JP2016101535A - Manufacturing method of metal composite particle carrying catalyst and co oxidation catalyst - Google Patents

Manufacturing method of metal composite particle carrying catalyst and co oxidation catalyst Download PDF

Info

Publication number
JP2016101535A
JP2016101535A JP2014239592A JP2014239592A JP2016101535A JP 2016101535 A JP2016101535 A JP 2016101535A JP 2014239592 A JP2014239592 A JP 2014239592A JP 2014239592 A JP2014239592 A JP 2014239592A JP 2016101535 A JP2016101535 A JP 2016101535A
Authority
JP
Japan
Prior art keywords
metal
metal composite
supported
carrier
composite particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014239592A
Other languages
Japanese (ja)
Other versions
JP2016101535A5 (en
JP6472131B2 (en
Inventor
泰 前田
Yasushi Maeda
泰 前田
富士子 荒井
Fujiko Arai
富士子 荒井
千恵 深田
Chie Fukada
千恵 深田
秋田 知樹
Tomoki Akita
知樹 秋田
正憲 香山
Masanori Kayama
正憲 香山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014239592A priority Critical patent/JP6472131B2/en
Publication of JP2016101535A publication Critical patent/JP2016101535A/en
Publication of JP2016101535A5 publication Critical patent/JP2016101535A5/ja
Application granted granted Critical
Publication of JP6472131B2 publication Critical patent/JP6472131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a metal composite particle carrying catalyst capable easily carrying a metal composite particle constituted by two or more kinds of metals.SOLUTION: A manufacturing method of a metal composite particle carrying catalyst including a mixing process for solid phase mixing a raw material containing a sublimable first metal complex containing a first metal, sublimable second metal complex containing a second metal different from the first metal and carrier with adding mechanical friction to obtain a mixture and a calcination process of calcinating the mixture. The first metal is Au or Pt and the second metal is Ag, Pt or Fe when the first metal is Au and the second metal Fe when the second metal is Pt. The carrier is at least one kind selected from SiO, AlO, SrTiO, FeO, ZnO, CoOand C.SELECTED DRAWING: Figure 2

Description

本発明は、2種類以上の金属から構成される金属複合粒子が担体に担持された金属複合粒子担持触媒の製造方法と、この製造方法で得られるCO酸化触媒に関する。   The present invention relates to a method for producing a metal composite particle-supported catalyst in which metal composite particles composed of two or more kinds of metals are supported on a carrier, and a CO oxidation catalyst obtained by this production method.

含浸法と共沈法によって担体に金属微粒子を担持することがよく知られているが、これらの方法によって融点が低い金を担体に担持すると、金粒子が粗大化してしまい、触媒活性が高い金担持触媒を得ることは困難である。このため、析出沈殿法、析出還元法、または気相蒸着法などによって、金微粒子担持触媒を調製している(特許文献1および非特許文献1)。しかしながら、これらの方法は、煩雑であったり、特別な装置を必要としたりする。   It is well known that metal fine particles are supported on a carrier by an impregnation method and a coprecipitation method. However, when gold having a low melting point is supported on a carrier by these methods, the gold particles are coarsened and gold having high catalytic activity. It is difficult to obtain a supported catalyst. For this reason, a gold fine particle supported catalyst is prepared by a precipitation method, a precipitation reduction method, a vapor deposition method, or the like (Patent Document 1 and Non-Patent Document 1). However, these methods are complicated and require special devices.

金微粒子をより簡便に担体に担持する方法として、昇華性の金錯体と担体とを摩擦を加えながら固相混合した後に還元処理する方法が知られている(特許文献2)。しかし、この方法では、金錯体との相互作用が弱い担体、例えば結晶性グラファイト担体などに金微粒子を担持することが難しい。一方、触媒特性の向上のため、複数種の金属を複合化・合金化して担体に担持することがしばしば行われる。特許文献3には、2種類以上の金属錯体を混合し合金微粒子担持触媒を作製することが開示されている。この方法では、昇華性の金属錯体だけではなく、金属塩化物も原料として使用できる。しかし、還元剤または還元ガスによる還元とその後の酸化処理が必要で、手順が複雑である。   As a method for more easily supporting gold fine particles on a carrier, a method is known in which a sublimable gold complex and a carrier are subjected to a reduction treatment after solid phase mixing while applying friction (Patent Document 2). However, with this method, it is difficult to support the gold fine particles on a carrier having a weak interaction with the gold complex, such as a crystalline graphite carrier. On the other hand, in order to improve catalyst characteristics, it is often performed that a plurality of kinds of metals are combined and alloyed and supported on a carrier. Patent Document 3 discloses that two or more kinds of metal complexes are mixed to prepare an alloy fine particle supported catalyst. In this method, not only a sublimable metal complex but also a metal chloride can be used as a raw material. However, reduction with a reducing agent or reducing gas and subsequent oxidation treatment are necessary, and the procedure is complicated.

特公平5−49338号公報Japanese Patent Publication No. 5-49338 特開2008−259993号公報JP 2008-259993 A 特開2002−159866号公報JP 2002-159866 A

T.Takei, T.Akita, I.Nakamura, T.Fujitani, M.Okumura, K.Okazaki, J.Huang, T.Ishida, M.Haruta, "Heterogeneous Catalysis by Gold", Adv. Catal. (2012) 1-126T.Takei, T.Akita, I.Nakamura, T.Fujitani, M.Okumura, K.Okazaki, J.Huang, T.Ishida, M.Haruta, "Heterogeneous Catalysis by Gold", Adv. Catal. (2012) 1-126

本発明は、このような事情に鑑みてなされたものであり、2種類以上の金属から構成される金属複合粒子が担体に簡易に担持できる金属複合粒子担持触媒の製造方法と、CO酸化活性に優れた金属複合粒子担持触媒を提供することを目的とする。   The present invention has been made in view of such circumstances, and a method for producing a metal composite particle-supported catalyst in which metal composite particles composed of two or more kinds of metals can be easily supported on a support, and CO oxidation activity. An object is to provide an excellent metal composite particle-supported catalyst.

本発明の金属複合粒子担持触媒の製造方法は、第一金属を含む昇華性の第一金属錯体と、第一金属と異なる第二金属を含む昇華性の第二金属錯体と、担体とを含む原料に機械的摩擦を与えながら、原料を固相混合して混合物を得る混合工程と、混合物を焼成する焼成工程とを有する。   The method for producing a metal composite particle-supported catalyst of the present invention includes a sublimable first metal complex containing a first metal, a sublimable second metal complex containing a second metal different from the first metal, and a support. It has a mixing step of obtaining a mixture by solid-phase mixing the raw materials while giving mechanical friction to the raw materials, and a firing step of firing the mixture.

本発明の金属複合粒子担持触媒の製造方法において、第一金属がAuまたはPtであり、第一金属がAuであるとき、第二金属がAg、Pt、またはFeであり、第一金属がPtであるとき、第二金属がFeであり、担体がSiO2、Al23、SrTiO3、Fe23、ZnO、Co34、およびCの中から選択される少なくとも一種であることが好ましい。本発明の金属複合粒子担持触媒の製造方法において、第一金属がAuで、第二金属がAgまたはFeであるであることが好ましい。本発明の金属複合粒子担持触媒の製造方法において、原料が昇華性のFe錯体をさらに含み、第一金属がAuで、第二金属がAgまたはPtで、担体がSiO2またはCであることが好ましい。 In the method for producing a metal composite particle-supported catalyst of the present invention, when the first metal is Au or Pt, and the first metal is Au, the second metal is Ag, Pt, or Fe, and the first metal is Pt. The second metal is Fe and the support is at least one selected from SiO 2 , Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, Co 3 O 4 , and C. Is preferred. In the method for producing a metal composite particle-supported catalyst of the present invention, it is preferable that the first metal is Au and the second metal is Ag or Fe. In the method for producing a metal composite particle-supported catalyst of the present invention, the raw material further contains a sublimable Fe complex, the first metal is Au, the second metal is Ag or Pt, and the support is SiO 2 or C. preferable.

本発明のCO酸化触媒は、第一金属と第二金属とを含む金属複合粒子が担体に担持されているCO酸化触媒であって、第一金属がAuまたはPtであり、第一金属がAuであるとき、第二金属がAg、Pt、またはFeであり、第一金属がPtであるとき、第二金属がFeであり、金属複合粒子の粒径が10nm以下であり、担体がSiO2、Al23、SrTiO3、Fe23、ZnO、Co34、およびCの中から選択される少なくとも一種である。 The CO oxidation catalyst of the present invention is a CO oxidation catalyst in which metal composite particles containing a first metal and a second metal are supported on a carrier, wherein the first metal is Au or Pt, and the first metal is Au When the second metal is Ag, Pt, or Fe, and the first metal is Pt, the second metal is Fe, the particle size of the metal composite particles is 10 nm or less, and the carrier is SiO 2. , Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, Co 3 O 4 , and C.

本発明のCO酸化触媒において、第一金属がAuで、第二金属がAgまたはFeであることが好ましい。本発明のCO酸化触媒において、第一金属がAuで、第二金属がAgまたはPtで、金属複合粒子がFeをさらに含み、担体がSiO2またはCであることが好ましい。 In the CO oxidation catalyst of the present invention, it is preferable that the first metal is Au and the second metal is Ag or Fe. In the CO oxidation catalyst of the present invention, it is preferable that the first metal is Au, the second metal is Ag or Pt, the metal composite particles further include Fe, and the support is SiO 2 or C.

本発明によれば、2種類以上の金属から構成される金属複合粒子が担体に簡易に担持できる。また、本発明によれば、CO酸化活性に優れた金属複合粒子担持触媒が得られる。   According to the present invention, metal composite particles composed of two or more kinds of metals can be easily supported on a carrier. In addition, according to the present invention, a metal composite particle-supported catalyst having excellent CO oxidation activity can be obtained.

実施例1で得られた金属複合粒子担持触媒のSTEM−EDS分析画像である。2 is a STEM-EDS analysis image of the metal composite particle-supported catalyst obtained in Example 1. FIG. 実施例1で得られた金属複合粒子担持触媒、ならびに比較例1および比較例8で得られた金属粒子担持触媒のCO転化率と温度との関係を示すグラフである。4 is a graph showing the relationship between the CO conversion rate and temperature of the metal composite particle-supported catalyst obtained in Example 1 and the metal particle-supported catalysts obtained in Comparative Examples 1 and 8. 実施例15および実施例16で得られた金属複合粒子担持触媒、ならびに比較例9で得られた金属粒子担持触媒のCO転化率と温度との関係を示すグラフである。6 is a graph showing the relationship between the CO conversion rate and temperature of the metal composite particle-supported catalyst obtained in Example 15 and Example 16 and the metal particle-supported catalyst obtained in Comparative Example 9.

以下、本発明の金属複合粒子担持触媒の製造方法およびCO酸化触媒について、図面を参照しながら実施形態と実施例に基づいて詳細に説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。   Hereinafter, a method for producing a metal composite particle-supported catalyst and a CO oxidation catalyst of the present invention will be described in detail based on embodiments and examples with reference to the drawings. Note that repeated explanation is omitted as appropriate. In addition, when “˜” is described between two numerical values to represent a numerical range, the two numerical values are also included in the numerical range.

本発明の金属複合粒子担持触媒の製造方法は、混合工程と、焼成工程とを備えている。混合工程では、原料に機械的摩擦を与えながら、原料を固相混合して混合物を得る。原料は、第一金属錯体と、第二金属錯体と、担体とを含んでいる。第一金属錯体は、第一金属を含む昇華性の金属錯体である。第二金属錯体は、第一金属と異なる第二金属を含む昇華性の金属錯体である。第一金属錯体および第二金属錯体は、昇華性を有するものであれば化合物の種類に特に制限がない。また、第一金属錯体および第二金属錯体の昇華性の程度も特に限定されない。なお、原料は、第一金属錯体または第二金属錯体以外の昇華性の金属錯体を含んでいてもよい。   The method for producing a metal composite particle-supported catalyst of the present invention includes a mixing step and a firing step. In the mixing step, the raw material is solid-phase mixed while giving mechanical friction to the raw material to obtain a mixture. The raw material includes a first metal complex, a second metal complex, and a carrier. The first metal complex is a sublimable metal complex containing a first metal. The second metal complex is a sublimable metal complex containing a second metal different from the first metal. The first metal complex and the second metal complex are not particularly limited as long as they have sublimation properties. Further, the degree of sublimation of the first metal complex and the second metal complex is not particularly limited. The raw material may contain a sublimable metal complex other than the first metal complex or the second metal complex.

原料の構成成分、すなわち第一金属錯体、第二金属錯体、担体等が乾式で接触しながら混ざり合えば、機械的摩擦を与えながら固相混合する方法には特に制限がない。具体的には、乳鉢と乳棒を用いた混合やボールミル等の混合装置を用いた混合が、機械的摩擦を与えながら固相混合する方法として挙げられる。なお、原料に機械的摩擦を与えながら、原料を固相混合することによって、その後の焼成工程を経て得られる金属複合粒子担持触媒の金属複合粒子の粒径が小さくなる。   As long as the components of the raw materials, that is, the first metal complex, the second metal complex, the carrier and the like are mixed while contacting in a dry manner, there is no particular limitation on the method of solid phase mixing while giving mechanical friction. Specifically, mixing using a mortar and pestle or mixing using a mixing device such as a ball mill can be mentioned as solid-phase mixing while applying mechanical friction. In addition, the particle size of the metal composite particles of the metal composite particle-supported catalyst obtained through the subsequent calcination step is reduced by mixing the raw materials while applying mechanical friction to the raw materials.

第一金属および第二金属としては、触媒作用を有する金属が使用できる。また、第一金属と第二金属の金属複合粒子が担持できれば、担体の種類は特に制限がない。例えば、高分子化合物、多孔性金属錯体、炭素材料、金属酸化物、金属硫化物、金属、金属水酸化物、金属炭酸塩、有機結晶などが担体として使用できる。より具体的には、SiO2、Al23、SrTiO3、Fe23、ZnO、Co34、Co34、NiO、ZrO2、またはCなどが担体として挙げられる。第一金属錯体および第二金属錯体と均一に混ざり合えば、担体の形状や大きさ等の制限は特にない。 A metal having a catalytic action can be used as the first metal and the second metal. Further, the type of the carrier is not particularly limited as long as the metal composite particles of the first metal and the second metal can be supported. For example, a polymer compound, a porous metal complex, a carbon material, a metal oxide, a metal sulfide, a metal, a metal hydroxide, a metal carbonate, an organic crystal, or the like can be used as a carrier. More specifically, examples of the carrier include SiO 2 , Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, Co 3 O 4 , Co 3 O 4 , NiO, ZrO 2 , or C. If the first metal complex and the second metal complex are mixed uniformly, there is no particular limitation on the shape and size of the carrier.

第一金属はAuまたはPtであることが好ましい。本発明の製造方法により、AuまたはPtを含み、粒径が小さい金属複合粒子を担体に担持できるからである。第一金属がAuであるとき、第二金属はAg、Pt、またはFeであり、第一金属がPtであるとき、第二金属はFeであることが好ましい。このとき、担体はAl23、SrTiO3、Fe23、ZnO、SiO2、Co34、またはCであることが好ましい。これらの第一金属と第二金属とを含む金属複合粒子がこれらの担体に担持された触媒は、CO酸化特性が優れているからである。 The first metal is preferably Au or Pt. This is because the metal composite particles containing Au or Pt and having a small particle size can be supported on the carrier by the production method of the present invention. When the first metal is Au, the second metal is preferably Ag, Pt, or Fe, and when the first metal is Pt, the second metal is preferably Fe. At this time, the support is preferably Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, SiO 2 , Co 3 O 4 , or C. This is because the catalyst in which the metal composite particles containing these first metal and second metal are supported on these carriers has excellent CO oxidation characteristics.

これらのうち、第一金属がAuで、第二金属がAgまたはFeであること、または原料が昇華性のFe錯体をさらに含み、第一金属がAuで、第二金属がAgまたはPtで、担体がSiO2またはCであることが特に好ましい。SiO2としては、結晶やガラスなどが挙げられ、Cとしては、活性炭、炭素繊維、カーボンブラック、グラファイト(黒鉛)、グラフェン、ナノポーラスカーボン、フラーレン、カーボンナノチューブ、カーボンナノホーンなどが挙げられる。 Among these, the first metal is Au and the second metal is Ag or Fe, or the raw material further includes a sublimable Fe complex, the first metal is Au, and the second metal is Ag or Pt, It is particularly preferred that the support is SiO 2 or C. Examples of SiO 2 include crystals and glass, and examples of C include activated carbon, carbon fiber, carbon black, graphite (graphite), graphene, nanoporous carbon, fullerene, carbon nanotube, and carbon nanohorn.

第一金属錯体および第二金属錯体の配位子としては、例えばCVD法の原料として用いられる金属錯体の配位子が挙げられる。具体的には、配位子として、アセチルアセトン、トリフルオロアセチルアセトン、またはトリメチルホスフィンなどが挙げられる。第一金属錯体および第二金属錯体は、異なる複数の配位子を有していてもよい。第一金属錯体および第二金属錯体として、金アセチルアセトナート、白金アセチルアセトナート、銀アセチルアセトナート、または鉄アセチルアセトナートなどが挙げられる。混合工程は、窒素やアルゴン等の不活性ガス中または大気中などで、室温下、加熱下、または冷却下で行うことができる。また、原料に機械的摩擦を与えながら、原料を固相混合する時間として、例えば5〜60分が挙げられるが、この範囲に限定されない。原料に含まれる昇華性の金属錯体の金属の割合は、1〜4質量%が好ましい。   Examples of the ligand of the first metal complex and the second metal complex include a metal complex ligand used as a raw material for the CVD method. Specifically, examples of the ligand include acetylacetone, trifluoroacetylacetone, and trimethylphosphine. The first metal complex and the second metal complex may have a plurality of different ligands. Examples of the first metal complex and the second metal complex include gold acetylacetonate, platinum acetylacetonate, silver acetylacetonate, and iron acetylacetonate. The mixing step can be performed in an inert gas such as nitrogen or argon or in the air at room temperature, under heating, or under cooling. The time for solid-phase mixing of the raw material while giving mechanical friction to the raw material is, for example, 5 to 60 minutes, but is not limited to this range. The ratio of the metal of the sublimable metal complex contained in the raw material is preferably 1 to 4% by mass.

焼成工程では、混合工程で得られる混合物を焼成する。焼成工程は、大気中、水素等の還元ガス中、窒素やアルゴン等の不活性ガス中、または真空中などで、常圧下、加圧下、または減圧下で行うことができる。また、焼成温度として、例えば200〜400℃が挙げられ、焼成時間として、例えば0.5〜4時間が挙げられるが、これらの範囲に限定されない。焼成工程を経て、金属複合粒子担持触媒が得られる。   In the firing step, the mixture obtained in the mixing step is fired. The firing step can be performed under normal pressure, increased pressure, or reduced pressure in the atmosphere, in a reducing gas such as hydrogen, in an inert gas such as nitrogen or argon, or in a vacuum. Examples of the firing temperature include 200 to 400 ° C., and examples of the firing time include 0.5 to 4 hours, but are not limited to these ranges. Through the calcination step, a metal composite particle-supported catalyst is obtained.

得られた金属複合粒子担持触媒は、CO酸化、アルコールの酸化、プロピレンのエポキシ化、エポキシドやアミンのカルボニル化、不飽和化合物の水添、炭化水素類の部分酸化、低温水性ガスシフト反応、酸素と水素からの直接過酸化水素合成、NOxの還元などの触媒として使用できる。また、特許文献2に記載された方法では、金を炭素材料担体に担持したCO酸化触媒が得られなかったが、本発明の金属複合粒子担持触媒の製造方法によれば、Auを含む金属複合粒子を炭素材料に担持でき、CO酸化特性に優れた金属複合粒子担持触媒が得られる。 The resulting metal composite particle-supported catalyst has CO oxidation, alcohol oxidation, propylene epoxidation, epoxide and amine carbonylation, unsaturated compound hydrogenation, hydrocarbon partial oxidation, low temperature water gas shift reaction, oxygen and It can be used as a catalyst for direct hydrogen peroxide synthesis from hydrogen, NO x reduction, and the like. Further, in the method described in Patent Document 2, a CO oxidation catalyst in which gold is supported on a carbon material carrier was not obtained. However, according to the method for producing a metal composite particle-supported catalyst of the present invention, a metal composite containing Au The metal composite particle supported catalyst which can carry | support particle | grains on a carbon material and was excellent in CO oxidation characteristic is obtained.

本発明の実施形態に係るCO酸化触媒は、本発明の金属複合粒子担持触媒の製造方法によって作製できる。本実施形態のCO酸化触媒は、第一金属と第二金属とを含む金属複合粒子が担体に担持されている。第一金属はAuまたはPtである。第一金属がAuであるとき、第二金属はAg、Pt、またはFeである。第一金属がPtであるとき、第二金属はFeである。担体はSiO2、Al23、SrTiO3、Fe23、ZnO、Co34、およびCの中から選択される少なくとも一種である。 The CO oxidation catalyst according to the embodiment of the present invention can be produced by the method for producing a metal composite particle-supported catalyst of the present invention. In the CO oxidation catalyst of this embodiment, metal composite particles containing a first metal and a second metal are supported on a carrier. The first metal is Au or Pt. When the first metal is Au, the second metal is Ag, Pt, or Fe. When the first metal is Pt, the second metal is Fe. The carrier is at least one selected from SiO 2 , Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, Co 3 O 4 , and C.

金属複合粒子は、第一金属と第二金属とを含む金属からなる複合化物であってもよいし、第一金属と第二金属とを含む金属からなる合金であってもよい。金属複合粒子の粒径は10nm以下であり、2〜8nmが好ましい。ここで、金属複合粒子の粒径は、担体に担持された金属複合粒子の平均粒子径で、この平均粒子径は、CO酸化触媒の表面を電子顕微鏡で観察して、視野内にある200個以上の粒子径の平均値である。一種類の金属粒子が担体に担持された金属粒子担持触媒の金属粒子の粒径も同様である。   The metal composite particles may be a composite product made of a metal containing a first metal and a second metal, or an alloy made of a metal containing a first metal and a second metal. The particle size of the metal composite particles is 10 nm or less, and preferably 2 to 8 nm. Here, the particle size of the metal composite particles is the average particle size of the metal composite particles supported on the carrier. The average particle size is 200 particles in the field of view when the surface of the CO oxidation catalyst is observed with an electron microscope. It is the average value of the above particle diameters. The same applies to the particle size of the metal particles of the metal particle-supported catalyst in which one kind of metal particles is supported on a carrier.

本実施形態のCO酸化触媒は、一種類の金属が担体に担持されたCO酸化触媒と比べて、触媒特性が優れている。本実施形態のCO酸化触媒では、第一金属がAuで、第二金属がAgまたはFeであること、または金属複合粒子がFeをさらに含み、第一金属がAuで、第二金属がAgまたはPtで、担体がSiO2またはCであることが好ましい。グラフェンなどの高結晶性炭素材料が担体の場合には、本実施形態のCO酸化触媒は、燃料電池等の耐腐食性電極触媒として特に優れている。 The CO oxidation catalyst of this embodiment is superior in catalytic characteristics as compared to a CO oxidation catalyst in which one kind of metal is supported on a carrier. In the CO oxidation catalyst of the present embodiment, the first metal is Au and the second metal is Ag or Fe, or the metal composite particles further include Fe, the first metal is Au, and the second metal is Ag or Fe. In Pt, the support is preferably SiO 2 or C. When a highly crystalline carbon material such as graphene is a support, the CO oxidation catalyst of this embodiment is particularly excellent as a corrosion-resistant electrode catalyst for fuel cells and the like.

以下、実施例と比較例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited at all by these Examples.

(実施例1〜14および比較例1〜8)
表1に示す条件で、金属複合粒子や金属粒子を担体に担持した各種触媒を作製した。Au錯体、Ag錯体、Pt錯体、およびFe錯体として、Auアセチルアセトナート錯体(トリケミカル研究所)、Agアセチルアセトナート錯体(シグマ−アルドリッチ)、Ptアセチルアセトナート錯体(シグマ−アルドリッチ)、およびFeアセチルアセトナート錯体(シグマ−アルドリッチ)をそれぞれ使用した。
(Examples 1-14 and Comparative Examples 1-8)
Under the conditions shown in Table 1, metal composite particles and various catalysts having metal particles supported on a carrier were prepared. Au complex, Ag complex, Pt complex, and Fe complex include Au acetylacetonate complex (Trichemical Laboratories), Ag acetylacetonate complex (Sigma-Aldrich), Pt acetylacetonate complex (Sigma-Aldrich), and Fe Acetylacetonate complexes (Sigma-Aldrich) were used respectively.

また、混合工程では、室温、アルゴン雰囲気下で、金属錯体と担体からなる原料を、メノウ乳鉢で20分間固相混合して混合物を得た。表のAuやAg等の直後にある()内の数値は、原料に含まれる金属の割合を質量%で表したものであり、金属の仕込量に相当する。焼成工程では、アルミナるつぼに混合物を入れ、大気中で300℃、4時間焼成して各種触媒を得た。担体は、SiO2(SIO07PB、高純度化学)などを使用した。 In the mixing step, a raw material composed of a metal complex and a carrier was solid-phase mixed in an agate mortar for 20 minutes in an argon atmosphere at room temperature to obtain a mixture. The numerical value in parentheses immediately after Au, Ag, etc. in the table represents the ratio of the metal contained in the raw material in mass%, and corresponds to the amount of charged metal. In the firing step, the mixture was placed in an alumina crucible and fired at 300 ° C. for 4 hours in the air to obtain various catalysts. As the carrier, SiO 2 (SIO07PB, high-purity chemistry) or the like was used.

流通式反応装置を用いたガスクロマトグラフ(GC−8A、島津製作所)によって、実施例および比較例で得られた触媒のCO酸化活性を測定した。この測定は、COを1%含む空気を流速33mL/min(空間速度20,000mL/h・gAuに相当)で触媒量100mgに接触させることによって行った。CO転化率が50%になる温度T50によりCO酸化活性を評価した。T50の値が小さい程、CO酸化活性が高いことを示している。また、実施例1〜5で得られた金属複合粒子担持触媒および比較例1〜5で得られた金属粒子担持触媒では、担持された金属複合粒子および金属粒子の粒径を測定した。これらの粒径とT50も表1に記載した。 The CO oxidation activity of the catalysts obtained in Examples and Comparative Examples was measured by a gas chromatograph (GC-8A, Shimadzu Corporation) using a flow reactor. This measurement was performed by contacting air containing 1% CO with a catalyst amount of 100 mg at a flow rate of 33 mL / min (corresponding to a space velocity of 20,000 mL / h · g Au ). Was assessed CO oxidation activity by the temperature T 50 to the CO conversion is 50%. As the value of T 50 is small, the higher the CO oxidation activity. In the metal composite particle supported catalysts obtained in Examples 1 to 5 and the metal particle supported catalyst obtained in Comparative Examples 1 to 5, the particle diameters of the supported metal composite particles and metal particles were measured. These particle sizes and T 50 are also listed in Table 1.

表1に示すように、同じ担体で比較すると、比較例1〜8で得られ、1種類の金属粒子が担持された金属粒子担持触媒よりも、実施例1〜13で得られ、2種類以上の金属からなる金属複合粒子が担持された金属複合粒子担持触媒は、高いCO酸化活性を示すことが明らかになった。また、実施例14より、PtとFeの金属複合粒子がSiO2に担持された金属複合粒子担持触媒も、CO酸化活性が高いことが分かった。これは、比較例1〜5の金属粒子の粒径と実施例1〜5の金属複合粒子の粒径との比較からも分かるように、担持されている金属の粒径が小さいためだと考えられる。 As shown in Table 1, when compared with the same carrier, it is obtained in Comparative Examples 1 to 8 and obtained in Examples 1 to 13 rather than the metal particle supported catalyst in which one kind of metal particles is supported. It was revealed that a metal composite particle-supported catalyst in which metal composite particles made of the above metals are supported exhibits high CO oxidation activity. Further, from Example 14, it was found that the metal composite particle-supported catalyst in which the Pt and Fe metal composite particles were supported on SiO 2 also had high CO oxidation activity. This is considered to be because the particle size of the supported metal is small, as can be seen from the comparison between the particle size of the metal particles of Comparative Examples 1 to 5 and the particle size of the metal composite particles of Examples 1 to 5. It is done.

図1は、実施例1で得られた金属複合粒子担持触媒のSTEM−EDS分析画像で、左が触媒の形状像、中央がAuのマッピング像、右がAgのマッピング像である。図1に示すように、実施例1で得られた金属複合粒子担持触媒では、AuとAgのマッピング位置が一致しており、担体上でAuとAgが合金化していることが分かった。   FIG. 1 is a STEM-EDS analysis image of the metal composite particle-supported catalyst obtained in Example 1, the left is the catalyst shape image, the center is the Au mapping image, and the right is the Ag mapping image. As shown in FIG. 1, it was found that in the metal composite particle-supported catalyst obtained in Example 1, the mapping positions of Au and Ag were the same, and Au and Ag were alloyed on the support.

図2は、実施例1、比較例1、および比較例8でそれぞれ得られた金属複合粒子担持触媒または金属粒子担持触媒のCO転化率と温度との関係を示している。図2より、AuとAgの金属複合粒子がSiO2に担持された金属複合粒子担持触媒(実施例1)は、室温でのCO転化率が約100%であり、とても優れたCO酸化特性を有していることが分かった。一方、AuがSiO2に担持された金属粒子担持触媒(比較例1)およびAgがSiO2に担持された金属粒子担持触媒(比較例8)は、100℃でもCO転化率が低く、CO酸化活性が低いことが分かった。 FIG. 2 shows the relationship between the CO conversion rate and the temperature of the metal composite particle-supported catalyst or metal particle-supported catalyst obtained in Example 1, Comparative Example 1, and Comparative Example 8, respectively. As shown in FIG. 2, the metal composite particle-supported catalyst (Example 1) in which the metal composite particles of Au and Ag are supported on SiO 2 has a CO conversion rate of about 100% at room temperature and has very excellent CO oxidation characteristics. I found it. On the other hand, the metal particle-supported catalyst in which Au is supported on SiO 2 (Comparative Example 1) and the metal particle-supported catalyst in which Ag is supported on SiO 2 (Comparative Example 8) have low CO conversion even at 100 ° C. It was found that the activity was low.

(実施例15、実施例16、比較例9)
高純度カーボン(CCE02PB、高純度化学(以下同じ))を担体として用いた点を除き、実施例9と同様にして、AuとFeからなる金属複合粒子が担持された金属複合粒子担持触媒を作製した(実施例15)。また、高純度カーボンを担体として用いた点を除き、実施例12と同様にして、Au、Ag、およびFeからなる金属複合粒子が担持された金属複合粒子担持触媒を作製した(実施例16)。
(Example 15, Example 16, Comparative Example 9)
Except that high purity carbon (CCE02PB, high purity chemistry (hereinafter the same)) was used as a support, a metal composite particle-supported catalyst in which metal composite particles composed of Au and Fe were supported was prepared in the same manner as in Example 9. (Example 15). Further, a metal composite particle-supported catalyst in which metal composite particles composed of Au, Ag, and Fe were supported was prepared in the same manner as in Example 12 except that high-purity carbon was used as a support (Example 16). .

さらに、高純度カーボンを担体として用いた点を除き、比較例1と同様にして、Auが担持された金属粒子担持触媒を作製した(比較例9)。実施例15および実施例16で得られた金属複合粒子担持触媒、ならびに比較例9で得られた金属粒子担持触媒のCO転化率と温度との関係を図3に示す。図3より、比較例9で得られた金属粒子担持触媒は、CO酸化活性をほとんど示さないのに対して、実施例15および実施例16で得られた金属複合粒子担持触媒は、高いCO酸化活性を示すことが明らかになった。   Further, a metal particle-supported catalyst supporting Au was prepared in the same manner as in Comparative Example 1 except that high-purity carbon was used as a support (Comparative Example 9). FIG. 3 shows the relationship between the CO conversion rate and temperature of the metal composite particle-supported catalyst obtained in Example 15 and Example 16 and the metal particle-supported catalyst obtained in Comparative Example 9. From FIG. 3, the metal particle-supported catalyst obtained in Comparative Example 9 shows almost no CO oxidation activity, whereas the metal composite particle-supported catalysts obtained in Example 15 and Example 16 have high CO oxidation. It became clear to show activity.

(実施例17)
SnO2を担体として用いた点を除き、実施例1と同様にして、AuとAgからなる金属複合粒子が担持された金属複合粒子担持触媒を作製した。この金属複合粒子担持触媒では、金属複合粒子の粒径が5.1nmであり、T50が7℃であった。実施例17で得られた金属複合粒子担持触媒は、高いCO酸化活性を示すことが明らかになった。しかし、実施例1で得られ、AuとAgからなる金属複合粒子がSiO2に担持された金属複合粒子担持触媒ではT50が5℃であり、実施例17で得られた金属複合粒子担持触媒より少しだけ高いCO酸化活性を示した。SiO2の価格がSnO2の価格の1/3以下であることも考慮すれば、実施例1で得られた金属複合粒子担持触媒は、低コスト・高CO酸化活性の触媒であることが分かった。
(Example 17)
A metal composite particle-supported catalyst in which metal composite particles made of Au and Ag were supported was prepared in the same manner as in Example 1 except that SnO 2 was used as a support. In this metal composite particle-supported catalyst, the particle size of the metal composite particles was 5.1 nm, and T 50 was 7 ° C. It was revealed that the metal composite particle-supported catalyst obtained in Example 17 exhibited high CO oxidation activity. However, in the metal composite particle-supported catalyst obtained in Example 1, in which the metal composite particles composed of Au and Ag are supported on SiO 2 , T 50 is 5 ° C., and the metal composite particle-supported catalyst obtained in Example 17 It showed slightly higher CO oxidation activity. Considering that the price of SiO 2 is 1/3 or less of the price of SnO 2 , it can be seen that the metal composite particle-supported catalyst obtained in Example 1 is a catalyst with low cost and high CO oxidation activity. It was.

本発明の金属複合粒子担持触媒の製造方法は、酸化触媒、電極触媒、または各種センサ用材料の作製に適用できる。   The method for producing a metal composite particle-supported catalyst of the present invention can be applied to the production of an oxidation catalyst, an electrode catalyst, or various sensor materials.

Claims (7)

第一金属を含む昇華性の第一金属錯体と、前記第一金属と異なる第二金属を含む昇華性の第二金属錯体と、担体とを含む原料に機械的摩擦を与えながら、前記原料を固相混合して混合物を得る混合工程と、
前記混合物を焼成する焼成工程と、
を有する金属複合粒子担持触媒の製造方法。
While giving mechanical friction to a raw material comprising a sublimable first metal complex containing a first metal, a sublimable second metal complex containing a second metal different from the first metal, and a support, A mixing step of obtaining a mixture by solid phase mixing;
A firing step of firing the mixture;
A method for producing a metal composite particle-supported catalyst having:
前記第一金属がAuまたはPtであり、
前記第一金属がAuであるとき、前記第二金属がAg、Pt、またはFeであり、
前記第一金属がPtであるとき、前記第二金属がFeであり、
前記担体がSiO2、Al23、SrTiO3、Fe23、ZnO、Co34、およびCの中から選択される少なくとも一種である、請求項1に記載の金属複合粒子担持触媒の製造方法。
The first metal is Au or Pt;
When the first metal is Au, the second metal is Ag, Pt, or Fe;
When the first metal is Pt, the second metal is Fe;
2. The metal composite particle-supported catalyst according to claim 1, wherein the carrier is at least one selected from SiO 2 , Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, Co 3 O 4 , and C. Manufacturing method.
前記第一金属がAuで、前記第二金属がAgまたはFeである、請求項2に記載の金属複合粒子担持触媒の製造方法。   The method for producing a metal composite particle-supported catalyst according to claim 2, wherein the first metal is Au and the second metal is Ag or Fe. 前記原料が昇華性のFe錯体をさらに含み、
前記第一金属がAuで、前記第二金属がAgまたはPtで、
前記担体がSiO2またはCである、請求項2に記載の金属複合粒子担持触媒の製造方法。
The raw material further includes a sublimable Fe complex;
The first metal is Au, the second metal is Ag or Pt,
The method for producing a metal composite particle-supported catalyst according to claim 2, wherein the carrier is SiO 2 or C.
第一金属と第二金属とを含む金属複合粒子が担体に担持されているCO酸化触媒であって、
前記第一金属がAuまたはPtであり、
前記第一金属がAuであるとき、前記第二金属がAg、Pt、またはFeであり、
前記第一金属がPtであるとき、前記第二金属がFeであり、
前記金属複合粒子の粒径が10nm以下であり、
前記担体がSiO2、Al23、SrTiO3、Fe23、ZnO、Co34、およびCの中から選択される少なくとも一種であるCO酸化触媒。
A CO oxidation catalyst in which metal composite particles containing a first metal and a second metal are supported on a carrier,
The first metal is Au or Pt;
When the first metal is Au, the second metal is Ag, Pt, or Fe;
When the first metal is Pt, the second metal is Fe;
The metal composite particles have a particle size of 10 nm or less,
A CO oxidation catalyst, wherein the carrier is at least one selected from SiO 2 , Al 2 O 3 , SrTiO 3 , Fe 2 O 3 , ZnO, Co 3 O 4 , and C.
前記第一金属がAuで、前記第二金属がAgまたはFeである、請求項5に記載のCO酸化触媒。   The CO oxidation catalyst according to claim 5, wherein the first metal is Au and the second metal is Ag or Fe. 前記金属複合粒子がFeをさらに含み、
前記第一金属がAuで、前記第二金属がAgまたはPtで、
前記担体がSiO2またはCである、請求項5に記載のCO酸化触媒。
The metal composite particles further include Fe;
The first metal is Au, the second metal is Ag or Pt,
The CO oxidation catalyst according to claim 5, wherein the carrier is SiO 2 or C.
JP2014239592A 2014-11-27 2014-11-27 Method for producing metal composite particle supported catalyst and CO oxidation catalyst Active JP6472131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014239592A JP6472131B2 (en) 2014-11-27 2014-11-27 Method for producing metal composite particle supported catalyst and CO oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239592A JP6472131B2 (en) 2014-11-27 2014-11-27 Method for producing metal composite particle supported catalyst and CO oxidation catalyst

Publications (3)

Publication Number Publication Date
JP2016101535A true JP2016101535A (en) 2016-06-02
JP2016101535A5 JP2016101535A5 (en) 2018-01-11
JP6472131B2 JP6472131B2 (en) 2019-02-20

Family

ID=56088052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239592A Active JP6472131B2 (en) 2014-11-27 2014-11-27 Method for producing metal composite particle supported catalyst and CO oxidation catalyst

Country Status (1)

Country Link
JP (1) JP6472131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145129A (en) * 2021-03-25 2021-07-23 湘潭大学 Low-temperature complete oxidation reaction method for carbon monoxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524826A (en) * 2011-06-21 2014-09-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for depositing metal on support oxide
JP2014529354A (en) * 2011-07-27 2014-11-06 マックス−プランク−ゲゼルシャフト ツール フェルデルング デア ヴィッセンシャフテン エー. ファオ.Max−Planck−Gesellschaft Zur Foerderung Derwissenschaften E.V. Substrate surface composed of refractory metal alloy nanoparticles, its preparation method, and its use as a catalyst in particular

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524826A (en) * 2011-06-21 2014-09-25 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Method for depositing metal on support oxide
JP2014529354A (en) * 2011-07-27 2014-11-06 マックス−プランク−ゲゼルシャフト ツール フェルデルング デア ヴィッセンシャフテン エー. ファオ.Max−Planck−Gesellschaft Zur Foerderung Derwissenschaften E.V. Substrate surface composed of refractory metal alloy nanoparticles, its preparation method, and its use as a catalyst in particular

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOO, H. ET AL.: "Facile synthesis of Pd/Fe3O4/charcoal bifunctional catalysts with high metal loading for high produc", NEW J. CHEM., vol. 38, no. 11, JPN6018029494, 25 November 2014 (2014-11-25), pages 5626 - 5632, ISSN: 0003847625 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145129A (en) * 2021-03-25 2021-07-23 湘潭大学 Low-temperature complete oxidation reaction method for carbon monoxide

Also Published As

Publication number Publication date
JP6472131B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP6670754B2 (en) Composite, method for producing composite, ammonia synthesis catalyst, and ammonia synthesis method
JP6680919B2 (en) Supported metal catalyst
JP6143761B2 (en) Hydrogen production catalyst and method for producing hydrogen
JP6152381B2 (en) Method for producing conductive mayenite type compound powder
WO2017111028A1 (en) Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
JP2009537312A (en) Temperature stable catalyst for gas phase oxidation
US10654772B2 (en) Selective oxidative dehydrogenation of propane to propylene
Wong et al. Development of Co supported on Co− Al spinel catalysts from exsolution of amorphous Co− Al oxides for carbon dioxide reforming of methane
Zhang et al. Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and oxidation under visible light irradiation
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
CN102101051A (en) Method for preparing carbon nano tube supported nano photocatalysis material capable of degrading nitrogen oxides
Kurmashov et al. COx‐free catalytic decomposition of methane over solution combustion synthesis derived catalyst: Synthesis of hydrogen and carbon nanofibers
CN110841684A (en) Catalyst for hydrogen production by methanol steam reforming and preparation and use method thereof
US10385032B1 (en) Selective oxidation of propane to propylene oxide
Nguyen et al. Development of Nb–NiMoO4/g-C3N4 direct Z scheme heterojunctions for effective photocatalytic conversion of carbon dioxide to valuable products
JP6472131B2 (en) Method for producing metal composite particle supported catalyst and CO oxidation catalyst
JP6802524B2 (en) Methane catalyst carrier, methanation catalyst using it, and method for producing methane
CN109277100A (en) It is a kind of using cerium oxide as the ruthenium-based ammonia synthetic catalyst of carrier
CN110732335B (en) Transition metal @ BO for methane dry gas reforming reactionxCore-shell structure nano catalyst and preparation method thereof
Yamamuro et al. Hydrogen production by water gas shift reaction over Pd–K impregnated Co oxide catalyst
US8129304B2 (en) Intermetallic compound Ni3Al catalyst for reforming methanol and methanol reforming method using same
Chen et al. Strong synergy between Ti3C2 and N-doped Co nanoparticles boosts the selective hydrogenation of propyne
CN109529799A (en) A kind of cladded type methane oxidative coupling catalyst and preparation method and application
JP2003305364A (en) Aqueous gas shift reaction catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6472131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250