JP2016105034A - Tube cleaning method of multitubular heat exchanger, and tube contamination detection device used in the same - Google Patents

Tube cleaning method of multitubular heat exchanger, and tube contamination detection device used in the same Download PDF

Info

Publication number
JP2016105034A
JP2016105034A JP2015221812A JP2015221812A JP2016105034A JP 2016105034 A JP2016105034 A JP 2016105034A JP 2015221812 A JP2015221812 A JP 2015221812A JP 2015221812 A JP2015221812 A JP 2015221812A JP 2016105034 A JP2016105034 A JP 2016105034A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
thin
thin tube
cleanliness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015221812A
Other languages
Japanese (ja)
Other versions
JP6539570B2 (en
Inventor
石川 真也
Shinya Ishikawa
真也 石川
晋弥 梅田
Shinya Umeta
晋弥 梅田
佐藤 真
Makoto Sato
真 佐藤
泰孝 常松
Yasutaka Tsunematsu
泰孝 常松
浩太 塩田
Kota Shioda
浩太 塩田
雅夫 中溝
Masao Nakamizo
雅夫 中溝
雅 家保
Masaru Ieyasu
雅 家保
研二 清水
Kenji Shimizu
研二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIMEJI ECOTECH KK
Tohoku Electric Power Co Inc
Original Assignee
HIMEJI ECOTECH KK
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIMEJI ECOTECH KK, Tohoku Electric Power Co Inc filed Critical HIMEJI ECOTECH KK
Publication of JP2016105034A publication Critical patent/JP2016105034A/en
Application granted granted Critical
Publication of JP6539570B2 publication Critical patent/JP6539570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a work period in cleaning a tube and to reduce costs by digitizing a degree of contamination of each tube without pulling out the tubes of a multitubular heat exchanger including a condenser, and limiting a range of the tubes to be cleaned on the basis of the degree of contamination of each tube.SOLUTION: A tube cleaning method of a multitubular heat exchanger includes a process for measuring a quantity of transmitted light of each tube of the heat exchanger by using a lighting device disposed in a water chamber at one end side of the tubes of the heat exchanger so that light enters therein from one end side of the tube of the heat exchanger, and a detection device disposed in a water chamber at the other end side of the tubes of the heat exchanger for detecting the transmitted light from the other end side of the tubes of the heat exchanger, a process for calculating a tube cleanliness of each tube of the heat exchanger from the measured quantity of transmitted light of each tube of the heat exchanger on the basis of a predetermined relationship between the quantity of transmitted light of the tube of the heat exchanger and the degree of contamination of the tube, and a process for selecting the tubes to be cleaned on the basis of the calculated tube cleanliness of the heat exchanger, and the degree of contamination of each tube of the heat exchanger is detected to limit a range of the tubes to be cleaned.SELECTED DRAWING: Figure 1

Description

この発明は、復水器を含む多管式熱交換器の細管洗浄方法に関し、特に例えば、多管式熱交換器の細管毎の汚れの度合いを検出して洗浄する細管の範囲を限定する細管洗浄方法およびそれに用いる細管汚れ検出装置に関する。   The present invention relates to a thin tube cleaning method for a multi-tube heat exchanger including a condenser, and more particularly, for example, a narrow tube that limits the range of thin tubes to be cleaned by detecting the degree of contamination for each thin tube of the multi-tube heat exchanger. The present invention relates to a cleaning method and a thin tube dirt detection device used therefor.

火力発電所や原子力発電所等の発電設備では、復水器と呼ばれる大型の多管式熱交換器を備え、蒸気タービンで仕事を終えた水蒸気を、主として海水などの冷却水で冷却し、凝集させて水に戻し、その際に得られる真空によって蒸気タービンの排気を引き込むことで効率的に発電させるようにしている。   Power generation facilities such as thermal power plants and nuclear power plants are equipped with large multi-tubular heat exchangers called condensers, and the steam that has finished work in the steam turbine is mainly cooled with cooling water such as seawater to agglomerate. It is made to return to water, and it is made to generate electric power efficiently by drawing in exhaust of a steam turbine with the vacuum obtained at that time.

復水器は、外径が約1インチ、長さが約10mの、数千から1万本程度の細管(冷却管とも言う)を備え、細管の内側を冷却水が、シェルに囲まれた細管の外側を蒸気が通過することで熱交換が行われる。この細管の内側には、冷却水に含まれる微生物が繁殖してバイオフィルムができ、さらに貝やフジツボ、ヒドロ虫などの海生生物が付着することなどにより、細管の清浄度が低下し、伝熱性能を低下させる。   The condenser has an outer diameter of about 1 inch and a length of about 10 m, and has several thousand to 10,000 thin tubes (also called cooling tubes), and the cooling water is surrounded by a shell inside the thin tubes. Heat exchange is performed by the steam passing outside the narrow tube. Inside this tubule, microorganisms contained in the cooling water propagate to form a biofilm. Furthermore, marine organisms such as shellfish, barnacles and hydroworms adhere to the tube, which reduces the cleanliness of the tubule. Reduces thermal performance.

伝熱性能を維持する手段として、運転中は細管内にスポンジ構造のボールを循環させる洗浄(以下、「ボール洗浄」と言う)が行われ、停止中はブラシ等の掃除具を水撃ちする洗浄(以下、「ブラシ洗浄」と言う)または高圧ジェット水を用いた洗浄(以下、「ジェット洗浄」と言う)が行われる(特許文献1〜4を参照)。   As a means of maintaining heat transfer performance, cleaning is performed by circulating a sponge-structured ball in the narrow tube during operation (hereinafter referred to as “ball cleaning”), and cleaning is performed by watering a cleaning tool such as a brush during stoppage. (Hereinafter referred to as “brush cleaning”) or cleaning using high-pressure jet water (hereinafter referred to as “jet cleaning”) is performed (see Patent Documents 1 to 4).

細管の材質としては、熱伝達性能の優れた銅合金(主としてアルミ黄銅)が古くから多用されてきたが、防食管理が適切でないと腐食を起こす可能性があることから、原子力発電所や近年の火力発電所では耐食性の高いチタンが採用されている。
アルミ黄銅管の復水器では、主な伝熱性能維持手段として、停止時に細管全数のブラシ洗浄またはジェット洗浄を実施することが慣例となっており、運転時にボール洗浄も行われるが、防食管理上、ボールの種類と洗浄頻度に制限が設けられている。
一方、全てがチタン管の復水器では、伝熱性能維持手段として、洗浄力の高いボール(ゴム製のスポンジ構造のボールの表面を樹脂等でコーティングしたもの)を用いたボール洗浄を高頻度で実施することができる。このため、特に冷却性能が求められる海水温度が高い時季においても、ボール洗浄により設計性能を保つことができる。
As a material for thin tubes, copper alloys with excellent heat transfer performance (mainly aluminum brass) have been used extensively for a long time. Thermal power plants use titanium with high corrosion resistance.
In aluminum brass tube condensers, it is customary to perform brush cleaning or jet cleaning of all thin tubes when stopping as the main heat transfer performance maintenance means, and ball cleaning is also performed during operation, but anticorrosion management In addition, there are restrictions on the type of balls and the frequency of cleaning.
On the other hand, all condensers made of titanium tube are frequently used for heat transfer performance maintenance as a means of maintaining the heat transfer performance by using a ball with a high cleaning power (rubber sponge-structured ball surface coated with resin). Can be implemented. For this reason, the design performance can be maintained by ball cleaning even in the season when the seawater temperature is particularly high where cooling performance is required.

特願2003−121095号公報Japanese Patent Application No. 2003-121095 特開平10−232098号公報Japanese Patent Laid-Open No. 10-232098 特開平10−054694号公報Japanese Patent Laid-Open No. 10-054694 特願2012−255636号公報Japanese Patent Application No. 2012-255636

川辺・荒木・藤井・清水著、復水器工学ハンドブック、1994年、愛智出版Kawabe, Araki, Fujii, Shimizu, Condenser Engineering Handbook, 1994, Aichi Publishing

しかしながら、ボール洗浄は、一水室当り数千から1万本を超える細管に、細管数の1割に当る数のボールを、一定時間にわたり復水器の入口から投入して出口下流配管で回収し、配管を通じて循環させるものであるが、全ての配管に同じ頻度でボールを通過させることは困難であり、不均一性が生じる。   However, in ball cleaning, balls equivalent to 10% of the number of thin tubes are thrown into the narrow tubes exceeding one thousand to 10,000 per water chamber from the inlet of the condenser for a certain period of time and recovered at the outlet downstream piping. However, although it is circulated through the pipes, it is difficult to pass the balls through all the pipes at the same frequency, resulting in non-uniformity.

後述のように、実際の発電所で運用されている復水器を調査対象として細管の付着物を採取して付着物量を調査した結果、汚れの増加に伴ってボールの通過頻度が低下し、平均的なものと比べて付着物が10倍以上もある著しく汚れた配管が約1割存在し、それが復水器全体にランダムに分布していることが判明した。   As described below, as a result of investigating the amount of deposits by collecting the deposits of the thin tubes with the condenser operated in an actual power plant as the survey target, the frequency of passing the ball decreases with increasing dirt, It was found that there were about 10% of extremely dirty pipes with more than 10 times the amount of deposits compared to the average, and they were randomly distributed throughout the condenser.

従って、復水器の細管毎の汚れの度合いを検出し、洗浄の必要性の高い細管、言い換えれば洗浄による性能向上の貢献度の高い細管を選定する技術があれば、必要最小限の洗浄細管数で復水器の設計性能を維持することが可能となり、最小限のコストで最大の性能回復効果を得ることができる効率的な細管洗浄を実現することができると考えられる。   Therefore, if there is a technology to detect the degree of contamination of each condenser thin tube and select a thin tube that is highly needed for cleaning, in other words, a thin tube that contributes greatly to performance improvement by washing, the minimum necessary washing capillary It is possible to maintain the design performance of the condenser by the number, and it is possible to realize efficient thin tube cleaning that can obtain the maximum performance recovery effect at a minimum cost.

このような復水器の細管毎の汚れの度合いを数値化する現時点で適用可能な方法としては、点検時に引き抜いた細管の汚れ係数を測定する方法(引抜管の汚れ係数測定法)がある(非特許文献1を参照)。   As a method that can be applied at the present time to quantify the degree of contamination of each condenser thin tube, there is a method (measuring coefficient of the drawn tube) for measuring the contamination coefficient of the thin tube extracted during inspection ( (Refer nonpatent literature 1).

しかしながら、この方法で復水器の細管毎の汚れの度合いを検出するためには、復水器の全ての細管を引き抜いて汚れ係数を測定する必要があり、このような方法により細管洗浄のコスト低減を図ることは困難である。   However, in order to detect the degree of contamination of each condenser tube by this method, it is necessary to pull out all the condenser tubes and measure the contamination coefficient. It is difficult to reduce it.

それ故に、本願発明の目的は、復水器を含む多管式熱交換器の各細管を引き抜くことなく細管毎の汚れの度合いを数値化することを可能とし、細管毎の汚れの度合いに基づいて洗浄する細管の範囲を限定することで、細管洗浄の工期短縮とコスト低減を図ることである。   Therefore, the object of the present invention is to make it possible to quantify the degree of contamination for each thin tube without pulling out each thin tube of the multi-tube heat exchanger including the condenser, and based on the degree of contamination for each thin tube. By limiting the range of thin tubes to be cleaned, it is intended to shorten the work period and reduce the cost of thin tube cleaning.

上記課題を解決するために、この発明にかかる多管式熱交換器の細管洗浄方法は、熱交換器の細管の一端側の水室に設置され、熱交換器の細管の一端側より光を入射させる照明装置と、熱交換器の細管の他端側の水室に設置され、熱交換器の細管の他端側からの透過光を検出する検出装置とを用いて、熱交換器の細管毎の透過光量を計測する工程と、計測された熱交換器の細管毎の透過光量から、予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて、熱交換器の細管毎の管清浄度を演算する工程と、演算された熱交換器の細管毎の管清浄度に基づいて、洗浄対象とする細管を選定する工程とを備え、熱交換器の細管毎の汚れの度合いを検出して洗浄する細管の範囲を限定するようにしたものである。   In order to solve the above-mentioned problems, a thin tube cleaning method for a multitubular heat exchanger according to the present invention is installed in a water chamber on one end side of a thin tube of a heat exchanger, and receives light from one end side of the thin tube of the heat exchanger. A thin tube of a heat exchanger using an illumination device to be incident and a detection device that is installed in a water chamber on the other end of the thin tube of the heat exchanger and detects transmitted light from the other end of the thin tube of the heat exchanger The relationship between the process of measuring the amount of transmitted light for each tube and the amount of transmitted light of the thin tubes of the heat exchanger determined in advance from the measured amount of transmitted light of each tube of the heat exchanger and the cleanliness of the tube representing the degree of dirt on the tubes And calculating the cleanliness of each tube of the heat exchanger, and selecting the tube to be cleaned based on the calculated tube cleanliness of each tube of the heat exchanger, It is designed to limit the range of thin tubes to be cleaned by detecting the degree of contamination of each thin tube of the heat exchanger. That.

発明者は、細管の一端側から入射した光が細管内を通過する際に汚れの度合いに応じて光が減衰することに着目し、細管の一端側に設けた照明装置により細管に光を入射させ、細管の他端側に設けた検出装置により細管内を透過する光の透過光量を検出することで細管毎の汚れの度合いを数値化することができないかを検討した。このため、後述のように、複数の汚れの度合いが異なる細管を人工的に作成し、細管の汚れの度合いと透過光量の関係を調査するモデル試験を行った結果、細管の付着物量と細管の透過光量との間には指数関数で近似できる高い相関関係があることが確認され、本願発明に想到するに至った。
この発明によれば、熱交換器の細管の一端側の水室に設置され、熱交換器の細管の一端側より光を入射させる照明装置と、熱交換器の細管の他端側の水室に設置され、熱交換器の細管の他端側からの透過光を検出する検出装置とを用いて、熱交換器の細管毎の透過光量を計測する工程と、計測された熱交換器の細管毎の透過光量から、予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて熱交換器の細管毎の管清浄度を演算する工程とを備えるので、多管式熱交換器の各細管を引き抜くことなく細管毎に細管の汚れの度合いを表す管清浄度を検出することができる。
また、この発明によれば、演算された熱交換器の細管毎の管清浄度に基づいて洗浄対象とする細管を選定する工程を備えるので、細管毎の汚れの度合いに応じて洗浄する細管の範囲を限定することができ、細管洗浄の工期短縮とコスト低減を図ることができる。
ここで、管清浄度は細管の汚れの度合いを表すものであり、細管の内面に付着した付着物量自体を管清浄度とすることもできるが、細管の付着物量から汚れ係数に基づいて演算される熱交換器の清浄度に対応する細管1本当りの清浄度を管清浄度として用いるようにしてもよい。これにより、細管毎の汚れの度合いを表す管清浄度を熱交換器の清浄度に対応させることができ、熱交換器の清浄度の性能回復目標に対応させて洗浄対象とする細管を選定することが可能となる。
なお、「熱交換器の細管毎の管清浄度を演算する工程」において用いられる「予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係」は、予め対象とする熱交換器において測定された細管の付着物量と透過光量との関係から近似された関係式を用いるようにしてもよく、また類似する熱交換器について求められた付着物量と透過光量の関係から近似された関係式について照明条件や細管仕様による差異を考慮して変換された関係式を用いるようにしてもよい。
また、「演算された熱交換器の細管毎の管清浄度に基づいて洗浄対象とする細管を選定する工程」において洗浄対象とする細管を選定する方法は、例えば、図27に示すような管清浄度閾値に対する洗浄後の熱交換器全体の予測清浄度と洗浄細管数の関係に基づいて、熱交換器の目標清浄度に対応して管清浄度閾値を設定することによって洗浄対象細管を選定するようにしてもよく、また、管清浄度閾値に対して必要となる洗浄細管数に基づいて作業時間等を考慮して管清浄度閾値を設定することによって洗浄対象細管を選定するようにしてもよい。
The inventor pays attention to the fact that the light incident from one end of the narrow tube attenuates according to the degree of contamination when passing through the narrow tube, and the light is incident on the narrow tube by the illumination device provided on the one end of the thin tube. Then, it was examined whether the degree of contamination for each thin tube could be quantified by detecting the amount of light transmitted through the thin tube with a detection device provided on the other end of the thin tube. For this reason, as will be described later, a plurality of thin tubes having different levels of dirt are artificially created, and a model test for investigating the relationship between the degree of dirt on the thin tubes and the amount of transmitted light is conducted. It has been confirmed that there is a high correlation that can be approximated by an exponential function with the amount of transmitted light, and the present invention has been conceived.
According to this invention, the illumination device that is installed in the water chamber at one end of the thin tube of the heat exchanger and makes light incident from one end of the thin tube of the heat exchanger, and the water chamber at the other end of the thin tube of the heat exchanger And a step of measuring the amount of transmitted light for each thin tube of the heat exchanger using a detection device that detects transmitted light from the other end of the thin tube of the heat exchanger, and the measured thin tube of the heat exchanger Calculating the tube cleanliness for each thin tube of the heat exchanger based on the relationship between the transmitted light amount of the thin tube of the heat exchanger and the cleanliness of the tube representing the degree of dirt on the thin tube from the transmitted light amount of each tube Therefore, it is possible to detect the tube cleanliness representing the degree of contamination of the thin tubes for each thin tube without pulling out the thin tubes of the multitubular heat exchanger.
Moreover, according to this invention, since the step of selecting a thin tube to be cleaned based on the calculated tube cleanliness for each thin tube of the heat exchanger is provided, the thin tube to be cleaned according to the degree of dirt for each thin tube The range can be limited, and the work period and cost of the thin tube cleaning can be shortened.
Here, the cleanliness of the tube represents the degree of dirt on the narrow tube, and the amount of adhering matter adhering to the inner surface of the thin tube can also be used as the tube cleanliness, but it is calculated based on the amount of dirt adhering to the amount of adhering tube. The cleanliness per thin tube corresponding to the cleanliness of the heat exchanger may be used as the tube cleanliness. As a result, the tube cleanliness representing the degree of contamination for each thin tube can be made to correspond to the cleanness of the heat exchanger, and the thin tube to be cleaned is selected in accordance with the performance recovery target of the cleanliness of the heat exchanger. It becomes possible.
The “relationship between the amount of transmitted light through the heat exchanger and the tube cleanliness representing the degree of dirt on the tube” used in the “step of calculating the tube cleanliness for each tube of the heat exchanger” is Alternatively, a relational expression approximated from the relationship between the amount of adhering fine tubes and the amount of transmitted light measured in advance in the target heat exchanger may be used, and the amount of adhering matter and the transmission obtained for a similar heat exchanger may be used. As a relational expression approximated from the relationship between the amounts of light, a relational expression converted in consideration of a difference due to illumination conditions or a thin tube specification may be used.
In addition, a method for selecting a thin tube to be cleaned in the “step of selecting a thin tube to be cleaned based on the calculated tube cleanliness for each thin tube of the heat exchanger” is, for example, a tube as shown in FIG. Select the tube to be cleaned by setting the tube cleanliness threshold corresponding to the target cleanliness of the heat exchanger, based on the relationship between the predicted cleanliness of the entire heat exchanger after cleaning and the number of cleaning tubes after the cleaning. In addition, the tube to be cleaned may be selected by setting the tube cleanliness threshold in consideration of the working time based on the number of tubes necessary for the tube cleanliness threshold. Also good.

この発明にかかる多管式熱交換器の細管洗浄方法は、透過光量として、未使用細管または十分に洗浄された細管について計測された透過光量に対する比率で表された透過率を用いるようにしてもよい。   In the thin tube cleaning method for a multi-tube heat exchanger according to the present invention, the transmittance expressed as a ratio to the transmitted light amount measured for an unused capillary or a sufficiently cleaned capillary is used as the transmitted light amount. Good.

この発明によれば、透過光量として、未使用細管または十分に洗浄された細管について計測された透過光量に対する比率で表された透過率を用いるので、後述のように、対数で表した透過率と熱交換器の細管の汚れの度合いを表す管清浄度との間には高い線形関係があることが確認されており、簡便に細管毎の管清浄度を検出することができる。   According to the present invention, as the transmitted light amount, the transmittance represented by the ratio with respect to the transmitted light amount measured for unused tubules or sufficiently cleaned tubules is used. It has been confirmed that there is a high linear relationship with the tube cleanliness representing the degree of contamination of the thin tubes of the heat exchanger, and the tube cleanliness for each thin tube can be easily detected.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、検出装置には熱交換器の細管の他端側からの透過光の細管毎の照度を検出する照度計を用い、透過光量として熱交換器の細管の他端側からの透過光の細管毎の照度を用いるようにしてもよい。   The thin tube cleaning method for a multi-tube heat exchanger according to the present invention uses an illuminometer that detects the illuminance of each thin tube of transmitted light from the other end of the thin tube of the heat exchanger as a detection device, As an alternative, the illuminance for each thin tube of transmitted light from the other end of the thin tube of the heat exchanger may be used.

この発明によれば、検出装置として熱交換器の細管の他端側からの透過光の細管毎の照度を検出する照度計を用いることによって、簡便に熱交換器の細管毎の管清浄度を検出することができる。   According to this invention, by using the illuminance meter that detects the illuminance for each thin tube of the transmitted light from the other end of the thin tube of the heat exchanger as the detection device, the tube cleanliness for each thin tube of the heat exchanger can be easily achieved. Can be detected.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、検出装置には熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得する撮像装置を用い、透過光量として撮像装置により取得された二次元濃淡画像から演算される熱交換器の細管の他端側からの透過光の細管毎の平均輝度を用いるようにしてもよい。   In the thin tube cleaning method for a multi-tube heat exchanger according to the present invention, an image pickup device that acquires a two-dimensional grayscale image of transmitted light from the other end of the thin tube of the heat exchanger is used as the detection device, and the transmitted light amount As an alternative, the average luminance for each thin tube of transmitted light from the other end of the thin tube of the heat exchanger calculated from the two-dimensional grayscale image acquired by the imaging device may be used.

この発明によれば、検出装置として熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得する撮像装置を用い、取得された二次元濃淡画像から演算される熱交換器の細管の他端側からの透過光の細管毎の平均輝度を演算することにより、熱交換器の細管毎の管清浄度を効率的に検出することができる。   According to this invention, an imaging device that acquires a two-dimensional gray image of transmitted light from the other end of the thin tube of the heat exchanger is used as the detection device, and the heat exchanger that is calculated from the acquired two-dimensional gray image By calculating the average luminance of the transmitted light from the other end of the thin tube for each thin tube, the cleanliness of the tube for each thin tube of the heat exchanger can be detected efficiently.

また、この発明にかかる熱交換器の細管洗浄方法は、検出装置には熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得する撮像装置を用い、透過光量として撮像装置により取得された二次元濃淡画像を所定の閾値で2値化して得られる2値画像の細管毎の面積を用いるようにしてもよい。   In the heat exchanger thin tube cleaning method according to the present invention, the detection device uses an image pickup device that acquires a two-dimensional gray image of transmitted light from the other end of the heat exchanger thin tube, and uses the image pickup device as a transmitted light amount. The area for each thin tube of the binary image obtained by binarizing the two-dimensional gray image acquired by the above with a predetermined threshold value may be used.

この発明によれば、検出装置として熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得する撮像装置を用い、取得された二次元濃淡画像を2値化した2値画像の細管毎の面積を求める一般的な画像処理演算により、熱交換器の細管毎の管清浄度を効率的に検出することができる。   According to the present invention, a binary image obtained by binarizing an acquired two-dimensional gray image using an imaging device that acquires a two-dimensional gray image of transmitted light from the other end of the thin tube of the heat exchanger as a detection device. The tube cleanliness for each thin tube of the heat exchanger can be efficiently detected by a general image processing calculation for obtaining the area of each thin tube.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、撮像装置には密着型の一次元撮像装置を用い、一次元撮像装置を熱交換器の細管の他端側の管面に密接させてスキャンすることにより熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得するようにしてもよい。   Further, in the multi-tube heat exchanger thin tube cleaning method according to the present invention, a close-contact type one-dimensional image pickup device is used as the image pickup device, and the one-dimensional image pickup device is disposed on the tube surface on the other end side of the heat exchanger thin tube. You may make it acquire the two-dimensional gray image of the transmitted light from the other end side of the thin tube of a heat exchanger by scanning closely.

この発明によれば、撮像装置として光学レンズを使用しない密着型の一次元撮像装置を用い、一次元撮像装置を熱交換器の細管の他端側の管面に密接させてスキャンすることにより熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得するようにしたので、熱交換器の狭い水室内への機材の搬入が容易となり、熱交換器の細管毎の管清浄度を効率よく検出することができる。
また、検出装置として密着型の撮像装置を用いることで、光学レンズを使用した非密着型の撮像装置において画角の関係で生ずる周辺部での集光効率の低下の問題を回避することができ、熱交換器の細管毎の管清浄度を精度よく検出することができる。
According to this invention, a contact type one-dimensional imaging device that does not use an optical lens is used as the imaging device, and the one-dimensional imaging device is scanned in close contact with the tube surface on the other end of the thin tube of the heat exchanger. Since the two-dimensional grayscale image of the transmitted light from the other end of the narrow tube of the exchanger is acquired, it is easy to carry equipment into the narrow water chamber of the heat exchanger, and clean the tube for each thin tube of the heat exchanger. The degree can be detected efficiently.
In addition, by using a contact-type imaging device as a detection device, it is possible to avoid the problem of reduction in light collection efficiency at the peripheral portion caused by the angle of view in a non-contact-type imaging device using an optical lens. The tube cleanliness for each thin tube of the heat exchanger can be accurately detected.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、検出装置には二次元撮像装置を用い、二次元撮像装置により熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得するようにしてもよい。   The thin tube cleaning method for a multi-tube heat exchanger according to the present invention uses a two-dimensional imaging device as a detection device, and uses the two-dimensional imaging device to perform two-dimensional transmission of light from the other end of the thin tube of the heat exchanger. A grayscale image may be acquired.

この発明によれば、検出装置として二次元撮像装置を用いるので、熱交換器の狭い水室内への機材の搬入が容易となり、熱交換器の細管毎の管清浄度をより効率よく検出することができる。ここで、二次元撮像装置として光学レンズを使用しない密着型の二次元撮像装置を用いた場合には、光学レンズを使用した非密着型の撮像装置において画角の関係で生ずる周辺部での集光効率の低下の問題を回避して、熱交換器の細管毎の管清浄度を精度よく検出することができる。   According to this invention, since the two-dimensional imaging device is used as the detection device, it is easy to carry in the equipment into the narrow water chamber of the heat exchanger, and the tube cleanliness for each thin tube of the heat exchanger can be detected more efficiently. Can do. Here, when a contact-type two-dimensional image pickup device that does not use an optical lens is used as the two-dimensional image pickup device, the non-contact-type image pickup device using the optical lens collects at a peripheral portion caused by the angle of view. By avoiding the problem of a decrease in light efficiency, the tube cleanliness for each thin tube of the heat exchanger can be accurately detected.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、検出装置には、熱交換器の細管の他端側の管面と撮像装置の間に、熱交換器の細管の他端側の管面に密接させて用いる半透明の透過板を備えるようにしてもよい。   In addition, in the multi-tube heat exchanger thin tube cleaning method according to the present invention, the detection device includes the other end of the thin tube of the heat exchanger between the tube surface of the other end of the thin tube of the heat exchanger and the imaging device. You may make it provide the translucent permeation | transmission board used in close contact with the pipe surface of the side.

この発明によれば、熱交換器の細管の他端側の管面と撮像装置の間に熱交換器の細管の他端側の管面に密接させて用いる半透明の透過板を備えるようにしたので、検出装置として密着型の撮像装置を用いる場合において、熱交換器の細管の他端側の管面に凹凸があっても滑らかにスキャンさせることができ、スキャンミスを抑制して効率よく2次元濃淡画像を取得することができる。
また、細管からの透過光量に対して透過板の透過率を変えることで検出装置の検出感度に対応した光量に調節することができ、透過率の異なる複数の透過板を用いて透過光量を計測することで、検出装置のダイナミックレンジを超えて、より広範囲の細管の汚れの度合いを精度よく測定することができる。
また、検出装置として光学レンズを用いた非密着型の撮像装置を用いる場合には、画角の関係で、周辺部の細管について集光効率が低下するという問題が生ずるが、細管からの透過光を半透明の透過板に投影させ、その投影像を撮像装置によって裏面から撮像することで、周辺部の細管における透過光量の低下を抑制することができる。
According to this invention, the translucent transparent plate used in close contact with the tube surface on the other end of the thin tube of the heat exchanger is provided between the tube surface on the other end of the thin tube of the heat exchanger and the imaging device. Therefore, when using a close-contact type imaging device as a detection device, even if the tube surface on the other end of the thin tube of the heat exchanger has irregularities, it can be scanned smoothly, suppressing scan errors and efficiently. A two-dimensional gray image can be acquired.
In addition, by changing the transmittance of the transmission plate with respect to the amount of light transmitted from the narrow tube, it is possible to adjust the amount of light corresponding to the detection sensitivity of the detection device, and measuring the amount of transmitted light using multiple transmission plates with different transmittance By doing so, it is possible to accurately measure the degree of contamination of a wider range of capillaries beyond the dynamic range of the detection device.
In addition, when a non-contact imaging device using an optical lens is used as the detection device, there is a problem that the light collection efficiency of the peripheral thin tube is reduced due to the angle of view. Is projected onto a translucent transmission plate, and the projected image is captured from the back surface by the imaging device, so that a decrease in the amount of transmitted light in the peripheral thin tube can be suppressed.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、照明装置には、複数の蛍光灯型LEDランプを熱交換器の細管の配列に従って所定の間隔で平行に配列したものを用い、熱交換器の細管の一端側の管面に密接させて使用するようにしてもよい。   In the thin tube cleaning method for a multi-tube heat exchanger according to the present invention, a lighting device in which a plurality of fluorescent lamp type LED lamps are arranged in parallel at predetermined intervals according to the arrangement of the thin tubes of the heat exchanger is used. The heat exchanger may be used in close contact with the tube surface on one end side of the thin tube.

この発明によれば、照明装置として、長さ方向にLEDランプが規則的に配列された蛍光灯型LEDランプを用いたので、均質な照度分布が得られ、複数の蛍光灯型LEDランプを熱交換器の細管の配列に従って所定の間隔で平行に配列したものを用い、熱交換器の細管の一端側の管面に密接させて使用するようにしたので、多数の細管に対して均質な光を高効率で入射することができ、細管毎の管清浄度の検出を精度よく効率的に実施することができる。   According to the present invention, since the fluorescent lamp type LED lamp in which the LED lamps are regularly arranged in the length direction is used as the lighting device, a uniform illuminance distribution is obtained, and a plurality of fluorescent lamp type LED lamps are heated. Since the tubes arranged in parallel at predetermined intervals according to the arrangement of the tubes of the exchanger are used in close contact with the tube surface on one end side of the tubes of the heat exchanger, a uniform light is applied to many tubes. Can be incident with high efficiency, and the cleanliness of each tube can be detected accurately and efficiently.

この発明にかかる多管式熱交換器の細管洗浄方法は、洗浄対象とする細管を選定する工程には、演算された熱交換器の細管毎の管清浄度に基づいて管清浄度のランク毎の細管数の度数分布を演算して表示する工程を含むようにしてもよい。   In the method of cleaning a thin tube of a multi-tube heat exchanger according to the present invention, in the step of selecting a thin tube to be cleaned, each rank of the tube cleanliness is calculated based on the calculated tube cleanliness of each thin tube of the heat exchanger. A step of calculating and displaying the frequency distribution of the number of thin tubes may be included.

この発明によれば、管清浄度のランク毎の細管数の度数分布を演算して表示する工程を含むので、熱交換器全体における細管の汚れの状況を包括的に把握することができ、管清浄度のランク毎の細管数の度数分布を考慮して洗浄する細管の範囲を決定することができる。   According to the present invention, since it includes a step of calculating and displaying the frequency distribution of the number of thin tubes for each rank of the tube cleanliness level, it is possible to comprehensively grasp the state of thin tube contamination in the entire heat exchanger, The range of thin tubes to be cleaned can be determined in consideration of the frequency distribution of the number of thin tubes for each rank of cleanliness.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、洗浄対象とする細管を選定する工程には、演算された熱交換器の細管毎の管清浄度に基づいて、管清浄度のランク毎の細管数を演算し、洗浄する細管を選定する管清浄度の境界値を表す管清浄度閾値に対して、洗浄対象細管数を演算して表示する工程を含むようにしてもよい。   Further, in the method of cleaning a thin tube of a multi-tube heat exchanger according to the present invention, the step of selecting a thin tube to be cleaned is based on the calculated tube cleanliness for each thin tube of the heat exchanger. The number of thin tubes for each rank may be calculated, and a step of calculating and displaying the number of thin tubes to be cleaned may be included with respect to the tube cleanliness threshold value representing the boundary value of the tube cleanliness for selecting the thin tubes to be cleaned.

この発明によれば、管清浄度閾値に対する洗浄対象細管数を演算して表示する工程を含むので、洗浄対象細管数やそれに対する細管清浄作業の必要工数等を考慮して洗浄する細管の範囲を決定することができる。   According to the present invention, since it includes the step of calculating and displaying the number of thin tubes to be cleaned with respect to the tube cleanliness threshold, the range of thin tubes to be cleaned in consideration of the number of thin tubes to be cleaned and the necessary man-hours for the thin tube cleaning operation corresponding thereto Can be determined.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、洗浄対象とする細管を選定する工程には、演算された熱交換器の細管毎の管清浄度に基づいて、管清浄度のランク毎の積算付着物量を演算し、洗浄する細管を選定する管清浄度の境界値を表す管清浄度閾値に対して、洗浄後の細管の積算付着物量に基づいて洗浄後の熱交換器の予測清浄度を演算して表示する工程を含むようにしてもよい。   Further, in the method of cleaning a thin tube of a multi-tube heat exchanger according to the present invention, the step of selecting a thin tube to be cleaned is based on the calculated tube cleanliness for each thin tube of the heat exchanger. Heat exchanger after cleaning based on the accumulated amount of adhering tube after cleaning against the tube cleanliness threshold that represents the boundary value of the tube cleanliness that calculates the amount of accumulated adhering by rank and selects the thin tube to be cleaned A step of calculating and displaying the predicted cleanliness level may be included.

この発明によれば、管清浄度閾値に対する洗浄後の熱交換器の予測清浄度を演算して表示する工程を含むので、洗浄後の熱交換器の清浄度の性能回復予測に基づいて洗浄する細管の範囲を決定することができる。   According to this invention, since the process includes the step of calculating and displaying the predicted cleanliness of the heat exchanger after cleaning with respect to the pipe cleanliness threshold, cleaning is performed based on the performance recovery prediction of the cleanliness of the heat exchanger after cleaning. The extent of the tubule can be determined.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、洗浄対象とする細管を選定する工程には、演算された熱交換器の細管毎の管清浄度に基づいて、熱交換器の目標清浄度から洗浄対象とする細管を選定する工程を含むようにしてもよい。   Further, in the method for cleaning a thin tube of a multi-tube heat exchanger according to the present invention, in the step of selecting a thin tube to be cleaned, the heat exchanger is based on the calculated tube cleanliness for each thin tube of the heat exchanger. A step of selecting a thin tube to be cleaned from the target cleanliness level may be included.

この発明によれば、熱交換器の目標清浄度から洗浄対象とする細管を選定する工程を含むので、熱交換器の清浄度の性能回復目標を与えることで、洗浄対象とする細管を自動的に選定することができる。
この場合において、洗浄対象として選定される細管についての細管洗浄作業の必要工数を更に考慮して洗浄対象とする細管を選定するようにしてもよい。
According to this invention, since the process includes selecting a capillary to be cleaned from the target cleanliness of the heat exchanger, the capillary to be cleaned is automatically provided by providing a performance recovery target for the cleanliness of the heat exchanger. Can be selected.
In this case, the thin tube to be cleaned may be selected in consideration of the necessary man-hours for the thin tube cleaning operation for the thin tube selected as the cleaning target.

また、この発明にかかる多管式熱交換器の細管洗浄方法は、洗浄対象とする細管を選定する工程により選定された細管について細管洗浄を実施する工程と、細管洗浄を実施した熱交換器について、再度熱交換器の細管毎の透過光量を計測する工程と熱交換器の細管毎の管清浄度を演算する工程とによって熱交換器の細管毎の管清浄度を演算し、演算された熱交換器の細管毎の管清浄度に基づいて実施された細管洗浄の洗浄効果を確認する工程とを更に備えるようにしてもよい。   Further, the thin tube cleaning method for a multi-tube heat exchanger according to the present invention includes a step of performing thin tube cleaning on a thin tube selected by the step of selecting a thin tube to be cleaned, and a heat exchanger that has performed thin tube cleaning. Calculate the tube cleanliness for each thin tube of the heat exchanger by calculating the amount of transmitted light for each thin tube of the heat exchanger and calculating the tube cleanliness for each thin tube of the heat exchanger. You may make it further provide the process of confirming the washing | cleaning effect of the thin tube cleaning implemented based on the tube cleanliness for every thin tube of an exchanger.

この発明によれば、選定された細管について細管洗浄を実施し、細管洗浄を実施した熱交換器について再度細管の汚れ検出を行って熱交換器の細管毎の管清浄度を演算し、演算された熱交換器の細管毎の管清浄度に基づいて、実施された細管洗浄の洗浄効果を確認することができるので、細管洗浄が適切に行われたことを運転開始前に確認することができる。また、洗浄効果の確認の結果、所期の性能回復が得られていないと判断された場合には、改めて演算された細管毎の管清浄度に基づいて洗浄対象とする細管を選定して細管洗浄を実施することができる。これにより信頼性の高い熱交換器の細管洗浄作業を提供することができる。
ここで、実施された細管洗浄の洗浄効果を確認する方法としては、演算された熱交換器の細管毎の管清浄度に基づいて熱交換器の清浄度を演算して表示するようにしてもよく、また演算された熱交換器の細管毎の管清浄度に基づいて管清浄度のランク毎の細管数の度数分布を再度演算して表示するようにしてもよい。
According to the present invention, the selected thin tube is subjected to thin tube cleaning, and the heat exchanger that has performed the thin tube cleaning is subjected to the detection of dirt on the thin tube again to calculate the tube cleanliness for each thin tube of the heat exchanger. Based on the cleanliness of each thin tube of the heat exchanger, the cleaning effect of the thin tube cleaning performed can be confirmed, so that it is possible to confirm that the thin tube cleaning has been performed properly before the start of operation. . In addition, if it is determined that the expected performance recovery has not been obtained as a result of the cleaning effect confirmation, the narrow tube to be cleaned is selected based on the newly calculated tube cleanliness for each thin tube. Washing can be performed. Thereby, it is possible to provide a thin tube cleaning operation of the heat exchanger with high reliability.
Here, as a method for confirming the cleaning effect of the thin tube cleaning performed, the cleanliness of the heat exchanger may be calculated and displayed based on the calculated tube cleanliness of each thin tube of the heat exchanger. Alternatively, the frequency distribution of the number of thin tubes for each rank of the tube cleanliness may be calculated and displayed again based on the calculated tube cleanliness for each thin tube of the heat exchanger.

この発明にかかる多管式熱交換器の細管汚れ検出装置は、多管式熱交換器の細管毎の汚れの度合いを検出する装置であって、熱交換器の細管の一端側の水室に設置され、熱交換器の細管の一端側より光を入射させる照明装置と、熱交換器の細管の他端側の水室に設置され、熱交換器の細管の他端側からの透過光を検出する透過光検出装置とを用いて、熱交換器の細管毎の透過光量を計測する細管透過光量計測手段と、計測された熱交換器の細管毎の透過光量から、予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて、熱交換器の細管毎の管清浄度を演算する管清浄度演算手段とを備えたものである。   A multi-tube heat exchanger thin tube contamination detection device according to the present invention is a device for detecting the degree of contamination for each thin tube of a multi-tube heat exchanger, and is provided in a water chamber at one end of the thin tube of the heat exchanger. It is installed in a lighting device that allows light to enter from one end of the thin tube of the heat exchanger, and a water chamber on the other end of the thin tube of the heat exchanger, and transmits light from the other end of the thin tube of the heat exchanger. Using the transmitted light detection device to detect, the heat exchange obtained in advance from the transmitted light amount of each capillary tube of the heat exchanger and the thin tube transmitted light amount measuring means for measuring the transmitted light amount of each capillary tube of the heat exchanger Tube cleanliness calculating means for calculating the tube cleanliness for each thin tube of the heat exchanger based on the relationship between the amount of light transmitted through the thin tube of the heat exchanger and the tube cleanliness representing the degree of dirt on the thin tube.

この発明によれば、熱交換器の細管の一端側の水室に設置され、細管の一端側より光を入射させる照明装置と、熱交換器の細管の他端側の水室に設置され、細管の他端側からの透過光を検出する透過光検出装置とを用いて、細管毎の透過光量を計測する細管透過光量検出手段と、計測された細管毎の透過光量から、予め求められた細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて、細管毎の管清浄度を演算する管清浄度演算手段とを備えるので、多管式熱交換器の各細管を引き抜くことなく細管毎に細管の汚れの度合いを表す管清浄度を検出することができる。
そして、このような多管式熱交換器の細管汚れ検出装置により演算された細管毎の管清浄度に基づいて洗浄する細管の範囲を限定することで、細管洗浄の工期短縮とコスト低減を図ることができる。
また、このような多管式熱交換器の細管汚れ検出装置は、熱交換器の運転後の細管毎の汚れの度合いを数値化することができるので、細管の汚れの分布状況や程度を解析したり、効率的な細管洗浄方法を検討したりすることに用いることができる。
According to this invention, installed in the water chamber on one end side of the thin tube of the heat exchanger, installed in the water chamber on the other end side of the other end of the thin tube of the heat exchanger, and the lighting device that makes light incident from one end side of the thin tube, Using a transmitted light detection device that detects transmitted light from the other end of the thin tube, a thin tube transmitted light amount detecting means for measuring the transmitted light amount for each thin tube, and the measured transmitted light amount for each thin tube were obtained in advance. Each tube of the multitubular heat exchanger is provided with tube cleanliness calculation means for calculating the tube cleanliness of each thin tube based on the relationship between the amount of light transmitted through the thin tube and the tube cleanliness representing the degree of dirt on the thin tube. It is possible to detect the cleanliness of the tube representing the degree of contamination of the thin tube for each thin tube without pulling out the tube.
Then, by limiting the range of thin tubes to be washed based on the tube cleanliness for each thin tube calculated by the thin tube contamination detector of such a multi-tube heat exchanger, it is possible to shorten the work period and reduce the cost of thin tube cleaning. be able to.
In addition, such a multi-tube heat exchanger thin tube contamination detection device can quantify the degree of contamination for each thin tube after the heat exchanger has been operated, so it can analyze the distribution and extent of the thin tube contamination. Or to study an efficient capillary cleaning method.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置は、透過光検出装置として、密着型の一次元撮像装置を用い、一次元撮像装置を熱交換器の細管の他端側の管面に密接させてスキャンすることにより熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得するようにしたものであって、取得された透過光の二次元濃淡画像から細管毎の平均輝度を演算する画像処理装置を備えたものでもよい。   Further, the multi-tube heat exchanger thin tube contamination detection device according to the present invention uses a close-contact type one-dimensional imaging device as the transmitted light detection device, and the one-dimensional imaging device is connected to the other end of the thin tube of the heat exchanger. By scanning in close contact with the tube surface, a two-dimensional gray image of transmitted light from the other end of the thin tube of the heat exchanger is acquired, and from the acquired two-dimensional gray image of transmitted light An image processing apparatus that calculates the average luminance for each thin tube may be provided.

この発明によれば、撮像装置として光学レンズを使用しない密着型の一次元撮像装置を用い、一次元撮像装置を細管の他端側の管面に密接させてスキャンすることにより細管の他端側からの透過光の二次元濃淡画像を取得し、画像処理装置を用いて、取得された透過光の二次元濃淡画像から細管毎の平均輝度を演算して細管毎の透過光量を計測するようにしたので、熱交換器の狭い水室内への機材の搬入が容易となり、細管毎の透過光量を短時間で効率的に計測することができる。
また、検出装置として密着型の撮像装置を用いることで、光学レンズを使用した非密着型の撮像装置において画角の関係で生ずる周辺部での集光効率の低下の問題を回避することができ、細管毎の管清浄度を精度よく計測することができる。
According to the present invention, a close-contact type one-dimensional image pickup device that does not use an optical lens is used as the image pickup device, and the other end side of the thin tube is scanned by bringing the one-dimensional image pickup device into close contact with the tube surface on the other end side of the thin tube. A two-dimensional grayscale image of transmitted light from the light source, and using an image processing device, the average luminance for each thin tube is calculated from the acquired two-dimensional grayscale image of the transmitted light, and the transmitted light amount for each thin tube is measured. Therefore, it becomes easy to carry the equipment into the narrow water chamber of the heat exchanger, and the amount of transmitted light for each thin tube can be measured efficiently in a short time.
In addition, by using a contact-type imaging device as a detection device, it is possible to avoid the problem of reduction in light collection efficiency at the peripheral portion caused by the angle of view in a non-contact-type imaging device using an optical lens. The tube cleanliness for each thin tube can be accurately measured.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置の透過光検出装置は、一次元撮像装置を収容するセンサホルダと、一方面を熱交換器の細管の他端側の管面に密接させて使用する透明または半透明のベースプレートと、ベースプレートの他方面上でセンサホルダを一次元撮像装置の撮像方向と直行する方向に細管の撮像範囲に亘って移動させるセンサホルダ移動機構とを備え、センサホルダは一次元撮像装置をベースプレートの他方面に対して一定の圧力で押し付ける押付機構を有するものでもよい。   Further, the transmitted light detection device of the multi-tube heat exchanger thin tube contamination detection device according to the present invention includes a sensor holder that houses the one-dimensional imaging device, and one surface of the tube surface on the other end side of the heat exchanger thin tube. A transparent or translucent base plate that is used in close contact with the sensor plate, and a sensor holder moving mechanism that moves the sensor holder over the imaging range of the thin tube in a direction perpendicular to the imaging direction of the one-dimensional imaging device on the other surface of the base plate. The sensor holder may include a pressing mechanism that presses the one-dimensional imaging device against the other surface of the base plate with a constant pressure.

この発明によれば、透過光検出装置は、一次元撮像装置を収容するセンサホルダと、一方面を細管の他端側の管面の細管の撮像範囲に密接させて使用する透明または半透明のベースプレートと、ベースプレートの他方面上でセンサホルダを一次元撮像装置の撮像方向と直行する方向に細管の撮像範囲に亘って移動させるセンサホルダ移動機構とを備えるので、ハンディスキャナのような小型軽量で安価な一次元撮像装置を用いて細管の他端側からの細管毎の透過光量を精度よく効率的に計測することができる。
また、センサホルダは一次元撮像装置をベースプレートの他方面に対して一定の圧力で押し付ける押付機構を有するので、高湿度環境下の使用においても一次元撮像装置のローラのスリップによる画像の歪やスキャンエラーを抑制することができ、細管の他端側からの細管毎の透過光量をより精度よく効率的に計測することができる。
なお、ベースプレートには、例えば透明アクリル板を用いることができるが、照明条件や撮像条件に応じて、細管毎の透過光量をより広いダイナミックレンジで計測できるように適切な透過率を有する半透明のベースプレートを用いてもよい。この場合に、透明のベースプレートに対して、適切な透過率を有する半透明の透過板を重ね合わせるようにしてもよい。
According to this invention, the transmitted light detection device is a transparent or semi-transparent sensor used for accommodating a one-dimensional imaging device, and a transparent or semi-transparent one side of which is used in close contact with the imaging range of the thin tube on the other side of the thin tube. Since it has a base plate and a sensor holder moving mechanism that moves the sensor holder over the imaging range of the thin tube in the direction orthogonal to the imaging direction of the one-dimensional imaging device on the other surface of the base plate, it is small and light like a handy scanner. The amount of transmitted light for each thin tube from the other end of the thin tube can be accurately and efficiently measured using an inexpensive one-dimensional imaging device.
In addition, the sensor holder has a pressing mechanism that presses the one-dimensional imaging device against the other surface of the base plate with a constant pressure, so that even when used in a high humidity environment, image distortion or scanning due to slippage of the roller of the one-dimensional imaging device. Errors can be suppressed, and the amount of transmitted light for each thin tube from the other end of the thin tube can be measured more accurately and efficiently.
As the base plate, for example, a transparent acrylic plate can be used. However, depending on the illumination condition and the imaging condition, a translucent plate having an appropriate transmittance so that the transmitted light amount of each thin tube can be measured with a wider dynamic range. A base plate may be used. In this case, a translucent transmission plate having an appropriate transmittance may be superimposed on the transparent base plate.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置の透過光検出装置は、ベースプレートの他方面上にセンサホルダをセンサホルダ移動機構の全移動範囲に亘って収容する機密性を有する箱体を備え、センサホルダ移動機構を箱体の外部より駆動する駆動機構を備えたものでもよい。   In addition, the transmitted light detection device of the thin tube dirt detection device for a multi-tube heat exchanger according to the present invention has the confidentiality of accommodating the sensor holder over the entire movement range of the sensor holder moving mechanism on the other surface of the base plate. It may be provided with a box and a drive mechanism that drives the sensor holder moving mechanism from the outside of the box.

この発明によれば、センサホルダはセンサホルダ移動機構の全移動範囲に亘って機密性を有する箱体に収容され、センサ移動機構は駆動機構によって箱体の外部より駆動することができるので、センサホルダに収容された一次元撮像装置は常に機密性を有する箱体内で使用され、高湿度環境下での使用においてもスキャニング面の結露による画像不良を抑制することができ、細管の管清浄度をより精度よく検出することができる。   According to the present invention, the sensor holder is accommodated in the box having confidentiality over the entire movement range of the sensor holder moving mechanism, and the sensor moving mechanism can be driven from the outside of the box by the driving mechanism. The one-dimensional imaging device housed in the holder is always used in a confidential box, and even when used in a high humidity environment, image defects due to condensation on the scanning surface can be suppressed, and the tube cleanliness of the thin tubes is reduced. It can be detected with higher accuracy.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置の透過光検出装置は、箱体に対して外部からドライエアーを供給するドライエアー供給手段を備えたものでもよい。   Moreover, the transmitted light detection device of the thin tube dirt detection device for a multi-tube heat exchanger according to the present invention may be provided with a dry air supply means for supplying dry air from the outside to the box.

この発明によれば、箱体にドライエアーを供給するドライエアー供給手段を備え、箱体内にドライエアーを供給して内圧を高めることで箱体内への湿気の侵入を防止することができ、また箱体内で結露が発生した場合にもドライエアーを供給することで結露を解消することができるので、高湿度の環境下におけるスキャニング面の結露による画像の障害をより的確に抑制することができ、細管の管清浄度を更に精度よく検出することができる。   According to this invention, it is provided with dry air supply means for supplying dry air to the box, and it is possible to prevent moisture from entering the box by supplying dry air into the box and increasing the internal pressure. Even if dew condensation occurs in the box, it can be eliminated by supplying dry air, so it is possible to more accurately suppress image damage due to condensation on the scanning surface in a high humidity environment. The tube cleanliness of the thin tube can be detected with higher accuracy.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置の透過光検出装置は、ベースプレートの一方の長辺部には、箱体の外側において、細管の水平方向の配列と細管の内径に合せて設けられた複数の固定穴を備えた装置固定部を有するものでもよい。   Further, the transmitted light detection device of the thin tube fouling detection device of the multi-tube heat exchanger according to the present invention has a horizontal arrangement of the thin tubes and an inner diameter of the thin tubes on one long side of the base plate outside the box. It may have an apparatus fixing part provided with a plurality of fixing holes provided according to the above.

この発明によれば、ベースプレートの一方の長辺部の箱体の外側に、細管の水平方向の配列と細管の内径に合せて設けられた複数の固定穴を備えた装置固定部を有するので、最小限2つの固定穴を介して細管に棒状の固定具を挿入してベースプレートを細管の管面に密着させることで、透過光検出装置を細管の水平方向の配列に対して一次元撮像装置のスキャン方向に正確に合せて設置することを短時間で行うことができる。   According to this invention, since it has the device fixing portion provided with a plurality of fixing holes provided in accordance with the horizontal arrangement of the thin tubes and the inner diameter of the thin tubes on the outside of the box of one long side portion of the base plate, A bar-shaped fixture is inserted into the narrow tube through at least two fixing holes, and the base plate is brought into close contact with the tube surface of the thin tube, so that the transmitted light detection device can be used for the horizontal arrangement of the thin tubes. It is possible to perform installation in a short time precisely in accordance with the scanning direction.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置の照明装置は、複数の蛍光灯型LEDランプを熱交換器の細管の配列に従って所定の間隔で平行に配列したものを用い、熱交換器の細管の一端側の管面に密接させて使用するようにしたものであって、複数の蛍光灯型LEDランプをLEDランプ部と電源部とに分離し、LEDランプ部は放熱性のよい筐体に収容して使用し、電源部は外部電源化して前記LEDランプ部と離隔して用いるようにしたものでもよい。   Further, the illumination device of the multi-tube heat exchanger thin tube contamination detection device according to the present invention uses a plurality of fluorescent lamp type LED lamps arranged in parallel at a predetermined interval according to the arrangement of the heat exchanger thin tubes, It is designed to be used in close contact with the tube surface on one end side of the thin tube of the heat exchanger, and separates the plurality of fluorescent lamp type LED lamps into the LED lamp part and the power supply part. It may be used by being housed in a good housing, and the power supply unit may be used as an external power supply separated from the LED lamp unit.

この発明によれば、細管の配列に従って所定の間隔で平行に配列した複数の蛍光灯型LEDランプをLEDランプ部と電源部とに分離し、LEDランプ部を放熱性のよい筐体に収容して熱交換器の細管の一端側の管面に密接させて使用し、電源部を外部電源化してLEDランプ部と離隔して用いるようにしたので、高温環境下での使用においてもLEDランプの光量低下が抑制され、更に電源部に備えられる安定器の温度上昇によるLEDランプのちらつきの発生を抑制することができ、細管に対して安定した光量の照明を入射させることができるので、細管の管清浄度をより精度よく検出することができる。   According to the present invention, a plurality of fluorescent lamp type LED lamps arranged in parallel at a predetermined interval according to the arrangement of thin tubes are separated into an LED lamp part and a power supply part, and the LED lamp part is accommodated in a casing with good heat dissipation. The heat exchanger is used in close contact with the tube surface on one end side of the heat exchanger, and the power supply unit is used as an external power supply so as to be separated from the LED lamp unit. The decrease in the amount of light is suppressed, and the occurrence of flickering of the LED lamp due to the temperature rise of the ballast provided in the power supply unit can be suppressed, and illumination with a stable amount of light can be made incident on the thin tube. The pipe cleanliness can be detected with higher accuracy.

また、この発明にかかる多管式熱交換器の細管汚れ検出装置の照明装置は、LEDランプ部には、表面に防湿コーティングを施した蛍光灯型LEDランプを用いるようにしてもよい。   In the illumination device of the multi-tube heat exchanger thin tube contamination detection device according to the present invention, a fluorescent lamp type LED lamp having a moisture-proof coating on the surface may be used for the LED lamp portion.

この発明によれば、表面に防湿コーティングを施した蛍光灯型LEDランプを用いるようにしたので、高湿度環境下での使用においても蛍光灯型LEDランプの表面の結露が抑制され、細管に対してより安定した光量の照明を入射させることができるので、細管の管清浄度を更に精度よく検出することができる。   According to the present invention, since the fluorescent lamp type LED lamp having the moisture-proof coating on the surface is used, the condensation on the surface of the fluorescent lamp type LED lamp is suppressed even in use in a high humidity environment, and the Therefore, the illumination with a more stable amount of light can be made incident, so that the tube cleanliness of the thin tube can be detected with higher accuracy.

本願発明によれば、多管式熱交換器の細管を引き抜くことなく細管毎の汚れの度合いを数値化することができ、細管毎の汚れの度合いに基づいて洗浄する細管の範囲を限定することで、細管洗浄の工期短縮とコスト低減を図ることができるという効果がある。   According to the present invention, the degree of contamination for each thin tube can be quantified without pulling out the thin tube of the multi-tube heat exchanger, and the range of thin tubes to be cleaned is limited based on the degree of contamination for each thin tube. Thus, there is an effect that it is possible to shorten the work period of the thin tube cleaning and to reduce the cost.

この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。   The above-mentioned object, other objects, features and advantages of the present invention will become more apparent from the following description of embodiments for carrying out the invention with reference to the drawings.

本願発明の一実施形態にかかる多管式熱交換器の細管洗浄方法のフロー図である。It is a flowchart of the thin tube washing | cleaning method of the multitubular heat exchanger concerning one Embodiment of this invention. 細管の汚れ分布調査において、対象とした復水器の概略構造と細管仕様を示す図である。It is a figure which shows the general | schematic structure and narrow tube specification of the condenser used as object in the dirt distribution investigation of a thin tube. 細管の汚れ分布調査において、対象とした復水器の細管群の区画と調査領域を示す図である。It is a figure which shows the division and investigation area | region of the thin tube group of the condenser used as object in the dirt distribution investigation of a thin tube. 細管の汚れ分布調査において、採取された細管の付着物の湿体積を測定する要領を示す図である。It is a figure which shows the point which measures the wet volume of the deposit | attachment of the extract | collected thin tube in the dirt distribution investigation of a thin tube. 細管の汚れ分布調査において、測定された付着物の湿体積に基づいて汚れた細管の分布状況を示した図である。It is the figure which showed the distribution condition of the dirty tubule based on the wet volume of the deposit | attachment measured in the dirt distribution investigation of the tubule. 細管の効果的な洗浄方法の調査において、調査対象とした洗浄方法と洗浄試験条件を示す図である。It is a figure which shows the washing | cleaning method and washing | cleaning test conditions made into investigation object in investigation of the effective washing | cleaning method of a thin tube. 細管の効果的な洗浄方法の調査において、採取された付着物の湿体積に基づいて洗浄方法による付着物の除去率と洗浄前後の管清浄度の回復状況を示した図である。In the investigation of the effective cleaning method of a thin tube, it is a figure showing the recovery rate of the degree of deposit removal by the cleaning method and the tube cleanliness before and after cleaning based on the wet volume of the collected deposit. 細管の効果的な洗浄方法の調査において、ファイバースコープによりブラシ洗浄前後の細管内を観察した結果を示す図である。It is a figure which shows the result of having observed the inside of the thin tube before and behind brush washing | cleaning with the fiber scope in investigation of the effective washing | cleaning method of a thin tube. 細管の効果的な洗浄方法の調査において、採取された付着物の成分分析を行った結果を示す図である。It is a figure which shows the result of having performed the component analysis of the extract | collected collected substance in investigation of the effective washing | cleaning method of a thin tube. 細管の効果的な洗浄方法の調査において、採取された泥状付着物のエネルギースペクトル分析を行った結果を示す図である。It is a figure which shows the result of having performed the energy spectrum analysis of the extract | collected mud deposit in the investigation of the effective washing | cleaning method of a thin tube. 細管の汚れの度合いを検出する方法の検討において、使用した照明装置(光源)の種類と検出装置(照度計)の仕様を示す図である。It is a figure which shows the specification of the kind of used illuminating device (light source) and the detecting device (illuminance meter) in examination of the method of detecting the stain | pollution | contamination degree of a thin tube. 細管の汚れの度合いを検出する方法の検討において、照明装置にサーチライトCを使用した場合の細管の長さに対する照度減衰を測定した結果を示す図である。It is a figure which shows the result of having measured the illumination intensity attenuation | damping with respect to the length of a thin tube at the time of examination of the method of detecting the degree of dirt of a thin tube, when the searchlight C is used for an illuminating device. 細管の汚れの度合いを検出する方法の検討において、各種照明装置の比較検討を行った図である。It is the figure which performed the comparative examination of various illuminating devices in examination of the method of detecting the stain | pollution | contamination degree of a thin tube. 細管の汚れの度合いを検出する方法の検討において、部分照明を用いた場合と全体照明を用いた場合の作業イメージを示す図である。It is a figure which shows the work image at the time of using the partial illumination and the whole illumination in examination of the method of detecting the stain | pollution | contamination degree of a thin tube. 細管の汚れの度合いを検出する方法の検討において、光源として蛍光灯型LEDランプを用いた照明装置の構成を検討した結果を示す図である。It is a figure which shows the result of having examined the structure of the illuminating device which used the fluorescent lamp type LED lamp as a light source in examination of the method of detecting the stain | pollution | contamination degree of a thin tube. 細管の汚れの度合いを検出する方法の検討において、図15の照明装置を用いた照明方法を示す図である。FIG. 16 is a diagram illustrating an illumination method using the illumination device of FIG. 15 in the examination of a method for detecting the degree of dirt on a thin tube. 細管の汚れの度合いを検出する方法の検討において、画像解析方法として2値化画像の面積を演算する方法の妥当性を検証するために、照度を変えた画像解析用模擬画像について2値化処理を行った結果を示す図である。In the examination of a method for detecting the degree of dirt on thin tubes, in order to verify the validity of the method of calculating the area of a binarized image as an image analysis method, binarization processing is performed on a simulated image for image analysis with changed illuminance. It is a figure which shows the result of having performed. 細管の汚れの度合いを検出する方法の検討において、画像解析方法として2値化画像の面積を演算する方法を用いた場合の、照度と画像解析による面積との関係を示す図である。It is a figure which shows the relationship between illumination intensity and the area by an image analysis at the time of using the method of calculating the area of a binarized image as an image analysis method in examination of the method of detecting the stain | pollution | contamination degree of a thin tube. 細管の汚れの度合いと透過光量の関係の調査(モデル試験)において、汚れた細管を人工的に作成するために構成した生物皮膜育成装置の系統図を示す図である。It is a figure which shows the systematic diagram of the biofilm cultivation apparatus comprised in order to produce the dirty capillary tube artificially in the investigation (model test) of the dirt degree of a capillary tube, and the transmitted light amount. 細管の汚れの度合いと透過光量の関係の調査(モデル試験)において、細管内の付着物量と細管出口側の照度を測定したデータを示す図である。It is a figure which shows the data which measured the amount of the deposit | attachment in a thin tube, and the illumination intensity on the thin tube exit side in the investigation (model test) of the dirt degree of a thin tube, and the transmitted light amount. 細管の汚れの度合いと透過光量の関係の調査(モデル試験)において、細管内の付着物の湿体積と照度の関係を解析した図である。It is the figure which analyzed the relationship between the wet volume of the deposit | attachment in a thin tube, and illumination intensity in the investigation (model test) of the dirt degree of a thin tube, and the transmitted light quantity. 細管の汚れの度合いと透過光量の関係の調査(モデル試験)において、細管の透過率と管清浄度の関係を解析した図である。It is the figure which analyzed the relationship between the transmittance | permeability of a thin tube, and a tube cleanliness in the investigation (model test) of the dirt degree of a thin tube, and the transmitted light quantity. 細管の汚れの度合いと透過光量の関係の調査(モデル試験)において検討された検出方法によって、実際の発電所で取得された画像の例を示す図である。It is a figure which shows the example of the image acquired in the actual power plant by the detection method examined in the investigation (model test) of the dirt degree of a thin tube, and the transmitted light amount. 復水器性能から見た細管洗浄の最適化の検討において、細管内の付着物湿体積と復水器の管清浄度の関係を示す図である。It is a figure which shows the relationship between the deposit wet volume in a thin tube, and the pipe cleanliness of a condenser in examination of optimization of thin tube washing | cleaning seen from condenser performance. 復水器性能から見た細管洗浄の最適化の検討において、復水器の汚れ分布調査データに基づいて、管清浄度のランク別に付着物の湿体積と細管数を集計した図である。In the examination of the optimization of thin tube cleaning from the viewpoint of condenser performance, it is a figure summarizing the wet volume and the number of thin tubes of deposits by rank of tube cleanliness based on the dirt distribution survey data of the condenser. 復水器性能から見た細管洗浄の最適化の検討において、管清浄度のランク毎の細管数の度数分布を示した図である。It is the figure which showed frequency distribution of the number of thin tubes for every rank of tube cleanliness in examination of optimization of thin tube washing seen from condenser performance. 復水器性能から見た細管洗浄の最適化の検討において、管清浄度閾値に対する洗浄後の復水器の予測回復清浄度と洗浄細管数の関係を示す図である。In examination of optimization of thin tube washing | cleaning seen from condenser performance, it is a figure which shows the relationship between the prediction recovery cleanliness of the condenser after washing | cleaning with respect to a pipe cleanliness threshold value, and the number of washing thin tubes. 復水器性能から見た細管洗浄の最適化の検討において、細管の汚れ検出による細管洗浄の最適化工程案を示す図である。It is a figure which shows the optimization process plan of the thin tube washing | cleaning by the detection of the dirt of a thin tube in examination of the optimization of the thin tube washing seen from the condenser performance. 実機検証の事前調査における取得パラメータを示す図である。It is a figure which shows the acquisition parameter in the prior investigation of real machine verification. 実機検証の事前調査における取得パラメータに基づいて平均輝度と管清浄度の関係を解析した図である。It is the figure which analyzed the relationship between average brightness and tube cleanliness based on the acquisition parameter in the preliminary survey of actual machine verification. 実機検証に使用した照明装置と検出装置の外観を示す図である。It is a figure which shows the external appearance of the illuminating device and detection apparatus which were used for actual machine verification. 実機検証に使用した検出装置によるスキャン区画を示す図である。It is a figure which shows the scan division by the detection apparatus used for real machine verification. 実機検証において、検出された平均輝度から算出された管清浄度のランク毎の度数分布を示す図である。In actual machine verification, it is a figure which shows the frequency distribution for every rank of the tube cleanliness calculated from the detected average brightness | luminance. 実機検証において、選定された洗浄細管数と洗浄率を示す図である。It is a figure which shows the number of washing | cleaning thin tubes and the washing | cleaning rate selected in actual machine verification. 実機検証において、管清浄度閾値に対する細管数から管清浄度閾値に対する予測回復清浄度を算出した結果を示す図である。In actual machine verification, it is a figure which shows the result of having calculated the prediction recovery cleanliness with respect to a tube cleanliness threshold value from the number of thin tubes with respect to a tube cleanliness threshold value. 実機検証において、洗浄後に汚れ検出を行った細管について、洗浄前後の検出画像を比較した図である。In actual machine verification, it is the figure which compared the detection image before and behind washing | cleaning about the thin tube which performed dirt detection after washing | cleaning. 実機検証において、洗浄後に細管汚れ検出を行った細管について、洗浄前後の平均輝度と管清浄度を比較した図である。In actual machine verification, it is the figure which compared the average brightness | luminance before and behind washing | cleaning, and the pipe cleanliness about the thin pipe | tube which performed thin pipe | tube dirt detection after washing | cleaning. 実機検証において、仙台火力4号機の選定された調査管4本についての取得パラメータを示す図である。In actual machine verification, it is a figure which shows the acquisition parameter about 4 investigation pipes selected for Sendai thermal power No. 4. 実機検証において、仙台火力4号機の取得パラメータに基づいて平均輝度と管清浄度の関係を解析した図である。In actual machine verification, it is the figure which analyzed the relationship between average brightness | luminance and pipe cleanliness based on the acquisition parameter of Sendai thermal power No. 4. 実機検証(追試)において、汚れ検出による管清浄度分布と管清浄度閾値に対する洗浄細管数を示す図である。In actual machine verification (additional test), it is a figure which shows the pipe | tube cleanliness distribution by dirt detection, and the number of washing | cleaning thin tubes with respect to a pipe | tube cleanliness threshold value. 実機検証(追試)において、管清浄度のランク毎の度数分布を示す図である。It is a figure which shows the frequency distribution for every rank of pipe cleanliness in actual machine verification (additional test). 実機検証(追試)において、管清浄度に対する洗浄細管数の関係と管清浄度閾値に対する復水器の予測回復清浄度の関係を示す図である。In actual machine verification (additional test), it is a figure which shows the relationship of the number of washing | cleaning thin tubes with respect to tube cleanliness, and the relationship of the prediction recovery cleanliness of a condenser with respect to a tube cleanliness threshold value. 本願発明の一実施形態にかかる多管式熱交換器の細管汚れ検出装置の透過光検出装置(スキャニング装置)の構成を示す図である。It is a figure which shows the structure of the transmitted light detection apparatus (scanning apparatus) of the thin tube | pipe dirt detection apparatus of the multitubular heat exchanger concerning one Embodiment of this invention. 本願発明の一実施形態にかかる多管式熱交換器の細管汚れ検出装置の透過光検出装置(スキャニング装置)に含まれるセンサホルダの構成を示す図である。It is a figure which shows the structure of the sensor holder contained in the transmitted light detection apparatus (scanning apparatus) of the thin tube | pipe dirt detection apparatus of the multitubular heat exchanger concerning one Embodiment of this invention. 図43、44に示す多管式熱交換器の細管汚れ検出装置の透過光検出装置(スキャニング装置)の概略鳥瞰図である。FIG. 45 is a schematic bird's-eye view of the transmitted light detection device (scanning device) of the thin tube dirt detection device of the multitubular heat exchanger shown in FIGS. 43 and 44.

本明細書では、発明者が本願発明にかかる多管式熱交換器の洗浄細管選定方法および細管汚れ検出装置に想到するに至った経緯に沿って、復水器の細管洗浄を対象として実施した調査・検討の概要について説明した後に、本願発明の実施形態と本願発明によって見込まれる効果について述べ、最後に実際の発電所において行った実機検証の結果と細管汚れ検出装置の改良実施形態について述べる。   In the present specification, the inventor conducted the thin tube cleaning of the condenser along the background that led to the idea of the thin tube selection method for the multi-tube heat exchanger and the thin tube contamination detection device according to the present invention. After explaining the outline of the investigation and examination, the embodiment of the present invention and the effects expected by the present invention will be described, and finally the result of the actual machine verification performed in the actual power plant and the improved embodiment of the thin tube dirt detection device will be described.

1.細管の汚れ分布調査
まず始めに、効率的な復水器の細管洗浄方法を検討するために、発電所で運転された復水器について細管内の付着物を採取し、清浄度低下の原因となっている細管の汚れに細管の位置による偏りがないかを調査した。
1. Investigating the distribution of dirt in narrow tubes First, in order to study the efficient condenser cleaning method for condensers, the deposits in the narrow tubes were collected from the condensers operated at the power plant. It was investigated whether there was any deviation in the dirt of the thin tubes due to the position of the thin tubes.

調査対象としたのは、仙台火力発電所4号機復水器であり、その概略構造と細管の仕様を図2に示す。この復水器は7,984本の長さ約10mのチタン製細管を備え、細管が所定の間隔で配列された冷却水の上流側に配備される上流側細管群と、細管が所定の間隔で配列された下流側に配備される下流側細管群とが上下に配備され、上流側細管群の一端側は入口水室を介して冷却水入口側配管に接続され、下流側細管群の一端側は出口水室を介して冷却水出口側配管に接続され、上流側細管群の他端側と下流側細管群の他端側は中間水室を介して連通されている。
このような復水器において、夏場のボール運用条件であるグラニュレートボール洗浄を運用した状態で、細管内に残留する汚れの量と復水器内の汚れの分布状況を調査した。
The subject of the survey was the Sendai Thermal Power Station Unit 4 condenser, and the schematic structure and specifications of the narrow tubes are shown in Fig. 2. This condenser is provided with 7,984 titanium thin tubes having a length of about 10 m, an upstream side thin tube group arranged upstream of the cooling water in which the thin tubes are arranged at a predetermined interval, and the thin tubes at a predetermined interval. The downstream tubule group arranged on the downstream side arranged in the upper and lower sides is arranged up and down, one end side of the upstream tubule group is connected to the cooling water inlet side pipe through the inlet water chamber, and one end of the downstream tubule group The side is connected to the cooling water outlet side pipe via the outlet water chamber, and the other end side of the upstream side thin tube group and the other end side of the downstream side thin tube group are communicated via the intermediate water chamber.
In such a condenser, the amount of dirt remaining in the narrow tube and the distribution of dirt in the condenser were investigated in the state where the granulated ball cleaning, which is a ball operation condition in summer, was operated.

調査は、細管の全数がエアー打ちされて水が抜けた状態で、最初に、中間水室側から細管をサーチライトで照明し、入口水室と出口水室での細管からの透過光を目視観察して異物による閉塞管がないかを確認し、その上で、図3に示すように、入口水室と出口水室のそれぞれについて、管群全体を横6列、縦13段の78区画に分割し、閉塞管や著しく汚れた細管を除いて、各区画を代表する細管を調査管として選定し、付着物量の測定を行った。調査対象とした156本(78区画×2水室)は、全細管数の約2%に相当する。   In the investigation, all of the narrow tubes were air blown and water was drained. First, illuminate the narrow tubes with the searchlight from the intermediate water chamber side, and visually check the transmitted light from the narrow tubes in the inlet water chamber and the outlet water chamber. Observe whether there are any obstruction pipes due to foreign matter, and then, as shown in FIG. 3, the entire tube group for each of the inlet water chamber and the outlet water chamber is 78 rows of 6 rows and 13 columns. The tubules that represent each section were selected as survey tubes, except for the obstructing tubes and tubules that were extremely dirty, and the amount of deposits was measured. The 156 (78 sections × 2 water chambers) targeted for investigation correspond to about 2% of the total number of thin tubes.

付着物量の測定は、調査管のそれぞれについて、入口水室側と出口水室側から細管洗浄用ブラシを水撃ちし、中間水室側で洗浄水と付着物をバケツに回収したものを試料として採取した。
採取した試料は、容量20Lのバケツに24時間静置した後、上澄みを捨てて沈殿物を容量2.5Lの容器に移し、これを更に18時間静置した上で沈殿物をメスシリンダーに移し、4時間後に試料の容量を測定して付着物の湿体積とした(図4参照)。
更に、この試料を予め電子天秤を用いて秤量した濾紙で濾し、乾燥機で105℃、6時間乾燥させた沈殿物を濾紙ごと秤量し、濾紙の重量を引いたものを付着物の乾燥重量とした。
For the measurement of the amount of deposits, for each of the survey tubes, water the brush for cleaning the thin tube from the inlet water chamber side and the outlet water chamber side, and collect the cleaning water and deposits in a bucket on the intermediate water chamber side as a sample. Collected.
The collected sample is allowed to stand in a 20 L bucket for 24 hours, then the supernatant is discarded and the precipitate is transferred to a 2.5 L container, which is further left for 18 hours, and then the precipitate is transferred to a graduated cylinder. The volume of the sample was measured after 4 hours to obtain the wet volume of the deposit (see FIG. 4).
Further, this sample was filtered with a filter paper weighed in advance using an electronic balance, the precipitate dried at 105 ° C. for 6 hours with a dryer was weighed together with the filter paper, and the weight of the filter paper was subtracted to determine the dry weight of the deposit. did.

測定した付着物量の詳細データは省略するが、付着物量(湿体積)の測定データに基づいて、各調査管について、付着物量(湿体積)を60mL以下と、60〜210mLと、210mL以上の3段階に分けて表示した細管の汚れ分布図を図5に示す。図において、上段は入口水室側の汚れ分布を示し、下段は出口水室側の汚れ分布を示す。
なお、細管内の付着物として生物皮膜が主体となるチタン管の場合、伝熱性は湿体積と相関を示すことが確認されていることから、ここでは湿体積に注目して評価を行った。
Although detailed data on the amount of deposits measured is omitted, the amount of deposits (wet volume) is 60 mL or less, 60 to 210 mL, 3 of 210 mL or more based on the measurement data of the amount of deposit (wet volume). FIG. 5 shows a dirt distribution map of the capillaries displayed in stages. In the figure, the upper part shows the dirt distribution on the inlet water chamber side, and the lower part shows the dirt distribution on the outlet water chamber side.
In the case of a titanium tube mainly composed of a biofilm as an adhering substance in the narrow tube, it was confirmed that the heat transfer was correlated with the wet volume.

この調査により、付着物量(湿体積)は、細管1本当り60mL未満の細管が158本中の91%を占めることが確認された。これらの細管は、スポンジボールによって汚れが除去できていると見なされ、ボール洗浄が効果的に行われていることが確認された。
区画および領域毎の汚れの分布傾向は、予想されていたように、入口水室側では外周部に付着量が多い傾向が認められ、出口水室側では中央部が最も多いという結果であるが、その差はごく僅かであった。
一方、付着物量が60mL/本以上の細管(平均510mL/本、最大1,510mL/本)は、全体の9%を占めたが、分布傾向は認められず、ランダムに存在していた。これらの著しく汚れた細管は、ボールや異物の閉塞などによりスポンジボールが不通過となったことが汚れ増加の原因と考えられた。
As a result of this investigation, it was confirmed that the amount of deposits (wet volume) accounted for 91% of 158 thin tubes with less than 60 mL per thin tube. These capillaries were considered to be able to remove dirt with sponge balls, and it was confirmed that the balls were cleaned effectively.
As expected, the distribution tendency of dirt in each compartment and area is the result that a large amount of adhesion is observed on the outer peripheral portion on the inlet water chamber side, and the central portion is the largest on the outlet water chamber side. The difference was negligible.
On the other hand, capillaries with an amount of deposits of 60 mL / line or more (average 510 mL / line, maximum 1,510 mL / line) accounted for 9% of the total, but no distribution tendency was observed and they existed randomly. These extremely dirty tubules were considered to be the cause of the increase in contamination due to the passage of sponge balls due to blockage of balls and foreign matters.

また、付着物量(湿体積)の測定データから、付着物量(湿体積)が60mL/本未満のデータに限定して、復水器細管の汚れの濃度分布図(コンター図)を作成した(コンター図の記載は省略)。その結果、入口水室側では向かって左側中央部に汚れが多い箇所と、一番左側に汚れが少ない部分とが認められた。これは、入口水室側の中央部に空気抽出管があり、向かって右側にある循環水管からの流れを乱すことによって、ボール通過のしやすさに影響を及ぼしていると考えられた。出口水室側についても、中間水室にある支柱の位置が汚れ分布に影響を及ぼしていると考えられた。   Also, from the measurement data of the amount of deposits (wet volume), the concentration distribution map (contour diagram) of the condenser tubules was created by limiting the amount of deposits (wet volume) to less than 60 mL / container (contour diagram). (The illustration is omitted.) As a result, on the inlet water chamber side, a portion with a large amount of dirt in the left central portion and a portion with a little dirt on the left side were recognized. This was thought to have an influence on the ease of passage of the ball by disturbing the flow from the circulating water pipe on the right side of the air extraction pipe in the center of the inlet water chamber side. On the outlet water chamber side as well, the position of the struts in the intermediate water chamber was considered to have an influence on the dirt distribution.

2.細管の効果的な洗浄方法の調査
次に、細管の効果的な洗浄方法を検討するため、改めて未洗浄管について、既存の細管洗浄方法であるジェット洗浄とブラシ洗浄を用いて細管洗浄を行い、洗浄によって採取された付着物の量を測定するとともに、洗浄前後の細管内をファイバースコープで観察し、更に洗浄によって採取された付着物の性状および成分を調査した。
2. Next, in order to investigate the effective cleaning method for thin tubes, the tube was cleaned again using the existing thin tube cleaning methods, jet cleaning and brush cleaning, to examine the effective cleaning method for thin tubes. The amount of deposits collected by washing was measured, the inside of the capillary tube before and after washing was observed with a fiberscope, and the properties and components of the deposits collected by washing were investigated.

調査対象とした洗浄方法は、図6(1)に示すようなジェット洗浄(ノズル)と2種類のブラシ洗浄(スタンダードタイプのブラシクリーナ:ブラシ1およびロングタイプのブラシクリーナ:ブラシ2)の3種類である。これらを用いて、復水器の中央部と中間部と外周部から3区画を選定し、2種類のブラシ洗浄と、1種類のジェット洗浄を図6(2)に示すように組合せて2回の細管洗浄を行い、各洗浄における洗浄水を回収し、前述の細管の汚れ分布調査と同じ方法で付着物量を測定した。
なお、ブラシ洗浄における付着物の回収は、前述の細管の汚れ分布調査において述べた通りであるが、ジェット洗浄における付着物の回収は、ジェット洗浄によって排出する洗浄水を付着物と一緒にバキュームポンプにより回収することとし、中間水室側から洗浄水が流出することを防止するため、中間水室側からエアーガンを用いてエアーを送り込むようにした。
Three types of cleaning methods were investigated: jet cleaning (nozzle) and two types of brush cleaning (standard type brush cleaner: brush 1 and long type brush cleaner: brush 2) as shown in FIG. It is. Using these, three sections are selected from the center, middle, and outer periphery of the condenser, and two types of brush cleaning and one type of jet cleaning are combined twice as shown in FIG. 6 (2). Then, the washing water in each washing was collected, and the amount of adhering matter was measured by the same method as the above-described dirt distribution investigation of the thin tubes.
The collection of deposits in brush cleaning is as described in the above-mentioned investigation of the dirt distribution of thin tubes, but the collection of deposits in jet cleaning is a vacuum pump together with the deposits of washing water discharged by jet cleaning. In order to prevent washing water from flowing out from the intermediate water chamber side, air was sent from the intermediate water chamber side using an air gun.

以上のような2回の細管洗浄において回収された付着物量の詳細データは省略するが、ジェット洗浄については、細管の径が大きかったことや洗浄スピードが速かったことから汚れ除去効果が低かったと考えられるものの、回収された付着物量が少なすぎることから、ジェット洗浄では付着物が洗浄水と共に流出し、回収できないものが存在していると考えられた。
このため、洗浄方法の比較においては、1回目の洗浄において汚れ除去量が最も多かったブラシ2を2回目の洗浄に用いた場合の付着物量を、1回目の洗浄では取り除かれずに残った汚れの量と見なして3種類の洗浄方法を比較することとした。
Detailed data on the amount of deposits collected in the above two thin tube cleanings are omitted, but it is considered that the cleaning effect of jet cleaning was low due to the large diameter of the thin tubes and the high cleaning speed. However, since the amount of the collected deposits was too small, it was considered that the deposits flowed out together with the washing water in the jet cleaning, and there were those that could not be collected.
For this reason, in the comparison of the cleaning methods, the amount of adhered matter when the brush 2 having the largest amount of dirt removal in the first washing is used for the second washing is the amount of dirt remaining without being removed in the first washing. It was decided to compare the three types of cleaning methods considering the amount.

図7に各洗浄方法による洗浄効果を比較した結果を示す。
図7(1)は、3種類の洗浄方法について1回目の洗浄により回収された付着物量が、2回の洗浄により回収された付着物の合計に対する割合を付着物の除去率と考えた各洗浄方法の洗浄効果を比較したものである。この比較により、ブラシ2の洗浄効果が最も優れていると考えられるが、この除去率は汚れの付着物量によって変化するものであることから、絶対的な洗浄効果を評価する方法としては適さないと考えられる。そこで、更に洗浄による管清浄度の回復効果を比較することとした。
図7(2)は、細管の汚れ分布調査において調査対象とした細管の平均の付着物量(27.1mL/本)に、この調査で得られたブラシ2による除去率(約70%)を基に、細管内に存在する付着物の総量を35.8mLと推定して洗浄後の付着物量を算出するベース値とし、このベース値から、各洗浄方法の除去率により洗浄後の推定管清浄度を算出したものである。付着物量のベース値35.8mL/本に対応する管清浄度は93.4%であり、洗浄後の管清浄度は、ブラシ1では97.0%、ブラシ2では97.2%であり、ブラシ洗浄による管清浄度の回復は3%程度見込めるが、ジェット洗浄では93.9%であり、ジェット洗浄による管清浄度の回復は1%以下であると評価された。
FIG. 7 shows the result of comparison of the cleaning effect by each cleaning method.
FIG. 7 (1) shows each of the three types of cleaning methods in which the amount of deposits recovered by the first cleaning is considered to be the deposit removal rate as a percentage of the total amount of deposits recovered by the second cleaning. It compares the cleaning effects of the methods. According to this comparison, it is considered that the cleaning effect of the brush 2 is the most excellent. However, since this removal rate changes depending on the amount of dirt adhered, it is not suitable as a method for evaluating the absolute cleaning effect. Conceivable. Therefore, the recovery effect of the cleanliness of the tube by washing was further compared.
FIG. 7 (2) shows that the average amount of deposits (27.1 mL / tube) of the thin tubes that were investigated in the dirt distribution survey of the thin tubes is based on the removal rate (about 70%) by the brush 2 obtained in this survey. In addition, the total amount of deposits present in the narrow tube is estimated to be 35.8 mL, and this is used as a base value for calculating the amount of deposits after cleaning. Is calculated. The tube cleanliness corresponding to the base value of 35.8 mL / tube is 93.4%, the tube cleanliness after cleaning is 97.0% for brush 1 and 97.2% for brush 2. The recovery of tube cleanliness by brush cleaning can be expected to be about 3%, but it is 93.9% by jet cleaning, and the recovery of tube cleanliness by jet cleaning was evaluated to be 1% or less.

このように、ジェット洗浄による性能回復効果が低いのは、これまでの洗浄実績の中でジェット洗浄後にグラニュレートボール洗浄を行うと復水器の清浄度が回復するという事象と概ね一致しているが、ここで使用したジェット洗浄ノズルのノズル径に対して、細管の内径が大きいことも影響していると考えられる。   In this way, the performance recovery effect by jet cleaning is low, which is generally consistent with the phenomenon that the cleanliness of the condenser is restored when granulated ball cleaning is performed after jet cleaning. However, it is considered that the fact that the inner diameter of the narrow tube is larger than the nozzle diameter of the jet cleaning nozzle used here has an influence.

図8に、ブラシ2を使用して洗浄した場合の洗浄前後の細管内の汚れ状況をファイバースコープで観察した結果を示す。
図のように、洗浄前の観察では、細管の入口から出口に向かって赤褐色の汚れが増加する傾向が見られ、ボール洗浄跡が長手方向に認められたが、洗浄後は、細管出口に僅かに認められるのみで、全体的にチタン材の光沢が回復されている。
FIG. 8 shows the result of observing the dirt state in the narrow tube before and after cleaning with a fiberscope when cleaning is performed using the brush 2.
As shown in the figure, in the observation before washing, reddish brown dirt tended to increase from the inlet to the outlet of the thin tube, and ball washing marks were observed in the longitudinal direction, but after washing, a slight amount was observed at the outlet of the thin tube. As a result, the luster of the titanium material is restored as a whole.

図9に、ブラシ2を使用して回収した付着物の成分分析結果を示す。ここで、ボール通過と見なされる湿体積が60mL/本未満の通常の汚れと、ボール不通過と見なされる平均510mL/本の泥状の汚れとでは、付着物の性状に違いが認められたことから、それぞれを別個に成分分析した。
その結果、通常の汚れは、大部分が有機物量を表す強熱減量で占められていることから、ほとんどの汚れが細管内に付着して繁殖した生物皮膜であると判断された。
一方、泥状の汚れは、強熱減量が占める割合は17%と少なく、その他の元素が61%占めていた。そのため、泥状の汚れについて更にEDX分析(エネルギー分散型X線分析)を行った結果、図10に示すように、酸素約52%、次いでケイ素約24%が主要成分であることが判った。このように、泥状の汚れは、鉱物由来の酸化した無機質が主体であったことから、主として鉱物微粒子が堆積したものと判断された。
In FIG. 9, the component analysis result of the deposit | attachment collect | recovered using the brush 2 is shown. Here, there was a difference in the properties of the adhering material between normal soils with a wet volume of less than 60 mL / tube considered to pass the ball and mud-like soils with an average of 510 mL / tube considered non-passing the ball. From each, the components were analyzed separately.
As a result, most of the normal soil was occupied by the loss of ignition representing the amount of organic matter, so it was judged that most of the soil was a biofilm that was propagated by adhering to the inside of the tubule.
On the other hand, in mud-like soils, the proportion of ignition loss was as low as 17%, and other elements accounted for 61%. Therefore, as a result of further EDX analysis (energy dispersive X-ray analysis) on the muddy dirt, it was found that about 52% oxygen and then about 24% silicon were the main components as shown in FIG. Thus, since the muddy soil was mainly composed of mineral-derived oxidized inorganic material, it was judged that mineral fine particles were mainly accumulated.

3.細管の汚れの度合いを検出する方法の検討
前述の細管の汚れ分布調査の結果、ボール不通過と見なされる汚れた細管はランダムに存在することが確認されたので、細管の汚れの度合いに基づいて細管洗浄する範囲を最適化できるようにするためには、細管毎に汚れの度合いを数値化できる検出方法を開発する必要がある。そこで、細管の一端側から入射した光が細管内を通過する際に汚れの度合いに応じて光が減衰することに着目し、細管の一端側に設けた照明装置により細管に光を入射させ、細管の他端側に設けた検出装置により細管内を透過する光の透過光量を検出することで細管の汚れの度合いを検出することができないかを検討した。
3. Examination of the method for detecting the degree of dirt on thin tubes As a result of the above-mentioned investigation of the dirt distribution on thin tubes, it was confirmed that there were randomly contaminated tubules considered to be non-passing balls. In order to be able to optimize the cleaning range of the thin tubes, it is necessary to develop a detection method capable of quantifying the degree of contamination for each thin tube. Therefore, paying attention to the light attenuated according to the degree of dirt when the light incident from one end side of the narrow tube passes through the narrow tube, the light is incident on the narrow tube by the illumination device provided on the one end side of the narrow tube, We examined whether the degree of contamination of the narrow tube could be detected by detecting the amount of light transmitted through the narrow tube with the detection device provided on the other end of the narrow tube.

このため、まず始めに、照明装置の必要条件を明らかにするため、利用可能な7種類の光源について、各光源の光を未使用の細管内を通過させたときの細管出口における照度の減衰傾向を調査した。
図11に、比較した光源の種類と、使用した照度計の仕様を示す。これらの各種光源について、長さが0.1m、1.1m、4.1mの3段階の細管内を通過させた後の放射照度(W/m2)を測定した。
この測定によって得られた細管の長さと放射照度の関係のうち、サーチライトCのハロゲンランプを光源とした場合について図12に例示する。
細管透過光は、管内で反射するため、見た目では減衰がないように見られるが、実際の放射照度は、細管の長さが長くなると指数的に低下し、長さ10mの細管では10%未満に減衰することが判った。
For this reason, first, in order to clarify the necessary conditions of the illuminating device, the illuminance attenuation tendency at the outlet of the narrow tube when the light of each light source is allowed to pass through the unused narrow tube for the seven types of available light sources. investigated.
FIG. 11 shows the types of light sources compared and the specifications of the illuminometer used. About these various light sources, the irradiance (W / m < 2 >) after passing through the inside of 3 steps | paragraphs of length 0.1m, 1.1m, and 4.1m was measured.
Of the relationship between the length of the narrow tube and the irradiance obtained by this measurement, the case where the halogen lamp of the searchlight C is used as the light source is illustrated in FIG.
Since the light transmitted through the narrow tube is reflected in the tube, it appears that there is no attenuation in appearance, but the actual irradiance decreases exponentially as the length of the thin tube increases, and is less than 10% for a 10 m long tube. It was found to decay.

上記照度減衰データに基づいて、実機細管長10.550mにおける照度を推定し、各種光源の適用性を評価した結果を図13に示す。
LEDランプは、ハロゲンランプと比べてかなり照度が低くなるものの、通常の照度計で更に1/100の放射照度が測定可能であり、蛍光灯型LEDランプの場合であっても、清浄な細管の放射照度は3桁あるため、汚れた細管の閉塞率が99%であって、1%しか光が到達しない場合であっても、1〜2桁の値として検出可能であると推定される。
また、LEDランプは、ハロゲンランプと比較して照度的に安定しており、作業効率を向上させるためにも多数の細管を同時に照明できることが望ましく、蛍光灯型LEDランプを用いることが実用的であると判断された。
なお、長さ1200mmの蛍光灯型LEDランプについて、長さ方向に100mm間隔で照度分布を測定し、断面方向に45度、90度、120度の角度で照度を測定した結果、必要十分の均一性を有していることが確認された。
FIG. 13 shows the result of estimating the illuminance at the actual thin tube length of 10.550 m based on the illuminance attenuation data and evaluating the applicability of various light sources.
Although LED lamps have considerably lower illuminance than halogen lamps, it is possible to measure an irradiance of 1/100 with a normal illuminometer, and even in the case of fluorescent LED lamps, clean tubules Since the irradiance has three digits, it is estimated that even if the occlusion rate of dirty tubules is 99% and only 1% of light reaches, it can be detected as a value of one to two digits.
In addition, the LED lamp is more stable in terms of illuminance than a halogen lamp, and it is desirable to illuminate a large number of capillaries at the same time in order to improve work efficiency. It is practical to use a fluorescent LED lamp. It was judged that there was.
As a result of measuring the illuminance distribution at intervals of 100 mm in the length direction and measuring the illuminance at angles of 45 degrees, 90 degrees, and 120 degrees in the cross-sectional direction for a fluorescent lamp type LED lamp having a length of 1200 mm, it is necessary and sufficient It was confirmed that it has sex.

次に、照明方法について検討した。照明方法としては、図14に示すように、一定範囲の細管に照明装置を密接させて各細管に光を入射させる部分照明と、水室全体を明るくして全細管に一括して光を入射させる全体照明とが考えられる。部分照明は、照明装置を狭いマンホールから容易に水室内に持ち込むことができるが、その反面、水室内で移動させるための治具が必要になる。一方、全体照明は、水室内が均一な明るさになるように設置する必要あり、専門的な照明設計や事前テストが必要となる上、照明装置を細管に密接させる部分照明に比べて照明効率が悪くなり、照明装置が大型化するという問題がある。これらのことから、照明方法としては部分照明を用いることが好ましいと考えられた。   Next, the lighting method was examined. As shown in FIG. 14, the illumination method includes partial illumination in which a lighting device is brought into close contact with a narrow tube in a certain range and light is incident on each thin tube, and the entire water chamber is brightened and light is incident on all the thin tubes at once. It can be thought of as overall illumination. In partial lighting, the lighting device can be easily brought into the water chamber from a narrow manhole, but on the other hand, a jig for moving in the water chamber is required. On the other hand, the overall lighting needs to be installed so that the water chamber has a uniform brightness, which requires specialized lighting design and prior testing, and the lighting efficiency compared to partial lighting where the lighting device is in close contact with the narrow tube However, there is a problem that the lighting device becomes large. From these facts, it was considered preferable to use partial illumination as the illumination method.

部分照明に用いる光源としては、上述のように均一な照度分布が得られる蛍光灯型LEDランプが適していると判断されたことから、蛍光灯型LEDランプを用いた照明装置の構成を検討した。
対象とする復水器の細管配列を見ると、縦方向は互い違いに配列されているのに対して、横方向は直線上に配列されており、横方向の配列が45段あって、5の倍数になっていることから、蛍光灯型LEDランプ5本を細管の縦方向の間隔で基盤上に配列したものを照明装置として用いることとした。
図15に、検討した照明装置の構成を示す。このような照明装置により、1200mm×210mmの範囲の細管をカバーすることができる。
As a light source used for partial illumination, it was determined that a fluorescent LED lamp capable of obtaining a uniform illuminance distribution as described above was suitable. Therefore, the configuration of an illumination device using a fluorescent LED lamp was examined. .
Looking at the condenser arrangement of the target condenser, the vertical direction is arranged alternately, whereas the horizontal direction is arranged on a straight line, there are 45 horizontal arrangements, and 5 Since it is a multiple, a fluorescent lamp type LED lamp having five fluorescent lamps arranged on the substrate at intervals in the vertical direction of the thin tubes was used as the lighting device.
FIG. 15 shows the configuration of the studied lighting device. With such an illuminating device, a thin tube having a size of 1200 mm × 210 mm can be covered.

一方、細管の他端側からの透過光量を検出する検出装置としては、照度計を用いて各細管からの透過光量を順次測定する方法も考えられるが、対象とする復水器の細管数は約8000本もあることから一定範囲の細管からの透過光量を一括検出できるようにすることが作業効率上望ましい。
このような一定範囲の細管からの透過光量を一括検出できる検出装置としては、デジタルカメラのような二次元撮像装置を用いて写真撮影するか、またはハンディスキャナのような一元撮像装置を用いてスキャンすることで、一定範囲の細管からの透過光を2次元画像として取得し、取得された画像を画像処理することで一定範囲の細管の細管毎の透過光量を一括検出することができる。特に、ハンディスキャナのような密着型の撮像装置を用いた場合には、光学レンズを使用しないことから、撮像範囲の中央から離れた周辺部においても細管からの透過光の集光効率が低下せず、全撮像範囲について均一な検出感度を提供することができるという特質がある。
On the other hand, as a detection device for detecting the amount of light transmitted from the other end of the thin tube, a method of sequentially measuring the amount of light transmitted from each thin tube using an illuminance meter can be considered, but the number of narrow tubes of the target condenser is Since there are about 8000 lines, it is desirable in terms of work efficiency to be able to collectively detect the amount of light transmitted from a narrow tube within a certain range.
As a detection device that can collectively detect the amount of light transmitted through a narrow tube in a certain range, a two-dimensional imaging device such as a digital camera can be used to take a picture, or a single imaging device such as a handy scanner can be used to scan. Thus, the transmitted light from a narrow tube in a certain range is acquired as a two-dimensional image, and the amount of transmitted light for each narrow tube in the certain range can be collectively detected by performing image processing on the acquired image. In particular, when a close-contact imaging device such as a handy scanner is used, since the optical lens is not used, the light collection efficiency of the transmitted light from the thin tube is reduced even in the peripheral portion away from the center of the imaging range. In addition, there is a characteristic that uniform detection sensitivity can be provided for the entire imaging range.

検出装置として、A4サイズの画像読取に用いられる読取幅210mm、最大スキャン長2480mm(解像度300dpiの場合)のハンディスキャナを用いた場合、撮像方向を縦方向に設置すると5段分の細管をカバーすることができ、横方向にスキャンすることで、1回のスキャンで18個の細管からの透過光の2次元画像を取得することができる。   When a handy scanner having a reading width of 210 mm and a maximum scanning length of 2480 mm (in the case of 300 dpi resolution) used for reading an A4 size image is used as the detection device, five stages of narrow tubes are covered when the imaging direction is set vertically. By scanning in the horizontal direction, a two-dimensional image of transmitted light from 18 capillaries can be acquired in one scan.

図16に、検出装置としてハンディスキャナを用いてスキャンさせる場合とデジタルカメラを用いて写真撮影する場合のそれぞれについての照明方法を示す。
ハンディスキャナを用いる場合には、図16(1)に示すように、ハンディスキャナのスキャン操作毎に対応して照明装置を移動させ、合計27回(縦方向に9回×横方向に3回)分の画像を取得することで復水器の全細管をカバーすることができる。
また、デジタルカメラを用いる場合には、図16(2)に示すように、照明装置を上下に2つ組合せて照明し、デジタルカメラによりA2サイズの画角で写真撮影することとし、撮影毎に対応して照明装置を移動させ、合計25枚分の画像を取得することで復水器の全細管をカバーすることができる。
FIG. 16 shows an illumination method for each of a case where scanning is performed using a handy scanner as a detection device and a case where photography is performed using a digital camera.
When a handy scanner is used, as shown in FIG. 16A, the illumination device is moved corresponding to each scanning operation of the handy scanner, and a total of 27 times (9 times in the vertical direction × 3 times in the horizontal direction). It is possible to cover all the condenser tubes by acquiring images of minutes.
When a digital camera is used, as shown in FIG. 16 (2), two lighting devices are combined to illuminate, and a digital camera is used to take a picture with an A2 size angle of view. Correspondingly, the illuminating device is moved, and all the thin tubes of the condenser can be covered by acquiring a total of 25 images.

なお、細管からの透過光量を検出する検出装置は、細管の汚れ分布調査において光の透過テストを行った要領で、細管出口端部に半透明の透過板を設置し、透過板が細管からの透過光を受光することによってできる投影像の照度を、透過板の裏面から測定することとした。
細管の汚れ分布調査における透過テストでは、光源にはハロゲンランプが用いられ、コピー用紙をラミネートした透過板(透過率26%)を用いたが、目視による判別が可能な照度としては0.32W/m2以上であることから、光源として蛍光灯型LEDランプを用いる場合には、透明アクリル板等の透過板を用い、透過率を50〜60%とすることが適切であると判断された。
また、透過率の異なる透過板を複数準備して、照度的に最適なものを選定することが望ましいと考えられた。
The detection device that detects the amount of light transmitted from the narrow tube is the same as the light transmission test conducted in the dirt distribution investigation of the thin tube, and a translucent transmission plate is installed at the end of the narrow tube, and the transmission plate is separated from the narrow tube. The illuminance of the projection image that can be obtained by receiving the transmitted light was measured from the back surface of the transmission plate.
In the transmission test in the dirt distribution investigation of thin tubes, a halogen lamp was used as the light source, and a transmission plate laminated with copy paper (transmittance 26%) was used, but the illuminance that can be visually discriminated is 0.32 W / Since it is m < 2 > or more, when using a fluorescent lamp type LED lamp as a light source, it was judged that it was appropriate to use a transmissive plate such as a transparent acrylic plate and to set the transmittance to 50 to 60%.
In addition, it was considered desirable to prepare a plurality of transmission plates having different transmittances and to select the optimal one in terms of illuminance.

撮像装置によって取得された画像は、以下のような手順で画像解析することができる。
(I)取得された画像をグレースケール画像に変換して保存する。
(II)取得された複数の画像を一括処理するため、ファイル名を画像処理ソフトで自動読
込可能な連番ファイル名に変換する。
(III)画像番号と細管番号(アドレス)の対応表を作成する。
(IV)画像解析ソフトのオートラン機能を用いて画像解析の自動処理を行う。
(V)画像解析の解析結果画像とデータ表を出力する。
The image acquired by the imaging device can be analyzed by the following procedure.
(I) Convert the acquired image into a grayscale image and save it.
(II) In order to collectively process a plurality of acquired images, the file names are converted into sequential file names that can be automatically read by image processing software.
(III) Create a correspondence table between image numbers and capillary numbers (addresses).
(IV) Perform automatic image analysis using the auto-run function of the image analysis software.
(V) Image analysis result image and data table are output.

具体的な画像解析の方法としては、平均輝度を演算する方法と、2値化した画像の面積を演算する方法とが考えられる。
平均輝度を演算する方法は、例えば、予め計測したい細管のスポットを表した2値画像を準備しておき、保存された濃淡画像と2値画像との画像間演算を行って細管毎に平均輝度を演算する。また、保存された濃淡画像の上下方向と左右方向の投影に基づいて各細管のスポットをセグメンテーションし、細管毎に平均輝度を演算するようにしてもよい。このようにして演算された平均輝度は、照度計によって計測される放射照度に対応する。
一方、2値化した画像の面積を演算する方法は、例えば、予め取得された未使用細管または十分に洗浄された細管の濃淡画像に基づいて2値化の閾値を設定し、保存された濃淡画像を設定された2値化の閾値で2値化し、取得された2値図形について細管毎の面積を演算する。
As a specific image analysis method, a method of calculating an average luminance and a method of calculating an area of a binarized image can be considered.
A method for calculating the average luminance is, for example, preparing a binary image representing a spot of a thin tube to be measured in advance, performing an inter-image calculation between the stored grayscale image and the binary image, and calculating the average luminance for each thin tube. Is calculated. Moreover, the spot of each thin tube may be segmented based on the vertical and horizontal projections of the stored grayscale image, and the average luminance may be calculated for each thin tube. The average luminance calculated in this way corresponds to the irradiance measured by the illuminometer.
On the other hand, the method for calculating the area of the binarized image is, for example, by setting a threshold value for binarization based on a gray image of unused tubules or sufficiently washed tubules acquired in advance and storing the shading The image is binarized with a set binarization threshold, and the area for each thin tube is calculated for the acquired binary figure.

2値化した画像の面積を演算する方法は、図17に示すような照度が16.1W/m2〜0.014W/m2の範囲にある画像解析用模擬画像について、2値化を行って各画像のスポットの面積を演算した結果、照度と画像解析による面積の間には図18に示すような関係があることが判り、照度が1.0〜0.01の範囲においてはある程度の相関関係があることが確認された。
従って、透過率の異なる複数の透過板を予め準備し、照度が1.0〜0.01W/m2になる透過板を用いて画像を取得し、2値化した画像の面積を演算することで、照度計によって計測される放射照度に対応する透過光量の指標として用いることができると考えられた。また、2値化の閾値を未使用細管または十分に洗浄された細管の濃淡画像について丁度100%の2値画像となる2値化の閾値を設定することで、画像処理によって得られる細管毎の面積と細管の断面積の比を細管の透過率として用いることができる。
How to calculate the area of the binarized image, the image analysis simulation image in the range of illumination as shown in Figure 17 of 16.1W / m 2 ~0.014W / m 2 , subjected to binarization As a result of calculating the spot area of each image, it can be seen that there is a relationship as shown in FIG. 18 between the illuminance and the area obtained by image analysis. It was confirmed that there was a correlation.
Therefore, preparing a plurality of transmission plates having different transmittances, acquiring an image using a transmission plate having an illuminance of 1.0 to 0.01 W / m 2 , and calculating the binarized image area Thus, it was considered that it can be used as an indicator of the amount of transmitted light corresponding to the irradiance measured by the illuminometer. In addition, by setting a threshold value for binarization, which is a 100% binary image for a grayscale image of unused tubules or sufficiently washed tubules, a binarization threshold is set for each tubule obtained by image processing. The ratio between the area and the cross-sectional area of the thin tube can be used as the transmittance of the thin tube.

4.細管の汚れの度合いと透過光量の関係の調査
次に、複数の汚れの度合いが異なる細管を人工的に作成し、細管の汚れの度合いと透過光量の関係を調査するモデル試験を行った。
4). Investigation of the relationship between the degree of contamination of the thin tube and the amount of transmitted light Next, a plurality of thin tubes having different degrees of contamination were artificially created, and a model test was conducted to investigate the relationship between the degree of contamination of the thin tube and the amount of transmitted light.

図19に、複数の汚れの度合いが異なる細管を作成するために構成した生物皮膜育成装置の系統図を示す。図のように、外形1インチ(肉厚0.5mm)、長さ5mのチタン製細管2本をホースで接続したものに、ポンプで取水した天然海水を流量30L/分(流速1.0m/秒)で通水して生物汚れを付着させた。実機の細管内の平均流速は2.2m/秒であるが、汚れを付きやすくするため、約1/2の流速となるように設定した。
ここでは、汚れの度合いを、通水なしを含めて4段階となるように、通水開始日より10日毎に5m管×2本を2回追加して、通水期間0日、30日、40日、50日の4段階について5m×2本(上流と下流)の細管を生成した。
FIG. 19 shows a system diagram of a biofilm growing apparatus configured to create a plurality of thin tubes having different degrees of dirt. As shown in the figure, natural titanium water drawn by a pump was flowed at 30 L / min (flow rate 1.0 m / min) to two 1-inch (0.5 mm thick), 5 m long titanium tubes connected by a hose. Seconds) to allow biological dirt to adhere. The average flow velocity in the actual thin tube was 2.2 m / second, but it was set so that the flow velocity was about ½ in order to easily get dirt.
Here, the degree of soiling is 4 stages including no water flow, so that 2 × 5 m pipes are added twice every 10 days from the water flow start date, and the water flow period is 0 days, 30 days, For 4 stages on the 40th and 50th, 5 m × 2 (upstream and downstream) capillaries were produced.

生成した4段階の5m×2本のそれぞれの細管を架台に固定し、細管の一端側より20Wの蛍光灯型LEDランプを用いて光を入射し、細管の他端側において照度計を用いて放射照度を測定した後、2本の細管をレーザ光線によりまっすぐとなるように接続して10mの長さの細管として架台に固定し、同様に細管の他端側における放射照度を測定した。
また、照度測定後に、各細管内をブラシ洗浄して付着物を採取して付着物量の測定を行った。付着物量の測定は細管汚れ分布調査と同じ方法で湿体積と乾燥重量を測定した。
Each of the generated 4 stages of 5m × 2 narrow tubes is fixed to a gantry, light is incident from one end of the narrow tube using a 20 W fluorescent lamp type LED lamp, and the other end of the narrow tube is used with an illuminometer. After measuring the irradiance, the two capillaries were connected so as to be straight by a laser beam, fixed as a 10 m long capillaries to the gantry, and the irradiance at the other end of the capillaries was measured in the same manner.
Further, after the illuminance measurement, the inside of each thin tube was brush-washed to collect the deposit, and the amount of deposit was measured. The amount of adhering matter was measured by measuring the wet volume and dry weight in the same manner as in the investigation of the distribution of capillary fouling.

図20に、上記汚れを付着させた配管についての照度と付着物量の測定データを示す。湿体積を見ると、通水期間が長いほど付着物量が多く、上流と下流では下流側が幾分多い傾向が見られるが、通水50日の下流は付着物量が極端に少なくなっている。これは、運搬後にゴム栓を外して架台に固定する際に付着物が吐出してしまったことによる。しかしながら、この調査では、付着物量と照度の関係を評価することが目的であるため、測定された付着物量をそのまま用いた。   FIG. 20 shows the measurement data of the illuminance and the amount of adhering matter for the pipe to which the dirt is attached. Looking at the wet volume, the longer the water flow period is, the larger the amount of adhering material is, and there is a tendency that the downstream side is somewhat more upstream and downstream, but the amount of adhering material is extremely small downstream on the 50th day. This is because deposits were discharged when the rubber plug was removed and fixed to the pedestal after transportation. However, since the purpose of this investigation is to evaluate the relationship between the amount of deposits and the illuminance, the measured amount of deposits was used as it was.

図21に、上記測定データに基づいて照度と湿体積量との関係を解析した結果を示す。図に示すように、照度と湿体積には、次式で表されるような指数関数で近似できる高い相関関係が認められ、湿体積が0〜50mLの範囲で照度は90%以上減衰することが判った。
湿体積(mL) =(照度(W/m2))-0.235 × 0.0037 (寄与率:0.9203) (1)
FIG. 21 shows the result of analyzing the relationship between the illuminance and the wet volume based on the measurement data. As shown in the figure, the illuminance and the wet volume have a high correlation that can be approximated by an exponential function represented by the following formula, and the illuminance attenuates by 90% or more when the wet volume is in the range of 0 to 50 mL. I understood.
Wet volume (mL) = (Illuminance (W / m 2 )) -0.235 × 0.0037 (Contribution rate: 0.9203) (1)

また、測定された湿体積に基づいて管清浄度を算出し、照度を汚れのない細管(通水0日)を100%としたときの照度との比率で表した透過率との関係で評価した。ここで、モデル試験で使用した細管の外形は1インチであるのに対して、仙台4号機は1インチ1/8であり、伝熱管内面積はモデル試験の1.48倍であることから、モデル試験の湿体積を1.48倍したものを用いて仙台4号機復水器の清浄度算出表を用いて管清浄度を算出した(管清浄度の演算については後述する)。
図22に、細管の透過率と算出された管清浄度の関係を解析した結果を示す。このように、細管の透過率を対数で表したものと管清浄度とは、次式で表されるようなほぼ線形関係にあり、細管の透過率を計測することで管清浄度を予測することができると考えられた。
管清浄度(%) = ln(透過率(%))× 12.414 + 45.723 (寄与率:0.9384) (2)
Also, tube cleanliness is calculated based on the measured wet volume, and the evaluation is based on the relationship with the transmittance expressed as a ratio with the illuminance when the illuminance is 100% for a fine tube with no dirt (water flow 0 days). did. Here, the outer diameter of the thin tube used in the model test is 1 inch, while Sendai No. 4 is 1/8 inch, and the area inside the heat transfer tube is 1.48 times that of the model test. Pipe cleanliness was calculated using a cleanness calculation table of the Sendai No. 4 condenser using a model test wet volume multiplied by 1.48 (calculation of pipe cleanliness will be described later).
In FIG. 22, the result of having analyzed the relationship between the transmittance | permeability of a thin tube and the calculated tube cleanliness is shown. Thus, the logarithm of the transmissivity of the narrow tube and the tube cleanliness are in a substantially linear relationship as represented by the following equation, and the tube cleanliness is predicted by measuring the transmissivity of the thin tube. I thought it was possible.
Tube cleanliness (%) = ln (transmittance (%)) x 12.414 + 45.723 (contribution rate: 0.9384) (2)

次に、上記モデル試験において検討された検出方法を用いて、仙台4号機と同じ長さのチタン製細管が使用されている発電所において、洗浄前後における照度測定を行い、洗浄前後の照度の差分の洗浄後の照度に対する比率を照度低下率として評価した。   Next, using the detection method studied in the above model test, the illuminance measurement before and after cleaning is performed at a power plant where titanium capillaries with the same length as Sendai Unit 4 are used. The ratio to the illuminance after washing was evaluated as the illuminance reduction rate.

測定された照度の平均値は0.0262W/m2、最小値は0.0235W/m2、最大値は0.0309W/m2であり、照度低下率の平均は15.6%、最小は0.3%、最大は24.2%であった。
調査した復水器は、秋季に約1か月しか運用されていなかったため、汚れは少なく、汚れの度合いと照度や透過率の関係は明らかにできなかった。このため、詳細データについては省略する。
図23に、スキャナによりスキャンした場合とデジタルカメラで写真撮影した場合の両方について取得した画像の一部を例示する。
The average value of the measured illuminance is 0.0262 W / m 2 , the minimum value is 0.0235 W / m 2 , the maximum value is 0.0309 W / m 2 , the average illuminance reduction rate is 15.6%, and the minimum is It was 0.3% and the maximum was 24.2%.
The investigated condenser was operated only for about one month in the fall, so there was little dirt, and the relationship between the degree of dirt and the illuminance and transmittance could not be clarified. For this reason, detailed data is omitted.
FIG. 23 exemplifies a part of an image acquired for both scanning with a scanner and taking a picture with a digital camera.

5.復水器性能から見た細管洗浄の最適化の検討
以上のような調査・検討結果から、復水器性能から見た細管洗浄を最適化する方法について検討した。
5. Examination of optimization of thin tube cleaning from the viewpoint of condenser performance Based on the above investigation and examination results, a method for optimizing thin tube cleaning from the viewpoint of condenser performance was examined.

(1)清浄度の算出
細管の汚れ分布調査において測定された付着物の湿体積の平均は27.5mL/本であるが、細管の効果的な洗浄方法の調査の結果、ブラシ2による1回の洗浄の汚れ除去率は68.9%であり、約30%の汚れが細管内に残されていると考えられた。そこで、細管の汚れ分布調査における平均湿体積を1.3倍した値(35.8mL)を復水器細管の湿体積の平均値として清浄度の算出に適用した結果、清浄度は93.4%となり、実際の点検直前の清浄度92%に近く、やや高いがほぼ妥当な値となった。
(1) Calculation of cleanliness The average wet volume of deposits measured in the dirt distribution survey of thin tubes is 27.5 mL / tube. The soil removal rate of the cleaning was 68.9%, and it was considered that about 30% of the soil was left in the capillary tube. Therefore, as a result of applying the value obtained by multiplying the average wet volume by 1.3 (35.8 mL) in the dirt distribution investigation of the thin tubes as the average value of the wet volume of the condenser thin tubes, the cleanliness is 93.4. %, Which is close to 92% cleanliness just before the actual inspection and is a little high but almost reasonable.

(2)付着物量と清浄度の関係から見た評価
図24に、細管内の付着物の湿体積0〜1000mL/本について復水器の清浄度を算出した結果を示す(付着物の湿体積から復水器の清浄度を算出する方法は非特許文献1を参照されたい)。
スポンジボール不通過管を除いた付着物の湿体積は2〜59mL/本であり、図24(1)に示すように、その場合の管清浄度は90%以上であることから、スポンジボールの運用がうまくいっていることを示している。
また、復水器の設計清浄度である90%における平均付着物量は、図24(2)に示すように58mL/本であり、管清浄度が90%以上の細管は洗浄しても復水器の清浄度の向上にそれほど寄与しないことから、夏前点検や定検時においては細管全数の洗浄は必ずしも必要でなく、スポンジボール不通過管をうまく探査して汚れた細管のみを洗浄することで必要な復水器の性能回復を達成することができ、コスト低減を図ることができる。
(2) Evaluation from the relationship between the amount of adhering matter and the cleanliness FIG. 24 shows the result of calculating the cleanliness of the condenser with respect to the wet volume of the adhering matter in the narrow tube of 0 to 1000 mL / tube (wet volume of the adhering matter). (See Non-Patent Document 1 for the method of calculating the cleanliness of the condenser from the above).
The wet volume of the deposit excluding the sponge ball non-passing tube is 2 to 59 mL / tube, and the tube cleanliness in that case is 90% or more as shown in FIG. It shows that the operation is working.
In addition, the average amount of deposits at 90%, which is the design cleanliness of the condenser, is 58 mL / tube as shown in FIG. 24 (2). Because it does not contribute much to the improvement of the cleanliness of the vessel, it is not always necessary to clean the entire capillary tube during the pre-summer inspection or regular inspection. Therefore, it is possible to achieve the necessary performance recovery of the condenser and to reduce the cost.

(3)洗浄する細管の選定方法
復水器性能から見た洗浄する細管を選定する方法を具体的に検討するため、図24の関係に基づいて管清浄度の10%ランク毎の付着物の湿体積を計算し、細管の汚れ分布調査における付着物の湿体積データから、管清浄度のランク毎に、頻度(調査データ156本において該当する細管数)、割合(調査データ156本に対する割合)、細管数(全細管数7984本に対する按分値)を算出した。算出結果を図25に示す。
図26に、図25の算出結果に基づいて管清浄度のランク毎の度数分布を表したものを示す。このような図を用いることより、復水器の細管の汚れの状況を清浄度ベースで判断することができ、細管の管清浄度のランク毎の細管数を考慮して洗浄する細管の範囲を決定することができる。
(3) Selection method of thin tubes to be washed In order to specifically examine the method of selecting thin tubes to be washed from the viewpoint of condenser performance, the amount of deposits at every 10% rank of the tube cleanliness based on the relationship of FIG. Calculate the wet volume, and from the wet volume data of the deposits in the dirt distribution survey of thin tubes, for each rank of tube cleanliness, frequency (number of narrow tubes corresponding to 156 survey data), ratio (ratio to 156 survey data) The number of tubules (proportional value for the total number of tubules of 7984) was calculated. The calculation results are shown in FIG.
FIG. 26 shows a frequency distribution for each rank of the tube cleanliness based on the calculation result of FIG. By using such a diagram, it is possible to judge the condition of dirt on the condenser thin tubes on a cleanliness basis, and the range of thin tubes to be cleaned in consideration of the number of thin tubes for each rank of tube cleanliness. Can be determined.

次に、管清浄度のランク別の細管数に、細管1本当りの付着物の湿体積(mL/本)の中央値を乗じることで管清浄度のランク毎の積算付着物量を算出し、洗浄する細管を選定する管清浄度の境界値を表す管清浄度閾値10%毎に、洗浄細管数を算出するとともに、洗浄後に残される積算付着物量を算出し、洗浄後に残される細管1本あたりの付着物量に基づいて洗浄後の復水器の予測清浄度を推定した。
図27に、管清浄度閾値に対する洗浄後の復水器の予測清浄度と洗浄細管数の関係を示す。このような図を用いることにより、洗浄対象細管数と、洗浄によって回復する復水器の予想清浄度を考慮して洗浄する細管の範囲を決定することができる。
なお、図27では、管清浄度閾値以下の細管は洗浄によって付着物が完全に除去されるものとして洗浄後の復水器の予測清浄度を推定したが、使用する洗浄方法について予め測定された汚れ除去率のデータに基づいて洗浄後の積算付着物量を算出し、それに基づいて洗浄後の復水器の予測清浄度を推定するようにしてもよい。
Next, the cumulative amount of deposits for each rank of tube cleanliness is calculated by multiplying the number of tubes by rank of tube cleanliness by the median value of the wet volume (mL / tube) of deposits per tube. Calculate the number of cleaning capillaries for every 10% of the tube cleanliness threshold that represents the boundary value of the tube cleanliness that selects the thin tubes to be cleaned, calculate the amount of accumulated deposits remaining after cleaning, and per thin tube remaining after cleaning The estimated cleanliness of the condenser after cleaning was estimated based on the amount of deposits.
FIG. 27 shows the relationship between the predicted cleanness of the condenser after cleaning and the number of cleaning thin tubes with respect to the tube cleanliness threshold. By using such a diagram, it is possible to determine the range of thin tubes to be washed in consideration of the number of thin tubes to be washed and the expected cleanliness of the condenser that is recovered by washing.
In FIG. 27, the estimated cleanliness of the condenser after cleaning was estimated on the assumption that the adhering substances were completely removed by cleaning in the narrow tube below the tube cleanliness threshold, but it was measured in advance for the cleaning method to be used. It is also possible to calculate the accumulated amount of adhered matter after cleaning based on the dirt removal rate data, and to estimate the predicted cleanliness of the condenser after cleaning based on that.

図27によれば、管清浄度50%以下の細管307本を洗浄することにより復水器の清浄度は約94%に回復し、管清浄度90%以下の細管717本を洗浄することにより復水器の清浄度は約95%に回復し、全細管7,984本を洗浄すると復水器の清浄度は約97%に回復すると予測される。従って、復水器の清浄度を約95%から約97%に2%向上させるために、10倍の細管数の洗浄が必要になることを示している。
復水器管理の観点からは、約95%の清浄度があれば設計性能値に対して+5%の尤度があり、スポンジボールの回収率が高まって運転中の性能維持に貢献することができる。
また、全細管数の約1割に当る約700本の細管の洗浄は、従来3日要していた洗浄作業を1日で行うことが可能な範囲である。このことから、管清浄度90%以下の細管のみを洗浄することで、工期短縮(3日から1日)によるコスト低減と、ボール運用による性能維持を図ることができると考えられる。
According to FIG. 27, the cleanliness of the condenser is restored to about 94% by washing 307 thin tubes having a tube cleanliness of 50% or less, and by washing 717 thin tubes having a tube cleanliness of 90% or less. The cleanliness of the condenser is restored to about 95%, and it is predicted that the cleanliness of the condenser will be restored to about 97% when all the 7,984 thin tubes are washed. Therefore, it is shown that 10 times the number of capillaries needs to be washed in order to improve the cleanliness of the condenser from about 95% to about 97% by 2%.
From the viewpoint of condenser management, if there is about 95% cleanliness, there is a + 5% likelihood to the design performance value, and the recovery rate of sponge balls will increase, contributing to maintaining performance during operation. it can.
In addition, the cleaning of about 700 capillaries, which is about 10% of the total number of capillaries, is within a range in which the cleaning operation that conventionally required three days can be performed in one day. From this, it is considered that by cleaning only thin tubes having a tube cleanliness of 90% or less, cost reduction by shortening the construction period (from 3 days to 1 day) and performance maintenance by ball operation can be achieved.

次に、管清浄度ベースで洗浄する細管を選定する処理手順を以下に示す。
(I)画像解析データに基づいて、細管毎の管清浄度を演算する。
前述の細管の汚れの度合いを検出する方法の検討では、画像処理によって細管毎の平均輝度または面積を演算しており、平均輝度の場合は、細管毎に、平均輝度から照度に換算し、図21の関係に基づいて湿体積を演算し、図24の関係に基づいて管清浄度を演算する。また、面積の場合は、細管毎に、面積から透過率に換算し、図22の関係に基づいて管清浄度を演算する。
(II)管清浄度の平均値を求め、復水器全体の清浄度と比較して検出精度を評価する。
両者に大きな差異がなければ次に進む。
(III)管清浄度に基づくソーティングを行い、図26のような度数分布表を作成する。
これに基づいて、管清浄度閾値を設定する。この場合に、更に、図27に示すような管清浄度閾値に対する洗浄後の復水器の予測清浄度および洗浄細管数の関係を示した図を作成するようにしてもよい。
(IV)設定された管清浄度閾値に対して洗浄する細管を選定する。
(V)選定された細管の洗浄による復水器の清浄度回復を予測する。
洗浄候補として抽出された汚れた細管の管清浄度を、使用する洗浄方法によって洗浄した場合の管清浄度に置き換え、洗浄後の復水器の清浄度を推定する。
推定結果が適切であれば次に進む。適切でない場合は管清浄度閾値を再設定して(IV)に戻る。この場合に、洗浄後に見込まれる復水器の清浄度と洗浄細管数、洗浄に要する時間等を考慮して、最終的に洗浄する細管を決定する。
(VI)選定された細管を画像で確認する。
(VII)マーキングのための細管番号リスト(アドレスリスト)を作成する。
Next, a processing procedure for selecting a thin tube to be cleaned on a tube cleanliness basis is shown below.
(I) Calculate the tube cleanliness for each thin tube based on the image analysis data.
In the above-mentioned examination of the method for detecting the degree of dirt on thin tubes, the average luminance or area for each thin tube is calculated by image processing. In the case of average luminance, the average luminance is converted into illuminance for each thin tube. The wet volume is calculated based on the relationship of 21, and the tube cleanliness is calculated based on the relationship of FIG. In the case of the area, for each thin tube, the area is converted into the transmittance, and the tube cleanliness is calculated based on the relationship shown in FIG.
(II) Obtain the average value of pipe cleanliness and evaluate the detection accuracy compared to the cleanliness of the entire condenser.
If there is no significant difference between the two, proceed.
(III) Sorting based on tube cleanliness is performed to create a frequency distribution table as shown in FIG.
Based on this, a tube cleanliness threshold is set. In this case, a diagram showing the relationship between the predicted cleanliness of the condenser after cleaning and the number of cleaning thin tubes as shown in FIG. 27 may be created.
(IV) Select the thin tube to be cleaned against the set tube cleanliness threshold.
(V) Predict the recovery of the cleanliness of the condenser by washing the selected capillary.
The cleanliness of the dirty capillary extracted as a cleaning candidate is replaced with the cleanliness of the tube when it is cleaned by the cleaning method used, and the cleanliness of the condenser after cleaning is estimated.
If the estimation result is appropriate, proceed to the next. If not, reset the tube cleanliness threshold and return to (IV). In this case, the tube to be finally cleaned is determined in consideration of the cleanliness of the condenser expected after the cleaning, the number of cleaning tubes, the time required for cleaning, and the like.
(VI) Check the selected tubules with an image.
(VII) Create a capillary number list (address list) for marking.

(4)洗浄方法の評価
ジェット洗浄は、細管径が大きい仙台4号機では、ノズルから細管内壁までの距離が大きいことが洗浄効果の低かった主な原因と考えられるが、洗浄本数が少ない場合にはジェット洗浄車の準備がコスト高となる。これに対して、ブラシ洗浄は、より付着物除去効果が高く、作業時間も短いので、細管の汚れ検出による細管洗浄の最適化を図る上ではブラシ洗浄が適していると判断された。
(4) Evaluation of cleaning method In the case of Sendai No. 4 with a large thin tube diameter, jet cleaning is considered to be the main cause of the low cleaning effect due to the large distance from the nozzle to the inner wall of the thin tube. The cost of preparing a jet-washing vehicle is high. On the other hand, brush cleaning has a higher effect of removing deposits and has a short working time. Therefore, it was determined that brush cleaning is suitable for optimizing thin tube cleaning by detecting thin tube contamination.

(5)細管の汚れ検出による細管洗浄作業の最適化工程案
上述のように、細管の汚れ検出によって性能低下に寄与する著しく汚れた細管を検出し、復水器の必要性能に基づいて洗浄する細管数を限定することで細管洗浄の最適化を図った場合、中間点検の工期を従来の3日から1日に短縮することができると判断された。
これに基づいて細管の汚れ検出による細管洗浄作業の最適化工程案を検討した結果を、図28に示す(詳細説明は省略する)。
(5) Proposed process for optimizing thin tube cleaning operation by detecting thin tube dirt As described above, a thin dirty tube that contributes to performance degradation is detected by thin tube dirt detection and washed based on the required performance of the condenser. When optimization of thin tube cleaning was attempted by limiting the number of thin tubes, it was determined that the construction period for intermediate inspection could be shortened from 3 days to 1 day.
FIG. 28 shows the result of studying an optimization process plan for thin tube cleaning work based on detection of thin tube contamination based on this (detailed explanation is omitted).

6.本願発明の細管洗浄方法の実施形態
以上のような復水器の細管洗浄を最適化する方法の検討のために実施した調査・検討の結果に基づいて、復水器を対象とした本願発明の細管洗浄方法の一実施形態を次のように構成した。
図1に、本願発明の一実施形態に係る細管洗浄方法のフロー図を示す。本願発明では、最初に照明装置と検出装置を用いて細管の汚れ検出を行う(S102〜S110)。本実施形態では、照明装置としては上述の3で検討した図15に示す照明装置を用い、検出装置としては上述の3で検討したハンディスキャナを用いるものとして説明する。
6). Embodiments of the thin tube cleaning method of the present invention Based on the results of the investigation and examination conducted for the examination of the method for optimizing the thin tube cleaning of the condenser as described above, One embodiment of the capillary tube cleaning method was configured as follows.
FIG. 1 shows a flow chart of a capillary tube cleaning method according to an embodiment of the present invention. In the present invention, first, the dirt of the narrow tube is detected using the illumination device and the detection device (S102 to S110). In the present embodiment, description will be made assuming that the illumination device shown in FIG. 15 examined in 3 above is used as the illumination device, and the handy scanner examined in 3 above is used as the detection device.

最初に、照明装置を中間水室の初期位置に設置し、検出装置(ハンディスキャナ)を入口水室の初期位置に設置する(S102)。
そして、検出装置(ハンディスキャナ)をスキャンして画像を取得する(S104)。
全細管の画像取得が終了したらS110に進む(S106)。そうでない場合は、照明装置と検出装置を次の位置に移動してS104に戻る(S108)。なお、S108において、入口水室の細管の画像取得が終了したら、検出装置を出口水室の初期位置に設置し、照明装置を中間水室の対応する位置に設置する。
全細管の画像取得が終了したら、照明装置と検出装置を撤去する(S110)。
First, the lighting device is installed at the initial position of the intermediate water chamber, and the detection device (handy scanner) is installed at the initial position of the inlet water chamber (S102).
Then, the detection device (handy scanner) is scanned to acquire an image (S104).
When the image acquisition of all the thin tubes is completed, the process proceeds to S110 (S106). Otherwise, the illumination device and the detection device are moved to the next position and the process returns to S104 (S108). In S108, when the image acquisition of the narrow tube of the inlet water chamber is completed, the detection device is installed at the initial position of the outlet water chamber, and the lighting device is installed at the corresponding position of the intermediate water chamber.
When the image acquisition of all the thin tubes is completed, the illumination device and the detection device are removed (S110).

細管の汚れ検出が終了したら、取得した画像を画像解析して細管毎の透過率を演算する(S112)。画像解析の方法は、上述の3で検討したように、予め未使用細管または十分に洗浄された細管の濃淡画像が丁度100%の2値画像となる2値化の閾値を求めておき、取得された濃淡画像を当該閾値で2値化して2値画像を取得し、取得された2値画像から細管毎の面積を求めて細管の面積で除したものを細管毎の透過率とする。
そして、演算された細管毎の透過率に基づいて、予め求められた透過率と管清浄度の関係(例えば、図22に示すもの)に基づいて細管毎の管清浄度を演算する(S114)。
When the detection of dirt on the thin tubes is completed, the acquired image is subjected to image analysis to calculate the transmittance for each thin tube (S112). As discussed in 3 above, the image analysis method obtains a threshold value for binarization in which a gray image of an unused tubule or a sufficiently washed tubule becomes a binary image of exactly 100%. The binary image is binarized with the threshold value to obtain a binary image, the area for each thin tube is obtained from the obtained binary image and divided by the area of the thin tube, and the transmittance for each thin tube is obtained.
Then, based on the calculated transmittance for each thin tube, the tube cleanliness for each thin tube is calculated based on the relationship between the transmittance and the tube cleanliness determined in advance (for example, those shown in FIG. 22) (S114). .

細管毎の管清浄度が演算されたら、管清浄度データを管清浄度のランク別にソーティングし、管清浄度のランク毎の細管数の度数分布(例えば、図26に示すもの)を演算して表示する(S116)。
また、管清浄度のランク別にソーティングしたデータに基づいて、管清浄度閾値に対する洗浄後の復水器の予測清浄度と洗浄細管数の関係(例えば、図27に示すもの)を演算して表示する(S118)。演算方法は、上述の5(3)で説明した通りである。
When the tube cleanliness for each thin tube is calculated, the tube cleanliness data is sorted by tube cleanliness rank, and the frequency distribution of the number of thin tubes for each rank of tube cleanliness (for example, the one shown in FIG. 26) is calculated. It is displayed (S116).
Further, based on the data sorted by rank of tube cleanliness, the relationship between the predicted cleanliness of the condenser after cleaning and the number of cleaning tubes (for example, the one shown in FIG. 27) is calculated and displayed. (S118). The calculation method is as described in 5 (3) above.

表示された管清浄度のランク毎の度数分布と、管清浄度閾値に対する洗浄後の復水器の予測清浄度と洗浄細管数の関係を参照して、洗浄する細管を選定するための管洗浄度閾値を決定する(S120)。
決定された管清浄度閾値に基づいて洗浄対象とする細管を選定し、選定された細管のアドレスリストを出力する(S122)。
出力されたアドレスリストに基づいて洗浄する細管をマーキングし(S124)、マーキングされた細管を洗浄する(S126)。
細管洗浄が終了したら、再度細管の汚れ検出(S102〜S114)を行って、全細管の管清浄度データからその平均として復水器の清浄度を演算し、洗浄効果を確認する(S128)。これにより、所定の復水器の性能回復が確認されれば、細管洗浄を終了する。復水器の性能回復が十分でない場合は、S116に戻って再度細管洗浄を行う。
Refer to the frequency distribution for each rank of the displayed tube cleanliness and the relationship between the predicted cleanliness of the condenser after cleaning and the number of thin tubes for cleaning against the tube cleanliness threshold. A degree threshold is determined (S120).
Based on the determined tube cleanliness threshold, a thin tube to be cleaned is selected, and an address list of the selected thin tube is output (S122).
A capillary tube to be cleaned is marked based on the output address list (S124), and the marked capillary tube is cleaned (S126).
When the thin tube cleaning is completed, the thin tube is detected again (S102 to S114), and the cleanliness of the condenser is calculated as an average from the tube cleanliness data of all the thin tubes, and the cleaning effect is confirmed (S128). Thereby, if the performance recovery of the predetermined condenser is confirmed, the thin tube cleaning is finished. When the performance recovery of the condenser is not sufficient, the process returns to S116 and the thin tube is washed again.

上記実施形態では、照明装置として、蛍光灯型LEDランプ5本を平行に配列した照明装置を用いるものとして説明したが、これに限定されるものではなく、一定範囲の細管に対して均一な光を入射させることができるものであればどのようなものを用いてもよい。例えば、細管の配列に合せて基盤上にLEDランプを配列したものを用いてもよく、有機EL照明のような面光源を用いてもよい。   In the above embodiment, the illumination apparatus is described as an illumination apparatus in which five fluorescent LED lamps are arranged in parallel. However, the present invention is not limited to this, and uniform light is applied to a certain range of narrow tubes. Any device may be used as long as it can be made incident. For example, an LED lamp arrayed on a base in accordance with the array of thin tubes may be used, or a surface light source such as organic EL lighting may be used.

上記実施形態では、検出装置として、一次元撮像装置であるハンディスキャナを用い、これを細管の他端側の管面に密接させてスキャンすることにより一定範囲の細管からの透過光の二次元濃淡画像を取得するものとして説明したが、これに限定されるものではなく、デジタルカメラのような二次元撮像装置を用いて一定範囲の細管からの透過光を写真撮影するようにしてもよい。
また、検出装置としては、細管毎に細管からの透過光の透過光量を計測できるものであればどのようなものでもよく、例えば、照度計を用いて細管毎の透過光の照度を個別に計測するようにしてもよい。この場合に、細管の配列に合せて基盤上に光センサを配列したものを用いて、複数の細管についての細管毎の透過光の照度を一括計測するようにしてもよい。これにより復水器内の細管の汚れ検出を効率的に行うことができる。
In the above-described embodiment, a handy scanner, which is a one-dimensional imaging device, is used as the detection device, and this is scanned in close contact with the tube surface on the other end side of the thin tube, thereby allowing two-dimensional shading of transmitted light from the narrow tube in a certain range. Although described as acquiring an image, the present invention is not limited to this, and the transmitted light from a narrow tube in a certain range may be photographed using a two-dimensional imaging device such as a digital camera.
In addition, the detection device may be any device that can measure the amount of transmitted light from the thin tube for each thin tube. For example, the illuminance of the transmitted light for each thin tube is individually measured using an illuminometer. You may make it do. In this case, it is possible to collectively measure the illuminance of transmitted light for each of the plurality of thin tubes using a light sensor arranged on the base in accordance with the arrangement of the thin tubes. As a result, it is possible to efficiently detect the contamination of the narrow tube in the condenser.

上記実施形態では説明を省略したが、細管の検出装置側の管面に所定の透過率の半透明の透過板を密接させ、細管からの透過光による投影像を透過板上に形成させ、検出装置により裏面から透過光量を計測するようにしてもよい。このようにすることで、検出装置がハンディスキャナのような一次元撮像装置で水室内の細管の管面をスキャンする場合に、管面に凹凸があっても滑らかにスキャンすることができ、スキャンミスを抑制して安定に細管からの透過光の二次元画像を取得することができる。また、透過板に形成される細管からの透過光の投影像を裏面から撮像するようにすることで、検出装置がデジタルカメラのような光学レンズを用いた撮像装置の場合でも、画角の問題によって生ずる周辺部における光量低下を抑制することができ、細管毎の透過光量をより精度よく計測することができる。   Although not described in the above embodiment, a semi-transparent transmission plate having a predetermined transmittance is brought into close contact with the tube surface of the thin tube on the detection device side, and a projection image by transmitted light from the thin tube is formed on the transmission plate to detect the tube. The amount of transmitted light may be measured from the back surface by the apparatus. In this way, when the detection device scans the tube surface of a thin tube in a water chamber with a one-dimensional imaging device such as a handy scanner, it can scan smoothly even if the tube surface is uneven. It is possible to stably acquire a two-dimensional image of transmitted light from a thin tube while suppressing mistakes. In addition, since the projected image of the transmitted light from the narrow tube formed on the transmission plate is captured from the back side, even if the detection device is an imaging device using an optical lens such as a digital camera, there is a problem with the angle of view. Therefore, it is possible to suppress a decrease in the amount of light in the peripheral portion caused by the above, and to measure the amount of transmitted light for each thin tube more accurately.

また、透過率の異なる複数の透過板を準備しておき、細管からの透過光の照度によって適切な透過板を選択し、使用した透過板の透過率に応じて検出装置によって計測された細管毎の透過光量(照度、平均輝度、透過率等)を補正するようにしてもよい。これにより、検出装置の実質的なダイナミックレンジを拡大することができ、細管毎の透過光量をより精度よく計測することができる。   In addition, a plurality of transmission plates having different transmittances are prepared, an appropriate transmission plate is selected according to the illuminance of the transmitted light from the narrow tube, and each thin tube measured by the detection device according to the transmittance of the transmission plate used. The amount of transmitted light (illuminance, average luminance, transmittance, etc.) may be corrected. Thereby, the substantial dynamic range of a detection apparatus can be expanded and the transmitted light amount for every thin tube can be measured more accurately.

上記実施形態では、水室内の全細管を撮像するために、照明装置および検出装置を単に移動させるものとして説明したが、細管の汚れ検知を行うに先立って水室内に細管の配列に沿って照明装置と検出装置を移動させる移動機構を設置するようにしてもよい。これにより、次の区画の細管の画像を取得するための照明装置と検出装置の移動を効率的に精度よく行うことができる。   In the above-described embodiment, the illumination device and the detection device are simply moved in order to image all the thin tubes in the water chamber. However, the illumination is performed along the array of the thin tubes in the water chamber prior to detecting the contamination of the thin tubes. You may make it install the moving mechanism which moves an apparatus and a detection apparatus. This makes it possible to efficiently and accurately move the illumination device and the detection device for acquiring an image of the narrow tube in the next section.

上記実施形態では、取得した画像を2値化して2値画像の面積に基づいて細管毎の透過率を演算し、予め求めた透過率と管清浄度の関係に基づいて細管毎の管清浄度を求めるものとして説明したが、上述の3で説明したように、取得した画像から細管毎の平均輝度を演算し、これを照度に変換し、予め求めた照度と湿体積の関係(例えば、図21に示すもの)に基づいて細管毎の湿体積を演算し、図24に示す湿体積と管清浄度の関係に基づいて細管毎の管清浄度を求めるようにしてもよい。   In the said embodiment, the acquired image is binarized, the transmittance | permeability for every thin tube is computed based on the area of a binary image, and the tube cleanliness for every thin tube is calculated based on the relationship of the transmittance | permeability calculated | required previously and tube cleanliness However, as described in 3 above, the average luminance of each thin tube is calculated from the acquired image, converted into illuminance, and the relationship between illuminance and wet volume obtained in advance (for example, FIG. 21), the wet volume for each thin tube may be calculated, and the tube cleanliness for each thin tube may be obtained based on the relationship between the wet volume and the tube cleanliness shown in FIG.

上記実施形態においては、適応する復水器の細管の材質がチタンであることから、細管の汚れの度合いを表す付着物量は湿体積で評価するものとして説明したが、これに限定されるものではなく、細管の材質に応じて他の付着物量(例えば、乾燥重量)を用いるようにしてもよい。   In the above embodiment, since the material of the thin tube of the condenser that is applicable is titanium, the amount of deposits representing the degree of dirt on the thin tube has been described as being evaluated by the wet volume, but is not limited to this. Instead, other deposit amounts (for example, dry weight) may be used according to the material of the thin tube.

上記実施形態では、洗浄する細管を選定するための管清浄度閾値を決定するため、管清浄度の度数分布の表示と、管清浄度閾値に対する洗浄後の復水器の予測清浄度および洗浄細管数の表示の両方を行うものとして説明したが、いずれか一方を表示させるものでもよく、またこれらを表示することなく復水器の目標清浄度を指定することで洗浄対象とする細管が自動的に選定されるようにしてもよい。
また、この他に、管清浄度閾値に対して、洗浄後の復水器の清浄度の洗浄前の復水器の清浄度からの上昇率を洗浄細管数で割った細管1本当りの性能回復寄与度を演算して表示するようにしてもよい。これにより、復水器の性能回復への寄与度を考慮して洗浄する細管の範囲を決定することができる。
In the above embodiment, in order to determine the tube cleanliness threshold value for selecting the thin tube to be cleaned, the display of the frequency distribution of the tube cleanliness, the predicted cleanliness of the condenser after cleaning with respect to the tube cleanliness threshold value, and the cleaning capillary tube Although it has been described that both numbers are displayed, it is also possible to display either one of them, and by specifying the target cleanliness level of the condenser without displaying them, the thin tubes to be cleaned are automatically May be selected.
In addition to this, the performance per thin tube obtained by dividing the increase rate of the cleanliness of the condenser after washing from the cleanness of the condenser before washing by the number of washing thin tubes with respect to the tube cleanliness threshold. The recovery contribution may be calculated and displayed. Thereby, the range of the thin tube to be cleaned can be determined in consideration of the contribution to the performance recovery of the condenser.

上記実施形態では、細管の汚れ検出に基づいて洗浄する細管を選定して細管洗浄を行った後に、再度細管の汚れ検出を行って洗浄効果を確認するものとして説明したが、細管洗浄に先立って行う復水器の清浄度予測に信頼性がある場合には省略してもよい。   In the above-described embodiment, the thin tube is selected based on the detection of dirt on the thin tube, and after washing the thin tube, the thin tube is detected again to confirm the cleaning effect. If there is reliability in the prediction of the cleanliness of the condenser to be performed, it may be omitted.

上記実施形態では、細管の汚れ検出により、復水器の清浄度に対応する細管毎の管清浄度を演算することによって、復水器の清浄度の性能回復目標に基づいて洗浄する細管の範囲を決定できるようにするものとして説明したが、本願発明はこれに限定されるものではなく、管清浄度として湿体積や乾燥重量のような細管の汚れの度合いを表すパラメータ自体を用いるようにしてもよい。この場合に、細管の汚れの度合いをどの程度まで許容することができるかに基づいて洗浄対象とする細管を選定することで、洗浄する細管数を限定することができ、本願発明の効果を奏する。   In the above embodiment, the range of the thin tubes to be cleaned based on the performance recovery target of the cleanliness of the condenser by calculating the tube cleanliness for each thin tube corresponding to the cleanliness of the condenser by detecting the contamination of the thin tubes. However, the present invention is not limited to this, and parameters such as wet volume and dry weight such as wet volume and dry weight are used as the tube cleanliness. Also good. In this case, the number of thin tubes to be cleaned can be limited by selecting the thin tubes to be cleaned based on the degree of contamination of the thin tubes that can be allowed, and the effects of the present invention can be achieved. .

7.本願発明によって見込まれる効果
本願発明の多管式熱交換器の洗浄細管選定方法を発電所の復水器に適用した場合の具体的な効果としては、次のようなことが見込まれる。
(1)性能回復に必要な最小限の洗浄を行うことでコスト低減を図ることができる。
上記調査の例では、洗浄の対象とする細管数を、約8000本のうち約1割に当る700本に限定することで、工期を3日から1日に短縮することができ、洗浄工事費を約60%低減することができる。
また、このような工期短縮による他のコストメリットとして、単一の発電機により電力供給を行う発電事業者の場合には、この工期がクリチカルであるとすれば、発電を停止させることによる損失として、例えば40万KWの発電機で売電コストが20円/KWhと仮定すると、40万KW×売電価格20円/KWh×48h=38,400万円のコスト低減となる。また、復水器洗浄によって発電機が停止しているときに他の発電機による代替が行われる発電事業者の場合でも、発電機の代替によって発電コストが上昇する場合には、発電コストの差異に基づくコスト低減効果が生ずる。
(2)復水器の汚れの状況を細管毎に管清浄度として算出でき、洗浄後の復水器の予測清浄度を算出することで、細管洗浄による復水器の性能回復を予測できる。
これにより、復水器性能の観点で洗浄の要否を判断することができ、性能回復によるコストメリットから洗浄工事の費用対効果を検証することができる。
(3)細管洗浄後に再度細管の汚れ検出の手法で細管の汚れを調査することで、洗浄効果の観点から定量的に評価することができる。
細管洗浄の効果は、洗浄水に含まれる付着物を全て集めることができれば予測することができるが、大量の排水から付着物を集めることは困難なため、これまでは運転を再開して初めてわかるものであった。このように、これまでの洗浄工事はあくまで掃除作業であって、性能回復を保証できるものではなかったが、例えば、細管の汚れ検出の手法により最初にソフトな洗浄を行い、洗浄効果が見込んだより低いことがわかれば、更にハードな洗浄を行って目標とする性能回復を達成するようにするなど、復水器の性能回復を保証する洗浄工事を提供することが可能となる。
(4)ボールの回収率を高め、ボール洗浄を効果的に実施することができる。
ボールの通過頻度が低下している細管は、放置すると汚れが進行するので、細管の汚れ検出の手法により該当する細管を探し出して早期に清掃することで、将来の性能低下を予防することができる。
7). Effects expected by the present invention The following effects are expected as specific effects when the method for selecting a cleaning thin tube of a multi-tube heat exchanger of the present invention is applied to a condenser of a power plant.
(1) Cost reduction can be achieved by performing the minimum cleaning necessary for performance recovery.
In the example of the above survey, the construction period can be shortened from 3 days to 1 day by limiting the number of thin tubes to be cleaned to 700, which is about 10% of about 8000. Can be reduced by about 60%.
In addition, as another cost merit by shortening the construction period, in the case of a power generation company that supplies power with a single generator, if this construction period is critical, it is a loss due to stopping power generation For example, assuming that the power selling cost is 20 yen / KWh with a generator of 400,000 KW, the cost can be reduced by 400,000 KW x 20 yen selling price / KWh x 48h = 38.4 million yen. Even if the generator is replaced by another generator when the generator is stopped due to condenser cleaning, if the power generation cost increases due to the replacement of the generator, the difference in power generation cost The cost reduction effect based on is produced.
(2) The state of dirt on the condenser can be calculated as the tube cleanliness for each thin tube, and the performance recovery of the condenser by thin tube cleaning can be predicted by calculating the predicted cleanliness of the condenser after cleaning.
Thereby, it is possible to determine whether or not cleaning is necessary from the viewpoint of condenser performance, and it is possible to verify the cost-effectiveness of the cleaning work from the cost merit due to the performance recovery.
(3) After the thin tube is washed, the thin tube is again examined for dirt by a method for detecting the dirty tube, so that quantitative evaluation can be performed from the viewpoint of the cleaning effect.
The effect of thin tube cleaning can be predicted if all the deposits contained in the washing water can be collected, but it is difficult to collect deposits from a large amount of wastewater, so it is not until now that the operation is restarted. It was a thing. In this way, the cleaning work so far was only a cleaning work, and performance recovery could not be guaranteed, but for example, a soft cleaning was first performed by a method of detecting dirt on thin tubes, and the cleaning effect was expected If the lower is known, it is possible to provide a cleaning work that guarantees recovery of the performance of the condenser, such as performing harder cleaning to achieve the target performance recovery.
(4) The ball recovery rate can be increased and ball cleaning can be carried out effectively.
Since tubules with a low pass frequency of balls will be contaminated if left unattended, it is possible to prevent future performance degradation by finding the appropriate tubules and cleaning them early using a method of detecting filth of the capillaries. .

8.実機検証
最後に、上述の本願発明の実施形態について、仙台火力発電所において実機検証を行った結果について述べる.
8). Actual machine verificationFinally, regarding the above-described embodiment of the present invention, the results of actual machine verification at Sendai Thermal Power Station will be described.

(1)細管の透過光量から管清浄度を算出する算出法の事前調査結果
仙台火力発電所での実機検証に先立ち、実機復水器について細管の透過光量と細管の汚れの度合いの関係について確認する事前調査を行い、実機検証の際に必要となる細管の透過光量から細管の汚れの度合いを表す管清浄度を算出する算出法について検討した。
(1) Preliminary survey results of calculation method for calculating tube cleanliness from the amount of light transmitted through thin tubes Prior to actual device verification at the Sendai Thermal Power Station, the relationship between the amount of light transmitted through the thin tubes and the degree of dirt on the thin tubes was confirmed for the actual condenser. A preliminary study was conducted, and a calculation method for calculating the cleanliness of the tube representing the degree of contamination of the thin tube from the amount of light transmitted through the thin tube necessary for verification of the actual machine was examined.

図29に、事前調査において取得されたパラメータを示す。図において、対象物面積はハンディスキャナによって取得された細管画像の2値化画像の面積であり、平均輝度はハンディスキャナによって取得された細管画像の平均輝度であり、照度は照度計によって計測された照度であり、照度比は照度計によって計測された照度の汚れのない細管の照度に対する比率であり、付着物量は細管洗浄によって回収された付着物の湿体積であり、管清浄度は付着物量から演算された管清浄度である。   FIG. 29 shows the parameters acquired in the preliminary survey. In the figure, the object area is the area of the binarized image of the capillary image acquired by the handy scanner, the average brightness is the average brightness of the capillary image acquired by the handy scanner, and the illuminance is measured by the illuminometer. The illuminance ratio is the ratio of the illuminance measured by the illuminometer to the illuminance of a clean thin tube, the amount of deposit is the wet volume of the deposit collected by thin tube cleaning, and the tube cleanliness is calculated from the amount of deposit The calculated tube cleanliness.

図29の取得パラメータについて、お互いの相関関係を解析した結果、細管の汚れの度合いを表す付着物量または管清浄度に対しては、対象物面積や照度よりも平均輝度の方がより相関性が高いことが判明した(詳細解析データは省略する)。
また、細管の透過光量から推定される細管の汚れの度合いとしては、付着物量を推定して付着物量から管清浄度を算出するよりも、直接的に管清浄度を推定する方が演算を簡素化できることから、実機検証においては、平均輝度と管清浄度の関係に基づいて管清浄度を算出することとした。
29. As a result of analyzing the correlation between the acquired parameters in FIG. 29, the average luminance is more correlated than the object area and the illuminance with respect to the amount of adhered matter or the tube cleanliness indicating the degree of dirt on the thin tubes. It was found to be high (detailed analysis data is omitted).
In addition, the degree of dirt on the thin tube estimated from the amount of light transmitted through the thin tube is simpler to calculate the tube cleanliness directly than to estimate the amount of deposit and calculate the tube cleanliness from the amount of deposit. Therefore, in actual machine verification, the pipe cleanliness was calculated based on the relationship between the average brightness and the pipe cleanliness.

図30に、上記事前調査において取得されたパラメータに基づいて平均輝度と管清浄度の関係を解析した結果を示す。図のように、平均輝度と管清浄度とは、次式で表されるようなほぼ線形関係にあり、この関係式を用いることにより、ハンディスキャナによって計測された細管画像の平均輝度から簡便に細管毎の管清浄度を算出することができる。
管清浄度(%) = 平均輝度(256階調) × 0.1906 + 51.103 (寄与率:0.9945)(3)
FIG. 30 shows the result of analyzing the relationship between the average brightness and the tube cleanliness based on the parameters acquired in the preliminary survey. As shown in the figure, the average brightness and tube cleanliness are in a substantially linear relationship as expressed by the following equation. By using this relational expression, the average brightness of the thin tube image measured by the handy scanner can be easily calculated. The tube cleanliness for each thin tube can be calculated.
Tube cleanliness (%) = average luminance (256 gradations) × 0.1906 + 51.103 (contribution rate: 0.9945) (3)

(2)実機検証結果
実機検証は、最初に細管の汚れ分布調査を行った仙台火力発電所4号機の復水器(A系・B系)を対象とし、夏前の点検時に細管の汚れ分布検出を行い、全細管の管清浄度を算出した。
なお、細管の汚れ分布検出に先立って、細管端部を目視観察したところ、細管母材であるチタンの光沢が認められる細管と、全周に亘って汚れている細管が認められ、前者はボールが通過している細管であり、後者はボール不通過管であると判断された。ほとんどの細管でボールが通過していると見なされ、細管端部は全体的に綺麗であるのに対して、細管端部が汚れたボール不通過管と見なされる細管は僅かであり、点在していた。閉塞管には、細管内にフジツボが付着することによって閉塞している細管が認められた。また、調査直前に行われた水室内の清掃において排出された異物は、主としてムラサキガイの稚貝であった。これらのフジツボやムラサキガイは、ボール不通過の一因と考えられる。
(2) Actual machine verification results The actual machine verification was conducted on the condenser (A system and B system) of Sendai Thermal Power Station Unit 4 where the thin pipe dirt distribution survey was first conducted. Detection was performed, and the cleanliness of all thin tubes was calculated.
Prior to detecting the dirt distribution of the thin tubes, the end of the thin tube was visually observed. As a result, it was found that the thin tube of titanium, which is the base material of the thin tube, and the thin tubes that were dirty over the entire circumference were recognized. Was the narrow tube through which the latter passed, and the latter was determined to be the ball non-passing tube. The ball is considered to pass through most capillaries, and the end of the capillaries is clean overall, while the capillaries where the capillaries are regarded as dirty ball non-passage tubes are few and scattered. Was. In the closed tube, a closed tube was observed due to the attachment of a barnacle in the tube. Moreover, the foreign matter discharged | emitted in the cleaning of the water chamber performed just before the investigation was mainly mussel larvae. These barnacles and mussels are thought to be a cause of the ball not passing.

図31に、実機検証に用いた蛍光灯型LEDランプによる照明装置とハンディスキャナによる検出装置の外観を示す。細管の汚れ検出は、このような照明装置を用いて細管の一端側の端面から照明し、細管の他端側の端面に検出装置を設置し、透過板上にできた照明装置による投影画像をハンディスキャナによってスキャンして細管画像の画像ファイルを取得した。実機検証では、ハンディスキャナによる1回のスキャン範囲を幅210mm、長さ700mmとしたので、図32に示すように、スキャン区画は入口側水室と出口側水室のそれぞれについて縦9段×横4列に区分され、合計36枚の画像ファイルを取得した。なお、入口側水室の中央部には空気抽出管があって検出装置を設置できないため、中央部は図31(2)の左側に示す小型検出装置を用いた。   FIG. 31 shows the external appearance of an illumination device using a fluorescent lamp type LED lamp and a detection device using a handy scanner used for actual machine verification. For the detection of dirt on a thin tube, the illumination device is used to illuminate the end surface on one end side of the thin tube, the detection device is installed on the end surface on the other end side of the thin tube, and an image projected by the illumination device formed on the transmission plate is displayed. Scanned with a handy scanner to obtain an image file of a capillary image. In the actual machine verification, since the scanning range of one time by the handy scanner is 210 mm in width and 700 mm in length, as shown in FIG. 32, the scan section has 9 vertical columns × horizontal for each of the inlet side water chamber and the outlet side water chamber. A total of 36 image files were obtained, divided into 4 columns. In addition, since there is an air extraction pipe in the center part of the inlet side water chamber and a detection apparatus cannot be installed, the small detection apparatus shown on the left side of FIG. 31 (2) was used for the center part.

次に、取得された各画像ファイルについて、画像解析により画像ファイルに含まれている各細管のスポット画像について平均輝度を演算し、上記事前検証の結果から求められた平均輝度と管清浄度の関係式(3)に基づいて各細管の管清浄度を推定した。
図33に、推定された全細管の管清浄度に基づいて管清浄度のランク毎の度数分布を演算した結果を示す。図33の(1)の補正なしは、実際に測定された平均輝度に基づいて管清浄度の度数分布を算出したものであり、A系では管清浄度閾値を90%とした場合の洗浄細管数は入口側水室で209本、出口側水室で286本であり、妥当な洗浄本数であるが、B系では管清浄度閾値を90%とした場合の洗浄細管数は入口側水室で722本、出口側水室で1211本であり、A系と比較して4倍近い洗浄細管数となった。このような差異が生じたのは、実機検証において、水室内の環境が高温・多湿であったことから、A系の入口側水室から出口側水室、B系の入口側水室から出口側水室へと検出を進めていくうちに透過板やスキャナの検出部が曇り、画像が暗くなっていくという問題があったためと考えられる。そこで、図33(2)の補正ありでは、B系の管清浄度についてA系からの平均輝度の低下を補正して推定した管清浄度に基づいて管清浄度閾値に対する洗浄細管数を算出した。このような補正により、管清浄度閾値を90%とした場合の全洗浄細管数は1567本となった。
Next, for each acquired image file, the average luminance is calculated for the spot images of each capillary included in the image file by image analysis, and the relationship between the average luminance and the tube cleanliness obtained from the result of the above-mentioned pre-verification The tube cleanliness of each thin tube was estimated based on equation (3).
FIG. 33 shows the result of calculating the frequency distribution for each rank of the tube cleanliness based on the estimated tube cleanliness of all the thin tubes. 33 (1) without correction is a calculation of the frequency distribution of the tube cleanliness based on the actually measured average brightness. In the A system, the cleaning thin tube when the tube cleanliness threshold is 90% is calculated. The number is 209 for the inlet-side water chamber and 286 for the outlet-side water chamber, which is an appropriate number of washings. In the B system, the number of washing thin tubes when the pipe cleanliness threshold is 90% is the inlet-side water chamber. It was 722 and 1211 in the outlet side water chamber, and the number of washing capillaries was nearly four times that of the A system. This difference occurred because the environment in the water chamber was high temperature and humidity in the actual machine verification, so that the A system inlet side water chamber to the outlet side water chamber, the B system inlet side water chamber to the outlet This is probably because the detection part of the transmission plate and the scanner became cloudy and the image became dark as the detection proceeded to the side water chamber. Therefore, with the correction in FIG. 33 (2), the number of cleaning tubules for the tube cleanliness threshold was calculated based on the tube cleanliness estimated by correcting the decrease in average luminance from the Asystem for the B system tube cleanliness. . As a result of such correction, the total number of cleaning capillaries was 1567 when the tube cleanliness threshold was 90%.

しかしながら、今回の実機検証では、時間的制約から洗浄可能細管数は800本程度と考えられたため、洗浄する細管の範囲をさらに限定することとした。
図34に、今回の実機検証において選定した洗浄対象細管数と、選定された細管による洗浄率を示す。図に示すように、A系では、入口側水室と出口側水室を合わせて、閉塞管58本と、スキャン不備によって検出できなかった細管49本と、管清浄度90%未満の細管のうち汚れの多い細管から選定した225本の合計332本を洗浄対象細管とした。一方、B系については、検出装置の平均輝度の低下を補正しても管清浄度が90%未満の細管が入口側水室と出口側水室を合わせて1072本あることから、閉塞管103本のみを洗浄対象細管とした。このようにして選定された洗浄対象細管数は全体として435本であり、洗浄率は、B系の入口側水室では1%未満であるが、復水器全体としては5.5%となった。
However, in this actual machine verification, the number of thin tubes that can be washed was considered to be about 800 due to time constraints, so the range of thin tubes to be washed was further limited.
FIG. 34 shows the number of thin tubes to be cleaned selected in the actual machine verification and the cleaning rate by the selected thin tubes. As shown in the figure, in the A system, the inlet side water chamber and the outlet side water chamber are combined to form 58 closed tubes, 49 narrow tubes that could not be detected due to imperfect scanning, and thin tubes with a tube cleanliness less than 90%. Of these, a total of 332 225 tubes selected from dirty tubes were designated as the tubes to be cleaned. On the other hand, with respect to the B system, there are 1072 narrow tubes with a cleanliness of less than 90% even when the decrease in the average luminance of the detection device is corrected. Only the book was used as the tubule to be cleaned. The total number of tubules to be cleaned selected in this way is 435, and the cleaning rate is less than 1% in the B-side inlet water chamber, but the overall condenser is 5.5%. It was.

次に、図33(2)の補正された管清浄度閾値に対する細管数に基づいて、洗浄による復水器の清浄度の回復予測を行った。その結果を図35に示す。図に示すように、管清浄度が90%未満の細管1567本を洗浄した場合の復水器の予測清浄度は97%である。
これに対して今回の実機検証において選定された洗浄対象細管435本を洗浄した場合の復水器の予測清浄度は96.4%であり、管清浄度が90%の細管を洗浄した場合の予測清浄度と大きな差はなかった。
Next, based on the number of narrow tubes with respect to the corrected tube cleanliness threshold value in FIG. The result is shown in FIG. As shown in the figure, the expected cleanliness of the condenser is 97% when 1567 thin tubes having a cleanliness of less than 90% are washed.
On the other hand, the expected cleanliness of the condenser when cleaning 435 thin tubes to be cleaned selected in the actual machine verification is 96.4%, and when a tube with 90% cleanliness is washed. There was no significant difference from the predicted cleanliness.

次に、上記選定された洗浄対象細管についてブラシ洗浄を実施し、細管洗浄による洗浄効果を確認するために、洗浄後に、再び図31の照明装置と検出装置を用いて細管の汚れ検出を行った。但し、洗浄後の細管の汚れ検出は、時間的制約のため、A系の入口側水室の一区画(30番)についてのみ実施した。   Next, brush cleaning was performed on the selected thin tube to be cleaned, and in order to confirm the cleaning effect of the thin tube cleaning, the thin tube was detected again using the illumination device and the detection device of FIG. 31 after the cleaning. . However, due to time restrictions, the detection of dirt on the thin tube after washing was performed only for one section (No. 30) of the A-side inlet-side water chamber.

図36に、洗浄後に汚れ検出を行った細管について、洗浄前後の検出画像を比較した結果を示す。図において、洗浄した細管は、丸印で囲った12本の細管であり、この12本のうちの2本は閉塞していたか著しく汚れていたために未検出となっていたものである。
洗浄後の画像を見ると、洗浄前に未検出であった2本のうちの1本は未検出のままであった。この細管は、目視観察では照明の透過が認められたが、他の細管より著しく暗いものであり、1回の洗浄では十分に汚れが除去できない細管が存在することが確認された。その他の洗浄細管については、洗浄前と比較して明るいスポット画像が得られており、洗浄によって十分な汚れの除去が行われていることが確認された。
なお、閉塞管の1本についてブラシ洗浄によって汚れが除去できなかった理由としては、フジツボ等の硬い付着物に対してブラシが負けてしまうことが考えらえる。このようなケースでは、ブラシを2回撃ちしても汚れを除去できない可能性があるため、ブラシタイプのクリーナーの代わりに、スクレーパータイプのクリーナーを使用することが推奨される。これにより、閉塞管や著しく汚れた細管に対しても高い洗浄効果を得ることができ、復水器の清浄度の回復予測の精度も高まるものと期待される。
FIG. 36 shows the result of comparison of the detection images before and after the cleaning for the thin tube where the contamination was detected after the cleaning. In the figure, the washed tubules are twelve tubules surrounded by circles, and two of the twelve tubes were undetected because they were blocked or very dirty.
Looking at the image after washing, one of the two undetected before washing remained undetected. Although this thin tube was observed to transmit illumination by visual observation, it was remarkably darker than other thin tubes, and it was confirmed that there was a thin tube that could not be sufficiently removed with a single washing. With respect to the other cleaning capillaries, bright spot images were obtained as compared with those before the cleaning, and it was confirmed that the dirt was sufficiently removed by the cleaning.
In addition, it is conceivable that the reason why the dirt cannot be removed by brush cleaning for one of the closed tubes is that the brush loses against a hard deposit such as a barnacle. In such a case, it is recommended that a scraper type cleaner be used instead of a brush type cleaner because it may not be possible to remove dirt even if the brush is shot twice. As a result, it is expected that a high cleaning effect can be obtained even for a closed tube or a very dirty tube, and the accuracy of the recovery prediction of the cleanliness of the condenser is expected to increase.

次に、洗浄後の細管画像について、画像解析によって平均輝度を算出し、洗浄前と同様に、上記事前検証において検討した平均輝度と管清浄度の関係式(3)に基づいて各細管の管清浄度を推定した。
図37に、洗浄後に汚れ検出を行った細管について、洗浄前後の平均輝度と管清浄度を比較した結果を示す。図に示すように、平均輝度については、洗浄後の平均が242.9であり、洗浄前の平均192.4より50.5高くなっており、平均輝度から算出された管清浄度については、洗浄後の平均が97.4%であり、洗浄前の平均87.8%と比較して9.6%回復している。
これに対して、発電所の復水器清浄度管理画面における復水器の清浄度の回復は10.1%であり、概ね一致している。ここで、洗浄前後の平均管清浄度を比較した細管は、A系の30番の区画であり、12本のうち2本が閉塞管であったことから、閉塞率は約2%であり、復水器全体の閉塞率とほぼ同等であることを考慮すれば、復水器全体の清浄度の回復との間に対応性があると考えられる。このことから、細管の汚れ検出に基づいて細管毎の管清浄度を算出し、その平均をもって復水器の清浄度の回復を予測することにはある程度の妥当性があると考えられる。
Next, the average luminance is calculated by image analysis for the thin tube image after the cleaning, and the tube of each thin tube is calculated based on the relational expression (3) between the average luminance and the tube cleanliness examined in the previous verification as before the cleaning. The cleanliness was estimated.
FIG. 37 shows the result of comparison of the average brightness before and after cleaning and the tube cleanliness for the thin tube where the contamination was detected after the cleaning. As shown in the figure, for the average brightness, the average after washing is 242.9, which is 50.5 higher than the average before washing 192.4, and the tube cleanliness calculated from the average brightness is as follows: The average after washing is 97.4%, which is 9.6% higher than the average before washing of 87.8%.
On the other hand, the recovery of the cleanliness of the condenser on the condenser cleanliness management screen of the power plant is 10.1%, which is almost the same. Here, the thin tube which compared the average tube cleanliness before and after the washing is the A system No. 30 section, and since 2 out of 12 were obstructed tubes, the occlusion rate was about 2%, Considering that it is almost equal to the blockage rate of the entire condenser, it is considered that there is a correspondence between the recovery of the cleanliness of the entire condenser. From this, it is considered that there is a certain degree of validity in calculating the cleanliness of each thin tube based on the detection of the contamination of the thin tube and predicting the recovery of the cleanliness of the condenser based on the average.

次に、選定された洗浄対象細管から管清浄度の異なる4本の細管を調査管として選定し、選定された調査管について細管洗浄において回収された付着物の付着物量(湿体積)を測定し、測定された付着物量に基づいて管清浄度を算出することによって、洗浄前に計測された平均輝度と算出された管清浄度の関係を解析し、今回の実機検証において用いた管清浄度の算出法の妥当性を検証した。   Next, four thin tubes with different tube cleanliness are selected as survey tubes from the selected thin tubes to be cleaned, and the amount of adhering matter (wet volume) collected in the thin tube cleaning is measured for the selected survey tubes. Analyzing the relationship between the average brightness measured before cleaning and the calculated tube cleanliness by calculating the tube cleanliness based on the measured amount of deposits, and the tube cleanliness used in this actual machine verification The validity of the calculation method was verified.

図38に、仙台火力4号機の選定された調査管4本についての取得パラメータを示す。図において、付着物量は細管洗浄において回収された付着物の湿体積であり、平均輝度は洗浄前の細管汚れ検出によって計測された平均輝度であり、管清浄度は付着物量から算出された管清浄度である。
図39に、図38の取得パラメータに基づいて仙台火力4号機の平均輝度と管清浄度の関係を解析した結果を示す。図に示すように、実機検証においても、事前検証と同様に、平均輝度と管清浄度とは、次式で表されるようなほぼ線形関係にあることが確認された。
管清浄度(%) = 平均輝度(256階調) × 0.266 + 29.705 (寄与率:0.994) (4)
FIG. 38 shows acquisition parameters for four selected survey tubes of Sendai Thermal Power Unit No. 4. In the figure, the amount of deposits is the wet volume of the deposits collected in the thin tube cleaning, the average luminance is the average luminance measured by detection of thin tube dirt before cleaning, and the tube cleanliness is calculated from the amount of deposits. Degree.
FIG. 39 shows the result of analyzing the relationship between the average brightness and pipe cleanliness of Sendai Thermal Power Unit 4 based on the acquired parameters of FIG. As shown in the figure, in the actual machine verification, it was confirmed that the average brightness and the tube cleanliness were in a substantially linear relationship as expressed by the following equation, as in the previous verification.
Tube cleanliness (%) = average luminance (256 gradations) × 0.266 + 29.705 (contribution rate: 0.994) (4)

上記仙台火力4号機の平均輝度と管清浄度の関係式(4)を、上記事前調査における平均輝度と管清浄度の関係式(3)と比較すると、いずれも一次式で表されるものの、係数とオフセットにおいて差異が認められる。これは、照明装置の光量変化や検出装置の感度変化が考えられる他、細管の汚れ検出の際の照明装置や検出装置の設置条件に差異が生じる可能性があることと、復水器の細管仕様によって細管からの透過光量に差異が生ずるためと考えられる。
従って、細管の汚れの度合いを表す管清浄度の算出に当たっては、対象となる発電所の復水器の代表的な複数の細管について、細管の汚れ検出を行って細管からの透過光量を計測するとともに、細管洗浄を行った後に回収された付着物の付着物量を測定して管清浄度を算出し、これらの測定パラメータに基づいて得られた平均輝度と管清浄度の関係式を用いることで、より精度の高い管清浄度の推定が可能になると考えられる。
また、例えば、細管からの透過光量の測定に際して、照明装置や検出装置の設置条件を一定化させるとともに、細管の汚れ検出において、照明装置の光量や検出装置の感度に基づく校正を行い、計測された細管からの透過光量に対して復水器の細管仕様の差異に基づく補正を行うことにより、予め求められた一般化された細管からの透過光量と細管の管清浄度の関係式を用いて管清浄度を推定することも可能であると考えられる。
When the relational expression (4) between the average brightness and the pipe cleanliness of the Sendai thermal power unit No. 4 is compared with the relational expression (3) between the average brightness and the pipe cleanliness in the previous survey, Differences are observed in coefficients and offsets. This may be due to changes in the amount of light in the lighting device or changes in the sensitivity of the detection device, as well as possible differences in the installation conditions of the lighting device or detection device when detecting dirt in the thin tube, and the narrow tube of the condenser This is thought to be due to the difference in the amount of light transmitted from the narrow tube depending on the specifications.
Therefore, in calculating the tube cleanliness representing the degree of contamination of the narrow tubes, the amount of transmitted light from the narrow tubes is measured by detecting the contamination of the narrow tubes for a plurality of typical thin tubes of the condenser of the target power plant. In addition, by measuring the amount of deposits collected after thin tube cleaning, calculating the tube cleanliness, and using the relationship between the average brightness and tube cleanliness obtained based on these measurement parameters, Therefore, it is considered that the pipe cleanliness can be estimated with higher accuracy.
In addition, for example, when measuring the amount of light transmitted from a thin tube, the installation conditions of the illumination device and the detection device are made constant, and in the detection of dirt on the thin tube, calibration is performed based on the light amount of the illumination device and the sensitivity of the detection device. By correcting the amount of transmitted light from the narrow tube based on the difference in the condenser's narrow tube specification, the relationship between the amount of transmitted light from the generalized thin tube and the tube cleanliness of the thin tube obtained in advance is used. It may be possible to estimate tube cleanliness.

最後に、発電所の運転パラメータに基づいて算出される復水器の清浄度に基づいて、本願発明の細管の汚れ検出によって算出される細管毎の管清浄度に基づいて洗浄する細管を限定することの妥当性と、管清浄度に基づいて推定される洗浄後の復水器の清浄度の推定精度について検証した。
発電所の復水器清浄度管理画面によれば、実機検証を行った点検前の運転停止直前の復水器の清浄度は86.4%であったのに対して、実機検証において選定された細管を洗浄した後に運転を再開した直後の復水器の清浄度は96.5%となっており、その後もボール運用により清浄度90%以上を維持できていることが確認された。
このように、実機検証では、復水器の全細管7800本のうち435本の細管を洗浄しただけにも拘らず、復水器の清浄度が10.1%回復しており、復水器の全細管の約6%を洗浄することで長期間に亘って復水器の設計目標値を維持できており、細管の汚れ検出を行って細管毎の管清浄度を算出し、それに基づいて洗浄する細管の範囲を限定することで復水器の清浄度を効率的に回復させ、設計目標性能を維持できることが実証された。
また、図35に示したように、実機検証において選定された洗浄対象細管435本を洗浄した場合の復水器全体の予測回復清浄度は96.4%であり、発電所の復水器清浄度管理画面における運転再開直後の復水器の清浄度96.5%とほぼ一致している。
このように、細管の汚れ検出を行って細管毎の管清浄度を算出することで復水器の清浄度の回復を予測することをある程度の精度で実施できることが実証された。
Finally, based on the cleanliness of the condenser calculated based on the operating parameters of the power plant, the narrow tubes to be washed are limited based on the cleanliness of each thin tube calculated by the detection of the thin tube contamination of the present invention. We verified the validity of this and the estimated accuracy of the cleanliness of the condenser after washing, which was estimated based on the cleanliness of the pipe.
According to the condenser cleanliness management screen of the power plant, the cleanliness of the condenser immediately before the shutdown before the inspection that performed the actual machine verification was 86.4%, but it was selected in the actual machine verification. The cleanliness of the condenser immediately after resuming operation after washing the thin tubes was 96.5%, and it was confirmed that 90% or more of cleanliness could be maintained by ball operation thereafter.
In this way, in the actual machine verification, the cleanliness of the condenser has been restored to 10.1% despite the fact that only 435 of the 7800 condensers were cleaned, and the condenser was recovered. The design target value of the condenser can be maintained over a long period of time by washing about 6% of all the thin tubes, and the cleanliness of the thin tubes is detected to calculate the tube cleanliness for each thin tube. It was demonstrated that the cleanliness of the condenser can be efficiently restored by limiting the range of the thin tubes to be washed, and the design target performance can be maintained.
Further, as shown in FIG. 35, the predicted recovery cleanliness of the entire condenser when the 435 cleaning target narrow tubes selected in the actual machine verification are cleaned is 96.4%, and the condenser cleaning of the power plant is clean. This is almost the same as the condenser cleanliness of 96.5% immediately after the restart of operation on the degree management screen.
Thus, it was proved that the recovery of the cleanliness of the condenser can be predicted with a certain degree of accuracy by detecting the contamination of the thin tubes and calculating the tube cleanliness for each thin tube.

(3)追試結果
上記夏前点検時の実機検証では、ハンディスキャナによる汚れ検出作業において、検出過程で画像が暗くなっていくことや、抽気管周辺部のスキャニングに多大な時間を要するという課題があったことから、これに対して以下のような対策を行った。
(a)検出作業場所を中間水室側とする(透過板への液だれが解消された)
(b)スキャナを水室毎に交換する(スキャン画像が暗くなる問題が大幅改善された)
(c)抽気管周辺部や出口水室の最下段の細管についてスキャンを省略して洗浄管とする(スキャニング時間が大幅短縮された)
(d)スキャナの両端に検出対象外の細管をマスキングするマスクを備える(画像解析時間が大幅短縮された)
(e)タブレット端末により水室内でスキャン画像を確認する(撮り直しがなくなり時間短縮に貢献した)
(3) Additional test results In the actual machine verification at the time of the above-mentioned pre-summer inspection, there is a problem that in the dirt detection work by the handy scanner, the image becomes dark in the detection process, and it takes a long time to scan the periphery of the extraction tube. Therefore, the following measures were taken.
(A) The detection work place is on the intermediate water chamber side (the dripping of the permeation plate has been eliminated)
(B) Change the scanner for each water chamber (the problem of dark scan images has been greatly improved)
(C) The scanning tube is omitted for the peripheral portion of the extraction tube and the thinnest tube in the outlet water chamber (the scanning time has been greatly reduced).
(D) Provided with masks for masking non-detection capillaries at both ends of the scanner (image analysis time has been greatly shortened)
(E) Check the scanned image in the water chamber using a tablet device (re-shooting has been eliminated and contributed to shortening the time)

上述のような検出装置の対策を行った上で、仙台火力4号機の次の点検時に細管の汚れ検出を行い、検出された平均輝度に対して上述の式(4)を用いて各細管の管清浄度を演算した。
図40に、今回の追試において検出された管清浄度の分布と、管清浄度閾値に対する洗浄細管数の関係を示す。また、図41に管清浄度のランク別の度数分布を示す。
図40に示すように、管清浄度の平均は94.2%であり、発電所の運転停止直前の復水器の清浄度である94.4%とほぼ一致している。
管清浄度90%未満の細管数を水室別に見ると、A系入口では263本と一番多く、次いでA系出口が176本であり、B系入口では61本、B系出口では70本と、B系はA系より少ない傾向が認められた。この傾向は前回の夏前の点検時の調査結果とも一致している。
After taking the countermeasures of the detection device as described above, the stain of the narrow tube is detected at the next inspection of the Sendai Thermal Power Unit No. 4, and the above-described equation (4) is used for the detected average luminance. The tube cleanliness was calculated.
FIG. 40 shows the distribution of the tube cleanliness detected in this additional test and the relationship between the number of washing capillaries with respect to the tube cleanliness threshold. FIG. 41 shows the frequency distribution of tube cleanliness by rank.
As shown in FIG. 40, the average pipe cleanliness is 94.2%, which is almost equal to 94.4%, which is the cleanliness of the condenser immediately before the power plant is shut down.
Looking at the number of thin tubes with a cleanliness of less than 90% by water chamber, the largest number was 263 at the A system inlet, followed by 176 A system outlets, 61 at the B system inlet, and 70 at the B system outlet. And the tendency for the B system to be less than the A system was recognized. This trend is consistent with the survey results from the previous summer check.

上記の検出結果に基づき、今回の点検において洗浄対象とする細管は、閉塞管1本、管清浄度90%未満の細管570本(7.1%)、スキャンを省略した細管625本(7.3%)の合計1196本(15%)とした。
洗浄効果の確認は、閉塞管のあるA系入口水室について行った。画像を目視観測した限り、ブラシ洗浄で性能が著しく回復していない細管はないと判断され、スクレーパ型クリーナーによる再洗浄は不用と判断された。これは、前回の夏前の最小限化洗浄を行った後の運用期間が2ヶ月間で短かったためと考えられる。
Based on the above detection results, the number of capillaries to be cleaned in this inspection is one obstructed tube, 570 capillaries (7.1%) with less than 90% cleanness, and 625 capillaries (7. 3%) to 1196 (15%) in total.
The cleaning effect was confirmed for the A-system inlet water chamber with a closed tube. As long as the image was visually observed, it was judged that there was no capillary tube whose performance was not significantly recovered by brush washing, and it was judged that re-washing with a scraper cleaner was unnecessary. This is thought to be because the operation period after performing the minimized cleaning before the previous summer was short in two months.

図42に、図40の検出結果に基づいて演算した管清浄度に対する洗浄細管数の関係と管清浄度閾値に対する復水器予測回復清浄度の関係を示す。なお、復水器の予測回復清浄度の演算は、閉塞管の清浄度を30%、管清浄度60〜70%の清浄度を65%、管清浄度70〜80%の清浄度を75%、管清浄度80〜90%の清浄度を85%、管清浄度90〜100%の清浄度を平均管清浄度とし、それらが洗浄後には97%に回復するとして演算した。
図42に示すように、今回の汚れ検出データによれば、細管洗浄後の復水器の清浄度は、海水温度が調査時と変わらないと仮定すれば、管清浄度閾値70%未満の細管を洗浄すると84.7%に回復し、管清浄度閾値80%未満の細管を洗浄すると94.5%に回復し、管清浄度閾値90%未満の細管を洗浄すると95.2%に回復すると予測される。
ここで、全数洗浄した場合の復水器の清浄度は約97%であることから、管清浄度閾値90%未満の細管を洗浄したときの復水器予測回復清浄度95.2%はやや低い値であるが、ボール洗浄で維持できる清浄度が95%であることを考えると、今回の最小化洗浄の範囲は妥当であると判断された。
FIG. 42 shows the relationship between the number of cleaning thin tubes with respect to the tube cleanliness calculated based on the detection result of FIG. 40 and the relationship between the condenser recovery recovery cleanliness with respect to the tube cleanliness threshold. In addition, the calculation of the predicted recovery cleanliness of the condenser is 30% for the cleanliness of the closed tube, 65% for the cleanliness of 60 to 70%, and 75% for the cleanliness of 70 to 80%. The tube cleanliness was calculated to be 85% for cleanliness of 80 to 90% and average cleanliness of 90 to 100% for tubes, and that they recovered to 97% after washing.
As shown in FIG. 42, according to the dirt detection data of this time, the cleanliness of the condenser after the thin tube cleaning is assumed to be the same as that at the time of the survey, and the thin tube having a tube cleanliness threshold of less than 70% is assumed. Is recovered to 94.7% when a tube having a tube cleanliness threshold value of less than 90% is washed, and when a tube having a tube cleanness threshold value of less than 90% is washed to 95.2%. is expected.
Here, since the cleanliness of the condenser when all the tubes are cleaned is about 97%, the predicted recovery cleanliness of the condenser of 95.2% when a thin tube having a tube cleanliness threshold value of less than 90% is washed is slightly higher. Although it is a low value, considering that the cleanliness level that can be maintained by ball cleaning is 95%, it was determined that the current range of minimized cleaning is appropriate.

また、今回の追試における作業時間から前述の夏前点検時の作業時間を推定した結果、準備と後片付けを除いて、エアーブロー2h、スキャニング4h、画像解析3h、マーキング・細管洗浄(約1200本)4h、洗浄効果確認と再洗浄3hの合計16hで、全ての作業を行うことができると試算された。   In addition, as a result of estimating the work time at the above-mentioned pre-summer inspection from the work time in this supplementary examination, air blow 2h, scanning 4h, image analysis 3h, marking / capillary washing (about 1200), excluding preparation and cleanup It was estimated that all the operations could be performed in 4 hours, a total of 16 hours including confirmation of cleaning effect and re-washing 3 hours.

なお、今回の追試における細管洗浄では、スキャンを省略した細管数が、管清浄度90%未満の汚れた細管数を上回る結果となったが、抽気間周辺や出口水室の最下段の細管のようにハンディスキャナによる検出が難しく多大な作業時間を要する細管について全数洗浄するようにしても洗浄する細管数は全体の15%に限定することができ、全体として1日で復水器の細管洗浄を行うという所期の目標を達成できることが判った。
しかしながら、このようなハンディスキャナによる検出が難しい細管について、細管からの透過光の平均輝度を検出することができる専用の検出装置を準備すれば、スキャンを省略した部分の汚れ度合いがスキャンした部分の汚れ度合いと同等であると仮定すれば、管清浄度閾値90%未満の細管数は約640本に限定することができると予想され、より効率的な復水器の細管洗浄を実現することができると見込まれる。
In addition, in the thin tube cleaning in this additional test, the number of thin tubes without scanning exceeded the number of dirty tubes with a tube cleanliness of less than 90%. Thus, even if all the thin tubes that are difficult to detect with a handy scanner and require a lot of work time are washed, the number of thin tubes to be washed can be limited to 15% of the whole, and the condenser tube can be washed in one day as a whole. It has been found that the intended goal of performing can be achieved.
However, for such a narrow tube that is difficult to detect with a handy scanner, if a dedicated detection device capable of detecting the average luminance of the transmitted light from the narrow tube is prepared, the degree of contamination of the portion where the scan is omitted is reduced. Assuming that the degree of contamination is equivalent, the number of capillaries with a tube cleanliness threshold value of less than 90% is expected to be limited to about 640, and more efficient condenser tube cleaning can be realized. Expected to be possible.

9.細管汚れ検出装置の改良実施形態
本願発明の細管汚れ検出装置は、復水器の細管毎の汚れの度合いを表す管清浄度を検出する装置であり、上述したように、復水器の細管の一端側の水室に設置され、細管の一端側より光を入射させる照明装置と、復水器の細管の他端側の水室に設置され、細管の他端側からの透過光を検出する透過光検出装置とを用いて、熱交換器の細管毎の透過光量を計測する細管透過光量計測手段と、計測された熱交換器の細管毎の透過光量から、予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて、熱交換器の細管毎の管清浄度を演算する管清浄度演算手段とを備える。
照明装置は、上述の実施形態では、複数の蛍光灯型LEDランプを復水器の細管の配列に従って所定の間隔で平行に配列したものを用い、細管の一端側の管面に密接させて用いるものとしたが、必ずしもこれに限定されるものではなく上述されたさまざまな手段を用いることができる。
また、透過光検出装置は、上述の実施形態では、密着型の一次元撮像装置を用い、一次元撮像装置を復水器の細管の他端側の管面に密接させてスキャンすることにより細管の他端側からの透過光の二次元濃淡画像を取得するようにしたものであって、取得された透過光の二次元濃淡画像から細管毎の平均輝度を演算する画像処理装置を備えたものとしたが、必ずしもこれに限定されるものではなく上述されたさまざまな手段を用いることができる。
以下、本願発明の細管汚れ検出装置の「透過光検出装置」と「照明装置」について、復水器の狭い水室内での作業性を改善して短時間で細管の汚れ検出を行えるようにするとともに、運転停止直後の復水器の水室内のような高温多湿環境下でも安定に細管の二次元画像を取得できるようにして細管の管清浄度の検出精度を向上させた改良実施形態について述べる。
9. Improved embodiment of the thin tube dirt detecting device The thin tube dirt detecting device of the present invention is a device for detecting the cleanliness of the tube representing the degree of dirt for each thin tube of the condenser. Installed in a water chamber on one end side, and an illumination device that allows light to enter from one end side of the thin tube, and a water chamber on the other end side of the thin tube of the condenser, and detects transmitted light from the other end side of the thin tube Using the transmitted light detection device, a thin tube transmitted light amount measuring means for measuring the transmitted light amount for each thin tube of the heat exchanger, and the heat exchanger obtained in advance from the measured transmitted light amount for each thin tube of the heat exchanger. Tube cleanliness calculating means for calculating the tube cleanliness for each thin tube of the heat exchanger based on the relationship between the amount of light transmitted through the thin tube and the tube cleanliness representing the degree of dirt on the thin tube.
In the above-described embodiment, the lighting device uses a plurality of fluorescent lamp type LED lamps arranged in parallel at predetermined intervals according to the arrangement of the condenser thin tubes, and is used in close contact with the tube surface on one end side of the thin tubes. However, the present invention is not necessarily limited thereto, and various means described above can be used.
In the above-described embodiment, the transmitted light detection device uses a close-contact type one-dimensional imaging device, and scans the one-dimensional imaging device in close contact with the tube surface on the other end side of the thin tube of the condenser. A two-dimensional gray image of transmitted light from the other end of the image is acquired, and an image processing device for calculating the average luminance for each thin tube from the acquired two-dimensional gray image of the transmitted light is provided. However, the present invention is not necessarily limited to this, and various means described above can be used.
Hereinafter, with respect to the “transmitted light detection device” and “illumination device” of the thin tube dirt detection device of the present invention, it is possible to improve the workability in the narrow water chamber of the condenser and to detect the fine tube dirt in a short time. In addition, an improved embodiment that improves the detection accuracy of the tube cleanliness of the thin tube by stably acquiring a two-dimensional image of the thin tube even in a hot and humid environment such as the water chamber of the condenser immediately after the operation is stopped will be described. .

(1)透過光検出装置の改良実施形態
図43に、細管汚れ検出装置の透過光検出装置の改良実施形態の構成を示す。
改良実施形態に係る細管汚れ検出装置の透過光検出装置100は、一方面を細管の他端側の管面に密接させ、他方面をハンディスキャナでスキャンさせるための透明のベースプレート110を備える。
ベースプレート110の他方面には、ハンディスキャナ(図示省略)を収容するセンサホルダ200を細管の撮像範囲に亘って収容する機密性を有する箱体120が形成される。箱体120は、ベースプレート110のハンディスキャナのスキャン範囲の周囲を囲うフレーム122と、上面の中央をカバーするセンターカバー123と、上面の両サイドをカバーするものであってハンディスキャナを電池交換等のために脱着する際に取り外される2つのサイドカバー124を備える。サイドカバー124は、ハンディスキャナのスキャン範囲の始点と終点においてハンディスキャナの操作ボタンを外部から操作できるように、透明フィルムで閉止されるスキャナ操作窓125を備える。
なお、ベースプレート110の他方面には、前述のように照明装置の照射光量や細管の透過率に応じて光量を調節できるようにするため、半透明フィルムで形成される透過板(図示省略)が取り替え可能に敷設されている。
(1) Improved Embodiment of Transmitted Light Detection Device FIG. 43 shows a configuration of an improved embodiment of the transmitted light detection device of the thin tube dirt detection device.
The transmitted light detection device 100 of the thin tube dirt detection device according to the improved embodiment includes a transparent base plate 110 for bringing one surface into close contact with the tube surface on the other end side of the thin tube and scanning the other surface with a handy scanner.
On the other surface of the base plate 110, a box 120 having a confidentiality for accommodating the sensor holder 200 for accommodating the handy scanner (not shown) over the imaging range of the thin tube is formed. The box 120 covers a frame 122 that surrounds the scanning range of the handy scanner of the base plate 110, a center cover 123 that covers the center of the upper surface, and covers both sides of the upper surface. For this purpose, two side covers 124 are provided which are removed when detaching. The side cover 124 includes a scanner operation window 125 that is closed with a transparent film so that the operation buttons of the handy scanner can be operated from the outside at the start point and end point of the scan range of the handy scanner.
On the other side of the base plate 110, a transmission plate (not shown) formed of a translucent film is provided so that the light amount can be adjusted according to the irradiation light amount of the illumination device and the transmittance of the thin tube as described above. It is laid to be replaceable.

箱体120内には、センサホルダ200を細管の撮像範囲に亘って水平移動させるためのセンサホルダ移動機構として、箱体の左右のフレームに固定された2本のガイドシャフト130を備える。このガイドシャフト130は、センサホルダ220に備えられたリニアブッシュ220をガイドするものであって、ガイドシャフト130の両端に設けられた2つのストッパ132の間でセンサホルダ200を水平移動させることによって、センサホルダ200に収容されたハンディスキャナがベースプレート110の他方面をスキャンして細管の二次元画像を取得することができる。
また、箱体120には、センサホルダ移動機構を箱体の外部より駆動してハンディスキャナを細管の撮像範囲に亘って移動させるための駆動機構として、駆動ワイヤ140を備える。駆動ワイヤ140は、箱体の左右のフレームに固定されたシーブブラケット144に備えられたシーブ142を介して、後述のセンサホルダ200の一方のスプリング取付板台座(駆動側)233に固定されている。
また、箱体120の左右のフレームの一方側には、箱体内にドライエアーを供給するためのエアー注入口128を備え、反対側にはエアー排出口(図示省略)を備えている。なお、これらはドライエアーを供給しないときは閉止されている。
The box body 120 includes two guide shafts 130 fixed to the left and right frames of the box body as a sensor holder moving mechanism for horizontally moving the sensor holder 200 over the imaging range of the thin tube. The guide shaft 130 guides the linear bush 220 provided in the sensor holder 220. By horizontally moving the sensor holder 200 between two stoppers 132 provided at both ends of the guide shaft 130, A handy scanner accommodated in the sensor holder 200 can scan the other surface of the base plate 110 to obtain a two-dimensional image of the capillary tube.
Further, the box 120 is provided with a drive wire 140 as a drive mechanism for driving the sensor holder moving mechanism from the outside of the box to move the handy scanner over the imaging range of the thin tube. The drive wire 140 is fixed to one spring mounting plate base (drive side) 233 of the sensor holder 200 to be described later via a sheave 142 provided on the sheave bracket 144 fixed to the left and right frames of the box. .
Further, an air inlet 128 for supplying dry air into the box is provided on one side of the left and right frames of the box 120, and an air outlet (not shown) is provided on the opposite side. These are closed when dry air is not supplied.

透過光検出装置100は、以上のように構成されているので、センサホルダ200にハンディスキャナを収容し、箱体の外部から駆動ワイヤによりセンサホルダ機構を移動させることで、簡便にハンディスキャナを水平方向に精度よくスキャンさせることができる。
また、ハンディスキャナおよびベースプレート110のスキャン面は、常に機密性を有する箱体内にあるため防塵・防湿が保たれ、必要に応じて箱体内にドライエアーを供給することができるので、高湿度環境下の使用においてもスキャニング面の結露による画像不良を抑制することができ、細管の管清浄度を精度よく検出することができる。
Since the transmitted light detection apparatus 100 is configured as described above, the handy scanner is accommodated in the sensor holder 200, and the handy scanner can be easily leveled by moving the sensor holder mechanism with a drive wire from the outside of the box. It is possible to scan in the direction with high accuracy.
Further, since the scanning surface of the handy scanner and the base plate 110 is always inside the box having confidentiality, it is kept dustproof and moisture-proof, and can supply dry air into the box as needed. Even in use, image defects due to condensation on the scanning surface can be suppressed, and the tube cleanliness of the thin tube can be accurately detected.

ベースプレート110の一方の長辺部には、箱体120の外側において、細管の水平方向の配列と細管の内径に合せて設けられた複数の固定穴112を備えた装置固定部114を有している。
これにより、透過光検出装置100を復水器の水室の細管の管面に設置する際には、箱体の左右のフレームに備えられた把手126に持って箱体200を対象とする細管の撮像範囲付近に保持し、ベースプレート110の固定穴112を撮像範囲外の細管の水平方向の配列に合せ、最低限2個の固定穴に棒状の固定具(図示省略)を挿入してベースプレート110を細管の管面に押し付けることで、透過光検出装置100を細管の水平方向の配列に対してハンディスキャナのスキャン方向を正確に合せて設置することを短時間で行うことができる。
なお、復水器の水室における天井側の細管と底面側の細管は、箱体からはみ出したベースプレートが邪魔になってスキャンできない段が生ずるため、ベースプレートの装置固定部は2つあるベースプレートの長辺の一方側にのみ設け、底面側の細管をスキャンする際はベースプレートの装置固定部が上側に来るように設置して使用し、天井側の細管をスキャンする際はベースプレートの装置固定部が下側に来るように設置して使用する。
One long side portion of the base plate 110 has an apparatus fixing portion 114 having a plurality of fixing holes 112 provided in accordance with the horizontal arrangement of the thin tubes and the inner diameter of the thin tubes outside the box body 120. Yes.
As a result, when the transmitted light detection device 100 is installed on the tube surface of the narrow tube of the water chamber of the condenser, the narrow tube for the box 200 is held by the grips 126 provided on the left and right frames of the box. The fixing holes 112 of the base plate 110 are aligned with the horizontal arrangement of the tubules outside the imaging range, and a bar-shaped fixture (not shown) is inserted into at least two fixing holes. Is pressed against the tube surface of the thin tube, so that the transmitted light detection device 100 can be installed in a short time with the scanning direction of the handy scanner accurately aligned with the horizontal arrangement of the thin tubes.
Note that the ceiling-side narrow tube and the bottom-side narrow tube in the water chamber of the condenser have a stage that cannot be scanned because the base plate that protrudes from the box interferes with it. Install only on one side of the side and use it so that the base plate device fixing part is on the top when scanning the bottom side thin tube, and when scanning the ceiling side thin tube, the base plate device fixing part is on the bottom side. Install and use so that it comes to the side.

図44に、細管汚れ検出装置の透過光検出部の改良実施形態のセンサホルダ200の構成を示す。
センサホルダ200は、ハンディスキャナを収容するセンサ取付台210を備え、センサ取付台210の両端には前述のセンサホルダ移動機構を構成するリニアブッシュ220が備えられている。
また、センサ取付台210の両端には、センサ取付台210に収容されたハンディスキャナをベースプレート110に対して適切な圧力で押し付けるためのセンサ押付機構230を備える。
センサ押付機構230は、ハンディスキャナを押える緩衝ゴム238を備えたセンサ押え板235と、センサ押え板235を所定の力で押し下げる基点となるスプリング取付板231とを備える。スプリング取付板231は、ハンディスキャナをセンサ取付台210に収容した後に固定ネジ234によってスプリング取付板台座232、233を介してセンサ取付台210に固定される。センサ押え板235は、スプリング取付板231の両サイドに備えられたガイドネジ236とガイドスプリング237によってガイドされ、センサ取付台210に収容されたハンディスキャナの左右の高さを揃えるように作用する。
更に、スプリング取付板231の中央にはスプリングプランジャ239が備えられ、スプリングプランジャ239の高さを調節することによってセンサ押え板235にかかる押付圧を調節することができ、ハンディスキャナのローラをベースプレート110に対して適正な一定の圧力で押し付けるように設定することができる。
このように、ハンディスキャナに加えられる押付圧を適正に設定することができるので、ハンディスキャナのローラのスリップによる細管画像の歪の発生が抑制され、スキャンのやり直しによる作業時間のロスを低減して作業効率を大幅に改善することができる。
FIG. 44 shows a configuration of a sensor holder 200 according to an improved embodiment of the transmitted light detection unit of the thin tube dirt detection device.
The sensor holder 200 includes a sensor mounting base 210 that accommodates a handy scanner, and linear bushes 220 that constitute the sensor holder moving mechanism described above are provided at both ends of the sensor mounting base 210.
Further, sensor pressing mechanisms 230 for pressing the handy scanner housed in the sensor mounting base 210 against the base plate 110 with an appropriate pressure are provided at both ends of the sensor mounting base 210.
The sensor pressing mechanism 230 includes a sensor pressing plate 235 provided with a buffer rubber 238 for pressing the handy scanner, and a spring mounting plate 231 serving as a base point for pressing the sensor pressing plate 235 with a predetermined force. The spring mounting plate 231 is fixed to the sensor mounting base 210 via the spring mounting plate bases 232 and 233 by a fixing screw 234 after the handy scanner is accommodated in the sensor mounting base 210. The sensor presser plate 235 is guided by guide screws 236 and guide springs 237 provided on both sides of the spring mounting plate 231, and acts to align the left and right heights of the handy scanner accommodated in the sensor mounting base 210.
Further, a spring plunger 239 is provided at the center of the spring mounting plate 231, and the pressing pressure applied to the sensor pressing plate 235 can be adjusted by adjusting the height of the spring plunger 239. Can be set to be pressed with an appropriate constant pressure.
In this way, since the pressing pressure applied to the handy scanner can be set appropriately, the distortion of the capillary image due to the slip of the roller of the handy scanner is suppressed, and the loss of work time due to re-scanning is reduced. Work efficiency can be greatly improved.

なお、センサ取付台210には、ハンディスキャナの側面に設けられたコネクタにUSBケーブルを接続するための切り欠きを有しており、センサホルダに収容されたハンディスキャナにUSBケーブルを接続して箱体の外に取り出し、箱体の外でUSBケーブルをタブレット端末に接続することで、ハンディスキャナにおいて取得された画像データを確認できるようにしており、取得された画像データに異常があればその場で取り直しすることができる。   The sensor mounting base 210 has a notch for connecting a USB cable to a connector provided on the side of the handy scanner, and the box is connected to the handy scanner housed in the sensor holder. The image data acquired by the handy scanner can be checked by taking it out of the body and connecting the USB cable to the tablet terminal outside the box. If there is an abnormality in the acquired image data, You can retake it.

なお、上記実施形態では、一次元撮像装置として安価で小型軽量のハンディスキャナを使用し、センサホルダに高温多湿下でのハンディスキャナのローラのスリップを抑制するセンサ押付機構を設けることで細管画像における歪の発生を抑制するようにしたが、一次元画像を取得する一次元撮像素子をエンコーダ等の位置検出装置を有する移動機構に取り付けた専用スキャン装置を構成し、一元撮像素子で撮像された一次元画像と位置検出装置で検出された位置に基づいて細管の二次元画像を生成するようにしてもよい。   In the above embodiment, an inexpensive, small and light handy scanner is used as the one-dimensional imaging device, and the sensor holder is provided with a sensor pressing mechanism for suppressing the slip of the roller of the handy scanner under high temperature and high humidity. Although the generation of distortion has been suppressed, a primary scanning device that has been configured to form a dedicated scanning device in which a one-dimensional imaging device that acquires a one-dimensional image is attached to a moving mechanism having a position detection device such as an encoder, A two-dimensional image of the capillary tube may be generated based on the original image and the position detected by the position detection device.

また、上記実施形態では、センサホルダ移動機構を箱体の外部から駆動する駆動機構として駆動ワイヤにより手動でセンサホルダを移動させるものとしたが、センサホルダ移動機構をモータドライブの移動機構とし、箱体の外部から電気的にセンサホルダを移動させるようにしてもよい。   In the above embodiment, the sensor holder moving mechanism is manually moved by a drive wire as a driving mechanism for driving the sensor holder moving mechanism from the outside of the box. However, the sensor holder moving mechanism is a motor drive moving mechanism, You may make it move a sensor holder electrically from the exterior of a body.

(2)照明装置の改良実施形態
前述の実施形態において使用した蛍光灯型LEDランプについて、高温多湿環境下での照度変化を確認する実験を行ったところ、ランプ表面温度と照度とは負の相関を示すことが確認された。特に、上述した実施形態の照明装置では、5本の蛍光灯型LEDランプと電源部とが1つの筐体に収容されており、更なる温度上昇が生じていると考えられる。
このような照明装置を高温環境下で使用した場合には、電源部の安定器において動作不良を生じ、ちらつきによる放射照度の低下が発生する可能性が考えられる。また、高湿度環境下で使用した場合には、蛍光灯型LEDランプの表面への結露によって放射照度の低下が発生する可能性が考えられる。
(2) Improved Embodiment of Illumination Device An experiment for confirming a change in illuminance under a high-temperature and high-humidity environment was performed on the fluorescent LED lamp used in the above-described embodiment, and the lamp surface temperature and illuminance were negatively correlated. It was confirmed that In particular, in the illuminating device of the above-described embodiment, five fluorescent LED lamps and a power supply unit are housed in one housing, and it is considered that a further temperature rise occurs.
When such an illuminating device is used in a high-temperature environment, there is a possibility that an operation failure occurs in the ballast of the power supply unit, and a decrease in irradiance due to flickering occurs. In addition, when used in a high humidity environment, there is a possibility that the irradiance may decrease due to dew condensation on the surface of the fluorescent LED lamp.

このため、細管汚れ検出装置の改良実施形態の照明装置(図示省略)では、蛍光灯型LEDランプをLEDランプ部と電源部とに分離し、LEDランプ部は放熱性のよいアルミ製の開放型の筐体に収容し、電源部は外部電源化してLEDランプ部から離隔して設置するようにした。
これにより、運転停止直後の復水器の水室内のような高温環境下でも、LEDランプ部の温度上昇が抑制されるとともに、電源部の安定器の動作不良によるちらつきの発生を防止することができ、細管に対して安定した光量の照明を入射させることができるので、細管の管清浄度をより精度よく検出することができる。
For this reason, in the illumination device (not shown) of the improved embodiment of the thin tube dirt detection device, the fluorescent lamp type LED lamp is separated into the LED lamp portion and the power source portion, and the LED lamp portion is an open type made of aluminum with good heat dissipation. In this case, the power supply unit is turned into an external power source and is installed separately from the LED lamp unit.
As a result, even in a high-temperature environment such as the water chamber of a condenser immediately after shutdown, the temperature rise of the LED lamp unit is suppressed and the occurrence of flickering due to malfunction of the ballast of the power supply unit can be prevented. In addition, since a stable amount of illumination can be incident on the thin tube, the tube cleanliness of the thin tube can be detected with higher accuracy.

また、LEDランプ部には、表面に防湿コーティングを施した蛍光灯型LEDランプを用いるようにした。
これにより、運転停止直後の復水器の水室内のような高湿度環境下でも蛍光灯型LEDランプ表面の結露を抑制することができ、細管に対して安定した光量の照明を入射させることができるので、細管の管清浄度を更に精度よく検出することができる。
Further, a fluorescent lamp type LED lamp having a moisture-proof coating on the surface is used for the LED lamp portion.
As a result, condensation on the surface of the fluorescent LED lamp can be suppressed even in a high humidity environment such as in the water chamber of a condenser immediately after the operation is stopped, and illumination with a stable light amount can be incident on the thin tube. As a result, the tube cleanliness of the thin tube can be detected with higher accuracy.

図45に、図43、44に示した改良実施形態の透過光検出装置100の概略鳥瞰図を示す。以下において、図45の改良実施形態の透過光検出装置100の概略鳥瞰図に基づいて、復水器の細管汚れ検出作業の作業手順を簡単に説明する。
(1)最初に、透過光検出装置の箱体120の上面のカバーを開け、図44において説明したように、センサホルダ200のセンサ取付台210にハンディスキャナ300をセットし、センサ押付機構230によってハンディスキャナを固定し、センサ押付機構に設けられたスプリングプランジャ239によってハンディスキャナの撮像面のローラのベースプレート110への押付圧を適正圧力に設定する。また、USBケーブル310の一端側をハンディスキャナに接続し、他端側をタブレット端末(図示省略)に接続し、箱体120の上面のカバーを閉止する。そして、図43で説明したように、箱体120のエアー注入口128よりドライエアーを充填する。なお、ドライエアーの充填は、以降のスキャン作業中においても箱体内に結露が生じた場合には適宜実施する。
(2)次に、復水器の入口・出口水室側において、透過光検出装置の箱体120の左右の把手126を持って箱体を細管の対象撮像範囲に保持し、ベースプレートの固定穴112を細管の水平方向の配列に合せ、最低限2個の固定穴に棒状の固定具を挿入して細管に貫通させ、ベースプレート110を細管の管面に押し付けて固定する。
(3)一方、復水器の中間水室側において、照明装置を透過光検出装置の細管の対象撮像範囲に対応する位置にセットし、照明装置の照光面を細管の管面に押し付けて固定する。
(4)対象撮像範囲の細管の管面への透過光検出装置と照明装置の設置が完了したら、透過光検出装置のガイドワイヤ140を操作してセンサホルダ200をスキャン始点(左側)にセットし、箱体120の上面のカバーの始点側スキャナ操作窓125−1から封止用透明フィルムを介してハンディスキャナの操作ボタンを操作してスキャン開始設定を行う。そして、ガイドワイヤを操作してハンディスキャナをスキャナ終点(右側)まで一定速度で移動させるスキャン操作を行い、箱体120の上面のカバーの終点側スキャナ操作窓125−2から封止用透明フィルムを介してハンディスキャナの操作ボタンを操作してスキャン終了設定を行う。
(5)当該対象撮像範囲における細管のスキャンが終了したら、ハンディスキャナのスキャン画像をタブレット端末に取得し、取得されたスキャン画像をタブレット端末の画面上で確認する。ここで、スキャン画像に異常がある場合は(4)より繰り返し、スキャン画像が正常に撮像されていることが確認されたら、透過光検出装置と照明装置を次の細管の対象撮像範囲に移動して(2)より繰り返す。なお、復水器の天井側の細管をスキャンする場合やベースプレートの固定穴部分が復水器の構造物に干渉する場合には、箱体に対してベースプレートの固定穴部分が下側に来るように180度回転して使用する。
(6)復水器のすべての細管についてのスキャンが完了したら、透過光検出装置とタブレット端末と照明装置を回収する。
(7)最後に、タブレット端末に収録された各スキャン画像をパーソナルコンピューターに取り込み、画像処理と管清浄度演算を行う。画像処理は、各スキャン画像について必要な範囲をトリミングし、細管毎のスポット画像の平均輝度を演算し、水室別に復水器の細管アドレスに対応させて保存する。また、管清浄度演算は、保存された水室別の各細管アドレスの平均輝度から、予め求められた細管の透過光の平均輝度と細管の汚れの度合いを表す管清浄度との関係式(例えば、上述の式(4))に基づいて細管毎の管清浄度を演算し、水室別に復水器の細管アドレスに対応させて保存する。
FIG. 45 shows a schematic bird's-eye view of the transmitted light detection apparatus 100 of the improved embodiment shown in FIGS. Below, based on the schematic bird's-eye view of the transmitted light detection apparatus 100 of the improved embodiment of FIG. 45, the work procedure of the thin-tube dirt detection operation of a condenser is demonstrated easily.
(1) First, the cover on the upper surface of the box 120 of the transmitted light detection device is opened, and the handy scanner 300 is set on the sensor mounting base 210 of the sensor holder 200 as described with reference to FIG. The handy scanner is fixed, and the pressing pressure to the base plate 110 of the roller on the imaging surface of the handy scanner is set to an appropriate pressure by a spring plunger 239 provided in the sensor pressing mechanism. Further, one end of the USB cable 310 is connected to the handy scanner, the other end is connected to a tablet terminal (not shown), and the cover on the upper surface of the box 120 is closed. Then, as described with reference to FIG. 43, dry air is filled from the air inlet 128 of the box 120. It should be noted that the filling with dry air is performed as appropriate when condensation occurs in the box during the subsequent scanning operation.
(2) Next, on the inlet / outlet water chamber side of the condenser, holding the left and right handles 126 of the box 120 of the transmitted light detection device to hold the box in the target imaging range of the narrow tube, 112 is aligned with the horizontal arrangement of the thin tubes, a rod-like fixture is inserted into at least two fixing holes to penetrate the thin tubes, and the base plate 110 is pressed against the tube surface of the thin tubes and fixed.
(3) On the other hand, on the intermediate water chamber side of the condenser, the lighting device is set at a position corresponding to the target imaging range of the thin tube of the transmitted light detection device, and the illumination surface of the lighting device is pressed against the tube surface of the thin tube and fixed. To do.
(4) When installation of the transmitted light detection device and the illumination device on the tube surface of the thin tube in the target imaging range is completed, the guide wire 140 of the transmitted light detection device is operated to set the sensor holder 200 at the scan start point (left side). The scanning start setting is performed by operating the operation button of the handy scanner from the start point side scanner operation window 125-1 on the cover on the upper surface of the box 120 through the sealing transparent film. Then, a scanning operation is performed to move the handy scanner at a constant speed to the scanner end point (right side) by operating the guide wire, and the sealing transparent film is removed from the end point side scanner operation window 125-2 of the cover on the upper surface of the box 120. Then, an operation button of the handy scanner is operated to perform a scan end setting.
(5) When the scan of the narrow tube in the target imaging range is completed, the scan image of the handy scanner is acquired on the tablet terminal, and the acquired scan image is confirmed on the screen of the tablet terminal. If there is an abnormality in the scan image, it is repeated from (4). When it is confirmed that the scan image is normally captured, the transmitted light detection device and the illumination device are moved to the target imaging range of the next narrow tube. Repeat from step (2). When scanning the condenser on the ceiling side of the condenser or when the fixing hole part of the base plate interferes with the condenser structure, the fixing hole part of the base plate should be located below the box. And rotated 180 degrees.
(6) When the scanning of all the thin tubes of the condenser is completed, the transmitted light detection device, the tablet terminal, and the lighting device are collected.
(7) Finally, each scanned image recorded in the tablet terminal is taken into a personal computer, and image processing and tube cleanliness calculation are performed. In the image processing, a necessary range is trimmed for each scan image, the average brightness of the spot image for each thin tube is calculated, and stored for each water chamber corresponding to the narrow tube address of the condenser. In addition, the tube cleanliness calculation is based on the relationship between the average brightness of the transmitted light of the thin tubes obtained in advance and the tube cleanliness representing the degree of dirt on the thin tubes, based on the stored average brightness of each thin tube address for each water chamber ( For example, the tube cleanliness for each thin tube is calculated based on the above equation (4)), and stored in correspondence with the narrow tube address of the condenser for each water chamber.

以上のような改良実施形態による細管汚れ検出装置を用いて、模擬細管を用いて画像解析を行った結果、管清浄度の検出精度は0.03%以下の許容範囲内にあることが確認され、復水器の細管の汚れ検出を行う上で問題のないレベルであることが確認された。   As a result of performing image analysis using a simulated capillary using the capillary detection device according to the improved embodiment as described above, it was confirmed that the detection accuracy of the tube cleanliness is within an allowable range of 0.03% or less. It was confirmed that there was no problem in detecting the contamination of the condenser thin tubes.

上記記載においては、洗浄対象細管がチタン管である場合について説明したが、本願発明はこれに限定されるものではなく、チタン管以外の例えば銅合金製細管の復水器にも適用できることは言うまでもない。   In the above description, the case where the thin tube to be cleaned is a titanium tube has been described. However, the present invention is not limited to this, and it is needless to say that the present invention can also be applied to a condenser such as a copper alloy thin tube other than a titanium tube. Yes.

また、上記記載においては、復水器を対象として洗浄する細管の範囲を限定する細管洗浄方法について説明したが、本願発明はこれに限定されるものではなく、復水器以外の多管式熱交換器の細管洗浄においても適用できることは言うまでもない。   In the above description, the thin tube cleaning method for limiting the range of the thin tube to be cleaned for the condenser has been described. However, the present invention is not limited to this, and the multitubular heat other than the condenser is used. Needless to say, the present invention can also be applied to thin tube cleaning of an exchanger.

以上のように、本願発明の多管式熱交換器の細管洗浄方法および細管汚れ検出装置によれば、細管の汚れ検出によって細管毎の管清浄度を推定することができ、推定された細管毎の管清浄度に基づいて熱交換器の性能回復に対応させて洗浄する細管の範囲を限定することができるので、細管洗浄の工期短縮とコスト低減を図ることができる。   As described above, according to the thin tube cleaning method and the thin tube dirt detection device of the multitubular heat exchanger of the present invention, the cleanliness of each thin tube can be estimated by detecting the dirt of the thin tube, Since the range of thin tubes to be cleaned can be limited in accordance with the recovery of the performance of the heat exchanger based on the cleanliness of the tubes, it is possible to shorten the work period and reduce costs of the thin tube cleaning.

なお、本願発明は上述した実施形態に限定されるものではなく、本願発明の効果を奏する限り、実施形態で述べた構成要素を適宜入れ替えたり、新たな構成要素を追加したり、一部の構成要素を削除したりしてもよいことは言うまでもない。   The invention of the present application is not limited to the above-described embodiment. As long as the effects of the invention of the present application are obtained, the constituent elements described in the embodiment are appropriately replaced, new constituent elements are added, or some configurations are configured. It goes without saying that elements may be deleted.

100 細管汚れ検出装置の透過光検出装置
110 ベースプレート
112 固定穴
114 装置固定部
120 箱体
122 フレーム
123 センターカバー
124 サイドカバー
125 スキャナ操作窓
126 把手
128 エアー注入口
130 ガイドシャフト
132 ストッパ
140 駆動ワイヤ
142 シーブ
144 シーブブラケット
200 センサホルダ
210 センサ取付台
220 センサホルダ移動用リニアブッシュ
230 センサ押付機構
231 スプリング取付板
232 スプリング取付板台座(非駆動側)
233 スプリング取付板台座(駆動側)
234 スプリング取付板固定ネジ
235 センサ押え板
236 センサ押え板ガイドネジ
237 センサ押え板ガイドスプリング
238 センサ押え板緩衝ゴム
239 スプリングプランジャ
300 ハンディスキャナ
310 USBケーブル
DESCRIPTION OF SYMBOLS 100 Transmitted light detection apparatus of thin tube dirt detection apparatus 110 Base plate 112 Fixing hole 114 Apparatus fixing part 120 Box body 122 Frame 123 Center cover 124 Side cover 125 Scanner operation window 126 Handle 128 Air inlet 130 Guide shaft 132 Stopper 140 Drive wire 142 Sheave 144 Sheave bracket 200 Sensor holder 210 Sensor mount 220 Sensor holder moving linear bush 230 Sensor pressing mechanism 231 Spring mounting plate 232 Spring mounting plate base (non-driving side)
233 Spring mounting plate base (drive side)
234 Spring mounting plate fixing screw 235 Sensor presser plate 236 Sensor presser plate guide screw 237 Sensor presser plate guide spring 238 Sensor presser plate buffer rubber 239 Spring plunger 300 Handy scanner 310 USB cable

Claims (22)

前記熱交換器の細管の一端側の水室に設置され、前記熱交換器の細管の一端側より光を入射させる照明装置と、前記熱交換器の細管の他端側の水室に設置され、前記熱交換器の細管の他端側からの透過光を検出する検出装置とを用いて、前記熱交換器の細管毎の透過光量を計測する工程と、
前記計測された熱交換器の細管毎の透過光量から、予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて、前記熱交換器の細管毎の管清浄度を演算する工程と、
前記演算された熱交換器の細管毎の管清浄度に基づいて、洗浄対象とする細管を選定する工程と、
を備え、前記熱交換器の細管毎の汚れの度合いを検出して洗浄する細管の範囲を限定するようにしたことを特徴とする、多管式熱交換器の細管洗浄方法。
Installed in a water chamber on one end side of the thin tube of the heat exchanger, and installed in a water chamber on the other end side of the thin tube of the heat exchanger, and an illuminating device that allows light to enter from one end side of the thin tube of the heat exchanger Using a detection device that detects transmitted light from the other end of the thin tube of the heat exchanger, and measuring the amount of transmitted light for each thin tube of the heat exchanger;
Based on the relationship between the amount of transmitted light of the thin tube of the heat exchanger and the cleanliness of the tube representing the degree of contamination of the thin tube from the measured amount of transmitted light for each thin tube of the heat exchanger, Calculating the tube cleanliness for each thin tube;
Based on the calculated tube cleanliness for each thin tube of the heat exchanger, selecting a thin tube to be cleaned;
A thin tube cleaning method for a multi-tubular heat exchanger, characterized in that the range of thin tubes to be cleaned is detected by detecting the degree of contamination for each thin tube of the heat exchanger.
前記透過光量として、未使用細管または十分に洗浄された細管について計測された透過光量に対する比率で表された透過率を用いるようにした、
請求項1に記載の多管式熱交換器の細管洗浄方法。
As the amount of transmitted light, the transmittance represented by the ratio to the amount of transmitted light measured for unused tubules or sufficiently washed tubules was used.
The thin tube washing | cleaning method of the multitubular heat exchanger of Claim 1.
前記検出装置は、前記熱交換器の細管の他端側からの透過光の細管毎の照度を検出する照度計を用い、
前記透過光量として、前記熱交換器の細管の他端側からの透過光の細管毎の照度を用いるようにした、
請求項1または2に記載の多管式熱交換器の細管洗浄方法。
The detection device uses an illuminometer that detects the illuminance of each thin tube of transmitted light from the other end of the thin tube of the heat exchanger,
As the transmitted light amount, the illuminance for each thin tube of transmitted light from the other end of the thin tube of the heat exchanger was used.
The thin tube washing | cleaning method of the multitubular heat exchanger of Claim 1 or 2.
前記検出装置は、前記熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得する撮像装置を用い、
前記透過光量として、前記撮像装置により取得された二次元濃淡画像から演算される前記熱交換器の細管の他端側からの透過光の細管毎の平均輝度を用いるようにした、
請求項1または2に記載の多管式熱交換器の細管洗浄方法。
The detection device uses an imaging device that acquires a two-dimensional gray image of transmitted light from the other end of the thin tube of the heat exchanger,
As the transmitted light amount, an average luminance for each thin tube of transmitted light from the other end of the thin tube of the heat exchanger calculated from a two-dimensional gray image acquired by the imaging device is used.
The thin tube washing | cleaning method of the multitubular heat exchanger of Claim 1 or 2.
前記検出装置は、前記熱交換器の各細管の他端側からの透過光の二次元濃淡画像を取得する撮像装置を用い、
前記透過光量として、前記撮像装置により取得された二次元濃淡画像を所定の閾値で2値化して得られる2値画像の細管毎の面積を用いるようにした、
請求項1または2に記載の多管式熱交換器の細管洗浄方法。
The detection device uses an imaging device that acquires a two-dimensional gray image of transmitted light from the other end of each thin tube of the heat exchanger,
As the transmitted light amount, an area for each narrow tube of a binary image obtained by binarizing a two-dimensional gray image acquired by the imaging device with a predetermined threshold value is used.
The thin tube washing | cleaning method of the multitubular heat exchanger of Claim 1 or 2.
前記撮像装置は、密着型の一次元撮像装置を用い、前記一次元撮像装置を前記熱交換器の細管の他端側の管面に密接させてスキャンすることにより前記熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得するようにした、
請求項4または5に記載の多管式熱交換器の細管洗浄方法。
The imaging device uses a close-contact type one-dimensional imaging device, and scans the one-dimensional imaging device in close contact with the tube surface on the other end side of the thin tube of the heat exchanger to scan the other tubes of the heat exchanger. The two-dimensional gray image of transmitted light from the end side was acquired.
The thin tube cleaning method for a multitubular heat exchanger according to claim 4 or 5.
前記撮像装置は、二次元撮像装置を用い、前記二次元撮像装置により前記熱交換器の細管の他端側からの透過光を写真撮影するようにした、
請求項4または5に記載の多管式熱交換器の細管洗浄方法。
The imaging device uses a two-dimensional imaging device, and the two-dimensional imaging device is configured to take a photograph of transmitted light from the other end of the thin tube of the heat exchanger.
The thin tube cleaning method for a multitubular heat exchanger according to claim 4 or 5.
前記検出装置は、前記熱交換器の細管の他端側の管面と前記撮像装置の間に、前記熱交換器の細管の他端側の管面に密接させて用いる半透明の透過板を備える、請求項6または7に記載の多管式熱交換器の細管洗浄方法。   The detection device includes a translucent transmission plate that is used in close contact with the tube surface on the other end side of the thin tube of the heat exchanger, between the tube surface on the other end side of the thin tube of the heat exchanger and the imaging device. The thin tube washing | cleaning method of the multitubular heat exchanger of Claim 6 or 7 provided. 前記照明装置は、複数の蛍光灯型LEDランプを前記熱交換器の細管の配列に従って所定の間隔で平行に配列したものを用い、前記熱交換器の細管の一端側の管面に密接させて用いるようにした、
請求項1〜8のいずれかに記載の多管式熱交換器の細管洗浄方法。
The lighting device uses a plurality of fluorescent lamp type LED lamps arranged in parallel at predetermined intervals according to the arrangement of the thin tubes of the heat exchanger, and is brought into close contact with the tube surface on one end side of the thin tubes of the heat exchanger. I used it,
The thin tube cleaning method for a multitubular heat exchanger according to any one of claims 1 to 8.
前記洗浄対象とする細管を選定する工程は、前記演算された熱交換器の細管毎の管清浄度に基づいて、管清浄度のランク毎の細管数の度数分布を演算して表示する工程を含む、請求項1〜9のいずれかに記載の多管式熱交換器の細管洗浄方法。   The step of selecting the thin tubes to be cleaned is a step of calculating and displaying the frequency distribution of the number of thin tubes for each rank of the tube cleanliness based on the calculated tube cleanliness of each tube of the heat exchanger. The thin tube washing | cleaning method of the multitubular heat exchanger in any one of Claims 1-9 containing. 前記洗浄対象とする細管を選定する工程は、前記演算された熱交換器の細管毎の管清浄度に基づいて、管清浄度のランク毎の細管数を演算し、洗浄する細管を選定する管清浄度の境界値を表す管清浄度閾値に対して、洗浄対象細管数を演算して表示する工程を含む、請求項1〜10のいずれかに記載の多管式熱交換器の細管洗浄方法。   The step of selecting the thin tubes to be cleaned includes calculating the number of thin tubes for each rank of tube cleanliness based on the calculated tube cleanliness of each thin tube of the heat exchanger, and selecting tubes to be cleaned The thin tube cleaning method for a multitubular heat exchanger according to any one of claims 1 to 10, comprising a step of calculating and displaying the number of thin tubes to be cleaned with respect to a tube cleanliness threshold value representing a boundary value of cleanliness. . 前記洗浄対象とする細管を選定する工程は、前記演算された熱交換器の細管毎の管清浄度に基づいて、管清浄度のランク毎の積算付着物量を演算し、洗浄する細管を選定する管清浄度の境界値を表す管清浄度閾値に対して、洗浄後の細管の積算付着物量に基づいて洗浄後の熱交換器の予測清浄度を演算して表示する工程を含む、請求項1〜11のいずれかに記載の多管式熱交換器の細管洗浄方法。   The step of selecting the thin tubes to be cleaned calculates the accumulated amount of deposits for each rank of the tube cleanliness based on the calculated tube cleanliness of each tube of the heat exchanger, and selects the thin tubes to be cleaned. The method includes the step of calculating and displaying the predicted cleanliness of the heat exchanger after cleaning based on the accumulated amount of deposits of the thin tubes after cleaning with respect to the tube cleanliness threshold value representing the boundary value of the tube cleanliness. The thin tube washing | cleaning method of the multitubular heat exchanger in any one of -11. 前記洗浄対象とする細管を選定する工程は、前記演算された熱交換器の細管毎の管清浄度に基づいて、熱交換器の目標清浄度から洗浄対象とする細管を選定する工程を含む、請求項1〜12のいずれかに記載の多管式熱交換器の細管洗浄方法。   The step of selecting the thin tube to be cleaned includes the step of selecting the thin tube to be cleaned from the target cleanliness of the heat exchanger based on the calculated tube cleanliness of each thin tube of the heat exchanger. The thin tube washing | cleaning method of the multitubular heat exchanger in any one of Claims 1-12. 前記洗浄対象とする細管を選定する工程により選定された細管について細管洗浄を実施する工程と、
前記細管洗浄を実施した熱交換器について、再度前記熱交換器の細管毎の透過光量を計測する工程と前記熱交換器の細管毎の管清浄度を演算する工程とによって前記熱交換器の細管毎の管清浄度を演算し、前記演算された熱交換器の細管毎の管清浄度に基づいて前記実施された細管洗浄の洗浄効果を確認する工程と、
を更に備えた、請求項1〜13のいずれかに記載の多管式熱交換器の細管洗浄方法。
A step of performing capillary cleaning on the capillary selected by the step of selecting the capillary to be cleaned;
About the heat exchanger which performed the said thin tube washing | cleaning, the capillary tube of the said heat exchanger is again measured by the process of measuring the permeation | transmission light quantity for every thin tube of the said heat exchanger, and the process of calculating the tube cleanliness for every thin tube of the said heat exchanger. Calculating the cleanliness of each tube, and confirming the cleaning effect of the performed capillary cleaning based on the calculated tube cleanliness of each tube of the heat exchanger;
The thin tube cleaning method for a multitubular heat exchanger according to any one of claims 1 to 13, further comprising:
多管式熱交換器の細管毎の汚れの度合いを検出する装置であって、
前記熱交換器の細管の一端側の水室に設置され、前記熱交換器の細管の一端側より光を入射させる照明装置と、前記熱交換器の細管の他端側の水室に設置され、前記熱交換器の細管の他端側からの透過光を検出する透過光検出装置とを用いて、前記熱交換器の細管毎の透過光量を計測する細管透過光量計測手段と、
前記計測された熱交換器の細管毎の透過光量から、予め求められた熱交換器の細管の透過光量と細管の汚れの度合いを表す管清浄度との関係に基づいて、前記熱交換器の細管毎の管清浄度を演算する管清浄度演算手段と、
を備えた、多管式熱交換器の細管汚れ検出装置。
An apparatus for detecting the degree of contamination for each thin tube of a multi-tube heat exchanger,
Installed in a water chamber on one end side of the thin tube of the heat exchanger, and installed in a water chamber on the other end side of the thin tube of the heat exchanger, and an illuminating device that allows light to enter from one end side of the thin tube of the heat exchanger Using a transmitted light detection device that detects transmitted light from the other end of the thin tube of the heat exchanger, a thin tube transmitted light amount measuring means for measuring the transmitted light amount of each thin tube of the heat exchanger,
Based on the relationship between the amount of transmitted light of the thin tube of the heat exchanger and the cleanliness of the tube representing the degree of contamination of the thin tube from the measured amount of transmitted light for each thin tube of the heat exchanger, Tube cleanliness calculating means for calculating the tube cleanliness for each thin tube;
A multi-tubular heat exchanger thin tube fouling detection device.
前記細管透過光量計測手段は、前記透過光検出装置として、密着型の一次元撮像装置を用い、前記一次元撮像装置を前記熱交換器の細管の他端側の管面に密接させてスキャンすることにより前記熱交換器の細管の他端側からの透過光の二次元濃淡画像を取得するようにしたものであって、前記取得された二次元濃淡画像から細管毎の平均輝度を演算する画像処理装置を備えた、請求項15に記載の多管式熱交換器の細管汚れ検出装置。   The narrow tube transmitted light amount measuring means uses a contact type one-dimensional imaging device as the transmitted light detection device, and scans the one-dimensional imaging device in close contact with the tube surface on the other end side of the thin tube of the heat exchanger. Thus, a two-dimensional gray image of transmitted light from the other end of the thin tube of the heat exchanger is acquired, and an image for calculating an average luminance for each thin tube from the acquired two-dimensional gray image The multitubular heat exchanger thin tube contamination detection device according to claim 15, comprising a processing device. 前記透過光検出装置は、前記一次元撮像装置を収容するセンサホルダと、一方面を前記熱交換器の細管の他端側の管面に密接させて使用する透明または半透明のベースプレートと、前記ベースプレートの他方面上で前記センサホルダを前記一次元撮像装置の撮像方向と直行する方向に細管の撮像範囲に亘って移動させるセンサホルダ移動機構とを備え、
前記センサホルダは、前記一次元撮像装置を前記ベースプレートの他方面に対して一定の圧力で押し付ける押付機構を有する、請求項16に記載の多管式熱交換器の細管汚れ検出装置。
The transmitted light detection device includes a sensor holder that houses the one-dimensional imaging device, a transparent or translucent base plate that is used by bringing one surface into close contact with the tube surface on the other end of the thin tube of the heat exchanger, A sensor holder moving mechanism that moves the sensor holder over the imaging range of the thin tube in a direction perpendicular to the imaging direction of the one-dimensional imaging device on the other surface of the base plate;
The thin tube dirt detection device for a multi-tube heat exchanger according to claim 16, wherein the sensor holder includes a pressing mechanism that presses the one-dimensional imaging device against the other surface of the base plate with a constant pressure.
前記透過光検出装置は、前記ベースプレートの他方面上に前記センサホルダを前記センサホルダ移動機構の全移動範囲に亘って収容する機密性を有する箱体を備え、前記センサホルダ移動機構を前記箱体の外部より駆動する駆動機構を備えた、請求項17に記載の多管式熱交換器の細管汚れ検出装置。   The transmitted light detection device includes a box body having confidentiality for accommodating the sensor holder over the entire movement range of the sensor holder movement mechanism on the other surface of the base plate, and the sensor holder movement mechanism is disposed in the box body. The thin tube dirt detection device for a multi-tube heat exchanger according to claim 17, further comprising a drive mechanism that is driven from the outside. 前記透過光検出装置は、前記箱体に対して外部からドライエアーを供給するドライエアー供給手段を更に備えた、請求項18に記載の多管式熱交換器の細管汚れ検出装置。   The said transmitted light detection apparatus is a thin-tube dirt detection apparatus of the multitubular heat exchanger of Claim 18 further equipped with the dry air supply means which supplies dry air with respect to the said box from the outside. 前記透過光検出装置は、前記ベースプレートの一方の長辺部には、前記箱体の外側において、細管の水平方向の配列と細管の内径に合せて設けられた複数の固定穴を備えた装置固定部を有する、請求項17〜19のいずれかに記載の多管式熱交換器の細管汚れ検出装置。   The transmitted light detection device is provided with a plurality of fixing holes provided on one long side portion of the base plate on the outside of the box so as to match the horizontal arrangement of the thin tubes and the inner diameter of the thin tubes. The thin-tube fouling detection apparatus for a multi-tubular heat exchanger according to any one of claims 17 to 19, which has a section. 前記照明装置は、複数の蛍光灯型LEDランプを前記熱交換器の細管の配列に従って所定の間隔で平行に配列したものを用い、前記熱交換器の細管の一端側の管面に密接させて用いるようにしたものであって、
前記複数の蛍光灯型LEDランプをLEDランプ部と電源部とに分離し、前記LEDランプ部は放熱性のよい筐体に収容して使用し、前記電源部は外部電源化して前記LEDランプ部と離隔して用いるようにした、請求項15〜20のいずれかに記載の多管式熱交換器の細管汚れ検出装置。
The lighting device uses a plurality of fluorescent lamp type LED lamps arranged in parallel at predetermined intervals according to the arrangement of the thin tubes of the heat exchanger, and is brought into close contact with the tube surface on one end side of the thin tubes of the heat exchanger. It was intended to be used
The plurality of fluorescent lamp type LED lamps are separated into an LED lamp part and a power source part, the LED lamp part is housed in a casing having good heat dissipation and used, and the power source part is converted into an external power source to be used as the LED lamp part. The multi-tube heat exchanger thin tube fouling detection device according to any one of claims 15 to 20, wherein the fouling is used separately from the tube tube heat exchanger.
前記照明装置は、前記LEDランプ部には、表面に防湿コーティングを施した蛍光灯型LEDランプを用いるようにした、請求項21に記載の多管式熱交換器の細管汚れ検出装置。   The thin tube dirt detection device for a multi-tube heat exchanger according to claim 21, wherein the lighting device uses a fluorescent lamp type LED lamp having a moisture-proof coating on a surface of the LED lamp portion.
JP2015221812A 2014-11-19 2015-11-12 Method for washing tubule of multi-tubular heat exchanger and tubule dirt detection device used therefor Active JP6539570B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014234844 2014-11-19
JP2014234844 2014-11-19

Publications (2)

Publication Number Publication Date
JP2016105034A true JP2016105034A (en) 2016-06-09
JP6539570B2 JP6539570B2 (en) 2019-07-03

Family

ID=56102397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221812A Active JP6539570B2 (en) 2014-11-19 2015-11-12 Method for washing tubule of multi-tubular heat exchanger and tubule dirt detection device used therefor

Country Status (1)

Country Link
JP (1) JP6539570B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004351A (en) * 2016-06-29 2018-01-11 中国電力株式会社 Deposit determination device and deposit determination method
JP2019066141A (en) * 2017-10-04 2019-04-25 栗田エンジニアリング株式会社 Dirtiness measurement method and cleaning effect evaluation method for regenerative air preheater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004351A (en) * 2016-06-29 2018-01-11 中国電力株式会社 Deposit determination device and deposit determination method
JP2019066141A (en) * 2017-10-04 2019-04-25 栗田エンジニアリング株式会社 Dirtiness measurement method and cleaning effect evaluation method for regenerative air preheater
JP7047313B2 (en) 2017-10-04 2022-04-05 栗田工業株式会社 Dirt measurement method and cleaning effect evaluation method for regenerative air preheater

Also Published As

Publication number Publication date
JP6539570B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
CN106645197B (en) Online detection system for detecting particles on surface of precision optical element and application method
JP4707605B2 (en) Image inspection method and image inspection apparatus using the method
US11467072B2 (en) Control of industrial water treatment via digital imaging
JP5479385B2 (en) Counting method and counting device for the number of steel materials in a bundle of steel materials
US7746458B2 (en) Diagnosing or determining parameters for an installation for detecting open defects in the surfaces of parts by sweating
JP2006329982A (en) Inspection device and its method
Griffith et al. Measurements of mirror soiling at a candidate CSP site
DE10163038T1 (en) Catalyst loading system
JP2022522348A (en) Equipment and methods for inspecting membranes on substrates
US6792357B2 (en) Optical corrosion measurement system
JP6539570B2 (en) Method for washing tubule of multi-tubular heat exchanger and tubule dirt detection device used therefor
KR20090120104A (en) Glass waviness inspection device and inspection method thereof
TWI764637B (en) Heat transfer surface monitoring cell, system and method for use in monitoring scaling, fouling, pitting, and corrosion of a heat transfer surface
EP3598112B1 (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP6813316B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
CN208921628U (en) A kind of Reflow Soldering furnace temperature test AOI automated optical inspection
CN107024460A (en) A kind of fluorescence detection device and fluorescence detection method
CN115452334A (en) System and method for measuring stray light of internal mask type coronagraph
JP6844976B2 (en) Deterioration information acquisition device, deterioration information acquisition system, deterioration information acquisition method and deterioration information acquisition program
JP7248281B2 (en) Optical transmission measuring device
JP5984045B2 (en) Automated method and apparatus for judging natural deterioration of synthetic fiber safety ropes etc. by the degree of fading of surface color
US7880885B1 (en) Portable evaluation of window transmission
JP2003302333A (en) Diagnostic method for in-duct contamination and simple evaluation method for duct cleaning effect
KR102085572B1 (en) Detecting apparatus for dental caries and detecting method for the same
WO2008060327A2 (en) Method of determining the power transfer of a nuclear component with a layer of material placed upon a heating surface of the component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6539570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250