深部体温値を表示してもよい。
その後、図6の測定フローの処理を終了する。
And the thermal resistance value Rs of the heat insulating material 11 and the thermal resistance value Rb of the subcutaneous tissue of the body stored in step S8, and these acquired formulas and values, and the values of Ts1n and Ts2n acquired in step S1. Is used to calculate the deep body temperature Tb, and the measurement table stored in the HDD 74 of the receiver 150 is added with the date and time information at that time and stored. Further, a deep body temperature value may be displayed on the screen of the receiver 150, such as “the deep body temperature of 0/00/00/00 is 36.0 ° C.”.
Thereafter, the process of the measurement flow in FIG.

<試験例1>
試験例1として、本実施形態の深部体温測定システムSによる深部体温測定の実証シミュレーション試験を行った。本試験例では、着脱式カバーの有無によって、第1、第2の温度センサに温度変化が確かに起こるかを確認した。
試験例1の実験系Eを、図7に示す。
本試験例の実験系Eは、恒温槽Bと、恒温槽Bに貯留させたオイルOと、オイルO上に、不図示のワイヤーにより固定したPC基板201と、PC基板201上に公知の医療用テープ217で固定され、表裏面にそれぞれ第1、第2の温度センサ213、215が固定された保温被覆材211と、PC基板201上に医療用テープ217で固定され、表裏面にそれぞれ第1、第2の温度センサ233、235が固定されたシリコンゴム材231と、保温被覆材211及びシリコンゴム材231ごとPC基板201を着脱可能に被覆する着脱式カバー202と、K型シース熱電対からなる室温測定用の室温温度計241と、オイル油温測定用のオイル温度計242と、を備えて構成した。
保温被覆材211表裏の第1、第2の温度センサ213、215、シリコンゴム材231表裏の第1、第2の温度センサ233、235、室温温度計241、オイル温度計242は、不図示のケーブルで不図示の情報記録装置に連結し、各センサ及び温度計の測定値を記録した。
<Test Example 1>
As Test Example 1, a demonstration simulation test of deep body temperature measurement by the deep body temperature measurement system S of the present embodiment was performed. In this test example, it was confirmed whether the temperature change surely occurred in the first and second temperature sensors depending on the presence or absence of the removable cover.
An experimental system E of Test Example 1 is shown in FIG.
The experimental system E of this test example includes a thermostat B, an oil O stored in the thermostat B, a PC board 201 fixed on the oil O by a wire (not shown), and a known medical treatment on the PC board 201. The first and second temperature sensors 213 and 215 are fixed to the front and rear surfaces, respectively, and the medical tape 217 is fixed to the PC board 201 and the first and second temperature sensors 213 and 215 are fixed to the front and rear surfaces, respectively. 1, a silicon rubber material 231 to which the second temperature sensors 233 and 235 are fixed, a detachable cover 202 that detachably covers the PC board 201 together with the heat insulation coating material 211 and the silicon rubber material 231, and a K-type sheathed thermocouple A room temperature thermometer 241 for measuring room temperature and an oil thermometer 242 for measuring oil temperature.
The first and second temperature sensors 213 and 215 on the front and back of the heat insulation coating material 211, the first and second temperature sensors 233 and 235 on the front and back of the silicon rubber material 231, the room temperature thermometer 241, and the oil thermometer 242 are not shown. It connected with the information recording device not shown with the cable, and recorded the measured value of each sensor and a thermometer.

保温被覆材211及び着脱式カバー202には、不織布、ポリエステル極細繊維、不織布、アルミ薄膜、ウレタンコーティングの順に積層されてなる保温覆布(東レ・メディカル株式会社製サンステート(登録商標))を用いた。
シリコンゴム材231には、タイガースポリマー株式会社製SRシート厚み1mmを用いた。
第1、第2の温度センサ213、233、215、235には、薄膜温度センサ(ジオマテック株式会社製)を用いた。
For the heat insulating covering material 211 and the removable cover 202, a heat insulating covering cloth (Sunstate (registered trademark) manufactured by Toray Medical Co., Ltd.), which is laminated in the order of nonwoven fabric, polyester microfiber, nonwoven fabric, aluminum thin film, and urethane coating, is used. It was.
For the silicone rubber material 231, SR sheet thickness 1 mm manufactured by Tigers Polymer Co., Ltd. was used.
As the first and second temperature sensors 213, 233, 215, and 235, thin film temperature sensors (manufactured by Geomatic Co., Ltd.) were used.

本試験例は、次の方法により行った。
まず、恒温槽Bの不図示の温度設定手段により、オイルOの温度を38℃に調整した。また、PC基板201上に、表裏面にそれぞれ第1、第2の温度センサ213、215が固定された保温被覆材211と、表裏面にそれぞれ第1、第2の温度センサ233、235が固定されたシリコンゴム材231と、を公知の医療用テープ217で固定した。
オイルOの温度が38℃で一定になった後、PC基板201をオイルOに浸し、図7の状態とした。
PC基板201をオイルOに浸した時点を0分とし、20分の時点に、着脱式カバー202でPC基板201の外気側の面全体を覆った。その後、40分の時点で、着脱式カバー202をPC基板201表面から除去した。0分の時点から60分の時点まで、保温被覆材211表裏の第1、第2の温度センサ213、215、シリコンゴム材231表裏の第1、第2の温度センサ233、235、室温温度計241、オイル温度計242の温度測定値を記録した。
This test example was performed by the following method.
First, the temperature of the oil O was adjusted to 38 ° C. by a temperature setting unit (not shown) of the constant temperature bath B. Further, on the PC board 201, the heat insulation coating material 211 in which the first and second temperature sensors 213 and 215 are fixed to the front and back surfaces, respectively, and the first and second temperature sensors 233 and 235 are fixed to the front and back surfaces, respectively. The silicon rubber material 231 thus fixed was fixed with a known medical tape 217.
After the temperature of the oil O became constant at 38 ° C., the PC board 201 was immersed in the oil O to obtain the state shown in FIG.
The time when the PC board 201 was immersed in the oil O was set to 0 minutes, and the entire surface on the outside air side of the PC board 201 was covered with the removable cover 202 at the time of 20 minutes. Thereafter, at 40 minutes, the removable cover 202 was removed from the surface of the PC board 201. From the time of 0 minutes to the time of 60 minutes, the first and second temperature sensors 213 and 215 on the front and back of the thermal insulation covering material 211, the first and second temperature sensors 233 and 235 on the front and back of the silicon rubber material 231, and a room temperature thermometer 241, the temperature measured value of the oil thermometer 242 was recorded.

結果を、図8に示す。図8に示すように、0分でPC基板201をオイルOに浸した時点から、保温被覆材211表裏の第1、第2の温度センサ213、215、シリコンゴム材231表裏の第1、第2の温度センサ233、235の温度測定値は上昇し、20分経過時点では、温度測定値の経時変化が小さくなって、温度測定値が一定の定常状態となった。
その後、20分の時点で着脱式カバー202を被せると、保温被覆材211表裏の第1、第2の温度センサ213、215、シリコンゴム材231表裏の第1、第2の温度センサ233、235の温度測定値は上昇し、35分時点では、温度測定値の経時変化が小さくなって、温度測定値が一定の定常状態となった。
The results are shown in FIG. As shown in FIG. 8, the first and second temperature sensors 213 and 215 on the front and back of the heat insulation covering material 211 and the first and second on the front and back of the silicon rubber material 231 from the time when the PC board 201 is immersed in oil O in 0 minutes. The temperature measurement values of the temperature sensors 233 and 235 of No. 2 increased. At the time when 20 minutes had elapsed, the change in the temperature measurement values with time became small, and the temperature measurement values were in a steady state.
After that, when the removable cover 202 is put on at the point of 20 minutes, the first and second temperature sensors 213 and 215 on the front and back of the heat insulation coating material 211, and the first and second temperature sensors 233 and 235 on the front and back of the silicon rubber material 231 The temperature measurement value increased, and at 35 minutes, the temperature measurement value decreased with time, and the temperature measurement value reached a steady state.

40分の時点で着脱式カバー202を除去すると、保温被覆材211表裏の第1、第2の温度センサ213、215、シリコンゴム材231表裏の第1、第2の温度センサ233、235の温度測定値は下降し、50分時点では、温度測定値の経時変化は小さくなって、温度測定値が一定の定常状態となった。
以上の結果より、保温被覆材211表裏の第1、第2の温度センサ213、215、シリコンゴム材231表裏の第1、第2の温度センサ233、235を固定したPC基板201を、38℃のオイルO油面に浸したとき、着脱式カバー202を被せたとき、着脱式カバー202を除去したときの3つの状態に変化させた場合に、温度変化が起こることを確認できた。
When the removable cover 202 is removed at 40 minutes, the temperatures of the first and second temperature sensors 213 and 215 on the front and back of the heat insulation coating material 211 and the first and second temperature sensors 233 and 235 on the front and back of the silicon rubber material 231 The measured value decreased, and at 50 minutes, the change in the temperature measured value with time became small and the temperature measured value was in a steady state.
From the above results, the first and second temperature sensors 213 and 215 on the front and back of the heat insulation coating material 211 and the first and second temperature sensors 233 and 235 on the front and back of the silicon rubber material 231 are fixed at 38 ° C. It was confirmed that a change in temperature occurred when the state was changed to the three states when the removable cover 202 was put on and the removable cover 202 was removed.

この実験系Eは、人体の深部体温測定系を模したシミュレーション実験であり、オイルO、PC基板201は、それぞれ、人体の身体深部及び深部温プローブ1を模したものである。
つまり、PC基板201をオイルOに浸した図8の0分の時点が、人体の皮膚に深部温プローブ1を接触させて貼付した時点に対応し、18〜20分の時点が、深部温プローブ1に着脱式カバー2を被せずに、第1、第2の温度センサの温度測定値が一定になった第1の時点に対応する。20分の時点が、深部温プローブ1に着脱式カバー2を被せることにより、外部熱抵抗条件を異ならせた時点に対応する。33〜40分の時点が、深部温プローブ1に着脱式カバー2を被せた異なる外部熱抵抗条件で、第1、第2の温度センサの温度測定値が一定になった第2の時点に対応する。
This experimental system E is a simulation experiment simulating a deep body temperature measurement system of the human body, and the oil O and the PC board 201 simulate the deep body temperature and the deep body temperature probe 1 respectively.
That is, the time point of 0 minute in FIG. 8 when the PC board 201 is immersed in the oil O corresponds to the time point when the deep temperature probe 1 is attached to the skin of the human body and the time point of 18 to 20 minutes is the deep temperature probe. This corresponds to the first time point when the temperature measurement values of the first and second temperature sensors become constant without covering the detachable cover 2 with 1. The time point of 20 minutes corresponds to the time point when the external thermal resistance condition is changed by covering the deep temperature probe 1 with the removable cover 2. The time point of 33 to 40 minutes corresponds to the second time point when the temperature measurement values of the first and second temperature sensors become constant under different external thermal resistance conditions in which the detachable cover 2 is put on the deep temperature probe 1. To do.

従って、実験系Eにより、着脱式カバー2(202)の有無により、オイルO油面、すなわち体表面の温度測定値が変化することが確認された。このことより、着脱式カバー2(202)を着脱して外部熱抵抗条件を変化させた上記実施形態の深部体温測定システムS及びその方法により立式ができ、深部体温の測定が計算により可能であることが分かった。
また、第1、第2の温度センサ213、233、215、235を表裏に固定する断熱材11として、図8の実験系Eでは保温被覆材211、シリコンゴム材231の2種類を用いて実験を行ったところ、第1、第2の温度センサの温度差は、シリコンゴム材231では、1℃未満であったのに対し、保温被覆材211では、3〜4℃が確保されていた。
Therefore, it was confirmed by the experimental system E that the temperature measurement value of the oil O oil surface, that is, the body surface changes depending on the presence or absence of the detachable cover 2 (202). Thus, the body temperature measurement system S of the above embodiment in which the external heat resistance condition is changed by attaching and detaching the detachable cover 2 (202) and the method thereof can be used for standing, and the measurement of the body temperature can be performed by calculation. I found out.
Further, as the heat insulating material 11 for fixing the first and second temperature sensors 213, 233, 215, and 235 to the front and back, the experiment system E in FIG. 8 uses two types of heat insulation coating material 211 and silicon rubber material 231 for the experiment. As a result, the temperature difference between the first and second temperature sensors was less than 1 ° C. for the silicon rubber material 231, whereas 3 ° C. to 4 ° C. was secured for the heat insulating coating material 211.

第1、第2の温度センサの温度差が3〜4℃確保されていれば、上記実施形態の断熱材11の性能としては十分であり、上記実施形態の断熱材11として、保温被覆材211が使用できることが分かった。
なお、図8において、第1、第2の温度センサ213、233、215、235の0分における温度測定値が、外気温よりも1〜2℃程度高くなっているのは、PC基板201のセッティングを、38℃に設定したオイルOの油面から1〜2cm離れた位置で行ったことにより、オイルOからの熱影響を受けたためと思われる。室温温度計241は、オイルOの油面から5cm程度の位置に設置したため、第1、第2の温度センサ213、233、215、235よりも、オイルOからの熱影響を受けにくい状態にあった。
更に、合計4つの第1、第2の温度センサ213、233、215、235の中でも、保温被覆材211のオイルO側の面に固定された第1の温度センサ213の温度測定値のみが、0分の時点において、他の3つの温度測定値よりも高くなっていた。これは、第1の温度センサ213が、第2の温度センサ233、235よりも熱源であるオイルO側にあり、かつ、保温被覆材211の断熱効果がシリコンゴム材231よりも高かったためと思われる。
If the temperature difference between the first and second temperature sensors is 3 to 4 ° C., the performance of the heat insulating material 11 of the above embodiment is sufficient, and the heat insulating coating material 211 is used as the heat insulating material 11 of the above embodiment. It was found that can be used.
In FIG. 8, the temperature measurement values at 0 minutes of the first and second temperature sensors 213, 233, 215, and 235 are about 1 to 2 ° C. higher than the outside air temperature. It seems that the setting was performed at a position 1 to 2 cm away from the oil surface of the oil O set at 38 ° C., so that it was affected by the heat from the oil O. Since the room temperature thermometer 241 is installed at a position about 5 cm from the oil surface of the oil O, the room temperature thermometer 241 is less susceptible to thermal influence from the oil O than the first and second temperature sensors 213, 233, 215, and 235. It was.
Further, among the total of the first and second temperature sensors 213, 233, 215, and 235, only the temperature measurement value of the first temperature sensor 213 fixed to the oil O side surface of the heat insulation coating material 211 is At 0 minutes, it was higher than the other three temperature measurements. This is probably because the first temperature sensor 213 is closer to the oil O side which is the heat source than the second temperature sensors 233 and 235, and the heat insulation effect of the heat insulating covering material 211 is higher than that of the silicon rubber material 231. It is.

E 実験系
N 情報通信網
O オイル
B 恒温槽
S 深部体温測定システム
1 深部温プローブ
2、202 着脱式カバー
11 断熱材
12 熱伝導部材
13、213、233 第1の温度センサ
14 均熱材
15、215、235 第2の温度センサ
16 回路基板
21 凹部
71 CPU
72 RAM
73 ROM
74 HDD
75 記憶媒体装置
76 通信装置
77 入力装置
78 表示装置
101 病院内サーバ
120 端末
130 クラウドサーバ
150 レシーバ
201 PC基板
211 保温被覆材
217 医療用テープ
231 シリコンゴム材
241 室温温度計
242 オイル温度計
E Experimental System N Information Communication Network O Oil B Thermostatic Bath S Deep Body Temperature Measurement System 1 Deep Temperature Probe 2, 202 Detachable Cover 11 Heat Insulating Material 12 Heat Conducting Member 13, 213, 233 First Temperature Sensor 14 Soaking Material 15, 215, 235 Second temperature sensor 16 Circuit board 21 Recess 71 CPU
72 RAM
73 ROM
74 HDD
75 Storage medium device 76 Communication device 77 Input device 78 Display device 101 Hospital server 120 Terminal 130 Cloud server 150 Receiver 201 PC board 211 Thermal insulation coating material 217 Medical tape 231 Silicon rubber material 241 Room temperature thermometer 242 Oil thermometer

Claims (7)

非加熱型の深部温プローブを用いて身体の深部体温を測定する深部体温測定システムであって、
前記深部温プローブは、前記身体の体表面側に配置された体表面側温度センサと、該体表面側温度センサよりも体表面逆側に対向して、既知の熱抵抗を有する断熱材を介して配置された外気側温度センサと、該外気側温度センサより外気側の外部熱抵抗条件を変更するための外部熱抵抗変更手段と、を備え、
前記体表面側及び前記外気側温度センサからそれぞれ得られる温度測定値を用いて前記深部体温を算出する算出手段を備え、
該算出手段は、
初期設定中において前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第1の時点における、前記体表面側及び前記外気側温度センサの温度測定値を、第1の時点の温度測定値の組として取得する第1測定値取得手段と、
前記初期設定中の前記第1の時点より前又は後に、前記外部熱抵抗変更手段を用いて前記第1の時点とは前記外部熱抵抗条件を異ならせ、前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第2の時点における前記体表面側及び前記外気側温度センサの温度測定値を、第2の時点の温度測定値の組として取得する第2測定値取得手段と、
前記第1及び前記第2の時点の温度測定値の組を用いて、前記身体の皮下組織の熱抵抗を算出する初期設定値算出手段と、
任意の時点における前記体表面側及び前記外気側温度センサのそれぞれの温度測定値と、前記身体の皮下組織の熱抵抗とを用いて、前記任意の時点における前記深部体温を算出する深部体温算出手段と、を備えることを特徴とする深部体温測定システム。
A deep body temperature measurement system that measures the body's deep body temperature using a non-heating type deep temperature probe,
The deep temperature probe includes a body surface side temperature sensor disposed on the body surface side of the body, and a heat insulating material having a known thermal resistance facing the body surface opposite to the body surface side temperature sensor. And an external heat resistance changing means for changing an external heat resistance condition on the outside air side from the outside air temperature sensor,
A calculation means for calculating the deep body temperature using temperature measurement values respectively obtained from the body surface side and the outside air side temperature sensor;
The calculating means is:
The temperature measurement values of the body surface side and the outside air temperature sensor at the first time point when the temperature measurement values of the body surface side and the outside air temperature sensor become constant during the initial setting, First measurement value acquisition means for acquiring a set of temperature measurement values at the time of
Before or after the first time point during the initial setting, the external heat resistance changing means is used to make the external heat resistance condition different from the first time point, and the body surface side and the outside air side temperature sensor The second measurement value for acquiring the temperature measurement values of the body surface side and the outside air side temperature sensors at the second time point when the respective temperature measurement values of the first and second temperature values become constant as a set of temperature measurement values at the second time point Acquisition means;
An initial set value calculating means for calculating a thermal resistance of the subcutaneous tissue of the body using a set of temperature measurement values at the first and second time points;
Deep body temperature calculation means for calculating the deep body temperature at the arbitrary time point using the temperature measurement values of the body surface side and the outside air temperature sensors at the arbitrary time point and the thermal resistance of the subcutaneous tissue of the body. And a deep body temperature measuring system.
前記外部熱抵抗変更手段は、前記外気側から前記深部温プローブを被覆する着脱可能なカバーからなり、
前記第2測定値取得手段では、前記第2の時点において、前記カバーで前記外気側から前記深部温プローブが被覆されることにより、前記第1の時点と前記第2の時点における前記外部熱抵抗条件が異なっていることを特徴とする請求項1記載の深部体温測定システム。
The external thermal resistance changing means comprises a detachable cover that covers the deep temperature probe from the outside air side,
In the second measured value acquisition means, the external temperature resistance at the first time point and the second time point is obtained by covering the deep temperature probe from the outside air side with the cover at the second time point. The deep body temperature measurement system according to claim 1, wherein conditions are different.
前記初期設定値算出手段による前記身体の皮下組織の熱抵抗算出後、所定時間経過後に、前記初期設定値算出手段による前記身体の皮下組織の熱抵抗算出を再度行うよう促す初期設定要求メッセージを表示する手段を備えることを特徴とする請求項1又は2記載の深部体温測定システム。   An initial setting request message prompting the user to recalculate the thermal resistance of the subcutaneous tissue of the body by the initial set value calculating means after a predetermined time has elapsed after calculating the thermal resistance of the subcutaneous tissue of the body by the initial setting value calculating means. The deep body temperature measuring system according to claim 1, further comprising: 前記深部温プローブと無線による情報送受信可能に接続されたコンピュータを備え、
該コンピュータは、前記初期設定値算出手段及び前記深部体温算出手段を備えることを特徴とする請求項1乃至3いずれか記載の深部体温測定システム。
A computer connected to the deep temperature probe so as to be able to transmit and receive information wirelessly;
The deep body temperature measurement system according to any one of claims 1 to 3, wherein the computer includes the initial set value calculation means and the deep body temperature calculation means.
前記初期設定値算出手段は、前記第1の時点における前記体表面側温度センサの温度測定値Ts11及び前記外気側温度センサの温度測定値Ts21と、前記第2の時点における前記体表面側温度センサの温度測定値Ts12及び前記外気側温度センサの温度測定値Ts22と、前記断熱材の前記既知の熱抵抗Rsとを、式
Figure 2016114467
Figure 2016114467
に代入することにより、前記身体の皮下組織の熱抵抗Rbを算出することを特徴とする請求項1乃至4いずれか記載の深部体温測定システム。
The initial set value calculating means includes a temperature measurement value Ts11 of the body surface side temperature sensor and a temperature measurement value Ts21 of the outside air temperature sensor at the first time point, and the body surface side temperature sensor at the second time point. The measured temperature value Ts12 of the air, the measured temperature value Ts22 of the outside air temperature sensor, and the known thermal resistance Rs of the heat insulating material are expressed by the equation
Figure 2016114467
Figure 2016114467
The deep body temperature measurement system according to claim 1, wherein the thermal resistance Rb of the subcutaneous tissue of the body is calculated by substituting into.
前記深部体温算出手段は、前記任意の時点における前記体表面側温度センサの温度測定値Ts1n及び前記外気側温度センサの温度測定値Ts2nと、前記断熱材の前記既知の熱抵抗Rsと、前記身体の皮下組織の熱抵抗Rbとを、式
Figure 2016114467
に代入することにより、前記任意の時点における前記深部体温Tbnを算出することを特徴とする請求項5記載の深部体温測定システム。
The deep body temperature calculation means includes a temperature measurement value Ts1n of the body surface side temperature sensor and a temperature measurement value Ts2n of the outside air temperature sensor at the arbitrary time point, the known thermal resistance Rs of the heat insulating material, and the body The thermal resistance Rb of the subcutaneous tissue of
Figure 2016114467
6. The deep body temperature measurement system according to claim 5, wherein the deep body temperature Tbn at the arbitrary time point is calculated by substituting into.
非加熱型の深部温プローブを用いて身体の深部体温を測定する深部体温測定方法であって、
前記深部温プローブは、前記身体の体表面側に配置された体表面側温度センサと、該体表面側温度センサよりも体表面逆側に対向して、既知の熱抵抗を有する断熱材を介して配置された外気側温度センサと、該外気側温度センサより外気側の外部熱抵抗条件を変更するための外部熱抵抗変更手段と、を備え、
初期設定中において前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第1の時点における、前記体表面側及び前記外気側温度センサの温度測定値を、第1の時点の温度測定値の組として取得する第1測定値取得手順と、
前記初期設定中の前記第1の時点より前又は後に、前記外部熱抵抗変更手段を用いて前記第1の時点とは前記外部熱抵抗条件を異ならせ、前記体表面側及び前記外気側温度センサのそれぞれの前記温度測定値が一定になった第2の時点における前記体表面側及び前記外気側温度センサの温度測定値を、第2の時点の温度測定値の組として取得する第2測定値取得手順と、
前記第1及び前記第2の時点の温度測定値の組を用いて、前記身体の皮下組織の熱抵抗を算出する初期設定値算出手順と、
任意の時点における前記体表面側及び前記外気側温度センサのそれぞれの温度測定値と、前記身体の皮下組織の熱抵抗とを用いて、前記任意の時点における前記深部体温を算出する深部体温算出手順と、を備えることを特徴とする深部体温測定方法。


A deep body temperature measurement method for measuring the body temperature of a body using a non-heating type of body temperature probe,
The deep temperature probe includes a body surface side temperature sensor disposed on the body surface side of the body, and a heat insulating material having a known thermal resistance facing the body surface opposite to the body surface side temperature sensor. And an external heat resistance changing means for changing an external heat resistance condition on the outside air side from the outside air temperature sensor,
The temperature measurement values of the body surface side and the outside air temperature sensor at the first time point when the temperature measurement values of the body surface side and the outside air temperature sensor become constant during the initial setting, A first measurement value acquisition procedure to acquire as a set of temperature measurement values at the time of
Before or after the first time point during the initial setting, the external heat resistance changing means is used to make the external heat resistance condition different from the first time point, and the body surface side and the outside air side temperature sensor The second measurement value for acquiring the temperature measurement values of the body surface side and the outside air side temperature sensors at the second time point when the respective temperature measurement values of the first and second temperature values become constant as a set of temperature measurement values at the second time point Acquisition procedure;
An initial set value calculation procedure for calculating a thermal resistance of the subcutaneous tissue of the body using a set of temperature measurement values at the first and second time points;
Deep body temperature calculation procedure for calculating the deep body temperature at the arbitrary time point by using the temperature measurement values of the body surface side and the outside air temperature sensors at the arbitrary time point and the thermal resistance of the subcutaneous tissue of the body. And a deep body temperature measuring method.


JP2014253104A 2014-12-15 2014-12-15 Deep body temperature measurement system and deep body temperature measurement method Pending JP2016114467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014253104A JP2016114467A (en) 2014-12-15 2014-12-15 Deep body temperature measurement system and deep body temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014253104A JP2016114467A (en) 2014-12-15 2014-12-15 Deep body temperature measurement system and deep body temperature measurement method

Publications (1)

Publication Number Publication Date
JP2016114467A true JP2016114467A (en) 2016-06-23

Family

ID=56141623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014253104A Pending JP2016114467A (en) 2014-12-15 2014-12-15 Deep body temperature measurement system and deep body temperature measurement method

Country Status (1)

Country Link
JP (1) JP2016114467A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109008989A (en) * 2018-06-14 2018-12-18 杭州感到科技有限公司 The measurement method and equipment of abdomen core temperature
CN109855755A (en) * 2017-11-30 2019-06-07 科技共享股份有限公司 Biological data measurement apparatus
CN111141420A (en) * 2020-02-04 2020-05-12 上海申矽凌微电子科技有限公司 Object deep temperature measuring method and device based on heat flow method
WO2020209358A1 (en) * 2019-04-12 2020-10-15 株式会社Herbio Navel measurement device
US20200340865A1 (en) * 2018-03-02 2020-10-29 Murata Manufacturing Co., Ltd. Core body thermometer
JP2021000349A (en) * 2019-06-24 2021-01-07 株式会社アコーズ Health management apparatus and its manufacturing method
JP2021069572A (en) * 2019-10-30 2021-05-06 新東工業株式会社 Determination device, and detection device
WO2021199379A1 (en) * 2020-04-01 2021-10-07 日本電信電話株式会社 Measurement device
WO2022064553A1 (en) * 2020-09-23 2022-03-31 日本電信電話株式会社 Temperature estimation method, temperature estimation program, and temperature estimation device
WO2023017599A1 (en) * 2021-08-12 2023-02-16 日本電信電話株式会社 Temperature measuring device
WO2023228726A1 (en) * 2022-05-27 2023-11-30 Semitec株式会社 Deep temperature measurement device and deep temperature measurement method
CN109008989B (en) * 2018-06-14 2024-06-11 杭州感到科技有限公司 Method and apparatus for measuring abdominal core temperature

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132796A (en) * 1997-11-04 1999-05-21 Nec Corp Controller
JPH11194162A (en) * 1997-12-29 1999-07-21 Orix Rentec Kk Calibration work managing system for instrument
JP2007212407A (en) * 2006-02-13 2007-08-23 Kanazawa Univ Non-heating type deep part medical thermometer and deep part temperature measuring device using it
WO2011012386A1 (en) * 2009-07-27 2011-02-03 Csem Sa Sensor and method for determining a core body temperature
WO2013121762A1 (en) * 2012-02-14 2013-08-22 テルモ株式会社 Clinical thermometer and body temperature measurement system
JP2013190236A (en) * 2012-03-12 2013-09-26 Terumo Corp Thermometer and control method thereof
JP2014052350A (en) * 2012-09-10 2014-03-20 Terumo Corp Clinical thermometer
JP2014142365A (en) * 2014-05-16 2014-08-07 Seiko Epson Corp Temperature measurement device and temperature measurement method
JP2014167480A (en) * 2014-04-16 2014-09-11 Seiko Epson Corp Thermometer and temperature measuring method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132796A (en) * 1997-11-04 1999-05-21 Nec Corp Controller
JPH11194162A (en) * 1997-12-29 1999-07-21 Orix Rentec Kk Calibration work managing system for instrument
JP2007212407A (en) * 2006-02-13 2007-08-23 Kanazawa Univ Non-heating type deep part medical thermometer and deep part temperature measuring device using it
WO2011012386A1 (en) * 2009-07-27 2011-02-03 Csem Sa Sensor and method for determining a core body temperature
WO2013121762A1 (en) * 2012-02-14 2013-08-22 テルモ株式会社 Clinical thermometer and body temperature measurement system
JP2013190236A (en) * 2012-03-12 2013-09-26 Terumo Corp Thermometer and control method thereof
JP2014052350A (en) * 2012-09-10 2014-03-20 Terumo Corp Clinical thermometer
JP2014167480A (en) * 2014-04-16 2014-09-11 Seiko Epson Corp Thermometer and temperature measuring method
JP2014142365A (en) * 2014-05-16 2014-08-07 Seiko Epson Corp Temperature measurement device and temperature measurement method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999385B2 (en) 2017-11-30 2022-01-18 株式会社テクノ・コモンズ Object data measuring device
CN109855755A (en) * 2017-11-30 2019-06-07 科技共享股份有限公司 Biological data measurement apparatus
JP2019097819A (en) * 2017-11-30 2019-06-24 株式会社テクノ・コモンズ Biological data measuring apparatus
US11672428B2 (en) * 2017-11-30 2023-06-13 Techno-Commons Inc. Biological data measurement device
US20200340865A1 (en) * 2018-03-02 2020-10-29 Murata Manufacturing Co., Ltd. Core body thermometer
US11828661B2 (en) * 2018-03-02 2023-11-28 Murata Manufacturing Co., Ltd. Core body thermometer
CN109008989A (en) * 2018-06-14 2018-12-18 杭州感到科技有限公司 The measurement method and equipment of abdomen core temperature
CN109008989B (en) * 2018-06-14 2024-06-11 杭州感到科技有限公司 Method and apparatus for measuring abdominal core temperature
WO2020209358A1 (en) * 2019-04-12 2020-10-15 株式会社Herbio Navel measurement device
JPWO2020209358A1 (en) * 2019-04-12 2021-04-30 株式会社Herbio Umbilical measuring device
JP2021000349A (en) * 2019-06-24 2021-01-07 株式会社アコーズ Health management apparatus and its manufacturing method
JP2021069572A (en) * 2019-10-30 2021-05-06 新東工業株式会社 Determination device, and detection device
JP7259700B2 (en) 2019-10-30 2023-04-18 新東工業株式会社 Determination device and detection device
CN111141420A (en) * 2020-02-04 2020-05-12 上海申矽凌微电子科技有限公司 Object deep temperature measuring method and device based on heat flow method
JPWO2021199379A1 (en) * 2020-04-01 2021-10-07
JP7444241B2 (en) 2020-04-01 2024-03-06 日本電信電話株式会社 measuring device
WO2021199379A1 (en) * 2020-04-01 2021-10-07 日本電信電話株式会社 Measurement device
WO2022064553A1 (en) * 2020-09-23 2022-03-31 日本電信電話株式会社 Temperature estimation method, temperature estimation program, and temperature estimation device
WO2023017599A1 (en) * 2021-08-12 2023-02-16 日本電信電話株式会社 Temperature measuring device
WO2023228726A1 (en) * 2022-05-27 2023-11-30 Semitec株式会社 Deep temperature measurement device and deep temperature measurement method

Similar Documents

Publication Publication Date Title
JP2016114467A (en) Deep body temperature measurement system and deep body temperature measurement method
JP7005513B2 (en) Single heat flux sensor device
US11672428B2 (en) Biological data measurement device
JP5327840B2 (en) Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device
US20180214028A1 (en) System for body temperature measurement
EP3156774A1 (en) System and method for core body temperature measurement
JP2017501793A (en) Monitoring and management of vital signs
US20180008149A1 (en) Systems and Methods of Body Temperature Measurement
JP2012237670A (en) Thermometer and manometer provided with the same
US20160235306A1 (en) Thermal monitoring and control
US20220000370A1 (en) Core body temperature sensor system based on flux measurement
US11519793B2 (en) Skin simulation device, electronic apparatus evaluation method, and electronic apparatus evaluation system
US20190167208A1 (en) Bio-information processing apparatus and bio-information processing method
Sim et al. A nonintrusive temperature measuring system for estimating deep body temperature in bed
EP3453419A1 (en) Method and sleep device for sleep regulation
CN111741710B (en) Core temperature detection system and method
WO2005070288A1 (en) Combination of a toilet seat with one or more medical diagnostic instruments
KR20140121183A (en) Single layer thermometer for noninvasive and nonintrusive deep body temperature monitoring
Tamura et al. Body temperature, heat flow, and evaporation
EP4360542A1 (en) Electronic device and method of estimating core body temperature using the same
CN109008989B (en) Method and apparatus for measuring abdominal core temperature
CN111565625B (en) System and method for detecting thickness of layer
US20230248246A1 (en) Apparatus and method for estimating body temperature
WO2022264271A1 (en) Temperature estimation system and temperature estimation method
KR20230032212A (en) Apparatus and method for estimating body temperature

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20150107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191119