JP2016111136A - Rare-earth magnet - Google Patents

Rare-earth magnet Download PDF

Info

Publication number
JP2016111136A
JP2016111136A JP2014245994A JP2014245994A JP2016111136A JP 2016111136 A JP2016111136 A JP 2016111136A JP 2014245994 A JP2014245994 A JP 2014245994A JP 2014245994 A JP2014245994 A JP 2014245994A JP 2016111136 A JP2016111136 A JP 2016111136A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
earth magnet
core
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014245994A
Other languages
Japanese (ja)
Other versions
JP6791614B2 (en
Inventor
正朗 伊東
Masao Ito
正朗 伊東
秀史 岸本
Hideshi Kishimoto
秀史 岸本
哲也 庄司
Tetsuya Shoji
哲也 庄司
真鍋 明
Akira Manabe
明 真鍋
紀次 佐久間
Noritsugu Sakuma
紀次 佐久間
正雄 矢野
Masao Yano
正雄 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014245994A priority Critical patent/JP6791614B2/en
Publication of JP2016111136A publication Critical patent/JP2016111136A/en
Application granted granted Critical
Publication of JP6791614B2 publication Critical patent/JP6791614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth magnet excellent in high temperature coercive force, while reducing the amount of Nd.SOLUTION: A crystal grain 10 having a whole composition of (CeNd)FeCoBM(in the formula, M is at least one kind of Ga, Al, Cu, Au, Ag, Zn, In, Mn, 0≤x≤0.75, 5≤y≤20, 4≤z≤6.5, 0≤w≤8, 0≤v≤2) is constituted of a core 1 and a shell 2 therearound, The Nd concentration is higher in the shell 2 than in the core 1.SELECTED DRAWING: Figure 1

Description

本発明は、高温における保磁力の高い希土類磁石に関する。   The present invention relates to a rare earth magnet having high coercivity at high temperatures.

希土類元素を用いた希土類磁石は永久磁石とも称され、その用途は、ハードディスクやMRIを構成するモータのほか、ハイブリッド車や電気自動車等の駆動用モータなどに用いられている。   Rare earth magnets using rare earth elements are also called permanent magnets, and their uses are used in motors for driving hard disks and MRI, as well as drive motors for hybrid vehicles and electric vehicles.

この希土類磁石の磁石性能の指標として残留磁化(残留時速密度)と保磁力を挙げることができるが、モータの小型化や高電流密度化による発熱量の増大に対し、使用される希土類磁石にも耐熱性に対する要求は一層高まっており、高温使用下で磁石の保磁力を如何に保持できるかが当該技術分野での重要な研究課題の一つとなっている。車両駆動用モータに多用される希土類磁石の一つであるNd−Fe−B系磁石を取り挙げると、結晶粒の微細化を図ることやNd量の多い組成合金を用いること、保磁力性能の高いDy、Tbといった重希土類元素を添加することなどによってその保磁力を増大させる試みが行われている。   Residual magnetization (residual speed density) and coercive force can be cited as indicators of the magnet performance of this rare earth magnet. However, the rare earth magnets used also have increased heat generation due to miniaturization of motors and higher current density. The demand for heat resistance is further increasing, and how to maintain the coercive force of a magnet under high temperature use is one of the important research subjects in the technical field. Taking Nd-Fe-B magnets, one of the rare-earth magnets frequently used in vehicle drive motors, to refine crystal grains, use a composition alloy with a large amount of Nd, Attempts have been made to increase the coercivity by adding heavy rare earth elements such as high Dy and Tb.

希土類元素としては、組織を構成する結晶粒のスケールが3〜5μm程度の一般的な焼結磁石のほか、結晶粒を50nm〜300nmのナノスケールに微細化したナノ結晶磁石がある。   As rare earth elements, there are a general sintered magnet having a crystal grain scale of about 3 to 5 μm constituting a structure, and a nanocrystal magnet obtained by refining crystal grains to a nanoscale of 50 nm to 300 nm.

Nd−Fe−B系の一般的な希土類磁石のミクロ構造は、Ndリッチな結晶粒と結晶粒間に介在する粒界とから構成されている。この結晶粒を構成するNdは高価な希土類元素であることから、磁石性能を保証しながら、その使用量を如何に低減できるかが当該技術分野における重要な開発課題の一つとなっている。   The microstructure of a general rare earth magnet of Nd—Fe—B system is composed of Nd-rich crystal grains and grain boundaries interposed between the crystal grains. Since Nd constituting the crystal grains is an expensive rare earth element, how to reduce the amount of use while guaranteeing magnet performance is one of the important development issues in the technical field.

そこで、Ndの使用量低減に関する方策として、CeやLaといった軽希土類元素の使用や、Gd、Y、Sc、Sm、Luなどの元素の使用が考えられる。   Therefore, as measures for reducing the amount of Nd used, the use of light rare earth elements such as Ce and La and the use of elements such as Gd, Y, Sc, Sm, and Lu can be considered.

しかしながら、Ndに代えてこれらの元素を適用する場合は勿論のこと、Ndの多くをこれらの元素で置換した場合であっても希土類磁石の磁気特性が著しく低下することが想定されることから、これらの元素の使用量が限定的にならざるを得ず、十分な材料コスト低減効果が期待できない。さらに、これら磁気特性の低い元素を使用する場合は一般にその使用形態が等方的なものに限定される傾向がきわめて強い。   However, when these elements are applied instead of Nd, it is assumed that the magnetic properties of rare earth magnets are significantly reduced even when much of Nd is replaced with these elements. The amount of these elements used must be limited, and a sufficient material cost reduction effect cannot be expected. Further, when these elements having low magnetic properties are used, there is a very strong tendency that their usage is generally limited to isotropic.

そこで、上記軽希土類元素やGd、Y等の元素を使用してなる希土類磁石の異方化を図ろうとした場合には、たとえば熱間塑性加工等の加工プロセスにおいて希土類磁石の保磁力が著しく低下してしまい、磁気特性の悪化が避けられない。   Therefore, when attempting to anisotropy of rare earth magnets using the light rare earth elements and elements such as Gd and Y, the coercive force of the rare earth magnets is significantly reduced in a machining process such as hot plastic machining. Therefore, the deterioration of magnetic properties is inevitable.

ここで、特許文献1には、Ndと、R(La、Ce、Pr、Dy、Ho及びTbのうちの少なくとも1種の希土類元素)と、Feと、M(Al、Ti、V、Cr、Mn、Co、Ni、Zr、Nb、Mo、Ta及びWのうちの少なくとも1種の金属元素)と、Bとを含むNd−R−Fe−M−B系磁石において、前記R及びMの濃度が磁石を構成する結晶粒(主相)の周辺部で高く、中心部で低いことを特徴とする磁石が開示されている。   Here, Patent Document 1 describes Nd, R (at least one rare earth element selected from La, Ce, Pr, Dy, Ho, and Tb), Fe, and M (Al, Ti, V, Cr, In an Nd—R—Fe—MB system magnet containing at least one metal element of Mn, Co, Ni, Zr, Nb, Mo, Ta, and W) and B, the concentration of R and M Discloses a magnet characterized by being high at the periphery of the crystal grains (main phase) constituting the magnet and low at the center.

ここで開示される磁石は、RがCe又はLaでもよいとされているが、RとしてCe又はLaのみを用いた磁石については具体的に開示されておらず、このような磁石が高温において高い保磁力を示すか否かは明らかではない。   In the magnet disclosed here, R may be Ce or La. However, a magnet using only Ce or La as R is not specifically disclosed, and such a magnet is high at a high temperature. It is not clear whether or not the coercive force is exhibited.

特開昭63−127505号公報JP 63-127505 A

本発明は上記する問題に鑑みてなされたものであり、Ndの量を低減しながら、高温保磁力に優れた希土類磁石を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a rare earth magnet excellent in high temperature coercive force while reducing the amount of Nd.

前記目的を達成すべく、本発明によれば、下式
(CexNd(1-x))yFe(100-y-w-z-v)Cowzv
(上式中、MはGa、Al、Cu、Au、Ag、Zn、In、Mnの少なくとも1種であり、0≦x≦0.75、5≦y≦20、4≦z≦6.5、0≦w≦8、0≦v≦2)
の全体組成を有する結晶粒であって、コア部とその周囲のシェル部とから構成され、コア部よりもシェル部においてNd濃度が高い結晶粒を備えている希土類磁石が提供される。
In order to achieve the above object, according to the present invention,
(Ce x Nd (1-x )) y Fe (100-ywzv) Co w B z M v
(In the above formula, M is at least one of Ga, Al, Cu, Au, Ag, Zn, In, and Mn, and 0 ≦ x ≦ 0.75, 5 ≦ y ≦ 20, 4 ≦ z ≦ 6.5. , 0 ≦ w ≦ 8, 0 ≦ v ≦ 2)
There is provided a rare earth magnet having a crystal grain having an overall composition, and comprising a core part and a surrounding shell part, and having crystal grains having a higher Nd concentration in the shell part than in the core part.

本発明の希土類磁石は、その結晶粒がコア部とその周りのシェル部から構成されていて、コア部にはCeの軽希土類元素やGd、Y等の元素がNdの一部を置換し、したがって、Ndのみからなるコア部を備えた結晶粒からなる希土類磁石に比して材料コストを大幅に低減できるものである。そして、このように、コア部は安価で磁気特性の低い元素を含んでいながらも、その周りにNd濃度が高いシェル部が存在し、コア部よりもシェル部においてNd濃度を高くすることで、高い磁気特性の低下を抑制しながら、結晶粒間の磁気分断が図られ、磁気異方性に優れた希土類磁石となっている。   In the rare earth magnet of the present invention, the crystal grains are composed of a core portion and a shell portion around the core portion, and a light rare earth element of Ce or an element such as Gd or Y replaces a part of Nd in the core portion, Therefore, the material cost can be significantly reduced as compared with a rare earth magnet made of crystal grains having a core portion made of only Nd. As described above, the core portion contains an element having a low Nd concentration even though the core portion includes an inexpensive element having a low magnetic property, and the Nd concentration is higher in the shell portion than in the core portion. Thus, while suppressing the deterioration of high magnetic properties, the magnetic separation between crystal grains is achieved, and the rare earth magnet is excellent in magnetic anisotropy.

なお、結晶粒のコア部はNdの量が比較的少ないことから保磁力の比較的低いセミハード相となり、一方で、結晶粒のシェル部はNdの量が多いことから保磁力の高いハード相となり、したがって、希土類磁石を構成する結晶粒はセミハード相とハード相のコンポジット組織を呈していると言える。そして、このように結晶粒が保磁力の高いハード相をシェル部として備えていることで結晶粒間の磁気分断が図られ、磁気特性の向上に繋がっている。   The core part of the crystal grain becomes a semi-hard phase having a relatively low coercive force because of the relatively small amount of Nd, while the shell part of the crystal grain becomes a hard phase having a high coercive force because of the large amount of Nd. Therefore, it can be said that the crystal grains constituting the rare earth magnet have a composite structure of a semi-hard phase and a hard phase. In addition, since the crystal grains are provided with a hard phase having a high coercive force as the shell portion, magnetic separation between the crystal grains is achieved, which leads to improvement of magnetic characteristics.

以上のように、本発明の希土類磁石によれば、結晶粒の組成成分である高価なNdの元素量が低減され、その代わりに比較的安価なCeが適用されていることで、材料コストを従来の希土類磁石に比して格段に廉価にできる。しかも、結晶粒がCeを含むコア部の周りにNdがリッチなシェル部を有する構造を呈し、コア部よりもシェル部においてNd濃度を高くしていることで磁気異方性に優れ、高温保磁力に優れた結晶粒からなる希土類磁石となる。   As described above, according to the rare earth magnet of the present invention, the amount of expensive Nd element, which is a composition component of crystal grains, is reduced, and instead relatively inexpensive Ce is applied, thereby reducing the material cost. Compared to conventional rare earth magnets, it can be made much cheaper. In addition, the crystal grains have a structure having a shell part rich in Nd around the core part containing Ce, and the Nd concentration is higher in the shell part than in the core part, so that the magnetic anisotropy is excellent, and the high temperature holding is performed. It becomes a rare earth magnet made of crystal grains with excellent magnetic force.

本発明の希土類磁石のミクロ構造を説明した模式図である。It is the schematic diagram explaining the microstructure of the rare earth magnet of the present invention. 図1のII−II線上の各位置における磁気異方性を説明した図である。It is a figure explaining the magnetic anisotropy in each position on the II-II line | wire of FIG. 実施例1と比較例1の保磁力の温度依存性を示すグラフである。6 is a graph showing temperature dependence of coercivity of Example 1 and Comparative Example 1. 実施例2と比較例2の保磁力の温度依存性を示すグラフである。6 is a graph showing temperature dependence of coercive force of Example 2 and Comparative Example 2. 実施例3と比較例3の保磁力の温度依存性を示すグラフである。6 is a graph showing the temperature dependence of coercivity of Example 3 and Comparative Example 3.

以下、図面を参照して本発明の希土類磁石とその製造方法の実施の形態を説明する。   Embodiments of a rare earth magnet and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.

(希土類磁石)
図1は本発明の希土類磁石のミクロ構造を説明した模式図であり、図2は図1のII−II線上の各位置における磁気異方性を説明した図である。図示する希土類磁石100は、多数の結晶粒10が粒界20を介して併設したミクロ構造を呈している。なお、図示例の結晶粒10は六角形の断面形状を呈しているが、四角形(長方形、ヒシ形)や楕円形など、その断面形状は多様である。
(Rare earth magnet)
FIG. 1 is a schematic diagram illustrating the microstructure of the rare earth magnet of the present invention, and FIG. 2 is a diagram illustrating the magnetic anisotropy at each position on the II-II line of FIG. The illustrated rare earth magnet 100 has a microstructure in which a large number of crystal grains 10 are provided with grain boundaries 20 interposed therebetween. In addition, although the crystal grains 10 in the illustrated example have a hexagonal cross-sectional shape, the cross-sectional shapes such as a quadrangle (rectangular shape, an ellipsoidal shape) and an elliptical shape are various.

結晶粒10は、コア部1とその周囲のシェル部2から構成された、いわゆるコア−シェル構造を呈している。   The crystal grain 10 has a so-called core-shell structure composed of a core portion 1 and a shell portion 2 around the core portion 1.

結晶粒10は、(CexNd(1-x))yFe(100-y-w-z-v)Cowzv(式中、MはGa、Al、Cu、Au、Ag、Zn、In、Mnの少なくとも1種であり、0≦x≦0.75、5≦y≦20、4≦z≦6.5、0≦w≦8、0≦v≦2)の全体組成を有しており、この結晶粒はコア部とその周囲のシェル部とから構成され、コア部よりもシェル部においてNd濃度が高い組成を有している。 Crystal grains 10, (Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z M v ( where, M is Ga, Al, Cu, Au, Ag, Zn, In, Mn of At least one, and has an overall composition of 0 ≦ x ≦ 0.75, 5 ≦ y ≦ 20, 4 ≦ z ≦ 6.5, 0 ≦ w ≦ 8, 0 ≦ v ≦ 2). The crystal grains are composed of a core portion and a surrounding shell portion, and have a composition in which the Nd concentration is higher in the shell portion than in the core portion.

ここで、コア部におけるxはシェル部におけるxよりも大きい組成を有している。   Here, x in the core portion has a larger composition than x in the shell portion.

コア部1は、NdよりもCeといった、Ndよりも材料コストが格段に廉価である元素でNdの一部を置換した状態となっていることから、Ndのみからなるコア部を備えた磁性材料からなる希土類磁石、すなわち、一般のNd2Fe14B磁石(ネオジム磁石)に比して材料コストを大幅に低減できる。 Since the core part 1 is in a state in which a part of Nd is replaced with an element whose material cost is much lower than Nd, such as Ce, rather than Nd, a magnetic material having a core part made only of Nd The material cost can be greatly reduced as compared with rare earth magnets made of, that is, general Nd 2 Fe 14 B magnets (neodymium magnets).

しかしながら、結晶粒10を構成するコア部1がCeによりNdの一部を置換していることから、一般のNd2Fe14B磁石に比して磁気特性の低下が避けられない。 However, since the core part 1 constituting the crystal grains 10 substitutes a part of Nd with Ce, the magnetic characteristics are inevitably lowered as compared with a general Nd 2 Fe 14 B magnet.

この磁気特性低下を抑制すべく、図示する結晶粒10では、コア部1の周囲にNdの濃度が高いシェル部2を有していることで、隣接する結晶粒10間の磁気分断を図ることができ、磁気異方性を備え、保磁力や残留磁化といった磁気特性の低下が抑制されている。   In order to suppress this decrease in magnetic characteristics, the illustrated crystal grain 10 has the shell part 2 having a high Nd concentration around the core part 1, thereby achieving magnetic separation between adjacent crystal grains 10. The magnetic anisotropy is provided, and the deterioration of magnetic properties such as coercive force and remanent magnetization is suppressed.

このことは、図2で示す結晶粒10の部位ごとの磁気異方性を示した図から理解が容易となる。同図で示すように、コア部1は磁気特性の低いCeでNdの一部を置換しており磁気異方性も低くなっているが、その一方で、その周囲のシェル部2はNd濃度が高い領域であることから磁気異方性は高くなる。   This can be easily understood from the diagram showing the magnetic anisotropy for each part of the crystal grain 10 shown in FIG. As shown in the figure, the core portion 1 has a part of Nd replaced with Ce having low magnetic properties and the magnetic anisotropy is also low. On the other hand, the surrounding shell portion 2 has an Nd concentration. Is a high region, the magnetic anisotropy becomes high.

このように、コア部1を廉価な元素でNdの一部を置換することにより、Ndの量を低減しながら、Nd濃度が高いシェル部2を有することで全体としての磁気特性の低下が抑制された結晶粒10が構成される。すなわち、コア部の磁気異方性よりシェル部の磁気異方性が高い状態であると保磁力が向上するため、本発明の希土類磁石において、コア−シェル構造をとることで、外部磁場からの影響を受けにくくなり、結晶の周辺部の磁化が反転しにくくなり、結果として磁石相全体の磁化反転が抑制されると考えられる。したがって、このような結晶粒10からなる希土類磁石100は、希土類磁石の材料コストの削減とこのことに起因した希土類磁石の製造コストの削減を図りながら、磁気異方性を有し、磁気特性に優れたものとなる。   In this way, by substituting a part of Nd with an inexpensive element for the core 1, the amount of Nd is reduced, and the shell portion 2 having a high Nd concentration is included, thereby suppressing a decrease in the overall magnetic characteristics. The crystal grains 10 are formed. That is, when the magnetic anisotropy of the shell portion is higher than the magnetic anisotropy of the core portion, the coercive force is improved. Therefore, in the rare earth magnet of the present invention, by taking the core-shell structure, It is considered that the magnetization of the peripheral part of the crystal is less likely to be reversed and the magnetization reversal of the entire magnet phase is suppressed as a result. Therefore, the rare earth magnet 100 made of such crystal grains 10 has magnetic anisotropy and magnetic properties while reducing the material cost of the rare earth magnet and the manufacturing cost of the rare earth magnet resulting from this. It will be excellent.

また、本発明のコア−シェル構造の希土類磁石では、コア部とシェル部の境界がなく、磁石相のNd2Fe14BとCe2Fe14Bが混合されている従来の磁石と比較し、160℃以下の温度において保磁力が向上する。これは、コア部のCe2Fe14Bにより温度特性が向上し、シェル部のNd2Fe14Bにより磁化が反転しにくくなることで高温での保磁力の減少率が抑制されるためであると考えられる。 Further, in the rare earth magnet of the core-shell structure of the present invention, compared with a conventional magnet having no boundary between the core part and the shell part and in which Nd 2 Fe 14 B and Ce 2 Fe 14 B of the magnetic phase are mixed, The coercive force is improved at a temperature of 160 ° C. or lower. This is because the temperature characteristic is improved by Ce 2 Fe 14 B in the core part, and the rate of decrease in coercive force at high temperature is suppressed because the magnetization is not easily reversed by Nd 2 Fe 14 B in the shell part. it is conceivable that.

また、図1で示す結晶粒10の平均粒径は1000nm以下であり、好ましくは500nm以下となっている。結晶粒の平均粒径が1000nm以下に調整されていることで一定の減磁耐力、すなわち一定の保磁力を保証することができるからである。   Moreover, the average particle diameter of the crystal grain 10 shown in FIG. 1 is 1000 nm or less, Preferably it is 500 nm or less. This is because a constant demagnetization resistance, that is, a constant coercive force can be ensured by adjusting the average grain size of the crystal grains to 1000 nm or less.

ここで「平均粒径」とは、たとえば図1で示す結晶粒10の長手方向の長さt(断面が円形でないが、この長さも「粒径」に含める)の平均値のことである。たとえば、希土類磁石100のSEM画像やTEM画像等で一定領域を規定し、この一定領域にある各結晶粒の粒径tの平均値を算定することで「平均粒径」が求められる。なお、結晶粒の断面形状が楕円形の場合は、その長軸を粒径とし、四角形の場合は長い方の対角線の長さを粒径とすることができる。なお、ここで例示する平均粒径の算定方法はあくまでも一例である。   Here, the “average particle size” is, for example, the average value of the lengths t of the crystal grains 10 shown in FIG. 1 (the cross section is not circular, but this length is also included in the “particle size”). For example, the “average particle size” is obtained by defining a certain region by an SEM image, a TEM image, or the like of the rare earth magnet 100 and calculating the average value of the particle sizes t of the crystal grains in the certain region. When the cross-sectional shape of the crystal grains is elliptical, the major axis can be the grain size, and when the crystal grains are square, the length of the longer diagonal can be the grain diameter. In addition, the calculation method of the average particle diameter illustrated here is an example to the last.

本発明の希土類磁石において、結晶粒のコア部は、結晶粒の中心部分であり、シェル部は、結晶粒の表面部分である。   In the rare earth magnet of the present invention, the core part of the crystal grain is the center part of the crystal grain, and the shell part is the surface part of the crystal grain.

(希土類磁石の製造方法)
次に、図1で示す希土類磁石100の製造方法を説明する。
まず、(CexNd(1-x))yFe(100-y-w-z-v)Cowzv(式中、MはGa、Al、Cu、Au、Ag、Zn、In、Mnの少なくとも1種であり、0≦x≦0.75、5≦y≦20、4≦z≦6.5、0≦w≦8、0≦v≦2)の組成を有する結晶粒を備えた磁粉を製造する。
(Rare earth magnet manufacturing method)
Next, a method for manufacturing the rare earth magnet 100 shown in FIG. 1 will be described.
First, (Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z M v ( where, M is Ga, Al, Cu, Au, Ag, Zn, In, at least one Mn And 0 ≦ x ≦ 0.75, 5 ≦ y ≦ 20, 4 ≦ z ≦ 6.5, 0 ≦ w ≦ 8, 0 ≦ v ≦ 2). .

この磁粉の製造方法は、液体急冷法によってたとえばナノ結晶組織の等方性の磁性粉末を製造する方法や、HDDR法によって等方性もしくは異方性の磁粉を製造する方法などが適用できる。   For example, a method of manufacturing an isotropic magnetic powder having a nanocrystalline structure by a liquid quenching method, a method of manufacturing an isotropic or anisotropic magnetic powder by an HDDR method, or the like can be applied to this magnetic powder manufacturing method.

液体急冷法による方法を概説すると、たとえば50kPa以下に減圧したArガス雰囲気の不図示の炉中で、単ロールによるメルトスピニング法により、合金インゴットを高周波溶解し、コア部の組成を有する溶湯を銅ロールに噴射して急冷薄帯(急冷リボン)を製作し、これを粗粉砕することによって製造できる。   An outline of the method using the liquid quenching method is as follows. For example, in a furnace (not shown) in an Ar gas atmosphere whose pressure is reduced to 50 kPa or less, an alloy ingot is melted at a high frequency by a melt spinning method using a single roll, and a molten metal having a core portion composition is made of copper It can be manufactured by jetting onto a roll to produce a quenched ribbon (quenched ribbon) and roughly pulverizing it.

たとえば10μm以下程度に粉砕した磁粉を磁場配向させ、液相焼結を経て異方性の希土類磁石前駆体を製造する。あるいは、液体急冷法によって製造されたナノ結晶組織の等方性の磁性粉末を熱間プレス加工して等方性の希土類磁石前駆体を製造する。あるいは、ナノ結晶組織の等方性の磁性粉末を熱間プレス加工し、その後に熱間塑性加工を施して異方性の希土類磁石前駆体を製造する。あるいは、HDDR法により作製した等方性もしくは異方性の磁粉を熱間プレス加工して等方性もしくは異方性の希土類磁石前駆体を製造する。   For example, magnetic powder pulverized to about 10 μm or less is magnetically oriented, and an anisotropic rare earth magnet precursor is manufactured through liquid phase sintering. Alternatively, an isotropic rare earth magnet precursor is produced by hot pressing an isotropic magnetic powder having a nanocrystalline structure produced by a liquid quenching method. Alternatively, an anisotropic rare earth magnet precursor is produced by hot pressing an isotropic magnetic powder having a nanocrystalline structure and then performing hot plastic working. Alternatively, an isotropic or anisotropic rare earth magnet precursor is produced by hot pressing an isotropic or anisotropic magnetic powder produced by the HDDR method.

以上のような方法により、等方性もしくは異方性の希土類磁石前駆体が製造される(ここまでが製造方法の第1のステップ)。   By the method as described above, an isotropic or anisotropic rare earth magnet precursor is produced (the first step of the production method is heretofore).

第1のステップで製造される希土類磁石前駆体を構成する結晶粒は、Ndの量が少なく、磁気特性の低い結晶粒(既述するセミハード相のみから構成)である。この結晶粒にハード相となるシェル部を形成すべく、Nd元素もしくはNd−M合金(M:Ga、又はGaの一部をAl、Cu、Au、Ag、Zn、In、Mn、Feの少なくとも1種で置換したもの)からなる改質金属を希土類磁石前駆体に拡散浸透させる(製造方法の第2のステップ)。   The crystal grains constituting the rare earth magnet precursor produced in the first step are crystal grains having a small amount of Nd and low magnetic properties (constructed only from the semi-hard phase described above). Nd element or Nd-M alloy (M: Ga or a part of Ga is at least selected from Al, Cu, Au, Ag, Zn, In, Mn, and Fe in order to form a shell portion serving as a hard phase in this crystal grain. A modified metal composed of one type) is diffused and infiltrated into the rare earth magnet precursor (second step of the manufacturing method).

たとえば、Nd元素を850℃前後で真空中で気化させて希土類磁石前駆体の粒界へ浸入させる気相法を適用する。あるいは、低融点のNd−M合金の融液を希土類磁石前駆体の粒界へ液相浸透させる液相法を適用する。あるいは、Nd元素、Nd−M合金、もしくは酸素、フッ素などとの化合物の固体を、希土類磁石前駆体に接触させ、500〜900℃程度の範囲で加熱することにより、結晶粒間の粒界に残留するR固溶体とNd元素の交換反応を生ぜしめ、粒界を介して改質金属を拡散浸透させる固相法を適用する。   For example, a vapor phase method in which Nd element is vaporized in a vacuum at around 850 ° C. and enters the grain boundary of the rare earth magnet precursor is applied. Alternatively, a liquid phase method in which a melt of a low melting point Nd-M alloy is infiltrated into the grain boundary of the rare earth magnet precursor is applied. Alternatively, a solid of a compound with Nd element, Nd-M alloy, oxygen, fluorine, or the like is brought into contact with a rare earth magnet precursor and heated in a range of about 500 to 900 ° C., so that the grain boundary between crystal grains An exchange reaction between the remaining R solid solution and the Nd element is caused, and a solid phase method in which the modified metal is diffused and penetrated through the grain boundary is applied.

ここで、Nd元素やNd−M合金として、Dy、Tb等の重希土類元素を使用してもよいが、好ましくは、重希土類元素を使用することなく、Nd−M合金のM元素としては、遷移金属元素もしくは典型金属元素である、Cu、Mn、In、Zn、Al、Ag、Ga、Feなどのうちのいずれか1種を使用するのがよい。このようなNd−M合金の具体例としては、Nd−Cu合金(共晶点520℃)、Nd−Al合金(共晶点650℃)などを挙げることができ、いずれの共晶点も650℃程度以下のきわめて低い温度である。なお、重希土類元素やその合金を改質合金として使用する場合でも、共晶点900℃程度かそれ以下の合金を使用するのがよい。   Here, a heavy rare earth element such as Dy or Tb may be used as the Nd element or the Nd-M alloy, but preferably, as the M element of the Nd-M alloy without using the heavy rare earth element, Any one of Cu, Mn, In, Zn, Al, Ag, Ga, Fe and the like, which are transition metal elements or typical metal elements, may be used. Specific examples of such an Nd-M alloy include an Nd—Cu alloy (eutectic point 520 ° C.), an Nd—Al alloy (eutectic point 650 ° C.), and any eutectic point is 650. Extremely low temperature of about ℃ or less. Even when a heavy rare earth element or an alloy thereof is used as a modified alloy, it is preferable to use an alloy having an eutectic point of about 900 ° C. or lower.

上記するように低い共晶点のNd−M合金を使用して低温でその拡散浸透を図ることにより、たとえば800℃程度以上の高温雰囲気下に置かれると結晶粒の粗大化が問題となるナノ結晶磁石(結晶粒径が50nm〜300nm程度)に対して、この製造方法は好適である。   As described above, the Nd-M alloy having a low eutectic point is used to diffuse and penetrate at a low temperature. For example, when placed in a high temperature atmosphere of about 800 ° C. or higher, the coarsening of crystal grains becomes a problem. This manufacturing method is suitable for a crystal magnet (with a crystal grain size of about 50 nm to 300 nm).

実施例1
(CexNd(1-x))yFe(100-y-w-z-v)CowzGav(x=0.25、y=13.5、z=5.8、w=4、v=0.5)の組成の合金を、液体急冷によりナノ結晶化した(アモルファスを熱処理してもよい)。ここで、実施急冷条件としては、溶湯温度が1450℃、不活性雰囲気(Ar減圧雰囲気)で、周速20〜40m/sである。このナノ結晶組織を有するリボンをダイスに詰め、加圧・加熱を施して成形体を製造した。ここで、実施成形条件としては、成形圧が400MPa、温度が650℃、保持時間が180sである。この成形体に熱間塑性加工(強加工)を施し、配向したナノ結晶組織とした。ここで実施強加工条件としては、加工温度が750℃、歪速度が0.1〜10/s、加工法は据え込み加工である。この据え込み加工にて製造された希土類磁石前駆体(コア部)はCe0.25Nd0.75Fe14Bであり、Nd2Fe14Bより保磁力が低いセミハード状態である。そこで、Nd70Cu30の低融点合金をセミハード状態の上記希土類磁石前駆体に接触させ、融解する温度で熱処理を実施した。ここで、実施熱処理条件としては、熱処理温度が650℃、処理時間165〜360min、接触合金量10wt%(希土類磁石前駆体に対して)である。なお、Nd70Cu30合金は、Nd(高純度化学製)とCu(高純度化学製)を秤量後、アーク溶解させ、液体急冷により作製した。
Example 1
(Ce x Nd (1-x )) y Fe (100-ywzv) Co w B z Ga v (x = 0.25, y = 13.5, z = 5.8, w = 4, v = 0. The alloy having the composition 5) was nanocrystallized by liquid quenching (the amorphous may be heat-treated). Here, as an implementation quenching condition, the molten metal temperature is 1450 ° C., an inert atmosphere (Ar reduced pressure atmosphere), and the peripheral speed is 20 to 40 m / s. A ribbon having this nanocrystalline structure was packed in a die and pressed and heated to produce a molded body. Here, as implementation molding conditions, the molding pressure is 400 MPa, the temperature is 650 ° C., and the holding time is 180 s. This molded body was subjected to hot plastic processing (strong processing) to obtain an oriented nanocrystal structure. Here, as the strong processing conditions, the processing temperature is 750 ° C., the strain rate is 0.1 to 10 / s, and the processing method is upsetting. The rare earth magnet precursor (core part) manufactured by this upsetting process is Ce 0.25 Nd 0.75 Fe 14 B, which is in a semi-hard state where the coercive force is lower than that of Nd 2 Fe 14 B. Accordingly, a low melting point alloy of Nd 70 Cu 30 was brought into contact with the rare earth magnet precursor in a semi-hard state, and heat treatment was performed at a melting temperature. Here, the heat treatment conditions are a heat treatment temperature of 650 ° C., a treatment time of 165 to 360 min, and a contact alloy amount of 10 wt% (relative to the rare earth magnet precursor). The Nd 70 Cu 30 alloy was prepared by wetting Nd (manufactured by high purity chemical) and Cu (manufactured by high purity chemical), arc melting, and liquid quenching.

以上の工程により、コア部がCe0.25Nd0.75Fe14B相であり、シェル部が(Nd,Ce)2Fe14B相であり、シェル部のNd濃度≧コア部のNd濃度である構造を有するコア−シェル型の磁石が得られた。なお、出発合金にはCo及びGaが含まれていたが、得られた磁石のコア部及びシェル部にはこのCo及びGaは含まれていないのは、実際にはコア部及びシェル部にもCo及びGaは含まれているが、微量であるため無視しているためである。以下、実施例2〜3及び比較例1〜3においても同様である。 Through the above steps, the core part is Ce 0.25 Nd 0.75 Fe 14 B phase, the shell part is (Nd, Ce) 2 Fe 14 B phase, and the Nd concentration of the shell part ≧ Nd concentration of the core part. A core-shell type magnet was obtained. The starting alloy contained Co and Ga, but the core and shell of the obtained magnet did not contain Co and Ga. This is because Co and Ga are included, but are neglected because they are very small. Hereinafter, the same applies to Examples 2-3 and Comparative Examples 1-3.

実施例2
実施例1に示す式において、x=0.5である合金((CexNd(1-x))yFe(100-y-w-z-v)CowzGav(x=0.5、y=13.5、z=5.8、w=4、v=0.5))を出発材料として用いることを除き、それ以外は実施例1と同様にしてコア−シェル型の磁石を得た。
Example 2
In the formula shown in Example 1, x = 0.5 in which alloy ((Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z Ga v (x = 0.5, y = 13 .5, z = 5.8, w = 4, v = 0.5)) was used as a starting material, and a core-shell type magnet was obtained in the same manner as in Example 1.

実施例3
実施例1に示す式において、x=0.75である合金((CexNd(1-x))yFe(100-y-w-z-v)CowzGav(x=0.75、y=13.5、z=5.8、w=4、v=0.5))を出発材料として用いることを除き、それ以外は実施例1と同様にしてコア−シェル型の磁石を得た。
Example 3
In the formula shown in Example 1, x = 0.75 at a alloy ((Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z Ga v (x = 0.75, y = 13 .5, z = 5.8, w = 4, v = 0.5)) was used as a starting material, and a core-shell type magnet was obtained in the same manner as in Example 1.

比較例1
実施例1に示す式において、x=0である合金((CexNd(1-x))yFe(100-y-w-z-v)CowzGav(x=0、y=13.5、z=5.8、w=4、v=0.5))を出発材料とし、強加工後、細かく粉砕し、磁場を印加しつつ焼結したコア部とシェル部の境界のないバルク磁石(粒径800nm程度)に、実施例1と同様にNd70Cu30を接触させて熱処理を行い、磁石を作製した。
Comparative Example 1
In the formula shown in Example 1, x = 0 and is an alloy ((Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z Ga v (x = 0, y = 13.5, z = 5.8, w = 4, v = 0.5)) as a starting material, a bulk magnet (grains) without a boundary between the core part and the shell part, which was crushed finely after strong processing and sintered while applying a magnetic field In the same manner as in Example 1, Nd 70 Cu 30 was contacted with a diameter of about 800 nm, and heat treatment was performed to produce a magnet.

比較例2
実施例1に示す式において、x=0である合金((CexNd(1-x))yFe(100-y-w-z-v)CowzGav(x=0、y=13.5、z=5.8、w=4、v=0.5))を出発材料とし、強加工後、Nd70Cu30を接触させる熱処理工程を省く以外は実施例1と同様にして磁石を作製した。
Comparative Example 2
In the formula shown in Example 1, x = 0 and is an alloy ((Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z Ga v (x = 0, y = 13.5, z = 5.8, w = 4, v = 0.5)) were used as starting materials, and a magnet was prepared in the same manner as in Example 1 except that the heat treatment step in which Nd 70 Cu 30 was contacted was omitted after strong processing.

比較例3
実施例1に示す式において、x=0.5である合金((CexNd(1-x))yFe(100-y-w-z-v)CowzGav(x=0、y=13.5、z=5.8、w=4、v=0.5))を出発材料とし、x=0.25である合金((Nd0.75Ce0.25)13.5Fe76.2Co45.8Ga0.5)を出発材料とし、強加工後、Nd70Cu30を接触させる熱処理工程を省く以外は実施例1と同様にして磁石を作製した。
Comparative Example 3
In the formula shown in Example 1, x = 0.5 in which alloy ((Ce x Nd (1- x)) y Fe (100-ywzv) Co w B z Ga v (x = 0, y = 13.5 Z = 5.8, w = 4, v = 0.5)) as a starting material, and an alloy with x = 0.25 ((Nd 0.75 Ce 0.25 ) 13.5 Fe 76.2 Co 4 B 5.8 Ga 0.5 ) A magnet was manufactured in the same manner as in Example 1 except that the heat treatment step for contacting Nd 70 Cu 30 as a material was omitted after the strong processing.

以上の結果を以下の表1にまとめる。   The above results are summarized in Table 1 below.

Figure 2016111136
Figure 2016111136

得られた磁石について、10Tのパルス着磁後、室温にてVSM(LakeShore)にて保磁力を測定した。続いて、室温〜200℃までの各温度(室温、60、80、100、140、160、180、200℃)でのヒステリシス曲線を測定し、保磁力を求めた。160℃での保磁力の測定結果を以下の表2に示す。   About the obtained magnet, the coercive force was measured by VSM (LakeShore) at room temperature after 10T pulse magnetization. Subsequently, a hysteresis curve at each temperature from room temperature to 200 ° C. (room temperature, 60, 80, 100, 140, 160, 180, 200 ° C.) was measured to obtain a coercive force. The measurement results of the coercive force at 160 ° C. are shown in Table 2 below.

Figure 2016111136
Figure 2016111136

また、保磁力の温度特性を図3〜5に示し、さらに、実施例3と比較例3におけるコア部のNd濃度、シェル部のNd濃度、全体のNd濃度の測定結果を以下の表3に示す。   The temperature characteristics of the coercive force are shown in FIGS. 3 to 5, and the measurement results of the core portion Nd concentration, the shell portion Nd concentration, and the overall Nd concentration in Example 3 and Comparative Example 3 are shown in Table 3 below. Show.

Figure 2016111136
磁石粒子の全体のNd濃度が同程度であるにもかかわらず、コアシェル構造をとることにより、温度特性が向上している。
Figure 2016111136
The temperature characteristics are improved by adopting the core-shell structure despite the fact that the Nd concentration of the whole magnet particles is approximately the same.

以上の結果より、常温での保磁力は同程度であるにもかかわらず、すべての実施例に対して比較例よりも高温での保磁力が高いことがわかる。これは、コアシェル構造の複相磁石とすることにより、コア部の磁気異方性≦シェル部の磁気異方性となり、磁石粒子周辺部の磁化反転が抑制され、その結果、高温での保磁力が単相磁石の高温での保磁力よりも高くなると推察される。   From the above results, it can be seen that the coercive force at high temperature is higher than that of the comparative example for all the examples, although the coercive force at the normal temperature is similar. This is because by using a core-shell structure double-phase magnet, the magnetic anisotropy of the core portion ≦ the magnetic anisotropy of the shell portion, and the magnetization reversal at the periphery of the magnet particle is suppressed. As a result, the coercive force at high temperature Is assumed to be higher than the coercive force of single-phase magnets at high temperatures.

1 コア部
2 シェル部
10 結晶粒
20 粒界
100 希土類磁石
DESCRIPTION OF SYMBOLS 1 Core part 2 Shell part 10 Crystal grain 20 Grain boundary 100 Rare earth magnet

Claims (1)

(CexNd(1-x))yFe(100-y-w-z-v)Cowzv
(上式中、MはGa、Al、Cu、Au、Ag、Zn、In、Mnの少なくとも1種であり、
0≦x≦0.75、
5≦y≦20、
4≦z≦6.5、
0≦w≦8、
0≦v≦2)
の全体組成を有する結晶粒であって、コア部とその周囲のシェル部とから構成され、コア部よりもシェル部においてNd濃度が高い結晶粒を備えている希土類磁石。
(Ce x Nd (1-x )) y Fe (100-ywzv) Co w B z M v
(In the above formula, M is at least one of Ga, Al, Cu, Au, Ag, Zn, In, and Mn,
0 ≦ x ≦ 0.75,
5 ≦ y ≦ 20,
4 ≦ z ≦ 6.5,
0 ≦ w ≦ 8,
0 ≦ v ≦ 2)
A rare-earth magnet comprising crystal grains having the overall composition, and comprising a core part and a surrounding shell part, and having crystal grains having a higher Nd concentration in the shell part than in the core part.
JP2014245994A 2014-12-04 2014-12-04 motor Active JP6791614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245994A JP6791614B2 (en) 2014-12-04 2014-12-04 motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245994A JP6791614B2 (en) 2014-12-04 2014-12-04 motor

Publications (2)

Publication Number Publication Date
JP2016111136A true JP2016111136A (en) 2016-06-20
JP6791614B2 JP6791614B2 (en) 2020-11-25

Family

ID=56124737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245994A Active JP6791614B2 (en) 2014-12-04 2014-12-04 motor

Country Status (1)

Country Link
JP (1) JP6791614B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154219A (en) * 2015-02-16 2016-08-25 Tdk株式会社 Rare earth based permanent magnet
DE102017130191A1 (en) 2016-12-28 2018-06-28 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of making same
CN108257753A (en) * 2016-12-28 2018-07-06 丰田自动车株式会社 Rare-earth magnet
KR20180077022A (en) * 2016-12-28 2018-07-06 도요타 지도샤(주) Rare earth magnet and method of producing the same
CN108257754A (en) * 2016-12-28 2018-07-06 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
CN109979699A (en) * 2017-12-28 2019-07-05 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
JP2020027933A (en) * 2017-12-28 2020-02-20 トヨタ自動車株式会社 Rare earth magnet and production method thereof
EP3792939A1 (en) * 2019-09-10 2021-03-17 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
US11087922B2 (en) 2017-04-19 2021-08-10 Toyota Jidosha Kabushiki Kaisha Production method of rare earth magnet
EP3901967A1 (en) * 2020-04-21 2021-10-27 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010305A (en) * 2007-06-29 2009-01-15 Tdk Corp Method for manufacturing rare-earth magnet
JP2011159983A (en) * 2005-04-15 2011-08-18 Hitachi Metals Ltd Rare earth sintered magnet and process for producing the same
JP2014216339A (en) * 2013-04-22 2014-11-17 Tdk株式会社 R-T-B sintered magnet
WO2014196605A1 (en) * 2013-06-05 2014-12-11 トヨタ自動車株式会社 Rare-earth magnet and method for manufacturing same
JP2015521489A (en) * 2012-06-07 2015-07-30 ベイヤー メディカル ケア インク. Radiopharmaceutical supply and tube management system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159983A (en) * 2005-04-15 2011-08-18 Hitachi Metals Ltd Rare earth sintered magnet and process for producing the same
JP2009010305A (en) * 2007-06-29 2009-01-15 Tdk Corp Method for manufacturing rare-earth magnet
JP2015521489A (en) * 2012-06-07 2015-07-30 ベイヤー メディカル ケア インク. Radiopharmaceutical supply and tube management system
JP2014216339A (en) * 2013-04-22 2014-11-17 Tdk株式会社 R-T-B sintered magnet
WO2014196605A1 (en) * 2013-06-05 2014-12-11 トヨタ自動車株式会社 Rare-earth magnet and method for manufacturing same
JP6183457B2 (en) * 2013-06-05 2017-08-23 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154219A (en) * 2015-02-16 2016-08-25 Tdk株式会社 Rare earth based permanent magnet
CN108335814A (en) * 2016-12-28 2018-07-27 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
CN108257753A (en) * 2016-12-28 2018-07-06 丰田自动车株式会社 Rare-earth magnet
KR20180077022A (en) * 2016-12-28 2018-07-06 도요타 지도샤(주) Rare earth magnet and method of producing the same
CN108257754A (en) * 2016-12-28 2018-07-06 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
JP2018110162A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Rare earth magnet and method for manufacturing the same
CN108257754B (en) * 2016-12-28 2020-03-24 丰田自动车株式会社 Rare earth magnet and method for producing same
EP3355320A1 (en) * 2016-12-28 2018-08-01 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of producing the same
DE102017130191A9 (en) 2016-12-28 2018-10-11 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of making same
KR101989704B1 (en) * 2016-12-28 2019-06-14 도요타 지도샤(주) Rare earth magnet and method of producing the same
DE102017130191A1 (en) 2016-12-28 2018-06-28 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of making same
US10892076B2 (en) 2016-12-28 2021-01-12 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and method of producing the same
US11087922B2 (en) 2017-04-19 2021-08-10 Toyota Jidosha Kabushiki Kaisha Production method of rare earth magnet
CN109979699A (en) * 2017-12-28 2019-07-05 丰田自动车株式会社 Rare-earth magnet and its manufacturing method
JP2020027933A (en) * 2017-12-28 2020-02-20 トヨタ自動車株式会社 Rare earth magnet and production method thereof
EP3522178A1 (en) * 2017-12-28 2019-08-07 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
CN109979699B (en) * 2017-12-28 2021-10-22 丰田自动车株式会社 Rare earth magnet and method for producing same
JP7247548B2 (en) 2017-12-28 2023-03-29 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
EP3792939A1 (en) * 2019-09-10 2021-03-17 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and production method thereof
JP2021044361A (en) * 2019-09-10 2021-03-18 トヨタ自動車株式会社 Rare earth magnet and method for manufacturing the same
CN112562951A (en) * 2019-09-10 2021-03-26 丰田自动车株式会社 Rare earth magnet and method for producing same
JP7252105B2 (en) 2019-09-10 2023-04-04 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
EP3901967A1 (en) * 2020-04-21 2021-10-27 Toyota Jidosha Kabushiki Kaisha Rare earth magnet and manufacturing method therefor

Also Published As

Publication number Publication date
JP6791614B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6183457B2 (en) Rare earth magnet and manufacturing method thereof
JP6791614B2 (en) motor
JP6003920B2 (en) Rare earth magnet manufacturing method
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
WO2013191276A1 (en) Sintered magnet
JP5120710B2 (en) RL-RH-T-Mn-B sintered magnet
JP5924335B2 (en) Rare earth magnet and manufacturing method thereof
JP6007945B2 (en) Manufacturing method of nanocomposite magnet
JP5915637B2 (en) Rare earth magnet manufacturing method
JP6221233B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2018110162A (en) Rare earth magnet and method for manufacturing the same
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
JP7167709B2 (en) Rare earth magnet and manufacturing method thereof
JP2013197414A (en) Sintered compact and production method therefor
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP6274068B2 (en) Rare earth magnet manufacturing method
JP2014160760A (en) Method for manufacturing r-t-b-based sintered magnet
JP7167665B2 (en) Rare earth magnet and manufacturing method thereof
JP2013021015A (en) Rare earth nano composite magnet and manufacturing method thereof
JP5742733B2 (en) Rare earth magnet manufacturing method
JP6642419B2 (en) Rare earth magnet
EP3007192A1 (en) Method for manufacturing rare-earth magnets
JP2022068679A (en) Rare-earth magnet and manufacturing method thereof
JP2015176978A (en) nanocomposite magnet
JP2013138111A (en) Method of manufacturing rare-earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190515

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200310

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200331

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200623

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200908

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201013

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201105

R151 Written notification of patent or utility model registration

Ref document number: 6791614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151