JP2016103523A - Characteristic evaluation apparatus for ptc element - Google Patents

Characteristic evaluation apparatus for ptc element Download PDF

Info

Publication number
JP2016103523A
JP2016103523A JP2014240022A JP2014240022A JP2016103523A JP 2016103523 A JP2016103523 A JP 2016103523A JP 2014240022 A JP2014240022 A JP 2014240022A JP 2014240022 A JP2014240022 A JP 2014240022A JP 2016103523 A JP2016103523 A JP 2016103523A
Authority
JP
Japan
Prior art keywords
ptc element
temperature
cooling
evaluation apparatus
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014240022A
Other languages
Japanese (ja)
Inventor
晶仁 水野
Akihito Mizuno
晶仁 水野
徹雄 御厨
Tetsuo Mikuriya
徹雄 御厨
慎司 高根
Shinji Takane
慎司 高根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014240022A priority Critical patent/JP2016103523A/en
Publication of JP2016103523A publication Critical patent/JP2016103523A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a characteristic evaluation apparatus for PTC elements which can evaluate current-conduction/temperature characteristics of the PTC elements with high processing capability, by efficiently cooling electrodes for conducting currents to the PTC elements in contact with the elements.SOLUTION: On a rotary table 3, in the vicinity of an outer periphery part are arranged alternately a plurality of holding parts 13 and cooling parts 11. The holding parts 13 are sites for holding PTC elements 29 to be evaluated. Between the holding part 13 and the holding part 13 is arranged the cooling part 11. The holding parts 13 and the cooling parts 11 are arranged concentrically. The cooling parts 11 are made of metal such as copper for example. The cooling parts 11 cool electrodes to be used for measuring current-conduction/temperature characteristics as described later. The respective cooling parts 11 are connected to a cooling apparatus (not shown) arranged on the rotary table 3. On the rotary table 3 is arranged a heat radiation part 15 of the cooling apparatus.SELECTED DRAWING: Figure 2

Description

本発明は、PTC素子の通電温度特性を評価することが可能なPTC素子の特性評価装置に関する。   The present invention relates to a PTC element characteristic evaluation apparatus capable of evaluating a conduction temperature characteristic of a PTC element.

PTC(Positive Temperature Coefficient)素子は、温度の上昇とともに、抵抗値が上昇する素子であり、簡易な温度制御や過電流防止などに利用されている。このようなPTC素子の通電温度特性(温度と抵抗との相関)を測定する方法としては、PTC素子を所定温度にした後、静的に昇温しつつ測定する方法がある。この測定方法は、恒温槽などで所定の温度にした後、デジタルマルチメータを使って微弱な電流を流しながら抵抗値を測定するものである。しかし、複数の温度での抵抗値を測定するため、1つの素子の測定で長時間を要する問題がある。   A PTC (Positive Temperature Coefficient) element increases in resistance as the temperature rises, and is used for simple temperature control, overcurrent prevention, and the like. As a method of measuring the energization temperature characteristics (correlation between temperature and resistance) of such a PTC element, there is a method of measuring the PTC element while raising the temperature statically after setting the PTC element to a predetermined temperature. In this measurement method, after a predetermined temperature is set in a thermostatic chamber or the like, the resistance value is measured using a digital multimeter while passing a weak current. However, since resistance values at a plurality of temperatures are measured, there is a problem that it takes a long time to measure one element.

また、他の方法として、PTC素子の通電時における自己発熱によりPTC素子を昇温しながら通電温度特性を測定する方法もある(例えば、特許文献1)。   In addition, as another method, there is a method of measuring energization temperature characteristics while raising the temperature of the PTC element by self-heating during energization of the PTC element (for example, Patent Document 1).

特許文献1の方法のように、PTC素子の通電時の自己発熱により通電温度特性を測定する方法では、PTC素子にプローブ等の電極を接触させて、電極を介してPTC素子に電圧を印加しつつ、電極間に流れる電流を測定する。   In the method of measuring energization temperature characteristics by self-heating during energization of the PTC element as in the method of Patent Document 1, an electrode such as a probe is brought into contact with the PTC element, and a voltage is applied to the PTC element through the electrode. The current flowing between the electrodes is measured.

そして、電流を測定する間のPTC素子の温度は、例えば放射温度計や熱電対を用いて測定される(例えば、特許文献2)。   Then, the temperature of the PTC element during the current measurement is measured using, for example, a radiation thermometer or a thermocouple (for example, Patent Document 2).

特開平9−92504号公報JP-A-9-92504 特開2005−243827号公報JP 2005-243827 A

しかし、特許文献1のように、PTC素子の通電時の自己発熱により通電温度特性を測定する方法では、PTC素子の昇温により、PTC素子に接触する電極が加熱される。本発明者等の検討によれば、この状態で複数のPTC素子を連続的に測定しようとすると、先の測定によって加熱された電極との接触によってPTC素子が加熱されてしまうため、低い温度域の特性、特に、突入電流のピークを上手く測定できないことがあることが確認された。したがって、測定頻度を上げる場合、効率的に電極を冷却する必要がある。   However, as in Patent Document 1, in the method of measuring energization temperature characteristics by self-heating during energization of the PTC element, the electrode in contact with the PTC element is heated by the temperature rise of the PTC element. According to the study by the present inventors, when a plurality of PTC elements are continuously measured in this state, the PTC element is heated by contact with the electrode heated by the previous measurement, so that the temperature range is low. In particular, it was confirmed that the inrush current peak, in particular, could not be measured well. Therefore, when increasing the measurement frequency, it is necessary to efficiently cool the electrode.

本発明は、このような問題に鑑みてなされたもので、PTC素子に接触して通電するための電極を効率的に冷却して、高い処理能力にてPTC素子の通電温度特性を評価可能なPTC素子の特性評価装置を提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to efficiently cool an electrode for contacting and energizing the PTC element and to evaluate the energization temperature characteristic of the PTC element with high processing capability. An object of the present invention is to provide an apparatus for evaluating characteristics of a PTC element.

前述した目的を達するために、本発明は、PTC素子の通電温度特性を評価可能な特性評価装置であって、PTC素子を保持しつつ回動する回転テーブルと、所定の回動位置にある、PTC素子に電圧を印加しつつPTC素子の温度測定を行い、PTC素子の通電温度特性を測定する通電温度特性評価装置と、を具備し、前記通電温度特性評価装置は、PTC素子に接触する電極と、PTC素子の温度を測定する温度測定部と、を少なくとも具備し、前記回転テーブルは、PTC素子を保持する保持部と、前記電極と接触して前記電極を冷却する冷却部と、を具備し、前記保持部と前記冷却部とが、前記回転テーブルの周方向に交互に配置されており、前記回転テーブルが間欠的に回転し、前記電極が、前記保持部に保持されたPTC素子と前記冷却部とに交互に接触して、通電温度特性の測定と、前記電極の冷却とを交互に行うことを特徴とするPTC素子の特性評価装置である。   In order to achieve the above-described object, the present invention is a characteristic evaluation apparatus capable of evaluating the energization temperature characteristic of a PTC element, and is in a predetermined rotation position with a rotary table that rotates while holding the PTC element, An energization temperature characteristic evaluation device that measures the temperature of the PTC element while applying a voltage to the PTC element and measures the energization temperature characteristic of the PTC element, and the energization temperature characteristic evaluation device includes an electrode in contact with the PTC element. And a temperature measuring unit that measures the temperature of the PTC element, and the rotary table includes a holding unit that holds the PTC element, and a cooling unit that contacts the electrode and cools the electrode. The holding unit and the cooling unit are alternately arranged in the circumferential direction of the rotary table, the rotary table rotates intermittently, and the electrode is held by the PTC element held by the holding unit. Contacts alternately and serial cooling unit, and the measurement of the current temperature characteristics, a characteristic evaluation apparatus of the PTC element characterized by alternately performing the cooling of the electrode.

また、PTC素子の常温での抵抗値を測定する常温抵抗評価装置をさらに具備し、前記常温抵抗評価装置と、前記通電温度特性評価装置とが、前記回転テーブルの回転方向に順に配置され、前記常温抵抗評価装置は、通電温度特性の測定時または前記電極の冷却時に、PTC素子の常温での抵抗値を測定してもよい。   The apparatus further comprises a room temperature resistance evaluation apparatus for measuring a resistance value of the PTC element at room temperature, and the room temperature resistance evaluation apparatus and the energization temperature characteristic evaluation apparatus are sequentially arranged in the rotation direction of the rotary table, The room temperature resistance evaluation apparatus may measure the resistance value of the PTC element at room temperature when the current-carrying temperature characteristic is measured or when the electrode is cooled.

また、PTC素子の厚みを測定する厚さ評価装置をさらに具備し、前記厚さ評価装置は、通電温度特性の測定または前記電極の冷却と同時に、PTC素子の厚みを測定してもよい。   Moreover, the thickness evaluation apparatus which measures the thickness of a PTC element may further be provided, and the said thickness evaluation apparatus may measure the thickness of a PTC element simultaneously with the measurement of an energization temperature characteristic or the cooling of the said electrode.

また、前記冷却部は、ペルチェ素子によって冷却されてもよい。   The cooling unit may be cooled by a Peltier element.

また、前記電極は、内部に中空部を有する箱型形状であってもよい。   The electrode may have a box shape having a hollow portion therein.

また、前記通電温度特性評価装置は、測定前期の電圧よりも高い電圧で、測定後期の通電特性を測定するものであってもよい。   The energization temperature characteristic evaluation apparatus may measure the energization characteristic in the latter measurement period with a voltage higher than the voltage in the first measurement period.

本発明のPTC素子の特性評価装置によれば、PTC素子の保持部と冷却部とが回転テーブル上の周方向に交互に配置され、通電温度特性測定を行う電極が、PTC素子と冷却部とに交互に接触するため、通電温度特性測定の際に加熱された電極を、測定後に冷却することができる。したがって、電極は、PTC素子と接触する際には、常に冷却された状態となるため、例えば、突入電流のピークなどのように、低い温度域の特性を効率よく測定することができる。また、電極が冷却部と直接接触するため、電極の冷却時間が短く、高い処理能力にてPTC素子の通電温度特性を評価することができる。   According to the PTC element characteristic evaluation apparatus of the present invention, the PTC element holding part and the cooling part are alternately arranged in the circumferential direction on the rotary table, and the electrode for measuring the energization temperature characteristic is the PTC element and the cooling part. Since the electrodes are alternately contacted with each other, the electrode heated during the measurement of the energization temperature characteristic can be cooled after the measurement. Therefore, since the electrode is always cooled when it comes into contact with the PTC element, it is possible to efficiently measure the characteristics in the low temperature range such as the peak of the inrush current. Further, since the electrode is in direct contact with the cooling part, the cooling time of the electrode is short, and the energization temperature characteristic of the PTC element can be evaluated with high processing capability.

また、常温抵抗評価装置を設けることで、PTC素子の常温における抵抗も連続して測定することができる。この際、常温抵抗評価装置と通電温度特性評価装置とが、回転テーブルの回転方向に順に配置されることで、すなわち、常温抵抗評価装置を通電温度特性評価装置の回転上流側に配置することで、温度上昇前のPTC素子に対して、常温での測定を効率よく行うことができる。   In addition, by providing a room temperature resistance evaluation apparatus, the resistance of the PTC element at room temperature can also be measured continuously. At this time, the normal temperature resistance evaluation device and the energization temperature characteristic evaluation device are sequentially arranged in the rotation direction of the rotary table, that is, the normal temperature resistance evaluation device is arranged on the upstream side of the energization temperature characteristic evaluation device. In addition, the PTC element before the temperature rise can be efficiently measured at room temperature.

また、厚さ評価装置をさらに設けることで、PTC素子の厚みも連続して測定することができる。   Moreover, the thickness of a PTC element can also be continuously measured by further providing a thickness evaluation apparatus.

また、冷却部をペルチェ素子によって冷却することで、冷却部を効率よく温度制御することができる。   Further, by cooling the cooling unit with the Peltier element, the temperature of the cooling unit can be efficiently controlled.

金属板を折曲げるか、または金属ブロックを削り出すことで、電極の形状を内部に中空部を有する箱型形状とすることで、中実の金属ブロックを用いる場合と比較して、電極の厚みを薄くすることができる。このため、電極の熱容量を小さく抑えることができる。このため、電極の冷却速度を速めることができる。また、電極を箱型形状とすることで、平板の場合と比較して剛性が高まり、電極の変形等を抑制することができる。   Compared to the case of using a solid metal block by bending the metal plate or cutting out the metal block to make the shape of the electrode into a box shape with a hollow portion inside, the thickness of the electrode Can be made thinner. For this reason, the heat capacity of the electrode can be kept small. For this reason, the cooling rate of the electrode can be increased. Further, by making the electrode into a box shape, rigidity is increased as compared with a flat plate, and deformation of the electrode can be suppressed.

通電温度特性の測定前期の測定電圧を低くすることで、温度上昇の速度が緩やかとなり、特に低温域における特性を精度よく測定することができる。また、通電温度特性の測定後期には、徐々に電圧を上げて、測定前期の測定電圧よりも高い電圧で通電温度特性を測定することで、最大抵抗値および最大温度を短時間で測定することができる。   By lowering the measurement voltage in the first half of the measurement of the energization temperature characteristics, the rate of temperature rise becomes slow, and the characteristics in the low temperature range can be measured with high accuracy. In the latter half of the measurement of the conduction temperature characteristics, the maximum resistance value and the maximum temperature can be measured in a short time by gradually increasing the voltage and measuring the conduction temperature characteristics at a voltage higher than the measurement voltage in the previous measurement period. Can do.

本発明によれば、電極を冷却する冷却部を、PTC素子を保持する回転テーブル上に配している。これにより、電極を効率的に冷却して、高い処理能力にてPTC素子の通電温度特性を評価することができる。   According to the present invention, the cooling unit that cools the electrode is arranged on the rotary table that holds the PTC element. Thereby, an electrode can be cooled efficiently and the energization temperature characteristic of a PTC element can be evaluated with high processing capacity.

PTC素子特性評価装置1の斜視図。The perspective view of the PTC element characteristic evaluation apparatus 1. FIG. 回転テーブル3の平面図。The top view of the turntable 3. FIG. PTC素子29を示す図で、(a)は表面斜視図、(b)は裏面斜視図。It is a figure which shows the PTC element 29, (a) is a surface perspective view, (b) is a back surface perspective view. 常温抵抗評価装置7の拡大図であり、(a)は測定子とPTC素子29との接触前の状態を示す図、(b)は測定子をPTC素子29に接触させた状態を示す図。It is an enlarged view of room temperature resistance evaluation apparatus 7, (a) is a figure which shows the state before the contact of a measuring element and the PTC element 29, (b) is a figure which shows the state which made the measuring element contact the PTC element 29. 通電温度特性評価装置5の拡大図であり、(a)は電極とPTC素子29との接触前の状態を示す図、(b)は電極をPTC素子29に接触させた状態を示す図。It is an enlarged view of energization temperature characteristic evaluation apparatus 5, (a) shows the state before contact with an electrode and PTC element 29, and (b) shows the state which made the electrode contact PTC element 29. 通電温度特性評価装置5の拡大図であり、(a)は電極と冷却部11との接触前の状態を示す図、(b)は電極を冷却部11に接触させた状態を示す図。It is an enlarged view of the energization temperature characteristic evaluation apparatus 5, (a) is a figure which shows the state before a contact with an electrode and the cooling part 11, (b) is a figure which shows the state which made the electrode contact the cooling part 11. FIG. 厚さ評価装置9の拡大図。The enlarged view of the thickness evaluation apparatus 9. FIG. 通電温度特性の概念図。The conceptual diagram of an energization temperature characteristic.

以下、図面を参照しながら、本発明の実施形態について説明する。図1は、PTC素子特性評価装置1を示す斜視図であり、図2は、回転テーブル3の平面図である。PTC素子特性評価装置1は、主に、回転テーブル3、通電温度特性評価装置5、常温抵抗評価装置7、厚さ評価装置9等から構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the PTC element characteristic evaluation apparatus 1, and FIG. 2 is a plan view of the turntable 3. The PTC element characteristic evaluation apparatus 1 mainly includes a rotary table 3, an energization temperature characteristic evaluation apparatus 5, a normal temperature resistance evaluation apparatus 7, a thickness evaluation apparatus 9, and the like.

図2に示すように、回転テーブル3は、一定の方向に回転可能である(図中矢印A)。回転テーブル3上の外周部の近傍に、複数の保持部13と冷却部11とが交互に配置される。なお、保持部13と冷却部11との配置数は図示した例には限られない。   As shown in FIG. 2, the turntable 3 can rotate in a fixed direction (arrow A in the figure). In the vicinity of the outer peripheral portion on the rotary table 3, a plurality of holding units 13 and cooling units 11 are alternately arranged. In addition, the number of arrangement | positioning of the holding | maintenance part 13 and the cooling part 11 is not restricted to the example shown in figure.

保持部13は、評価対象であるPTC素子29を保持する部位である。図3は、PTC素子29を示す図で、図3(a)は表面斜視図、図3(b)は裏面斜視図である。本発明で測定対象とするPTC素子29は、例えば、ヒータ用素子であり、平板状の基材32の表面と裏面にそれぞれ電極30a、30bが形成される。   The holding unit 13 is a part that holds the PTC element 29 to be evaluated. 3A and 3B are diagrams showing the PTC element 29, in which FIG. 3A is a front perspective view, and FIG. 3B is a rear perspective view. The PTC element 29 to be measured in the present invention is, for example, a heater element, and electrodes 30a and 30b are formed on the front and back surfaces of a flat substrate 32, respectively.

保持部13には孔14が形成され、回転テーブル3の上下を貫通する。PTC素子29は、孔14の両側縁部にまたがるように配置される。すなわち、PTC素子29の下面は、孔14を介して回転テーブル3の下方に露出する。   A hole 14 is formed in the holding portion 13 and penetrates the top and bottom of the rotary table 3. The PTC element 29 is arranged so as to straddle both side edges of the hole 14. That is, the lower surface of the PTC element 29 is exposed below the turntable 3 through the hole 14.

なお、保持部13には、複数のPTC素子29を配置することができる。図示した例では、2つのPTC素子が、1つの保持部13に保持される。PTC素子29を複数個保持することで、後述する各特性の評価を複数個同時に行うことができる。このため、処理能力を高めることができる。   A plurality of PTC elements 29 can be arranged in the holding unit 13. In the illustrated example, two PTC elements are held by one holding unit 13. By holding a plurality of PTC elements 29, it is possible to simultaneously evaluate a plurality of characteristics described later. For this reason, processing capability can be improved.

隣り合う保持部13と保持部13との間には、冷却部11が配置される。保持部13と冷却部11とは、略同心円上に配置される。冷却部11は、例えば銅などの金属製である。冷却部11は、後述する通電温度特性の測定に使用される電極を冷却するためのものである。   The cooling unit 11 is disposed between the holding units 13 adjacent to each other. The holding | maintenance part 13 and the cooling part 11 are arrange | positioned on a substantially concentric circle. The cooling unit 11 is made of metal such as copper, for example. The cooling part 11 is for cooling the electrode used for the measurement of the energization temperature characteristic mentioned later.

それぞれの冷却部11は、回転テーブル3に配置される冷却機器(図示せず)と接続される。回転テーブル3上には、冷却機器の放熱部15が配置される。なお、冷却機器は、例えばペルチェ素子を用いることができ、この場合、放熱部15は、ペルチェ素子の発熱部を冷却するヒートシンクおよびファンである。なお、冷却部11は、例えば18℃〜20℃程度に制御される。   Each cooling unit 11 is connected to a cooling device (not shown) arranged on the rotary table 3. On the turntable 3, a heat radiating portion 15 of the cooling device is arranged. For example, a Peltier element can be used as the cooling device. In this case, the heat radiating unit 15 is a heat sink and a fan for cooling the heat generating part of the Peltier element. Note that the cooling unit 11 is controlled to about 18 ° C. to 20 ° C., for example.

回転テーブル3に対する所定の位置には、通電温度特性評価装置5、常温抵抗評価装置7、厚さ評価装置9が配置される。通電温度特性評価装置5は、PTC素子29に対して所定の電圧を付与し、その際の温度と抵抗値(電流値)とを測定する部位である。常温抵抗評価装置7は、PTC素子の常温での抵抗値を測定する部位である。厚さ評価装置9は、PTC素子29の厚さを測定する部位である。なお、それぞれの評価装置における測定方法については詳細を後述する。   At predetermined positions with respect to the turntable 3, an energization temperature characteristic evaluation device 5, a room temperature resistance evaluation device 7, and a thickness evaluation device 9 are disposed. The energization temperature characteristic evaluation device 5 is a part that applies a predetermined voltage to the PTC element 29 and measures a temperature and a resistance value (current value) at that time. The room temperature resistance evaluation apparatus 7 is a part that measures the resistance value of the PTC element at room temperature. The thickness evaluation device 9 is a part that measures the thickness of the PTC element 29. The details of the measuring method in each evaluation apparatus will be described later.

次に、PTC素子特性評価装置1の動作の概略を説明する。図1に示すように、回転テーブル3の側方には、マガジン17が配置される。マガジン17には、複数のトレイ21が収容される。トレイ21には、検査対象となる複数のPTC素子が載せられている。   Next, an outline of the operation of the PTC element characteristic evaluation apparatus 1 will be described. As shown in FIG. 1, a magazine 17 is disposed on the side of the rotary table 3. A plurality of trays 21 are accommodated in the magazine 17. A plurality of PTC elements to be inspected are placed on the tray 21.

まず、回転テーブル3は、所定の位置で回転を停止した状態を所定時間維持する。このタイミングで、マガジン17よりコンベア19上に移動したトレイ21から、図示を省略したロボットによって、PTC素子を取り出して、所定の保持部13(例えば、常温抵抗評価装置7に移動する直前の回転移動前の保持部13)に載置する。保持部13が二つのPTC素子を保持する場合には、ロボットは所定時間内で二つのPTC素子を所定の保持部13に載置する。   First, the rotary table 3 maintains a state where the rotation is stopped at a predetermined position for a predetermined time. At this timing, the PTC element is taken out from the tray 21 moved from the magazine 17 onto the conveyor 19 by a robot (not shown), and rotated and moved immediately before moving to a predetermined holding unit 13 (for example, the room temperature resistance evaluation device 7). Place on the previous holding part 13). When the holding unit 13 holds two PTC elements, the robot places the two PTC elements on the predetermined holding unit 13 within a predetermined time.

なお、トレイ21上の全てのPTC素子が取り出されると、空のトレイ21はコンベア19によって移動し、トレイ21のみが回収される。また、同時に、PCT素子を載せた新たなトレイ21がマガジン17から取り出されて、コンベア19上の所定の場所まで移動して待機する。   When all the PTC elements on the tray 21 are taken out, the empty tray 21 is moved by the conveyor 19 and only the tray 21 is collected. At the same time, a new tray 21 loaded with PCT elements is taken out of the magazine 17 and moved to a predetermined location on the conveyor 19 to stand by.

次に、回転テーブル3は、所定角度だけ回転する。すなわち、回転テーブル3は、間欠的に回転する。回転テーブル3の回転角度は、保持部13と冷却部11との設置ピッチに応じて決定される。例えば、図2に示すように、冷却部11と保持部13とが合わせて12個ある場合には、回転テーブル3の一度の回転角度は、360°/12=30°となる。   Next, the rotary table 3 rotates by a predetermined angle. That is, the rotary table 3 rotates intermittently. The rotation angle of the turntable 3 is determined according to the installation pitch between the holding unit 13 and the cooling unit 11. For example, as shown in FIG. 2, when there are twelve cooling units 11 and holding units 13, the rotation angle of the rotary table 3 at one time is 360 ° / 12 = 30 °.

PTC素子を保持した保持部13は、まず、常温抵抗評価装置7の位置に移動する。図4(a)は、常温抵抗評価装置7の位置に移動した状態の、保持部13およびPTC素子29を示す図である。常温抵抗評価装置7は、上下に一対の測定子25a、25bと、下方の測定子25aを昇降させる昇降機構27を有する。なお、一度に二つのPTC素子の測定を行う場合には、それぞれのPTC素子に対して、上下に一対の測定子25a、25bを配置すればよい。   The holding unit 13 holding the PTC element first moves to the position of the room temperature resistance evaluation device 7. FIG. 4A is a diagram illustrating the holding unit 13 and the PTC element 29 in a state of being moved to the position of the room temperature resistance evaluation device 7. The room temperature resistance evaluation device 7 has a pair of measuring elements 25a and 25b up and down, and an elevating mechanism 27 that elevates and lowers the lower measuring element 25a. When two PTC elements are measured at a time, a pair of measuring elements 25a and 25b may be arranged above and below each PTC element.

この状態で、昇降機構27を動作させると、図4(b)に示すように、下方の測定子25aが上昇してPTC素子29と接触する。なお、前述した様に、保持部13には、回転テーブル3を貫通する孔14が形成されるため、測定子25aは直接PTC素子29の下面に接触する。さらに、測定子25aが上昇することで、PTC素子29が測定子25aによって持ち上げられて、測定子25a、25bでPTC素子29が挟み込まれる。この状態で、測定子25a、25bによって常温(例えば25℃)の抵抗値を測定することができる。   When the elevating mechanism 27 is operated in this state, as shown in FIG. 4B, the lower measuring element 25 a rises and contacts the PTC element 29. As described above, since the hole 14 penetrating the turntable 3 is formed in the holding portion 13, the measuring element 25 a directly contacts the lower surface of the PTC element 29. Furthermore, when the probe 25a is raised, the PTC element 29 is lifted by the probe 25a, and the PTC element 29 is sandwiched between the probes 25a and 25b. In this state, the resistance value at normal temperature (for example, 25 ° C.) can be measured by the measuring elements 25a and 25b.

なお、上下の測定子25a、25bの両方を昇降動作させてもよいが、それぞれに対して昇降機構27が必要となるため、下方のみを昇降させることが望ましい。また、昇降機構27としては、例えばエアシリンダ等を用いることができる。   Although both the upper and lower measuring elements 25a and 25b may be moved up and down, since the lifting mechanism 27 is required for each of them, it is desirable to lift only the lower part. Further, as the elevating mechanism 27, for example, an air cylinder or the like can be used.

測定が終了すると、昇降機構27が下降して、測定子25aが元の位置に戻る。したがって、PTC素子29が再び保持部13の所定の位置に戻る。なお、常温抵抗評価装置7による抵抗測定は数秒以内で完了する。   When the measurement is completed, the elevating mechanism 27 is lowered and the measuring element 25a returns to the original position. Accordingly, the PTC element 29 returns to the predetermined position of the holding unit 13 again. The resistance measurement by the room temperature resistance evaluation device 7 is completed within a few seconds.

常温抵抗測定を終えたPTC素子29が保持された保持部13は、所定の角度ずつ移動する。なお、前述した様に、保持部13と冷却部11とが交互に配置される。したがって、常温抵抗評価装置7による抵抗測定は、常温抵抗評価装置7の位置に保持部13が位置する場合にのみ行われ、常温抵抗評価装置7の位置に冷却部11が位置する場合には動作しない。   The holding unit 13 holding the PTC element 29 for which the room temperature resistance measurement has been completed moves by a predetermined angle. As described above, the holding units 13 and the cooling units 11 are alternately arranged. Therefore, the resistance measurement by the room temperature resistance evaluation apparatus 7 is performed only when the holding unit 13 is located at the position of the room temperature resistance evaluation apparatus 7 and operates when the cooling unit 11 is located at the position of the room temperature resistance evaluation apparatus 7. do not do.

次に、常温抵抗測定を終えたPTC素子29が保持された保持部13は、所定の角度ずつ移動し、通電温度特性評価装置5の位置に移動する。図5(a)は、通電温度特性評価装置5の位置に移動した状態の、保持部13およびPTC素子29を示す図である。   Next, the holding unit 13 holding the PTC element 29 for which the room temperature resistance measurement is completed moves by a predetermined angle and moves to the position of the energization temperature characteristic evaluation device 5. FIG. 5A is a diagram illustrating the holding unit 13 and the PTC element 29 in a state where the holding unit 13 is moved to the position of the energization temperature characteristic evaluation device 5.

通電温度特性評価装置5は、上下に一対の電極31a、31bと、上下の電極31a、31bをそれぞれ昇降させる昇降機構33を有する。また、電極31bの両側方には、一対の測温部35が配置される。なお、昇降機構33としては、例えばエアシリンダ等を用いることができる。   The energization temperature characteristic evaluation device 5 includes a pair of electrodes 31a and 31b in the vertical direction and a lifting mechanism 33 that lifts and lowers the upper and lower electrodes 31a and 31b. In addition, a pair of temperature measuring units 35 are disposed on both sides of the electrode 31b. As the lifting mechanism 33, for example, an air cylinder or the like can be used.

なお、測温部35は、必ずしも一対でなくてもよく、PTC素子29の少なくとも一部を測定可能であればよい。また、以下の実施形態においては、測温部35は、接触型温度計である例を示すが、本発明では、測温部35は非接触型であってもよい。また、測温部35をPTC素子29の下面側に配置してもよい。また、前述した様に、一度に二つのPTC素子の測定を行う場合には、それぞれのPTC素子に対して、測温部35と、上下に一対の電極31a、31bを配置すればよい。   The temperature measuring units 35 do not necessarily have to be a pair, as long as at least a part of the PTC element 29 can be measured. Moreover, in the following embodiment, although the temperature measuring part 35 shows the example which is a contact-type thermometer, the temperature measuring part 35 may be a non-contact type in this invention. Further, the temperature measuring unit 35 may be disposed on the lower surface side of the PTC element 29. Further, as described above, when two PTC elements are measured at a time, a temperature measuring unit 35 and a pair of electrodes 31a and 31b above and below may be arranged for each PTC element.

PTC素子29との接触する電極31a、31bは、金属板を折り曲げて形成するか、または、金属ブロックから削り出されて形成される。例えば、電極31a、31bは、内部に中空部を有する箱型(一面が解放された箱型)に形成される。このように、薄肉の電極31a、31bを用いることで、中実の金属ブロックを用いる場合と比較して、熱容量を小さくすることができる。このため、後述する電極31a、31bの冷却速度を高めることができる。   The electrodes 31a and 31b that come into contact with the PTC element 29 are formed by bending a metal plate or by cutting out from a metal block. For example, the electrodes 31a and 31b are formed in a box shape (a box shape with one surface opened) having a hollow portion inside. Thus, by using the thin electrodes 31a and 31b, the heat capacity can be reduced as compared with the case of using a solid metal block. For this reason, the cooling rate of electrodes 31a and 31b described later can be increased.

また、箱型の形状とすることで、電極31a、31bの剛性を高め、単なる平板の場合と比較して、変形等を抑制することができる。このため、より肉厚を薄くすることができ、より一層、熱容量を小さくすることができる。このような電極31a、31bとしては、例えば、0.5mm厚みの真鍮材を箱型にしたものを用いることができる。なお、電極31a、31bの裏面側には、絶縁性、耐熱性および熱伝導性の観点から樹脂材(例えばポリエーテルエーテルケトン)が設けられる。   Further, by adopting a box shape, the rigidity of the electrodes 31a and 31b can be increased, and deformation and the like can be suppressed as compared with a simple flat plate. For this reason, the thickness can be further reduced, and the heat capacity can be further reduced. As such electrodes 31a and 31b, for example, a box material made of a brass material having a thickness of 0.5 mm can be used. A resin material (for example, polyetheretherketone) is provided on the back surfaces of the electrodes 31a and 31b from the viewpoints of insulation, heat resistance, and thermal conductivity.

この状態で、上下の昇降機構33を動作させると、図5(b)に示すように、下方の電極31aが上昇してPTC素子29の下面と接触し、上方の電極31bが下降してPTC素子29の上面と接触する。なお、前述した様に、保持部13には、回転テーブル3を貫通する孔14が形成されるため、電極31aは直接PTC素子29の下面に接触する。このように、電極31a、31bでPTC素子29が挟み込まれる。また、PTC素子29が電極31a、31bで挟み込まれた際に、PTC素子29は、保持部13からわずかに浮き上がることが望ましい。このようにすることで、測定時のPTC素子29の熱が、保持部13へ伝わることを防止することができる。   When the upper and lower elevating mechanism 33 is operated in this state, as shown in FIG. 5B, the lower electrode 31a rises to contact the lower surface of the PTC element 29, and the upper electrode 31b descends to cause the PTC. It contacts the upper surface of the element 29. As described above, since the hole 14 penetrating the turntable 3 is formed in the holding unit 13, the electrode 31 a directly contacts the lower surface of the PTC element 29. In this way, the PTC element 29 is sandwiched between the electrodes 31a and 31b. Further, when the PTC element 29 is sandwiched between the electrodes 31 a and 31 b, it is desirable that the PTC element 29 slightly floats from the holding portion 13. By doing in this way, it can prevent that the heat | fever of the PTC element 29 at the time of a measurement is transmitted to the holding | maintenance part 13. FIG.

電極31a、31bがPTC素子29と接触した状態で、電極31a、31bに電圧を付与して、PTC素子29に通電を開始する。PTC素子29は通電によって自己発熱する。この際の温度変化と抵抗値変化(電流値変化)を測定することで、温度と抵抗値の相関である通電温度特性を測定することができる。   In a state where the electrodes 31 a and 31 b are in contact with the PTC element 29, a voltage is applied to the electrodes 31 a and 31 b to start energization of the PTC element 29. The PTC element 29 self-heats when energized. By measuring the temperature change and resistance value change (current value change) at this time, it is possible to measure the energization temperature characteristic which is the correlation between the temperature and the resistance value.

測定が終了すると、昇降機構33が動作して、電極31a、31bが元の位置に戻る。なお、通電温度特性評価装置5による通電温度特性の測定は数秒以内で完了する。   When the measurement is completed, the elevating mechanism 33 operates to return the electrodes 31a and 31b to their original positions. In addition, the measurement of the energization temperature characteristic by the energization temperature characteristic evaluation apparatus 5 is completed within several seconds.

常温抵抗測定を終えたPTC素子29が保持された保持部13は、所定の角度ずつ移動する。回転テーブル3上には、保持部13と冷却部11とが交互に配置される。したがって、通電温度特性評価装置5で保持部13に保持されたPTC素子29の特定測定を行った後は、通電温度特性評価装置5の位置に冷却部11が移動する。   The holding unit 13 holding the PTC element 29 for which the room temperature resistance measurement has been completed moves by a predetermined angle. On the rotary table 3, the holding units 13 and the cooling units 11 are alternately arranged. Therefore, after the specific measurement of the PTC element 29 held in the holding unit 13 by the energization temperature characteristic evaluation device 5, the cooling unit 11 moves to the position of the energization temperature characteristic evaluation device 5.

図6(a)は、通電温度特性評価装置5の位置に冷却部11が移動した状態を示す図である。PTC素子29の特性測定を終えた後の電極31a、31bおよび測温部35は、PTC素子29の自己発熱によって加熱されており、高温の状態となっている。したがって、次に、このままPTC素子29に接触すると、通電とは関係なくPTC素子29の温度が上昇してしまい、低温域での測定ができなくなる。   FIG. 6A is a diagram illustrating a state in which the cooling unit 11 has moved to the position of the energization temperature characteristic evaluation device 5. The electrodes 31 a and 31 b and the temperature measuring unit 35 after the measurement of the characteristics of the PTC element 29 are heated by the self-heating of the PTC element 29 and are in a high temperature state. Therefore, if the PTC element 29 is subsequently contacted as it is, the temperature of the PTC element 29 rises regardless of energization, and measurement in a low temperature range becomes impossible.

そこで、図6(b)に示すように、冷却部11が位置する状態でも、測定時と同様に、昇降機構33を動作させて、PTC素子29の測定を終えた後の電極31a、31b、測温部35(以下単に電極31a、31b等とする)を冷却部11に接触させる。なお、この際には、電極31a、31bへの通電は行わない。   Therefore, as shown in FIG. 6B, even when the cooling unit 11 is located, the electrodes 31a and 31b after the measurement of the PTC element 29 is finished by operating the elevating mechanism 33, as in the measurement. A temperature measuring unit 35 (hereinafter simply referred to as electrodes 31a and 31b) is brought into contact with the cooling unit 11. At this time, the electrodes 31a and 31b are not energized.

冷却部11は、ペルチェ素子などの冷却機器によって略一定の温度に冷却されている。また、電極31a、31b等と比較して、十分に熱容量が大きい。このため、冷却部11と接触した電極31a、31b等は、直ちに冷却される。   The cooling unit 11 is cooled to a substantially constant temperature by a cooling device such as a Peltier element. Further, the heat capacity is sufficiently large as compared with the electrodes 31a, 31b and the like. For this reason, the electrodes 31a, 31b and the like that are in contact with the cooling unit 11 are immediately cooled.

電極31a、31b等の冷却が終了すると、昇降機構33が動作して、電極31a、31bが元の位置に戻る。なお、冷却時間は、通電温度特性評価装置5における特性測定時間とほぼ同じである。   When the cooling of the electrodes 31a, 31b, etc. is completed, the elevating mechanism 33 operates to return the electrodes 31a, 31b to their original positions. The cooling time is substantially the same as the characteristic measurement time in the energization temperature characteristic evaluation device 5.

電極31a、31b等の冷却が終了すると、冷却部11は、所定の角度ずつ移動する。このため、通電温度特性評価装置5には、PTC素子29が配置された保持部13が移動し、前述した様に通電温度特性の測定を行う。このように、電極31a、31b等が測定と冷却とを交互に行うため、特性測定時において、電極31a、31b等によってPTC素子29を加熱することがなく、室温近傍の低温域から正確な測定を行うことができる。   When the cooling of the electrodes 31a, 31b and the like is completed, the cooling unit 11 moves by a predetermined angle. For this reason, the holding part 13 in which the PTC element 29 is arranged moves to the energizing temperature characteristic evaluation apparatus 5 and measures the energizing temperature characteristic as described above. As described above, since the electrodes 31a, 31b, etc. alternately perform measurement and cooling, the PTC element 29 is not heated by the electrodes 31a, 31b, etc. during characteristic measurement, and accurate measurement is performed from a low temperature range near room temperature. It can be performed.

通電温度特性測定を終えたPTC素子29が保持された保持部13は、所定の角度ずつ移動し、厚さ評価装置9の位置に移動する。図7は、厚さ評価装置9の位置に移動した状態の、保持部13およびPTC素子29を示す図である。   The holding unit 13 holding the PTC element 29 for which the energization temperature characteristic measurement is completed moves by a predetermined angle and moves to the position of the thickness evaluation device 9. FIG. 7 is a diagram showing the holding unit 13 and the PTC element 29 in a state where the holding unit 13 has been moved to the position of the thickness evaluation device 9.

厚さ評価装置9にはレーザセンサ37が配置される。レーザセンサ37は、PTC素子29に対して、レーザを照射して、その厚みを測定する。なお、PTC素子29の厚さの測定方法は、レーザセンサ37以外の方法であってもよい。例えば、他の特性測定と同様に、PTC素子29を上下から測定子で挟み込んで、厚さを測定してもよい。   A laser sensor 37 is disposed in the thickness evaluation device 9. The laser sensor 37 irradiates the PTC element 29 with a laser and measures its thickness. The method for measuring the thickness of the PTC element 29 may be a method other than the laser sensor 37. For example, as in other characteristic measurements, the thickness may be measured by sandwiching the PTC element 29 from above and below with a probe.

厚さ測定が終了すると、厚さ測定を終えたPTC素子29が保持された保持部13は、所定の角度ずつ移動する。その後、ロボットによって保持部13からPTC素子29が取り出されて、分別格納部23(図1参照)に格納される。なお、通電温度特性の終了から、ロボットによる回収までの間に、回転テーブル3上において、PTC素子29を冷却するための冷却機(ファンなど)を設置してもよい。   When the thickness measurement is completed, the holding unit 13 holding the PTC element 29 after the thickness measurement is moved by a predetermined angle. Thereafter, the PTC element 29 is taken out from the holding unit 13 by the robot and stored in the separation storage unit 23 (see FIG. 1). A cooler (such as a fan) for cooling the PTC element 29 may be installed on the rotary table 3 between the end of the energization temperature characteristic and the collection by the robot.

ここで、PTC素子29は、各特性の評価結果に応じて、分別格納部23に分別して回収される。例えば、通電温度特性によってPTC素子29を分別回収することができる。   Here, the PTC elements 29 are sorted and collected in the sorting storage unit 23 according to the evaluation results of the characteristics. For example, the PTC elements 29 can be collected separately according to the energization temperature characteristics.

図8は、通電温度特性の一例を示す概念図である。得られた通電温度特性からは、例えば、25℃における抵抗値R25、温度上昇に伴って抵抗値が減少した際の抵抗値の最低値であるRminとその際の温度Tmin、キュリー温度T(室温抵抗が2倍となる温度)とその際の抵抗値R、R以上における温度上昇に伴う抵抗値の増加の傾きである抵抗温度係数α、測定最大温度Tmaxとその時の抵抗値Rmaxなどの情報を得ることができる。 FIG. 8 is a conceptual diagram showing an example of energization temperature characteristics. From the obtained energization temperature characteristics, for example, the resistance value R 25 at 25 ° C., the minimum value of the resistance value when the resistance value decreases as the temperature rises, R min , the temperature T min at that time, the Curie temperature T C (room temperature resistivity is doubled temperature) and the resistance value R C of that time, the resistance temperature coefficient is the slope of the increase in the resistance value with increasing temperature in the above R C alpha, a maximum temperature T max and the time measurement Information such as the resistance value R max can be obtained.

なお、本発明では、例えば、T以下の温度域(図中領域I)の特性評価は定電圧で行い、Tを超える温度域(図中領域II)では、電圧を徐々に上げて測定する装置としてもよい。T以下の温度域では、得られる情報も多いため、正確な測定が望まれる。このため、一定の電圧で、徐々に温度を上げて、抵抗値を測定することが望ましい。一方、Tを超える領域では、最大温度(例えば200℃程度)まで上昇させる必要があるため、処理能力を上げるためには、できるだけ早く昇温することが望ましい。このため、電圧を上げて早く昇温させることが望ましい。このように、本発明では、測定の前期における電圧よりも、測定の後期における電圧が高くなるように測定を行うことが望ましい。 In the present invention, for example, the characteristic evaluation in the temperature range below T C (region I in the figure) is performed at a constant voltage, and in the temperature range exceeding T C (region II in the figure), the voltage is gradually increased and measured. It is good also as an apparatus to do. The T C below the temperature range, for greater information obtained, accurate measurements are desired. For this reason, it is desirable to measure the resistance value by gradually raising the temperature at a constant voltage. On the other hand, in the region exceeding TC , it is necessary to increase the temperature to the maximum temperature (for example, about 200 ° C.). For this reason, it is desirable to raise the voltage and raise the temperature quickly. Thus, in the present invention, it is desirable to perform the measurement so that the voltage in the latter part of the measurement is higher than the voltage in the first part of the measurement.

このような電圧の制御は、回転テーブル3の回転制御、各評価装置における昇降動作制御、各測定値の取得および記憶、PTC素子29の分別判断およびロボットおよびコンベア等の動作制御等とともに制御部(図示せず)によって行うことができる。   Such voltage control includes control of the rotation table 3, elevation control in each evaluation device, acquisition and storage of each measurement value, classification determination of the PTC element 29, operation control of the robot and conveyor, etc. (Not shown).

以上のように、本実施形態によれば、電極31a、31b等による通電温度特性の測定と、電極31a、31b等の冷却とを交互に行うことができるため、通電温度特性の測定の際に、高温の電極31a、31b等がPTC素子29に接触することを防止することができる。このため、PTC素子29の低温域から正確に測定することができる。   As described above, according to the present embodiment, the measurement of the energization temperature characteristics using the electrodes 31a and 31b and the cooling of the electrodes 31a and 31b and the like can be performed alternately. It is possible to prevent the high temperature electrodes 31a, 31b and the like from coming into contact with the PTC element 29. For this reason, it can measure accurately from the low temperature range of the PTC element 29.

特に、測定対象のPTC素子29が保持される保持部13と、電極31a、31b等の冷却を行う冷却部11とが回転テーブル3の外周部近傍に交互に配置されるため、簡単な制御によって、測定と冷却とを交互に行うことができる。具体的には、回転テーブル3を間欠的に所定角度ずつ回転させることで、通電温度特性評価装置5の位置に、保持部13と冷却部11とを交互に停止させることができ、そのいずれの場合にも、電極31a、31bを同様に昇降動作させることによって、容易に測定と冷却の両方を交互に行うことができる。   In particular, since the holding unit 13 that holds the PTC element 29 to be measured and the cooling unit 11 that cools the electrodes 31a and 31b and the like are alternately arranged in the vicinity of the outer peripheral portion of the turntable 3, it is possible to perform simple control. Measurement and cooling can be performed alternately. Specifically, by rotating the turntable 3 by a predetermined angle intermittently, the holding unit 13 and the cooling unit 11 can be alternately stopped at the position of the energization temperature characteristic evaluation device 5, Even in this case, both the measurement and the cooling can be easily performed by moving the electrodes 31a and 31b up and down in the same manner.

また、常温抵抗評価装置7を配置することで、PTC素子29の通電温度特性のみではなく、常温での抵抗値も確実に測定することができる。また、常温抵抗評価装置7と、通電温度特性評価装置5とが、回転テーブル3の回転方向に順に配置されることで、すなわち、常温抵抗評価装置7を通電温度特性評価装置5の回転方向の上流側に配置することで、温度上昇前のPTC素子29の常温での測定を効率よく行うことができる。   In addition, by arranging the room temperature resistance evaluation device 7, not only the energization temperature characteristics of the PTC element 29 but also the resistance value at room temperature can be reliably measured. Further, the normal temperature resistance evaluation device 7 and the energization temperature characteristic evaluation device 5 are arranged in order in the rotation direction of the turntable 3, that is, the normal temperature resistance evaluation device 7 is arranged in the rotation direction of the energization temperature characteristic evaluation device 5. By disposing on the upstream side, the PTC element 29 before the temperature rise can be efficiently measured at room temperature.

また、厚さ評価装置9を配置することで、さらに、PTC素子29の厚さ測定も行うことができる。   Moreover, the thickness of the PTC element 29 can be further measured by arranging the thickness evaluation device 9.

また、常温抵抗評価装置7および厚さ評価装置9におけるPTC素子29のそれぞれの測定は、通電温度特性評価装置5における測定または冷却のいずれかと同時に行うことができる。このため、PTC素子29の特性等の測定を効率よく行うことができる。   Moreover, each measurement of the PTC element 29 in the normal temperature resistance evaluation apparatus 7 and the thickness evaluation apparatus 9 can be performed simultaneously with either the measurement in the energization temperature characteristic evaluation apparatus 5 or the cooling. For this reason, the characteristics of the PTC element 29 can be measured efficiently.

なお、本発明では、少なくとも通電温度特性評価装置5を具備すれば、常温抵抗評価装置7および厚さ評価装置9は必ずしも必要ではない。すなわち、本発明のPTC素子特性評価装置1は、少なくとも、通電温度特性のみを測定できればよい。   In the present invention, the room temperature resistance evaluation device 7 and the thickness evaluation device 9 are not necessarily required if at least the conduction temperature characteristic evaluation device 5 is provided. That is, the PTC element characteristic evaluation apparatus 1 of the present invention only needs to measure at least the energization temperature characteristic.

また、冷却機器としてペルチェ素子を用いることで、容易に冷却部11を一定の温度に冷却して保持することができる。   Further, by using a Peltier element as a cooling device, the cooling unit 11 can be easily cooled to a constant temperature and held.

また、電極31a、31bを、内部に中空部を有する箱型とすることで、熱容量を小さくすることができ、これにより、電極31a、31bの冷却時間を短縮することができる。   Moreover, by making the electrodes 31a and 31b into a box shape having a hollow portion inside, the heat capacity can be reduced, and thereby the cooling time of the electrodes 31a and 31b can be shortened.

また、T以下とTを超えるそれぞれの温度域において、電極31a、31bに付与する電圧の制御をそれぞれ変えることで、正確かつ短時間の測定を行うことができる。 Moreover, in each temperature range below Tc and exceeding TC , the control of the voltage applied to the electrodes 31a and 31b can be changed to perform accurate and short-time measurement.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1………PTC素子特性評価装置
3………回転テーブル
5………通電温度特性評価装置
7………常温抵抗評価装置
9………厚さ評価装置
11………冷却部
13………保持部
14………孔
15………放熱部
17………マガジン
19………コンベア
21………トレイ
23………分別格納部
25a、25b………測定子
27………昇降機構
29………PTC素子
31a、31b………電極
33………昇降機構
35………測温部
37………レーザセンサ
DESCRIPTION OF SYMBOLS 1 ......... PTC element characteristic evaluation apparatus 3 ......... Turntable 5 ......... Energization temperature characteristic evaluation apparatus 7 ......... Normal temperature resistance evaluation apparatus 9 ......... Thickness evaluation apparatus 11 ......... Cooling part 13 ......... Holding part 14 ......... Hole 15 ......... Heat dissipation part 17 ......... Magazine 19 ......... Conveyor 21 ......... Tray 23 ......... Separate storage parts 25a, 25b ......... Measuring element 27 ......... Elevating mechanism 29 PTC elements 31a, 31b ... Electrode 33 ... Elevating mechanism 35 ... Temperature measuring unit 37 ... Laser sensor

Claims (6)

PTC素子の通電温度特性を評価可能な特性評価装置であって、
PTC素子を保持しつつ回動する回転テーブルと、
所定の回動位置にある、PTC素子に電圧を印加しつつPTC素子の温度測定を行い、PTC素子の通電温度特性を測定する通電温度特性評価装置と、
を具備し、
前記通電温度特性評価装置は、PTC素子に接触する電極と、PTC素子の温度を測定する温度測定部と、を少なくとも具備し、
前記回転テーブルは、PTC素子を保持する保持部と、前記電極と接触して前記電極を冷却する冷却部と、を具備し、前記保持部と前記冷却部とが、前記回転テーブルの周方向に交互に配置されており、
前記回転テーブルが間欠的に回転し、前記電極が、前記保持部に保持されたPTC素子と前記冷却部とに交互に接触して、通電温度特性の測定と、前記電極の冷却とを交互に行うことを特徴とするPTC素子の特性評価装置。
A characteristic evaluation apparatus capable of evaluating the conduction temperature characteristic of a PTC element,
A rotary table that rotates while holding the PTC element;
An energization temperature characteristic evaluation apparatus that measures the temperature of the PTC element while applying a voltage to the PTC element at a predetermined rotation position and measures the energization temperature characteristic of the PTC element;
Comprising
The energization temperature characteristic evaluation apparatus includes at least an electrode that contacts the PTC element, and a temperature measurement unit that measures the temperature of the PTC element,
The rotary table includes a holding unit that holds a PTC element, and a cooling unit that contacts the electrode and cools the electrode, and the holding unit and the cooling unit are arranged in a circumferential direction of the rotary table. Are arranged alternately,
The rotary table rotates intermittently, and the electrodes are alternately brought into contact with the PTC elements held by the holding unit and the cooling unit to alternately measure the energization temperature characteristics and cool the electrodes. An apparatus for evaluating the characteristics of a PTC element.
PTC素子の常温での抵抗値を測定する常温抵抗評価装置をさらに具備し、
前記常温抵抗評価装置と、前記通電温度特性評価装置とが、前記回転テーブルの回転方向に順に配置され、
前記常温抵抗評価装置は、通電温度特性の測定時または前記電極の冷却時に、PTC素子の常温での抵抗値を測定することを特徴とする請求項1記載のPTC素子の特性評価装置。
It further comprises a room temperature resistance evaluation device that measures the resistance value of the PTC element at room temperature,
The room temperature resistance evaluation device and the energization temperature characteristic evaluation device are sequentially arranged in the rotation direction of the rotary table,
2. The PTC element characteristic evaluation apparatus according to claim 1, wherein the room temperature resistance evaluation apparatus measures a resistance value of the PTC element at room temperature when measuring the conduction temperature characteristic or cooling the electrode. 3.
PTC素子の厚みを測定する厚さ評価装置をさらに具備し、
前記厚さ評価装置は、通電温度特性の測定時または前記電極の冷却時に、PTC素子の厚みを測定することを特徴とする請求項1または請求項2に記載のPTC素子の特性評価装置。
A thickness evaluation device for measuring the thickness of the PTC element;
The PTC element characteristic evaluation apparatus according to claim 1, wherein the thickness evaluation apparatus measures the thickness of the PTC element at the time of measuring a conduction temperature characteristic or cooling the electrode.
前記冷却部は、ペルチェ素子によって冷却されることを特徴とする請求項1から請求項3のいずれかに記載のPTC素子の特性評価装置。   The said cooling part is cooled by the Peltier element, The characteristic evaluation apparatus of the PTC element in any one of Claims 1-3 characterized by the above-mentioned. 前記電極は、内部に中空部を有する箱型形状であることを特徴とする請求項1から請求項4のいずれかに記載のPTC素子の特性評価装置。   5. The PTC element characteristic evaluation apparatus according to claim 1, wherein the electrode has a box shape having a hollow portion therein. 前記通電温度特性評価装置は、測定前期の電圧よりも高い電圧で、測定後期の通電特性を測定するものであることを特徴とする請求項1から請求項5のいずれかに記載のPTC素子の特性評価装置。

6. The PTC element according to claim 1, wherein the energization temperature characteristic evaluation apparatus measures an energization characteristic in the latter measurement period at a voltage higher than a voltage in the first measurement period. Characteristic evaluation device.

JP2014240022A 2014-11-27 2014-11-27 Characteristic evaluation apparatus for ptc element Pending JP2016103523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240022A JP2016103523A (en) 2014-11-27 2014-11-27 Characteristic evaluation apparatus for ptc element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240022A JP2016103523A (en) 2014-11-27 2014-11-27 Characteristic evaluation apparatus for ptc element

Publications (1)

Publication Number Publication Date
JP2016103523A true JP2016103523A (en) 2016-06-02

Family

ID=56089146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240022A Pending JP2016103523A (en) 2014-11-27 2014-11-27 Characteristic evaluation apparatus for ptc element

Country Status (1)

Country Link
JP (1) JP2016103523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143008A (en) * 2018-08-17 2019-01-04 海宁立鹏电子科技有限公司 Ptc heater automatic test equipment
CN109814007A (en) * 2018-12-21 2019-05-28 芜湖恒美电热器具有限公司 PTC finished product pressure resistance insulated power test device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143008A (en) * 2018-08-17 2019-01-04 海宁立鹏电子科技有限公司 Ptc heater automatic test equipment
CN109143008B (en) * 2018-08-17 2021-04-13 海宁立鹏电子科技有限公司 Automatic test equipment for PTC heater
CN109814007A (en) * 2018-12-21 2019-05-28 芜湖恒美电热器具有限公司 PTC finished product pressure resistance insulated power test device

Similar Documents

Publication Publication Date Title
US9116200B2 (en) Methodologies and test configurations for testing thermal interface materials
CN100578206C (en) Testing method of thermal resistance of heat-conducting material and testing clamp
CN203858219U (en) Device for measuring seebeck coefficient and electrical resistivity of thermoelectric material
KR101484956B1 (en) Thermoelectric device's test apparatus and test method for it
JP6418118B2 (en) Semiconductor device evaluation apparatus and evaluation method
JP2001210683A (en) Chucking mechanism of prober
CN103869233A (en) Method for measuring thin-film heat resistance inside semi-conductor components
JP2011185697A (en) Thermoelectric material evaluation device and thermoelectric characteristic evaluation method
KR20150007686A (en) Thermoelectric property measurement system
JP2016103523A (en) Characteristic evaluation apparatus for ptc element
JP7121953B2 (en) Board evaluation chip and board evaluation device
JP6642392B2 (en) Surface roughness measuring method and surface roughness measuring device
JP5978992B2 (en) Electronic device test apparatus and test method
JP2014192405A (en) Probe device
JP6042760B2 (en) Probe device
KR101662713B1 (en) Thermal properties measurement sensors for thermoelectric thin film in cross-plane direction
JP6213382B2 (en) measuring device
Greiner et al. Direct Measurement of the Electrocaloric Temperature Change in Multilayer Ceramic Components using Resistance‐Welded Thermocouple Wires
JP6313131B2 (en) Humidity sensor inspection device
CN207318394U (en) A kind of Measured Results of Thermal Conductivity experimental system
KR102127234B1 (en) Apparatus for testing PCB
JPH03122992A (en) Induction heting cooking apparatus
JP4912056B2 (en) Prober chuck
KR20210114481A (en) Heater temperature control method, heater and mount
Polino et al. Joule Heating in SiO x RRAM Device Studied by an Integrated Micro-Thermal Stage