JP2016108632A - Method for separating and recovering rare earth element - Google Patents

Method for separating and recovering rare earth element Download PDF

Info

Publication number
JP2016108632A
JP2016108632A JP2014249212A JP2014249212A JP2016108632A JP 2016108632 A JP2016108632 A JP 2016108632A JP 2014249212 A JP2014249212 A JP 2014249212A JP 2014249212 A JP2014249212 A JP 2014249212A JP 2016108632 A JP2016108632 A JP 2016108632A
Authority
JP
Japan
Prior art keywords
rare earth
separating
recovering
earth element
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249212A
Other languages
Japanese (ja)
Other versions
JP6425018B2 (en
Inventor
チョンプーヌット ウィラセラニー
Wiraseranee Chompunoot
チョンプーヌット ウィラセラニー
リナート ミルヴァリエフ
Mirvariev Rinat
リナート ミルヴァリエフ
岡田 智
Satoshi Okada
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014249212A priority Critical patent/JP6425018B2/en
Publication of JP2016108632A publication Critical patent/JP2016108632A/en
Application granted granted Critical
Publication of JP6425018B2 publication Critical patent/JP6425018B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering a rare earth element from scraps of a motor using a rare earth magnet and the like in which a rare earth element is favorably separated from iron and the rare earth element is efficiently separated and recovered.SOLUTION: The method for separating and recovering a rare earth element is a method for separating and recovering a rare earth element from a raw material including a rare earth magnet and an iron material, which comprises melting the raw material in the coexistence of a metal silicon source and an alkali silicate in an inert atmosphere to suppress oxidation of iron, forming an Fe-Si molten alloy while on the other hand selectively oxidizing a rare earth element to form a molten slag, and separating and recovering the molten slag from the Fe-Si molten alloy.SELECTED DRAWING: Figure 1

Description

本発明は希土類元素を含有する鉄系材料等から希土類元素を分離して回収する方法に関する。より詳しくは、使用済み自動車や電気製品や電子機器などに広く使用されている希土類磁石を用いたモータなどのスクラップから希土類元素を回収する方法であって、希土類元素と鉄の分離性が良く、希土類元素を効率よく分離して回収する処理方法に関する。   The present invention relates to a method for separating and recovering rare earth elements from iron-based materials containing rare earth elements. More specifically, it is a method for recovering rare earth elements from scraps such as motors using rare earth magnets widely used in used automobiles, electrical products and electronic equipment, and has good separability between rare earth elements and iron, The present invention relates to a processing method for efficiently separating and recovering rare earth elements.

希土類元素は先端技術分野の有用な物質である。永久磁石の一種である希土類磁石には希土類元素が含まれている。この希土類磁石はハイブリッド自動車や電気自動車などのモータ、家電製品のモータなどに広く用いられており、希土類元素は今後も持続的な需要が見込まれている。しかし、希土類元素を含む鉱物の産地は偏在しており、安定的な供給が困難になる可能性が懸念されている。このため、希土類元素のリサイクルが重要視されている。   Rare earth elements are useful materials in the advanced technology field. A rare earth magnet, which is a kind of permanent magnet, contains a rare earth element. These rare earth magnets are widely used in motors for hybrid vehicles and electric vehicles, motors for home appliances, and the like, and the demand for rare earth elements is expected to continue in the future. However, there are concerns about the possibility that stable supply will be difficult because localities of minerals containing rare earth elements are unevenly distributed. For this reason, the recycling of rare earth elements is regarded as important.

通常、希土類磁石を備えたモータスクラップから希土類元素を回収するには、モータを固定部(ステータ)と回転部(ロータ)に分解し、加熱等によって希土類磁石を消磁した後に該ロータ部に埋め込まれている磁石を取り外して、該磁石から希土類元素を回収している。   Usually, in order to recover rare earth elements from motor scraps equipped with rare earth magnets, the motor is disassembled into a fixed part (stator) and a rotating part (rotor), and the rare earth magnet is demagnetized by heating or the like and then embedded in the rotor part. The rare earth element is recovered from the magnet.

従来、希土類元素の回収方法として湿式処理と乾式処理が知られている。湿式処理は、磁石屑を酸に溶解し、この溶解液から溶媒抽出などによって希土類元素を回収する方法であり、磁石の製造工程で生じる加工屑やスラッジの処理に適している。使用済みの希土類磁石などを湿式処理するには、磁石の取り外しや消磁、粉砕の各処理を必要とし、コスト高になるので湿式処理には適さない。   Conventionally, wet processing and dry processing are known as rare earth element recovery methods. The wet process is a method in which magnet scraps are dissolved in an acid and rare earth elements are recovered from the solution by solvent extraction or the like, and is suitable for processing scraps and sludge generated in the magnet manufacturing process. In order to wet-process used rare earth magnets and the like, it is necessary to remove, demagnetize, and grind the magnets.

一方、乾式処理には磁石を備えたロータを消磁やロータの分解、粉砕などを行わずに、そのまま熔解して処理する方法があり、リサイクルの大幅なコストダウンが見込まれる。このようなロータの乾式処理方法として特許文献1および非特許文献1に記載されている方法が知られている。   On the other hand, in the dry processing, there is a method in which a rotor equipped with a magnet is melted and processed without demagnetizing, disassembling or crushing the rotor, and a significant cost reduction of recycling is expected. As a dry processing method of such a rotor, methods described in Patent Document 1 and Non-Patent Document 1 are known.

特許文献1に記載されている処理方法は、モータを分解して取り外した回転子を、消磁および粉砕を行わずに熔解炉に入れて加熱して溶湯にし、該溶湯に酸化性物質を投入して溶湯に含まれている希土類元素を酸化物にし、該希土類酸化物を含むスラグを生成させ、該スラグを回収して精錬し希土類元素を回収する方法である。   In the treatment method described in Patent Document 1, the rotor removed by disassembling the motor is put into a melting furnace without heating and demagnetizing, and heated to a molten metal, and an oxidizing substance is charged into the molten metal. In this method, the rare earth element contained in the molten metal is converted into an oxide, slag containing the rare earth oxide is generated, and the slag is recovered and refined to recover the rare earth element.

非特許文献1に記載されている処理方法は、モータを分解して取り外した回転子などのネオジム磁石スクラップをコークスおよび鋳鉄スクラップと共に高温熔融し、ネオジム磁石に含まれているNdとBの二元系融体スラグ(NdO-BO)とFe−C合金を生成させ、該NdO-BO融体スラグを酸溶解し、さらにシュウ酸を加えてホウ素含有液とネオジムシュウ酸塩を生成させ、該ネオジムシュウ酸塩を熱分解してネオジム酸化物を回収する方法である。 The processing method described in Non-Patent Document 1 is a method of melting a neodymium magnet scrap such as a rotor removed by disassembling a motor at a high temperature together with coke and cast iron scrap, and binary Nd and B contained in the neodymium magnet. -Based melt slag (Nd 2 O 3 -B 2 O 3 ) and an Fe-C alloy are produced, the Nd 2 O 3 -B 2 O 3 melt slag is acid-dissolved, and further oxalic acid is added to contain boron This is a method of producing a liquid and neodymium oxalate and recovering the neodymium oxide by thermally decomposing the neodymium oxalate.

特開2014−181370号公報JP 2014-181370 A

山口勉功、資源・素材講演集、Vol.1(2014)、No.2Tsutomu Yamaguchi, Resources and Materials Lectures, Vol. 1 (2014), No. 2

特許文献1の処理方法は、生成したスラグには酸化ネオジム(NdO)や酸化ディスプロシウム(DyO)などの希土類酸化物の他に、スラグ成分としてAl、Si、Mg、Tiなどの酸化物が含まれているが、熔融性の制御手段、例えばスラグ組成や処理温度などに関する記載はなく、融点の高い、即ち熔融物として回収困難なスラグが生成すると考えられる。その結果、このスラグにFeが多く含まれており、希土類元素と鉄が十分に分離されない。しかもこのようなスラグから希土類元素を分離するのに手間がかかる。また生成する鉄合金の組成は純鉄に近いので、操業温度は鉄の融点1538℃以上の高温である。 In the treatment method of Patent Document 1, in addition to rare earth oxides such as neodymium oxide (Nd 2 O 3 ) and dysprosium oxide (Dy 2 O 3 ), the generated slag contains Al, Si, Mg, Although oxides such as Ti are contained, there is no description regarding melt control means, for example, slag composition and processing temperature, and it is considered that slag having a high melting point, that is, difficult to recover as a melt is generated. As a result, this slag contains a large amount of Fe, and rare earth elements and iron are not sufficiently separated. Moreover, it takes time to separate rare earth elements from such slag. Moreover, since the composition of the produced iron alloy is close to that of pure iron, the operation temperature is a high temperature of the melting point of iron of 1538 ° C. or higher.

非特許文献1の処理方法は、コークスを加えてFe−C合金を生成させることによって熔融温度を1200℃未満にしており、特許文献1の方法よりは熔融温度が低いが、多量のBが生成するので、有害なホウ素を含む排ガスや排水の処理が問題になる。 In the treatment method of Non-Patent Document 1, the melting temperature is set to less than 1200 ° C. by adding coke to form an Fe—C alloy, and the melting temperature is lower than that of the method of Patent Document 1, but a large amount of B 2 O Since 3 is produced, the treatment of exhaust gas and waste water containing harmful boron becomes a problem.

本発明は、希土類元素を回収する従来の乾式処理方法における上記問題を解決したものであり、希土類元素と鉄の分離性が良く、希土類元素を効率よく分離して回収することができる処理方法に関する。   The present invention solves the above-mentioned problems in the conventional dry processing method for recovering rare earth elements, and relates to a processing method capable of separating and recovering rare earth elements efficiently with good separability between rare earth elements and iron. .

本発明は以下の構成を有する希土類元素の分離回収方法である。
〔1〕希土類磁石と鉄材料を含む原料から希土類元素を分離回収する方法であって、不活性雰囲気下、金属シリコン源とアルカリシリケートの共存下で上記原料を熔融することによって鉄の酸化を抑制してFe−Si熔融合金を形成しつつ、希土類元素を選択的に酸化して熔融スラグにし、この熔融スラグを上記Fe−Si系熔融合金から分離して回収することを特徴とする希土類元素の分離回収方法。
〔2〕希土類磁石と鉄材料を含む原料が、希土類磁石の2〜15質量倍の鉄材料を含む原料である上記[1]に記載する希土類元素の分離回収方法。
〔3〕希土類磁石と鉄材料を含む原料としてモータの希土類磁石を備えた回転子のスクラップを用いる上記[1]または上記[2]に記載する希土類元素の分離回収方法。
〔4〕金属シリコン源として、金属シリコン、Fe−Si系合金、または金属シリコンとFe−Si系合金を用いる上記[1]〜上記[3]の何れかに記載する希土類元素の分離回収方法。
〔5〕アルカリシリケートとして、アルカリ金属とSiの二元系酸化物、またはアルカリ金属酸化物とSiOの混合物を用いる上記[1]〜上記[4]の何れかに記載する希土類元素の分離回収方法。
〔6〕金属シリコンの溶湯、または金属シリコンとFe−Si系合金の溶湯に、希土類磁石と鉄材料を含む原料とアルカリシリケートを加え、不活性雰囲気下、1250℃〜1500℃に加熱して、Fe−Si系熔融合金と、希土類酸化物を含有する熔融スラグを生成させる上記[1]〜上記[5]の何れかに記載する希土類元素の分離回収方法。
〔7〕熔融スラグから分離したFe−Si系熔融合金を熔融工程に戻して金属シリコンと併用する上記[1]〜上記[6]の何れかに記載する希土類元素の分離回収方法。
〔8〕熔融スラグと分離したFe−Si系合金をフェロシリコン材料または鉄材料として再利用する上記[1]〜上記[6]の何れかに記載する希土類元素の分離回収方法。
〔9〕熔融スラグから希土類元素を回収し、該希土類元素を希土類磁石の原料として再利用する上記[1]〜上記[6]の何れかに記載する希土類元素の分離回収方法。
The present invention is a method for separating and recovering rare earth elements having the following configuration.
[1] A method for separating and recovering rare earth elements from raw materials including rare earth magnets and iron materials, and suppressing iron oxidation by melting the raw materials in the presence of a metal silicon source and an alkali silicate in an inert atmosphere. And forming a Fe-Si fusion gold, selectively oxidizing rare earth elements into molten slag, and separating and recovering the molten slag from the Fe-Si fusion gold. Separation and recovery method.
[2] The method for separating and recovering a rare earth element according to the above [1], wherein the raw material containing the rare earth magnet and the iron material is a raw material containing an iron material that is 2 to 15 times the mass of the rare earth magnet.
[3] The method for separating and recovering rare earth elements according to [1] or [2] above, wherein a scrap of a rotor provided with a rare earth magnet of a motor is used as a raw material containing a rare earth magnet and an iron material.
[4] The method for separating and recovering a rare earth element according to any one of [1] to [3] above, wherein metal silicon, an Fe—Si alloy, or metal silicon and an Fe—Si alloy are used as a metal silicon source.
[5] Separation and recovery of rare earth elements according to any one of [1] to [4] above, wherein a binary oxide of alkali metal and Si or a mixture of alkali metal oxide and SiO 2 is used as the alkali silicate. Method.
[6] A raw material containing a rare earth magnet and an iron material and an alkali silicate are added to a molten metal silicon or a molten metal and a Fe—Si alloy, and heated to 1250 ° C. to 1500 ° C. in an inert atmosphere. The method for separating and recovering a rare earth element according to any one of the above [1] to [5], wherein a molten slag containing an Fe—Si based fusion gold and a rare earth oxide is produced.
[7] The method for separating and recovering rare earth elements according to any one of [1] to [6] above, wherein the Fe—Si based fusion gold separated from the molten slag is returned to the melting step and used in combination with metallic silicon.
[8] The method for separating and collecting a rare earth element according to any one of [1] to [6] above, wherein the Fe—Si alloy separated from the molten slag is reused as a ferrosilicon material or an iron material.
[9] The method for separating and recovering a rare earth element according to any one of [1] to [6] above, wherein the rare earth element is recovered from the molten slag, and the rare earth element is reused as a raw material for the rare earth magnet.

〔具体的な説明〕
本発明の分離回収方法は、希土類磁石と鉄材料を含む原料から希土類元素を分離し回収する方法であって、不活性雰囲気下、金属シリコン源とアルカリシリケートの共存下で上記原料を熔融することによって鉄の酸化を抑制してFe−Si熔融合金を形成しつつ、希土類元素を選択的に酸化して熔融スラグにし、この熔融スラグを上記Fe−Si系熔融合金から分離して回収することを特徴とする希土類元素の分離回収方法である。
本発明の分離回収方法は、希土類磁石と鉄材料を含む原料が、希土類磁石の2〜15質量倍の鉄材料を含む原料について効果的に希土類元素を分離回収することができる。
本発明の分離回収方法の概略を図1に示す。
[Specific description]
The separation and recovery method of the present invention is a method for separating and recovering a rare earth element from a raw material containing a rare earth magnet and an iron material, and melting the raw material in the presence of a metal silicon source and an alkali silicate in an inert atmosphere. In this way, the oxidation of iron is suppressed to form a Fe-Si fusion gold, the rare earth elements are selectively oxidized to form a molten slag, and the molten slag is separated from the Fe-Si based fusion gold and recovered. This is a method for separating and recovering rare earth elements.
The separation and recovery method of the present invention can effectively separate and recover rare earth elements for a raw material containing a rare earth magnet and an iron material containing an iron material 2 to 15 times the mass of the rare earth magnet.
An outline of the separation and recovery method of the present invention is shown in FIG.

本発明の分離回収方法において、希土類磁石と鉄材料を含む原料はモータの希土類磁石を備えた回転子のスクラップなどである。具体的には、例えば、電気自動やハイブリット自動車、電子機器や家電製品には、最近、希土類磁石のモータが設けられており、ハードディスクのVCMやスピーカ等にも希土類元素を含む材料が用いられている。これらの希土類磁石が設けられているモータのスクラップなどを原料として用いることができる。   In the separation and recovery method of the present invention, the raw material containing the rare earth magnet and the iron material is a scrap of a rotor provided with the rare earth magnet of the motor. Specifically, for example, electric motors, hybrid automobiles, electronic devices, and home appliances have recently been provided with motors of rare earth magnets, and materials containing rare earth elements are also used in hard disk VCMs and speakers. Yes. A scrap of a motor provided with these rare earth magnets can be used as a raw material.

本発明の分離回収方法は、これらの希土類磁石を備えた回転子(ロータ)のスクラップについて、希土類磁石を取り外さずに、該ロータ部のケイ素鋼板と共に希土類磁石を加熱熔融して処理することができる。例えば、概ねロータ部は希土類磁石と共に該磁石の2〜15質量倍のケイ素鋼板によって形成されているが、本発明の分離回収方法は、このように希土類磁石よりも多量の鉄材料を含む原料、例えば、希土類磁石の2〜15質量倍の鉄材料を含む原料を処理することができる。   The separation and recovery method of the present invention can treat a rotor (rotor) scrap provided with these rare earth magnets by heating and melting the rare earth magnets together with the silicon steel plate of the rotor portion without removing the rare earth magnets. . For example, the rotor portion is generally formed of a silicon steel plate 2 to 15 times the mass of the magnet together with the rare earth magnet, but the separation and recovery method of the present invention is thus a raw material containing a larger amount of iron material than the rare earth magnet, For example, a raw material containing an iron material that is 2 to 15 times the mass of a rare earth magnet can be processed.

本発明の分離回収方法は、希土類磁石と鉄材料を含む原料を、不活性雰囲気下、例えば、アルゴンガス雰囲気下または窒素ガス雰囲気下で、1250℃〜1500℃に加熱し、金属シリコン源とアルカリシリケートの共存下で上記原料を熔融することによってSi−SiO熔融系を形成し、該Si−SiO熔融系下において鉄の酸化を抑制してFe−Si熔融合金を形成しつつ、希土類元素を選択的に酸化して熔融スラグにする。 In the separation and recovery method of the present invention, a raw material containing a rare earth magnet and an iron material is heated to 1250 ° C. to 1500 ° C. in an inert atmosphere, for example, an argon gas atmosphere or a nitrogen gas atmosphere, and a metal silicon source and an alkali are recovered. A rare earth element is formed by forming a Si—SiO 2 fusion system by melting the above raw materials in the presence of silicate, and forming an Fe—Si fusion gold by suppressing iron oxidation in the Si—SiO 2 fusion system. Is selectively oxidized into molten slag.

金属シリコン源として、金属シリコン、またはFe−Si系合金、または金属シリコンとFe−Si系合金を用いることができる。なお、Fe−Si合金、あるいはFeとSi以外の金属を含むFe−Si合金をFe−Si系合金と云う。Fe−Si系合金は本発明の方法によって回収したものを再利用することができる。   As the metal silicon source, metal silicon, Fe—Si alloy, or metal silicon and Fe—Si alloy can be used. Note that an Fe—Si alloy or an Fe—Si alloy containing a metal other than Fe and Si is referred to as an Fe—Si alloy. The Fe—Si based alloy recovered by the method of the present invention can be reused.

アルカリシリケートとして、アルカリ金属とシリコンの二元系酸化物、またはアルカリ金属酸化物ないし炭酸塩とSiOの混合物を用いることができる。例えば、メタケイ酸ナトリウム(NaSiO)、二ケイ酸ナトリウム(NaO・2SiO)、メタケイ酸カリウム(KSiO)、二ケイ酸カリウム(KO・2SiO)、無水ケイ酸ソーダのカレットなどを用いることができる。さらに、このアルカリシリケートは少量の酸化物、例えば5wt%以下の酸化カルシウム、酸化ホウ素、酸化クロム、酸化マンガン、酸化アルミ、酸化マグネシウムを含むものを用いることができる。 As the alkali silicate, a binary oxide of alkali metal and silicon, or a mixture of alkali metal oxide or carbonate and SiO 2 can be used. For example, sodium metasilicate (Na 2 SiO 3 ), sodium disilicate (Na 2 O · 2SiO 2 ), potassium metasilicate (K 2 SiO 3 ), potassium disilicate (K 2 O · 2SiO 2 ), anhydrous silica An acid soda cullet can be used. Further, the alkali silicate may be a small amount of oxide, for example, containing 5 wt% or less of calcium oxide, boron oxide, chromium oxide, manganese oxide, aluminum oxide, magnesium oxide.

希土類磁石と鉄材料を含む原料を、不活性雰囲気下、金属シリコン源とアルカリシリケートの共存下、1250℃〜1500℃に加熱し熔融することによって、金属シリコンとアルカリシリケートの二酸化ケイ素からなるSi−SiO熔融系が形成される。 A raw material containing a rare earth magnet and an iron material is heated and melted at 1250 ° C. to 1500 ° C. in an inert atmosphere in the presence of a metal silicon source and an alkali silicate, thereby forming Si— consisting of silicon dioxide of metal silicon and alkali silicate. A SiO 2 melt system is formed.

このようなSi−SiO熔融系下の酸素分圧下では鉄は酸化されず、原料に含まれる鉄は金属シリコンと共に熔融してFe−Si系合金が形成される。例えば、希土類磁石と共に該磁石の2〜15質量倍のケイ素鋼板の鉄材料を含む原料を金属シリコン源とアルカリシリケートの共存下で1250℃〜1500℃に加熱して熔融すると、原料に含まれる鉄は金属シリコンと反応してFe−Si系合金を形成し、このFe−Si系合金中に鉄が次第に取り込まれる。なお、原料にNi等のめっき金属が含まれている場合には、Ni等のめっき金属を含むFe−Si系合金が形成される。 Under such partial pressure of oxygen under the Si—SiO 2 melting system, iron is not oxidized, and iron contained in the raw material is melted together with metallic silicon to form an Fe—Si based alloy. For example, when a raw material containing a rare earth magnet and an iron material of a silicon steel sheet 2 to 15 times the mass of the magnet is melted by heating to 1250 ° C. to 1500 ° C. in the presence of a metal silicon source and an alkali silicate, the iron contained in the raw material Reacts with metallic silicon to form an Fe—Si based alloy, and iron is gradually taken into the Fe—Si based alloy. In the case where the raw material contains a plating metal such as Ni, an Fe—Si based alloy containing a plating metal such as Ni is formed.

Fe−Si系合金は、Si量が0〜約25wt%の範囲では、Si量の増加に伴い純鉄の熔融温度1538℃から次第に熔融温度が低下し、Si量約10wt%では約1300℃以上で熔融状態を保ち、Si量約15wt%〜約25wt%の範囲では1250℃以上で熔融状態である。従って、原料に含まれる鉄が金属シリコンと反応してFe−Si系合金に取り込まれ、次第にSi量が減少しても、Si量に応じて熔融温度を制御することによって原料に含まれる鉄をFe−Si系合金に取り込ませることができる。   In the Fe-Si based alloy, when the Si amount is in the range of 0 to about 25 wt%, the melting temperature gradually decreases from the melting temperature of pure iron 1538 ° C as the Si amount increases, and when the Si amount is about 10 wt%, about 1300 ° C or more. In the range of about 15 wt% to about 25 wt% of Si, the molten state is maintained at 1250 ° C. or higher. Therefore, even if iron contained in the raw material reacts with metallic silicon and is taken into the Fe-Si alloy and gradually decreases, the iron contained in the raw material is controlled by controlling the melting temperature according to the Si amount. It can be incorporated into Fe-Si alloys.

一方、上記Si−SiO熔融系では、希土類元素が酸化するのに充分な酸素分圧が保たれるので、希土類元素は選択的に酸化されて希土類酸化物になり、該希土類酸化物を含む熔融スラグが形成される。なお、希土類元素が酸化される酸素分圧は自然に保たれるので、酸素ないし空気を系内に導入することは基本的に不要であるが、大量処理する場合には少量の空気または酸素を吹き込んで希土類元素の酸化反応を促進させることができる。また、この希土類酸化物を含むスラグは低融点であるので上記加熱温度下で熔融スラグになる。 On the other hand, in the Si—SiO 2 melting system, a partial pressure of oxygen sufficient to oxidize the rare earth element is maintained, so that the rare earth element is selectively oxidized to form a rare earth oxide and includes the rare earth oxide. A molten slag is formed. In addition, since the oxygen partial pressure at which rare earth elements are oxidized is maintained naturally, it is basically unnecessary to introduce oxygen or air into the system. Blowing can promote the oxidation reaction of rare earth elements. Further, since the slag containing the rare earth oxide has a low melting point, it becomes a molten slag at the heating temperature.

希土類元素含有スラグを冷却し粉砕した後にアルカリ性水溶液または酸性水溶液によって浸出することによって、スラグ中のシリカ成分と希土類元素とを分離浸出することができる。例えば、アルカリ浸出の場合、希土類元素はアルカリ性水溶液中に不溶なため、アルカリ浸出残渣として水溶性アルカリシリケートから分離できる。ろ別したアルカリ浸出残渣中には希土類元素が濃縮しており、そのまま最終回収物としても良いが、これをさらに酸性溶液中に浸出して希土類元素含有液として回収することができる。
また、希土類元素含有液に含まれているNd、Dy、Pr、Tb等の精製方法として、例えば溶媒抽出を用いた場合には、上記希土類元素含有液を精製工程の原料液として使用することができる。
By cooling and pulverizing the rare earth element-containing slag and then leaching with an alkaline aqueous solution or an acidic aqueous solution, the silica component and the rare earth element in the slag can be separated and leached. For example, in the case of alkali leaching, since the rare earth element is insoluble in the alkaline aqueous solution, it can be separated from the water-soluble alkaline silicate as an alkaline leaching residue. The rare earth element is concentrated in the filtered alkaline leaching residue and may be used as a final recovered product as it is, but this can be further leached into an acidic solution and recovered as a rare earth element-containing liquid.
Further, as a purification method for Nd, Dy, Pr, Tb, etc. contained in the rare earth element-containing liquid, for example, when solvent extraction is used, the rare earth element-containing liquid may be used as a raw material liquid for the purification step. it can.

一方、希土類元素含有スラグを粉砕後、酸性水溶液中浸出した場合、希土類元素を選択的に抽出することも可能である。この場合、浸出残渣の主成分は未溶解のシリカと一部の希土類成分が含まれるので、浸出残渣をろ過、乾燥させた後スラグ成分として再利用することができる。   On the other hand, when the rare earth element-containing slag is pulverized and then leached in an acidic aqueous solution, the rare earth element can be selectively extracted. In this case, since the main component of the leaching residue includes undissolved silica and some rare earth components, the leaching residue can be reused as a slag component after being filtered and dried.

このように、本発明の分離回収方法では、金属シリコン源は原料に含まれる鉄を取り込む材料になり、アルカリシリケートは原料に含まれる希土類元素を選択的に酸化して熔融スラグに取り込むフラックスとして作用する。   Thus, in the separation and recovery method of the present invention, the metal silicon source becomes a material that takes in iron contained in the raw material, and the alkali silicate acts as a flux that selectively oxidizes the rare earth element contained in the raw material and takes it into the molten slag. To do.

上記加熱熔融工程において形成されるFe−Si熔融合金は、純鉄より熔融温度が低いので、Fe−Si系合金を形成することによって熔融温度を下げることができ、1250℃〜1500℃の加熱温度でFe−Si系熔融合金を形成することができ、該Fe−Si系熔融合金に原料の鉄を取り込ませることができる。なお、加熱温度が1200℃未満ではFe−Si系合金はほぼ固体になるので、原料に含まれる鉄がFe−Si系合金に熔解できなくなり、従って加熱温度は1250℃〜1500℃が好ましい。   Since the Fe—Si fusion gold formed in the heating and melting step has a melting temperature lower than that of pure iron, the melting temperature can be lowered by forming an Fe—Si alloy, and the heating temperature is 1250 ° C. to 1500 ° C. Thus, an Fe—Si based fusion gold can be formed, and the raw material iron can be taken into the Fe—Si based fusion gold. Note that when the heating temperature is less than 1200 ° C., the Fe—Si based alloy becomes almost solid, so iron contained in the raw material cannot be melted into the Fe—Si based alloy, and therefore the heating temperature is preferably 1250 ° C. to 1500 ° C.

上記熔融スラグとFe−Si系合金は比重差が大きいので、該熔融スラグは自然にFe−Si系熔融合金の上側に浮上して二相に分離した融体が形成される。このFe−Si系熔融合金と熔融スラグは二相に分離した液−液系であるので、分離性が良く、容易に分別することができる。   Since the molten slag and the Fe—Si based alloy have a large specific gravity difference, the molten slag naturally floats on the upper side of the Fe—Si based molten metal to form a melt separated into two phases. Since the Fe—Si based fusion gold and the molten slag are liquid-liquid systems separated into two phases, they have good separability and can be easily separated.

本発明の分離回収方法は、金属シリコン源とアルカリシリケートを加えてFe−Si系合金を形成するので、1250℃〜1500℃の熔融温度で鉄を合金にすることができ、従来の処理方法よりも低温で希土類元素を鉄と分離することができる。   In the separation and recovery method of the present invention, an Fe-Si alloy is formed by adding a metal silicon source and an alkali silicate, so that iron can be alloyed at a melting temperature of 1250 ° C to 1500 ° C. Even at low temperatures, rare earth elements can be separated from iron.

また、本発明の処理方法は、希土類磁石と鉄材料を含む原料をSiとSiOの共存下で熔融するので、鉄は酸化されずに合金を形成し、希土類元素が選択的に酸化されてスラグになる。このため、鉄と希土類元素との分離性が良く、スラグに含まれる鉄が極めて少なく、鉄の大部分を付加価値の高いフェロシリコン合金として回収することができる。 Further, the processing method of the present invention, since the melting of the raw material containing rare earth magnet and iron material in the presence of Si and SiO 2, iron forms an alloy is not oxidized, with a rare earth element is selectively oxidized It becomes slag. For this reason, the separability between iron and rare earth elements is good, the iron contained in the slag is extremely small, and most of the iron can be recovered as a ferrosilicon alloy with high added value.

本発明の分離回収方法によって形成されるFe−Si系熔融合金と熔融スラグは、二相に分離した液−液系であるので、容易に分別して回収することができる。また、形成される熔融スラグはアルカリシリケートスラグであるので、浸出処理などによって容易に希土類元素を外部に取り出すことができ、希土類元素を効率よく回収することができる。   Since the Fe—Si based fusion gold and molten slag formed by the separation and recovery method of the present invention are liquid-liquid systems separated into two phases, they can be easily separated and recovered. Moreover, since the molten slag to be formed is an alkali silicate slag, the rare earth element can be easily taken out by leaching or the like, and the rare earth element can be efficiently recovered.

さらに、本発明の分離回収方法において使用するフラックスのアルカリシリケートは有害なホウ素を含まないので、分離回収したスラグを安全に処理することができる。   Furthermore, since the flux alkali silicate used in the separation and recovery method of the present invention does not contain harmful boron, the separated and recovered slag can be treated safely.

上記スラグから回収した希土類元素は希土類磁石の原料として再利用することができる。また、回収したFe−Si系合金は、FeおよびSiを主成分とするので、フェロシリコン材料または鋼種材料として再利用することができる。さらに、本発明の分離回収方法における金属シリコンと併用することができる。   The rare earth element recovered from the slag can be reused as a raw material for the rare earth magnet. Further, since the recovered Fe—Si based alloy contains Fe and Si as main components, it can be reused as a ferrosilicon material or a steel seed material. Furthermore, it can be used in combination with metallic silicon in the separation and recovery method of the present invention.

本発明の分離回収方法の概略を示す工程図。The process figure which shows the outline of the separation-and-recovery method of this invention.

以下、本発明の実施例と比較例を示す。なお、Fe−Si系合金の組成はXRF法(X-ray Fluorescence Spectrometry)、およびEPMA(Electron Probe Micro Analysis)によって定性分析と定量分析を行った。また、スラグ中の組成はXRF法で定性分析し、化学法で定量分析を行った。
実施例および比較例で用いたケイ素鋼板の組成はFe94.6〜96.0wt%、Si2.1〜2.8wt%、その他1.2〜3.3wt%であり、希土類磁石の組成は、Fe68wt%、Nd20wt%、Dy10wt%、B1wt%、その他1wt%である。
Examples of the present invention and comparative examples are shown below. The composition of the Fe—Si based alloy was qualitatively analyzed and quantitatively analyzed by XRF (X-ray Fluorescence Spectrometry) and EPMA (Electron Probe Micro Analysis). The composition in the slag was qualitatively analyzed by the XRF method and quantitatively analyzed by the chemical method.
The compositions of the silicon steel plates used in the examples and comparative examples are 94.6 wt% to 96.0 wt% of Fe, 2.1 to 2.8 wt% of Si, and 1.2 to 3.3 wt% of others, and the composition of the rare earth magnet is 68 wt% of Fe. %, Nd 20 wt%, Dy 10 wt%, B 1 wt%, and other 1 wt%.

〔実施例1〕
鉄/シリコンの質量比73/27に調整熔融したFe−Si合金20gをカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1400℃に加熱して熔融させた。この溶湯に、モータ回転子スクラップ(ケイ素鋼板24gと希土類磁石3g)を入れて熔融させた。さらに上記溶湯にメタケイ酸ナトリウム(NaSiO)と二酸化ケイ素(SiO)からなるアルカリシリケートフラックス(35wt%NaO-65wt%SiO)6gを加え、1400℃にて5時間保持してFe−Si熔融合金と熔融スラグを生成させた。その後、試料を水冷してFe−Si合金とスラグを回収した。上記処理条件およびスラグと合金の回収量を表1に示す。また、回収したスラグと合金の組成を表2に示す。表2に示すように、スラグ中に鉄が検出されず、または合金中にはNdとDyが検出されず、鉄と希土類元素の分離は良好であった。
[Example 1]
20 g of an Fe—Si alloy adjusted and melted to an iron / silicon mass ratio of 73/27 was placed in a carbon crucible and melted by heating to 1400 ° C. in an inert atmosphere (argon gas, flow rate 200 ml / min). In this molten metal, motor rotor scrap (24 g of silicon steel plate and 3 g of rare earth magnet) was put and melted. Further, 6 g of alkali silicate flux (35 wt% Na 2 O-65 wt% SiO 2 ) composed of sodium metasilicate (Na 2 SiO 3 ) and silicon dioxide (SiO 2 ) was added to the molten metal, and the mixture was held at 1400 ° C. for 5 hours. Fe-Si fusion gold and molten slag were produced. Thereafter, the sample was cooled with water to recover the Fe—Si alloy and slag. Table 1 shows the treatment conditions and the recovered amounts of slag and alloy. Table 2 shows the composition of the recovered slag and alloy. As shown in Table 2, iron was not detected in the slag, or Nd and Dy were not detected in the alloy, and the separation of iron and rare earth elements was good.

〔実施例2〕
実施例1で回収したFe−Si合金17gと金属シリコン(純度98%)1.5gをカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1300℃に加熱して熔融させた。この溶湯に、モータ回転子のケイ素鋼板8gと希土類磁石1gを入れて熔融させた。さらに上記溶湯にメタケイ酸ナトリウム(NaSiO)と二酸化ケイ素(SiO)からなるアルカリシリケートフラックス(35wt%NaO-65wt%SiO)5gを加え、1300℃にて5時間保持してFe−Si系熔融合金と熔融スラグを生成させた。その後、試料を水冷してFe−Si合金とスラグを回収した。上記処理条件およびスラグと合金の回収量を表1に示す。また、回収したスラグと合金の組成を表2に示す。表2に示すように、スラグ中に鉄が検出されず、または合金中にはNdとDyが検出されず、鉄と希土類元素の分離は良好であった。また、Fe−Si合金の一部を再利用しても希土類元素の高回収率、および鉄と希土類元素の分離も良好であることが確認された。
[Example 2]
17 g of the Fe—Si alloy and 1.5 g of metallic silicon (purity 98%) recovered in Example 1 were put in a carbon crucible and melted by heating to 1300 ° C. in an inert atmosphere (argon gas, flow rate 200 ml / min). It was. In this molten metal, 8 g of a silicon steel plate of a motor rotor and 1 g of a rare earth magnet were put and melted. Furthermore, 5 g of an alkali silicate flux (35 wt% Na 2 O-65 wt% SiO 2 ) composed of sodium metasilicate (Na 2 SiO 3 ) and silicon dioxide (SiO 2 ) was added to the molten metal, and the mixture was held at 1300 ° C. for 5 hours. Fe-Si based fusion gold and molten slag were produced. Thereafter, the sample was cooled with water to recover the Fe—Si alloy and slag. Table 1 shows the treatment conditions and the recovered amounts of slag and alloy. Table 2 shows the composition of the recovered slag and alloy. As shown in Table 2, iron was not detected in the slag, or Nd and Dy were not detected in the alloy, and the separation of iron and rare earth elements was good. Moreover, it was confirmed that even when a part of the Fe—Si alloy was reused, the high recovery rate of rare earth elements and the separation of iron and rare earth elements were good.

〔実施例3〕
金属シリコン(純度98%、粒子径<20mm)3gをカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1450℃に加熱して熔融させた。この溶湯に、モータ回転子のケイ素鋼板37gと希土類磁石4.6gを入れて熔融させた。さらに上記溶湯にメタケイ酸ナトリウム(NaSiO)と二酸化ケイ素(SiO)からなるアルカリシリケートフラックス(35wt%NaO-65wt%SiO)22gを加え、1450℃にて5時間保持した。その後、試料を水冷してFe−Si合金とスラグを回収した。上記処理条件およびスラグと合金の回収量を表1に示す。また、回収したスラグと合金の組成を表2に示す。表2に示すように、スラグ中に鉄が検出されず、一方、合金中にもNdとDyが検出されず、鉄と希土類元素の分離は良好であった。また、シリコン源として少量の金属Siの熔体に原料(モータ回転子)のケイ素鋼板を添加して1450℃未満で充分に熔解できることが分かった。
Example 3
3 g of metallic silicon (purity 98%, particle size <20 mm) was put in a carbon crucible and melted by heating to 1450 ° C. in an inert atmosphere (argon gas, flow rate 200 ml / min). In this molten metal, 37 g of a silicon steel plate of a motor rotor and 4.6 g of a rare earth magnet were put and melted. Furthermore, 22 g of alkali silicate flux (35 wt% Na 2 O—65 wt% SiO 2 ) composed of sodium metasilicate (Na 2 SiO 3 ) and silicon dioxide (SiO 2 ) was added to the molten metal, and the mixture was held at 1450 ° C. for 5 hours. Thereafter, the sample was cooled with water to recover the Fe—Si alloy and slag. Table 1 shows the treatment conditions and the recovered amounts of slag and alloy. Table 2 shows the composition of the recovered slag and alloy. As shown in Table 2, iron was not detected in the slag, while Nd and Dy were not detected in the alloy, and the separation of iron and rare earth elements was good. It was also found that a silicon steel plate as a raw material (motor rotor) was added to a small amount of metal Si melt as a silicon source and melted sufficiently at less than 1450 ° C.

〔実施例4〕
鉄/シリコンの質量比73/27に調整熔融したFe−Si合金16gをカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1250℃に加熱して熔融させた。この溶湯に、モータ回転子スクラップ(ケイ素鋼板5gと希土類磁石2g)を入れて熔融させた。さらに上記溶湯にメタケイ酸ナトリウム(NaSiO)と二酸化ケイ素(SiO)からなるアルカリシリケートフラックス(35wt%NaO-65wt%SiO)7gを加え、1250℃にて5時間保持してFe−Si熔融合金と熔融スラグを生成させた。その後、試料を水冷してFe−Si合金とスラグを回収した。上記処理条件およびスラグと合金の回収量を表1に示す。また、回収したスラグと合金の組成を表2に示す。表2に示すように、スラグ中に鉄が検出されず、または合金中にはNdとDyが検出されず、鉄と希土類元素の分離は良好であった。
Example 4
16 g of an Fe—Si alloy adjusted and melted to an iron / silicon mass ratio of 73/27 was placed in a carbon crucible and melted by heating to 1250 ° C. in an inert atmosphere (argon gas, flow rate 200 ml / min). In this molten metal, motor rotor scrap (silicon steel plate 5 g and rare earth magnet 2 g) was put and melted. Furthermore, 7 g of an alkali silicate flux (35 wt% Na 2 O-65 wt% SiO 2 ) composed of sodium metasilicate (Na 2 SiO 3 ) and silicon dioxide (SiO 2 ) was added to the molten metal, and the mixture was held at 1250 ° C. for 5 hours. Fe-Si fusion gold and molten slag were produced. Thereafter, the sample was cooled with water to recover the Fe—Si alloy and slag. Table 1 shows the treatment conditions and the recovered amounts of slag and alloy. Table 2 shows the composition of the recovered slag and alloy. As shown in Table 2, iron was not detected in the slag, or Nd and Dy were not detected in the alloy, and the separation of iron and rare earth elements was good.

〔実施例5〕
金属シリコン(純度98%、粒子径<20mm)0.5gとモータ回転子のケイ素鋼板30gと希土類磁石2gをカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1500℃に加熱して熔融させた。上記溶湯にメタケイ酸ナトリウム(NaSiO)と二酸化ケイ素(SiO)からなるアルカリシリケートフラックス(35wt%NaO-65wt%SiO)20gを加え、1500℃にて5時間保持した。その後、試料を水冷してFe−Si合金とスラグを回収した。上記処理条件およびスラグと合金の回収量を表1に示す。また、回収したスラグと合金の組成を表2に示す。表2に示すように、スラグ中に鉄が検出されず、一方、合金中にもNdとDyが検出されず、鉄と希土類元素の分離は良好であった。
Example 5
Metallic silicon (purity 98%, particle size <20 mm) 0.5 g, motor rotor silicon steel plate 30 g and rare earth magnet 2 g are put in a carbon crucible and in an inert atmosphere (argon gas, flow rate 200 ml / min) at 1500 ° C. Heated to melt. 20 g of an alkali silicate flux (35 wt% Na 2 O—65 wt% SiO 2 ) composed of sodium metasilicate (Na 2 SiO 3 ) and silicon dioxide (SiO 2 ) was added to the molten metal, and the mixture was held at 1500 ° C. for 5 hours. Thereafter, the sample was cooled with water to recover the Fe—Si alloy and slag. Table 1 shows the treatment conditions and the recovered amounts of slag and alloy. Table 2 shows the composition of the recovered slag and alloy. As shown in Table 2, iron was not detected in the slag, while Nd and Dy were not detected in the alloy, and the separation of iron and rare earth elements was good.

Figure 2016108632
Figure 2016108632

Figure 2016108632
Figure 2016108632

〔比較例1〕
Fe−Si合金(Fe/Si質量比=73/27)をカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1400℃に加熱して熔融させた。この溶湯に、モータ回転子のケイ素鋼板と希土類磁石を入れて熔融させた。この溶湯にアルカリシリケートフラックスを加えずに、1400℃にて5時間保持し坩堝ごと水冷した。回収した物を観察すると、ケイ素鋼板はFe−Si合金中に熔解しており、希土類元素は酸化され、希土類酸化物の多くがFe−Si合金中に分散して残留し、鉄と希土類元素を十分に分離できないことが分かった。
[Comparative Example 1]
An Fe—Si alloy (Fe / Si mass ratio = 73/27) was placed in a carbon crucible and melted by heating to 1400 ° C. in an inert atmosphere (argon gas, flow rate 200 ml / min). In this molten metal, a silicon steel plate of a motor rotor and a rare earth magnet were put and melted. Without adding an alkali silicate flux to the molten metal, the molten metal was kept at 1400 ° C. for 5 hours and cooled with the crucible. When the recovered material is observed, the silicon steel sheet is melted in the Fe—Si alloy, the rare earth elements are oxidized, and most of the rare earth oxides are dispersed and remain in the Fe—Si alloy. It was found that it could not be separated sufficiently.

〔比較例2〕
金属シリコンまたはFe−Si合金の溶湯を形成せずに、モータ回転子のケイ素鋼板と希土類磁石をカーボン坩堝に入れ、不活性雰囲気下(アルゴンガス、流量200ml/分)、1400℃に加熱して5時間保持したところ、ケイ素鋼板と希土類磁石は殆ど熔解しなかった。

[Comparative Example 2]
Without forming a metal silicon or Fe-Si alloy melt, put the silicon steel plate and rare earth magnet of the motor rotor into a carbon crucible and heat to 1400 ° C under an inert atmosphere (argon gas, flow rate 200 ml / min). When held for 5 hours, the silicon steel plate and rare earth magnet were hardly melted.

Claims (9)

希土類磁石と鉄材料を含む原料から希土類元素を分離回収する方法であって、不活性雰囲気下、金属シリコン源とアルカリシリケートの共存下で上記原料を熔融することによって鉄の酸化を抑制してFe−Si熔融合金を形成しつつ、希土類元素を選択的に酸化して熔融スラグにし、この熔融スラグを上記Fe−Si系熔融合金から分離して回収することを特徴とする希土類元素の分離回収方法。 A method for separating and recovering rare earth elements from a raw material containing a rare earth magnet and an iron material, wherein the raw material is melted in an inert atmosphere in the presence of a metal silicon source and an alkali silicate to suppress iron oxidation. A method for separating and recovering a rare earth element, characterized in that a rare earth element is selectively oxidized to form a molten slag while forming a Si fusion gold, and the molten slag is separated from the Fe-Si based fusion gold and recovered. . 希土類磁石と鉄材料を含む原料が、希土類磁石の2〜15質量倍の鉄材料を含む原料である請求項1に記載する希土類元素の分離回収方法。 The method for separating and recovering a rare earth element according to claim 1, wherein the raw material containing the rare earth magnet and the iron material is a raw material containing an iron material that is 2 to 15 times the mass of the rare earth magnet. 希土類磁石と鉄材料を含む原料としてモータの希土類磁石を備えた回転子のスクラップを用いる請求項1または請求項2に記載する希土類元素の分離回収方法。 The method for separating and recovering rare earth elements according to claim 1 or 2, wherein a scrap of a rotor provided with a rare earth magnet of a motor is used as a raw material containing a rare earth magnet and an iron material. 金属シリコン源として、金属シリコン、Fe−Si系合金、または金属シリコンとFe−Si系合金を用いる請求項1〜請求項3の何れかに記載する希土類元素の分離回収方法。 The method for separating and recovering a rare earth element according to any one of claims 1 to 3, wherein metal silicon, an Fe-Si alloy, or metal silicon and an Fe-Si alloy are used as the metal silicon source. アルカリシリケートとして、アルカリ金属とSiの二元系酸化物、またはアルカリ金属酸化物とSiOの混合物を用いる請求項1〜請求項4の何れかに記載する希土類元素の分離回収方法。 The method for separating and recovering rare earth elements according to any one of claims 1 to 4, wherein a binary oxide of alkali metal and Si or a mixture of alkali metal oxide and SiO 2 is used as the alkali silicate. 金属シリコンの溶湯、または金属シリコンとFe−Si系合金の溶湯に、希土類磁石と鉄材料を含む原料とアルカリシリケートを加え、不活性雰囲気下、1250℃〜1500℃に加熱して、Fe−Si系熔融合金と、希土類酸化物を含有する熔融スラグを生成させる請求項1〜請求項5の何れかに記載する希土類元素の分離回収方法。 A raw material containing a rare earth magnet and an iron material and an alkali silicate are added to a molten metal silicon or a molten metal silicon and Fe-Si alloy, and heated to 1250 ° C. to 1500 ° C. in an inert atmosphere. The method for separating and recovering a rare earth element according to any one of claims 1 to 5, wherein a molten slag containing a molten metal and a rare earth oxide is produced. 熔融スラグから分離したFe−Si系熔融合金を熔融工程に戻して金属シリコンと併用する請求項1〜請求項6の何れかに記載する希土類元素の分離回収方法。 The method for separating and recovering rare earth elements according to any one of claims 1 to 6, wherein the Fe-Si based fusion gold separated from the molten slag is returned to the melting step and used together with metallic silicon. 熔融スラグと分離したFe−Si系合金をフェロシリコン材料または鉄材料として再利用する請求項1〜請求項6の何れかに記載する希土類元素の分離回収方法。 The method for separating and recovering a rare earth element according to any one of claims 1 to 6, wherein the Fe-Si alloy separated from the molten slag is reused as a ferrosilicon material or an iron material. 熔融スラグから希土類元素を回収し、該希土類元素を希土類磁石の原料として再利用する請求項1〜請求項6の何れかに記載する希土類元素の分離回収方法。
The method for separating and recovering a rare earth element according to any one of claims 1 to 6, wherein the rare earth element is recovered from the molten slag, and the rare earth element is reused as a raw material for the rare earth magnet.
JP2014249212A 2014-12-09 2014-12-09 Separation and recovery method of rare earth elements Expired - Fee Related JP6425018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249212A JP6425018B2 (en) 2014-12-09 2014-12-09 Separation and recovery method of rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249212A JP6425018B2 (en) 2014-12-09 2014-12-09 Separation and recovery method of rare earth elements

Publications (2)

Publication Number Publication Date
JP2016108632A true JP2016108632A (en) 2016-06-20
JP6425018B2 JP6425018B2 (en) 2018-11-21

Family

ID=56123331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249212A Expired - Fee Related JP6425018B2 (en) 2014-12-09 2014-12-09 Separation and recovery method of rare earth elements

Country Status (1)

Country Link
JP (1) JP6425018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122556A1 (en) * 2016-01-12 2017-07-20 三菱マテリアル株式会社 Method for separating rare-earth elements from iron, and rare-earth element-containing slag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220103416A (en) * 2021-01-15 2022-07-22 광주과학기술원 Method for recovering calcium and rare earth metal from slag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077264A (en) * 2004-09-07 2006-03-23 Kenichi Machida METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
JP2014181370A (en) * 2013-03-18 2014-09-29 Aichi Steel Works Ltd Method of recovering rare earth element and method of recycling steel ingredient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077264A (en) * 2004-09-07 2006-03-23 Kenichi Machida METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
JP2014181370A (en) * 2013-03-18 2014-09-29 Aichi Steel Works Ltd Method of recovering rare earth element and method of recycling steel ingredient

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG.Yほか: "Recovery of rare earth elements from EOL permanent magnets with slag extraction", PROCEEDINGS OF THE THIRD INTERNATIONAL SLAG VALORISATION SYMPOSIUM, JPN6018024332, 2013, pages 249 - 252, ISSN: 0003826783 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122556A1 (en) * 2016-01-12 2017-07-20 三菱マテリアル株式会社 Method for separating rare-earth elements from iron, and rare-earth element-containing slag
US11279987B2 (en) 2016-01-12 2022-03-22 Mitsubishi Materials Corporation Separation method of rare earth element and iron and rare earth element-containing slag

Also Published As

Publication number Publication date
JP6425018B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US11279987B2 (en) Separation method of rare earth element and iron and rare earth element-containing slag
JP5273241B2 (en) Method for recovering rare earth elements from RE-TM mixture
JP6406675B2 (en) Zinc recovery method from electric furnace steelmaking dust and zinc recovery device from electric furnace steelmaking dust
JP2012041588A (en) Separation method and separation system for rare earth element by chloride volatilization method
JP5149164B2 (en) Method for recovering useful materials from rare earth-iron-boron magnet scrap
CN103717764A (en) Method for recovering rare earth element
US10167532B2 (en) Method for isolating rare earths and/or adjacent metal element(s) contained in the magnetic phase of permanent magnets
JP6233321B2 (en) Recovery method for heavy rare earth elements
JP6425018B2 (en) Separation and recovery method of rare earth elements
JP5767993B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP6478113B2 (en) Recovery method of rare earth elements
JP6229846B2 (en) Separation and recovery method of rare earth elements and iron
JP5977385B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP2014145099A (en) Rare earth element collection method
JP5905782B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP2014181370A (en) Method of recovering rare earth element and method of recycling steel ingredient
JP5533251B2 (en) Treatment method of copper removal slag
JP5678470B2 (en) Treatment method of copper removal slag
JP2016186121A (en) Method for recovering rare earth element from rare earth element-containing product
JP2021175818A (en) Method of recovering rare earth oxide from rare earth element-containing substance
JP2015021150A (en) Method for recovering rare earth element and method for recycling steel component
JP6264195B2 (en) Recovery method of rare earth elements
JP2005114620A (en) Decontamination method for ferrous metal contaminated with radioactive material
JP5857751B2 (en) Method for treating sulfide-based copper removal slag
JP2016033246A (en) Method for separating rare earth element and iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6425018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees