JP2016092995A - In-wheel motor device and in-wheel motor controller therefor - Google Patents

In-wheel motor device and in-wheel motor controller therefor Download PDF

Info

Publication number
JP2016092995A
JP2016092995A JP2014225889A JP2014225889A JP2016092995A JP 2016092995 A JP2016092995 A JP 2016092995A JP 2014225889 A JP2014225889 A JP 2014225889A JP 2014225889 A JP2014225889 A JP 2014225889A JP 2016092995 A JP2016092995 A JP 2016092995A
Authority
JP
Japan
Prior art keywords
motor
command value
phase
wheel
wheel motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014225889A
Other languages
Japanese (ja)
Inventor
井口 和幸
Kazuyuki Iguchi
和幸 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2014225889A priority Critical patent/JP2016092995A/en
Priority to PCT/JP2015/080149 priority patent/WO2016072308A1/en
Publication of JP2016092995A publication Critical patent/JP2016092995A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an in-wheel motor device that can omit electric wires through which motor currents of respective phases flow from a controller to a motor coil, make a driving and control system, including the in-wheel motor device and a controller therefor compact, lightweight, and low-cost on the whole, suppress radiation of noise, and facilitate heat radiation of the controller.SOLUTION: An in-wheel motor device 5 is mounted with motor current control means 10. The motor current control means 10 has a switching circuit 24, consisting of an H bridge circuit of three phases or more composed of a plurality of switching elements, therein, and changes electric connections of coils of the motor 25 to control a driving current of the motor 25. The motor current control means 10 has a PWM modulation part 23 therein, and generates a PWM wave from phase current command values of three phases or more so as to control the switching circuit 24.SELECTED DRAWING: Figure 2

Description

この発明は、自動車等の車両のインホイールモータ装置およびそのインホイールモータ制御装置に関する。   The present invention relates to an in-wheel motor device for a vehicle such as an automobile and an in-wheel motor control device thereof.

従来、複数のインホイールモータを駆動する電流を制御するインバータ装置等の制御装置を同一ケース内に配置し、装置の小型化、軽量化、低コスト化を図ることが提案されている(例えば、特許文献1)。   Conventionally, it has been proposed to arrange a control device such as an inverter device for controlling a current for driving a plurality of in-wheel motors in the same case to reduce the size, weight, and cost of the device (for example, Patent Document 1).

特開2012−176634号公報JP 2012-176634 A

車両の走行駆動にモータを用いる場合、一般にPWM(Pulse Width Modulation)を用いて出力を制御するため、電流を高速にスイッチングするためのスイッチング回路と、演算を行うCPUを搭載した制御装置が必要となる。このモータをインホイールモータに用いる場合、一般に2輪もしくはそれ以上の車輪にインホイールモータを搭載し、車台側にこの制御装置を搭載する。このとき一般に3相またはそれ以上のブラシレスモータを用いるため、制御装置とインホイールモータの間には少なくとも相数と同じ本数の各相のモータ電流を流す電線が必要となる。例えば公道を走行する電気自動車の場合、大電流が必要なため、前記各相のモータ電流を流す電線は許容電流の大きな大径の電線が必要となり、配線が煩雑になる。   When a motor is used to drive a vehicle, the output is generally controlled using PWM (Pulse Width Modulation), so a control circuit equipped with a switching circuit for switching current at high speed and a CPU for performing computation is required. Become. When this motor is used as an in-wheel motor, the in-wheel motor is generally mounted on two or more wheels, and this control device is mounted on the chassis side. At this time, since a brushless motor having three or more phases is generally used, an electric wire for passing a motor current of each phase at least as many as the number of phases is required between the control device and the in-wheel motor. For example, in the case of an electric vehicle traveling on a public road, a large current is required. Therefore, the electric wires that pass the motor current of each phase require a large-diameter electric wire with a large allowable current, and the wiring becomes complicated.

特許文献1のように、複数の車輪のインホイールモータの制御装置を同一のケースに搭載する場合は、各相のモータ電流を流す電線が長くなり、同時にPWM制御の相電流は高周波であるため、電線からの電磁波ノイズの輻射を抑える事が困難である。さらに、スイッチング回路の電力損失による発熱のため、制御装置の放熱が必要となる。
これらの対策として、それぞれの車輪内に制御装置を搭載する方法が考えられる。しかし、車輪内の環境は、振動や熱、漏れ、汚染、スペースの確保など、CPUを含む電子回路にとって適切とは言い難い。また、インホイールモータ1台につきCPUを含む制御装置1台という構成は、装置のトータルでの大型化やコストアップの原因となり、好ましくない。
When a control device for in-wheel motors of a plurality of wheels is mounted in the same case as in Patent Document 1, the length of the electric wire through which the motor current of each phase flows is increased, and at the same time, the phase current of PWM control is high frequency. It is difficult to suppress the radiation of electromagnetic noise from the electric wire. Furthermore, heat is generated by the control device due to heat generation due to power loss of the switching circuit.
As these measures, a method of mounting a control device in each wheel is conceivable. However, it is difficult to say that the environment inside the wheel is appropriate for an electronic circuit including a CPU, such as vibration, heat, leakage, contamination, and space reservation. In addition, the configuration of one control device including a CPU per in-wheel motor is not preferable because it causes a total size increase and cost increase of the device.

この発明の目的は、制御装置からモータコイルへの各相のモータ電流を流す電線を省略できて、インホイールモータ装置とその制御装置とを含む駆動および制御系全体の小型化、軽量化、低コスト化を図れ、またノイズの輻射を抑制し、かつ制御装置の放熱を簡易化できるインホイールモータ装置、およびそのインホイールモータ制御装置を提供することである。   The object of the present invention is to omit the electric wires for passing the motor current of each phase from the control device to the motor coil, and to reduce the size and weight of the entire drive and control system including the in-wheel motor device and its control device. It is an object to provide an in-wheel motor device that can reduce costs, suppress noise radiation, and simplify heat dissipation of a control device, and an in-wheel motor control device.

この発明のインホイールモータ装置5は、車輪用軸受28と、この車輪用軸受28の回転輪28bを回転駆動するモータ25とを備えたインホイールモータ装置5において、
このインホイールモータ装置5のハウジング5aにモータ電流制御手段10を搭載し、このモータ電流制御手段10は、複数のスイッチング素子60によって形成された3相またはそれ以上のHブリッジ回路からなるスイッチング回路24を内蔵し、前記モータ25のコイルの電気的な接続を切り替えて前記モータ25の駆動電流を制御することを特徴とする。
An in-wheel motor device 5 according to the present invention includes an in-wheel motor device 5 including a wheel bearing 28 and a motor 25 that rotationally drives a rotating wheel 28b of the wheel bearing 28.
The motor current control means 10 is mounted on the housing 5 a of the in-wheel motor device 5, and the motor current control means 10 is a switching circuit 24 composed of a three-phase or more H bridge circuit formed by a plurality of switching elements 60. And the drive current of the motor 25 is controlled by switching the electrical connection of the coil of the motor 25.

この構成によると、従来は制御装置2に搭載されていたモータ駆動電流の制御用のスイッチング回路24をインホイールモータ装置5自体に移設したため、スイッチング回路24への駆動電源線が必要となる代わりに、制御装置2からモータコイルへの各相のモータ電流を流す電線を省略できる。また、制御装置2からモータコイルへの各相のモータ電流を流す電線が省略されることで、電磁波ノイズの輻射も軽減できる。例えば、モータコイルと同一ハウジング5a内で相電流のスイッチングを行い、各相のモータ電流を流す電線が外部に露出しないようにすることもでき、その場合、電磁波ノイズの輻射を大幅に軽減できる。
さらに、主要な発熱源であるモータコイルとスイッチング回路24を直近に配置することで、インホイールモータ装置5ではモータ25とスイッチング回路24との放熱器51を一元化することができ、また、制御装置2では駆動電流のスイッチングによりスイッチング回路24で生じる熱を放熱する放熱器が不要となることで、弱電回路の制御系で発生する熱の放熱を行う放熱器だけで済んで、大幅な小型化が可能となる。
指令値送受信部21は常に連続して送受信を行うようにすれば送受信のための操作は不要となり、モータ制御を行うCPU20は、従来通りに演算した相電流指令値を出力すればよく、制御は従来と同様の方法で行える。
トルク指令やモータ回転角に応じたモータ電流値の生成等の演算は上位の制御装置2で行えば良く、インホイールモータ装置5に搭載する回路は、前記スイッチング回路24と単に上位より与えられる指令で前記スイッチング回路24を開閉させる回路とで済むため、単純な構成で実現でき、そのため車輪4内という環境に置かれても、問題は起き難い。
一方、制御装置2は従来通り車台に固定すればよく、制御装置2に搭載する回路は振動や熱などの環境による問題は起き難い。
また、上記の制御装置2からの指令値の伝送は弱電流で行えるため、1台の制御装置2で複数のインホイールモータ装置5を制御するために制御用の電線が長くても、問題は起き難い。よって、複数のインホイールモータ装置5で1台の制御装置2を共用し、小型軽量化やコストダウンを図ることができる。
According to this configuration, since the switching circuit 24 for controlling the motor driving current that has been mounted on the control device 2 in the past has been moved to the in-wheel motor device 5 itself, a drive power line to the switching circuit 24 is required instead. The electric wires that flow the motor current of each phase from the control device 2 to the motor coil can be omitted. Moreover, radiation of electromagnetic wave noise can also be reduced by omitting the electric wires that flow the motor current of each phase from the control device 2 to the motor coil. For example, the phase current can be switched in the same housing 5a as the motor coil so that the electric wires that carry the motor current of each phase are not exposed to the outside. In this case, the radiation of electromagnetic noise can be greatly reduced.
Furthermore, by disposing the motor coil, which is a main heat generation source, and the switching circuit 24 closest to each other, the in-wheel motor device 5 can unify the radiators 51 of the motor 25 and the switching circuit 24, and the control device. 2 eliminates the need for a radiator that dissipates the heat generated in the switching circuit 24 by switching of the drive current, so that only a radiator that dissipates the heat generated in the control system of the low-power circuit can be used, which greatly reduces the size. It becomes possible.
If the command value transmission / reception unit 21 always performs transmission / reception continuously, the operation for transmission / reception becomes unnecessary, and the CPU 20 that performs motor control only needs to output the phase current command value calculated in the conventional manner. This can be done in the same way as before.
Calculations such as generation of a torque command and a motor current value according to the motor rotation angle may be performed by the host controller 2, and the circuit mounted in the in-wheel motor device 5 is a command given simply from the switching circuit 24 and the host. Thus, since the circuit for opening and closing the switching circuit 24 is sufficient, it can be realized with a simple configuration. Therefore, even if it is placed in the environment inside the wheel 4, a problem hardly occurs.
On the other hand, the control device 2 may be fixed to the chassis as usual, and the circuit mounted on the control device 2 is less likely to cause problems due to environment such as vibration and heat.
In addition, since the command value from the control device 2 can be transmitted with a weak current, even if the control wires are long to control a plurality of in-wheel motor devices 5 with one control device 2, there is a problem. It's hard to get up. Therefore, a plurality of in-wheel motor devices 5 can share one control device 2, thereby reducing the size and weight and reducing costs.

この発明のインホイールモータ装置5において、前記モータ電流制御手段10は、PWM変調部23を内蔵し、3相またはそれ以上の相電流指令値よりPWM波を生成して前記スイッチング回路24を制御する構成であっても良い。
PWM制御は、モータ制御として一般的に用いられる制御であり、インホイールモータ装置5自体に設けられる前記モータ電流制御手段10がPWM変調部23とHブリッジ回路とで構成されることで、簡素な構成で信頼性の高い制御が行える。
In the in-wheel motor device 5 of the present invention, the motor current control means 10 incorporates a PWM modulation unit 23, generates a PWM wave from three or more phase current command values, and controls the switching circuit 24. It may be a configuration.
PWM control is control generally used as motor control, and the motor current control means 10 provided in the in-wheel motor device 5 itself is composed of a PWM modulation unit 23 and an H-bridge circuit, thereby simplifying the control. Highly reliable control is possible with the configuration.

このPWM制御を行うインホイールモータ装置5において、前記モータ電流制御手段10は相電流の指令値受信部22を内蔵し、上位の制御装置2よりシリアル伝送された相電流指令値からシリアル−パラレル変換により各相の相電流指令値を生成する構成としても良い。
シリアル伝送方式であると、信号配線の本数が少なくて済む。相電流の制御をシリアル伝送で行うことになるが、シリアル伝送であっても制御に必要な送信速度が十分に得られる。
In the in-wheel motor device 5 that performs this PWM control, the motor current control means 10 has a built-in phase current command value receiving unit 22 and serial-parallel conversion from the phase current command value serially transmitted from the host controller 2. Thus, the phase current command value for each phase may be generated.
In the case of the serial transmission method, the number of signal wirings can be reduced. Although the phase current is controlled by serial transmission, the transmission speed necessary for control can be sufficiently obtained even by serial transmission.

この発明の前記PWM制御を行うインホイールモータ装置5において、前記モータ電流制御手段10は、各相の相電流指令値を上記の制御装置2より電圧信号で受け取るようにしても良い。
各相の相電流指令値を電圧信号で送信する場合、構成が簡素で済む。
In the in-wheel motor device 5 that performs the PWM control of the present invention, the motor current control means 10 may receive a phase current command value of each phase from the control device 2 as a voltage signal.
When the phase current command value of each phase is transmitted as a voltage signal, the configuration is simple.

この発明のインホイールモータ装置5において、前記モータ25の回転位置を検出する回転位置検出手段26を設けても良い。
モータ25の回転位置を検出するようにすることで、モータ25を回転位置に応じて効率良く制御することができる。前記回転位置検出手段26は、レゾルバ等のセンサであっても、またセンサレスで回転位置を検出する手段であっても良い。
In the in-wheel motor device 5 of the present invention, rotational position detecting means 26 for detecting the rotational position of the motor 25 may be provided.
By detecting the rotational position of the motor 25, the motor 25 can be efficiently controlled according to the rotational position. The rotational position detecting means 26 may be a sensor such as a resolver or a means for detecting the rotational position without a sensor.

この発明のインホイールモータ制御装置2は、この発明のインホイールモータ装置5に対して各相の相電流指令値を送信する装置であって、一つのCPU20と、複数組の相電流の指令値送信部21を搭載し、
前記モータ25の回転位置を検出する手段から得たモータ25の回転位置によって前記モータ25の各相の相電流指令値を演算し前記各相電流の指令値送信部21へ出力する相電流指令値演算部19を前記CPU20に有し、前記各相電流の指令値送信部21は、入力された前記各相の相電流指令値を前記相電流の指令値受信部22へ送信する。
この構成のインホイールモータ制御装置2を用いることで、この発明のインホイールモータ装置5を、その機能が効果的に発揮されるように用いることができる。
The in-wheel motor control device 2 of the present invention is a device that transmits a phase current command value for each phase to the in-wheel motor device 5 of the present invention, and includes one CPU 20 and a plurality of sets of phase current command values. Equipped with a transmitter 21
A phase current command value for calculating a phase current command value for each phase of the motor 25 based on the rotation position of the motor 25 obtained from the means for detecting the rotation position of the motor 25 and outputting it to the command value transmitter 21 for each phase current. The CPU 20 includes a calculation unit 19, and the command value transmission unit 21 for each phase current transmits the input phase current command value for each phase to the command value reception unit 22 for the phase current.
By using the in-wheel motor control device 2 having this configuration, the in-wheel motor device 5 of the present invention can be used so that its functions are effectively exhibited.

この発明のインホイールモータ装置は、車輪用軸受と、この車輪用軸受の回転輪を回転駆動するモータとを備えたインホイールモータ装置において、このインホイールモータ装置のハウジングにモータ電流制御手段を搭載し、このモータ電流制御手段は、複数のスイッチング素子によって形成された3相またはそれ以上のHブリッジ回路からなるスイッチング回路を内蔵し、前記モータのコイルの電気的な接続を切り替えて前記モータの駆動電流を制御するため、制御装置からモータコイルへの各相のモータ電流を流す電線を省略できて、インホイールモータ装置とその制御装置とを含む駆動および制御系全体の小型化、軽量化、低コスト化を図れ、またノイズの輻射を抑制し、かつ制御装置の放熱を簡易化できる。   An in-wheel motor device according to the present invention includes a wheel bearing and a motor that rotationally drives a rotating wheel of the wheel bearing, and the motor current control means is mounted on the housing of the in-wheel motor device. The motor current control means incorporates a switching circuit comprising a three-phase or more H-bridge circuit formed by a plurality of switching elements, and switches the electrical connection of the motor coil to drive the motor. In order to control the current, it is possible to omit the electric wires that carry the motor current of each phase from the control device to the motor coil, and the drive and control system including the in-wheel motor device and its control device can be reduced in size, weight, and weight. Cost reduction can be achieved, noise radiation can be suppressed, and heat radiation of the control device can be simplified.

この発明のインホイールモータ制御装置は、この発明のインホイールモータ装置に対して各相の相電流指令値を送信する装置であって、一つのCPUと、複数組の相電流の指令値送信部を搭載し、前記モータの回転位置を検出する手段から得たモータの回転位置によって前記モータの各相の相電流指令値を演算し前記各相電流の指令値送信部へ出力する相電流指令値演算部を前記CPUに有し、前記各相電流の指令値送信部は入力された前記各相の相電流指令値を前記相電流の指令値受信部へ送信するため、この発明のインホイールモータ装置を、その機能が効果的に発揮されるように用いることができる。   An in-wheel motor control device according to the present invention is a device that transmits a phase current command value for each phase to the in-wheel motor device according to the present invention, and includes one CPU and a plurality of sets of phase current command value transmission units. A phase current command value for calculating a phase current command value for each phase of the motor based on the rotation position of the motor obtained from the means for detecting the rotation position of the motor and outputting the phase current command value to the command value transmission unit for each phase current The in-wheel motor of the present invention has a calculation unit in the CPU, and the command value transmission unit for each phase current transmits the input phase current command value for each phase to the command value reception unit for the phase current. The device can be used so that its function is effectively exhibited.

この発明の一実施形態に係るインホイールモータ装置を搭載した車両の模式平面図である。1 is a schematic plan view of a vehicle equipped with an in-wheel motor device according to an embodiment of the present invention. 同インホイールモータ装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the same in-wheel motor apparatus. 同インホイールモータ装置の指令値受信部の説明図である。It is explanatory drawing of the command value receiving part of the same in-wheel motor apparatus. 同インホイールモータ装置における指令値の一例を示すグラフである。It is a graph which shows an example of the command value in the in-wheel motor device. 同インホイールモータ装置におけるPWM変調部の具体例を示す説明図である。It is explanatory drawing which shows the specific example of the PWM modulation | alteration part in the same in-wheel motor apparatus. 同インホイールモータ装置におけるPWM変調の波形例を示すグラフである。It is a graph which shows the waveform example of the PWM modulation | alteration in the same in-wheel motor apparatus. 同インホイールモータ装置における スイッチング回路の具体例の回路図である。FIG. 3 is a circuit diagram of a specific example of a switching circuit in the in-wheel motor device. 同インホイールモータ装置の機構的構成例を示す概略断面図である。It is a schematic sectional drawing which shows the structural structural example of the same in-wheel motor apparatus. 同インホイールモータ装置における相電流指令値演算部を主に示すブロック図である。It is a block diagram which mainly shows the phase current command value calculating part in the same in-wheel motor apparatus.

この発明の一実施形態を図面と共に説明する。図1にこのインホイールモータ装置を搭載した車両の模式図を示す。車台1に車両全体の制御を行う制御装置2を搭載し、懸架装置3により車台1に支持された車輪4にインホイールモータ装置5を搭載する。車台1には走行用バッテリー6と制御電源7が搭載され、駆動電源線8によって走行用バッテリー6よりインホイールモータ装置5へ走行のための駆動電力が供給される。制御電源7は、例えば走行用バッテリー6の電圧を、制御装置2等の制御系の電源として利用可能な電圧に変換するDC−DCコンバータ等からなる。制御装置2と各インホイールモータ装置5とは制御線9によって接続される。制御線9は、制御信号線、センサ信号線、制御電源線などを含むことができる。制御線9は光ファイバーであっても良い。この実施形態では、インホイールモータ装置5を四輪へ搭載して四輪駆動としているが、駆動輪数は任意である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic diagram of a vehicle equipped with this in-wheel motor device. A control device 2 that controls the entire vehicle is mounted on the chassis 1, and an in-wheel motor device 5 is mounted on the wheel 4 supported by the chassis 1 by the suspension device 3. A vehicle battery 1 and a control power source 7 are mounted on the chassis 1, and driving power for driving is supplied from the battery 6 for driving to the in-wheel motor device 5 through a driving power line 8. The control power source 7 is composed of, for example, a DC-DC converter that converts the voltage of the traveling battery 6 into a voltage that can be used as a power source for a control system such as the control device 2. The control device 2 and each in-wheel motor device 5 are connected by a control line 9. The control line 9 can include a control signal line, a sensor signal line, a control power line, and the like. The control line 9 may be an optical fiber. In this embodiment, the in-wheel motor device 5 is mounted on four wheels for four-wheel drive, but the number of drive wheels is arbitrary.

インホイールモータ装置5は、例えば図8に一例を示すように、車輪4を支持する車輪用軸受28と、モータ25と、このモータ25の回転を減速して前記車輪用軸受28のハブ兼用の回転輪である内輪28bに伝達する減速機27とを備え、一部が車輪4の内部に位置している。車輪用軸受28は、固定輪である外輪28aと前記内輪28bとの間に転動体28cを介在させた転がり軸受である。回転輪である内輪28bには、車輪4と共に、ブレーキ装置29のブレーキロータ29aが取付けられている。固定輪である外輪29aは、モータ25および減速機27の共通のハウジング5aに取付けられている。モータ25は、この実施形態では3相のブラシレスモータを用いている。モータ25は、ハウジング5aに固定したステータ25aと、ハウジング5aに軸受を介して回転自在に支持されたロータ25bとを有し、ステータ25aにはステータコイル(図示せず)が、ロータ25bには永久磁石が設けられている。この例のモータ25は、例えば埋め込み磁石型の同期モータであるが、DCブラシレスモータであっても良い。   For example, as shown in FIG. 8, the in-wheel motor device 5 includes a wheel bearing 28 that supports the wheel 4, a motor 25, and a motor 25 that decelerates the rotation of the motor 25 and serves as a hub for the wheel bearing 28. A reduction gear 27 that transmits to the inner ring 28 b that is a rotating wheel is provided, and a part thereof is located inside the wheel 4. The wheel bearing 28 is a rolling bearing in which a rolling element 28c is interposed between an outer ring 28a that is a fixed ring and the inner ring 28b. A brake rotor 29a of the brake device 29 is attached to the inner ring 28b, which is a rotating wheel, together with the wheel 4. The outer ring 29a, which is a fixed ring, is attached to a common housing 5a for the motor 25 and the speed reducer 27. In this embodiment, the motor 25 uses a three-phase brushless motor. The motor 25 includes a stator 25a fixed to the housing 5a, and a rotor 25b rotatably supported on the housing 5a via a bearing. The stator 25a includes a stator coil (not shown), and the rotor 25b includes A permanent magnet is provided. The motor 25 in this example is, for example, an embedded magnet type synchronous motor, but may be a DC brushless motor.

モータ25には、ロータ25bの回転位置を検出する回転位置検出手段としてレゾルバ26が設けられている。また、モータ25のハウジング5aには、モータ25および減速機27を冷却する放熱器51が設けられている。この放熱器51は、ハウジング5aに設けられた自然空冷式の放熱フィンでもよいし、冷却液循環式の冷却機構でもよい。
この図8に示す放熱器51は、冷却液循環式の冷却機構を示す。具体的構成の図示は省略するが、例えば、モータ25の冷却と減速機27の冷却および潤滑とに用いられる潤滑油を、モータ25の回転軸の内部から供給するいわゆる軸心給油機構である。この軸心給油機構からなる放熱器51は、モータ25の回転によって駆動される内蔵ポンプにより、ハウジング5a内の潤滑油貯留部に貯留された潤滑油を、モータ25のハウジング5a内の油路へ圧送し、ハウジング5aおよびステータ25aを冷却する。この潤滑油は、さらにモータ25の前記回転軸の端面から回転軸の内部に流れ、この潤滑油は一部がロータ25b内の油路を通ってロータ25bを冷却すると共に、ステータ25aのステータコイルへ向かって吐出され、ステータコイルを冷却する。前記回転軸内の油路の潤滑油の残りは、減速機27内へ送られ、減速機27の潤滑と冷却に用いられる。各部の冷却や潤滑に用いられた潤滑油は、前記潤滑油貯留部に戻される。
The motor 25 is provided with a resolver 26 as rotational position detecting means for detecting the rotational position of the rotor 25b. The housing 5a of the motor 25 is provided with a radiator 51 for cooling the motor 25 and the speed reducer 27. The heat radiator 51 may be a natural air-cooled heat radiating fin provided in the housing 5a or a coolant circulation type cooling mechanism.
The heat radiator 51 shown in FIG. 8 shows a coolant circulation type cooling mechanism. Although illustration of a specific configuration is omitted, for example, a so-called shaft center oil supply mechanism that supplies lubricating oil used for cooling the motor 25 and cooling and lubricating the speed reducer 27 from the inside of the rotating shaft of the motor 25 is used. The radiator 51 including the shaft center oil supply mechanism is configured so that the lubricating oil stored in the lubricating oil storage section in the housing 5a is transferred to the oil passage in the housing 5a of the motor 25 by a built-in pump driven by the rotation of the motor 25. Pumping is performed to cool the housing 5a and the stator 25a. The lubricating oil further flows from the end face of the rotating shaft of the motor 25 to the inside of the rotating shaft, and this lubricating oil partially cools the rotor 25b through an oil passage in the rotor 25b, and the stator coil of the stator 25a. The stator coil is discharged to cool the stator coil. The remainder of the lubricating oil in the oil passage in the rotating shaft is sent into the speed reducer 27 and used for lubrication and cooling of the speed reducer 27. Lubricating oil used for cooling and lubricating each part is returned to the lubricating oil reservoir.

このようなインホイールモータ装置5の前記ハウジング5aの内部にモータ電流制御手段10が設けられている。モータ電流制御手段10は、前記ハウジング5aの外面に取り付けても良い。このモータ電流制御手段10は、後述のように、複数のスイッチング素子によって形成された3相のHブリッジ回路からなるスイッチング回路を内蔵する。このモータ電流制御手段10は、上位の前記制御手段2(図1)の指令に従って制御を行う。なお、前記モータ電流制御手段10は、モータ25の相数が4相以上である場合、モータ25の相数に対応するモータ4相以上のブリッジ回路からなるスイッチング回路を内蔵したものとする。前記放熱器51は、この例では前記モータ25および減速機27の他にモータ電流制御手段10を冷却する機能を有する構成とされる。   The motor current control means 10 is provided in the housing 5a of such an in-wheel motor device 5. The motor current control means 10 may be attached to the outer surface of the housing 5a. As will be described later, the motor current control means 10 incorporates a switching circuit composed of a three-phase H-bridge circuit formed by a plurality of switching elements. The motor current control means 10 performs control in accordance with a command from the upper control means 2 (FIG. 1). When the motor 25 has four or more phases, the motor current control means 10 includes a switching circuit including a bridge circuit having four or more motor phases corresponding to the number of phases of the motor 25. In this example, the radiator 51 has a function of cooling the motor current control means 10 in addition to the motor 25 and the speed reducer 27.

図2に1台の制御装置2でインホイールモータ装置5を4台制御する構成とした場合の制御ブロック図を示す。制御装置2は、CPU20と、制御対象のインホイールモータ装置5の数と同じ組数の指令値送信部21とを含む。制御装置2は、車両全体の協調制御、統括制御を行う手段であって、これにモータ駆動のための制御手段、すなわちアクセルペダル等のアクセル操作手段(図示せず)とブレーキペダル等のブレーキ操作手段(図示せず)の操作信号から車両を駆動する全体のトルク値および各モータ25に分配するトルク指令値を演算するトルク指令手段18と、この分配された各トルク指令値に従って各モータ25の各相の相電流指令値を生成する相電流指令値演算部19とが前記CPU20に設けられている。相電流指令値演算部19は、各モータ25毎に設けられているが、図2では一つのブロックで代表して図示している。   FIG. 2 shows a control block diagram in a case where a single control device 2 is configured to control four in-wheel motor devices 5. The control device 2 includes a CPU 20 and a command value transmission unit 21 having the same number of sets as the number of in-wheel motor devices 5 to be controlled. The control device 2 is means for performing cooperative control and overall control of the entire vehicle, and includes control means for driving the motor, that is, an accelerator operation means (not shown) such as an accelerator pedal and a brake operation such as a brake pedal. Torque command means 18 for calculating an overall torque value for driving the vehicle and a torque command value to be distributed to each motor 25 from an operation signal of means (not shown), and each motor 25 according to each distributed torque command value. The CPU 20 is provided with a phase current command value calculation unit 19 that generates a phase current command value for each phase. The phase current command value calculation unit 19 is provided for each motor 25, but in FIG.

相電流指令値演算部19は、入力された前記トルク指令値に従ってベクトル制御等のフィードバック制御でトルク制御する手段であり、前記レゾルバ26で得たモータ25の回転位置によってモータ25の各相の相電流指令値を演算しその演算結果を前記各相電流の指令値送信部21へ出力する。   The phase current command value calculation unit 19 is means for torque control by feedback control such as vector control in accordance with the input torque command value, and the phase of each phase of the motor 25 is determined by the rotational position of the motor 25 obtained by the resolver 26. The current command value is calculated, and the calculation result is output to the command value transmission unit 21 for each phase current.

インホイールモータ装置5の前記モータ電流制御手段10は、指令値受信部22、PWM変調部23、およびスイッチング回路24を含む。2台目以降の各インホイールモータ装置5のモータ電流制御手段10も同様の構成である。以下、1台目の制御について解説するが、2台目以降の制御も同様である。レゾルバ26によって検出されたモータ25の回転位置より、制御装置2のCPU20における相電流指令値演算部19によってU、V、Wの3相の指令値が演算される。指令値は指令値送信部21より、インホイールモータ装置5の指令値受信部22に伝送される。受信したU、V、W各相の指令値は、PWM変調部23にてUH、UL、VH、VL、WH、WLのスイッチング制御信号に変換される。この制御信号によりスイッチング回路24の各スイッチング素子をスイッチングすることで、3相ブラシレスモータからなるモータ25の回転を制御する。モータ25の回転位置検出は、レゾルバ26の他にホールIC等の回転センサを用いたり、センサレスで検出する回転検出手段とするなど、従来用いられる手法を用いる事に何ら制限はない。   The motor current control means 10 of the in-wheel motor device 5 includes a command value receiving unit 22, a PWM modulation unit 23, and a switching circuit 24. The motor current control means 10 of the second and subsequent in-wheel motor devices 5 has the same configuration. Hereinafter, the control of the first unit will be described, but the same applies to the control of the second and subsequent units. From the rotational position of the motor 25 detected by the resolver 26, the phase current command value calculation unit 19 in the CPU 20 of the control device 2 calculates three-phase command values of U, V, and W. The command value is transmitted from the command value transmitting unit 21 to the command value receiving unit 22 of the in-wheel motor device 5. The received command values of the U, V, and W phases are converted by the PWM modulator 23 into UH, UL, VH, VL, WH, and WL switching control signals. By switching each switching element of the switching circuit 24 by this control signal, the rotation of the motor 25 composed of a three-phase brushless motor is controlled. The rotational position of the motor 25 is not limited to using a conventionally used method such as using a rotation sensor such as a Hall IC in addition to the resolver 26, or using a rotation detection means for sensorless detection.

図3に、図2の指令値送信部21と指令値受信部22とでなる指令値送受信部の具体例を示す。図2のCPU20の相電流指令値演算部19によって演算されたU、V、Wの指令値30、31、32は、制御装置2のパラレル−シリアル変換部33にてシリアル信号に変換され、制御装置2側のラインドライバ34、インホイールモータ装置5側のラインドライバ35にて平衡接続で伝送され、シリアル−パラレル変換部36でパラレルに再変換される。このように伝送されたU、V、Wの指令値が指令値レジスタ37、38、39に格納される。指令値は高速に連続して伝送されることでモータ25の回転速度に対して十分な分解能を持つ。量子化されたシリアル伝送を用いるには、このように平衡接続を用いる方法の他に、非平衡接続や光伝送を用いたり、CANなどの規格化されたシリアル伝送方法を用いることも可能である。また、量子化信号を用いる方法の他にも、例えばU、V、Wそれぞれの指令値をアナログ電圧として3本の信号線で伝送することも可能である。   FIG. 3 shows a specific example of a command value transmission / reception unit including the command value transmission unit 21 and the command value reception unit 22 in FIG. The U, V, and W command values 30, 31, and 32 calculated by the phase current command value calculation unit 19 of the CPU 20 in FIG. 2 are converted into serial signals by the parallel-serial conversion unit 33 of the control device 2, and controlled. The line driver 34 on the apparatus 2 side and the line driver 35 on the in-wheel motor apparatus 5 side transmit the signals in a balanced connection, and the serial-parallel converter 36 reconverts them into parallel. The command values of U, V, and W transmitted in this way are stored in command value registers 37, 38, and 39. The command value is continuously transmitted at a high speed, so that the command value has a sufficient resolution with respect to the rotational speed of the motor 25. In order to use the quantized serial transmission, it is possible to use a non-balanced connection or optical transmission, or a standardized serial transmission method such as CAN, in addition to the balanced connection method. . In addition to the method using a quantized signal, for example, command values of U, V, and W can be transmitted as analog voltages through three signal lines.

図4に指令値の波形を示す。指令値U、V、Wは、3相それぞれの相の指令値を表す。周波数がモータ回転速度を表し、振幅が電流値を表す。一般に、3相の場合の電流値は、それぞれの相の位相が1/3周期ずつずれたsin 波となっており、1周期がモータ25の電気角1周に当たる。   FIG. 4 shows the waveform of the command value. The command values U, V, and W represent the command values of the three phases. The frequency represents the motor rotation speed, and the amplitude represents the current value. In general, the current value in the case of three phases is a sine wave in which the phase of each phase is shifted by 1/3 period, and one period corresponds to one electrical angle of the motor 25.

図5に図2のPWM変調部23の具体例を示す。PWM変調部23は、適切に生成された三角波40と各相の指令値41、42、43を比較器44によって比較することで、指令値をパルス幅に変換する。これは一般的なPWMの手法である。このとき、指令値41、42、43、三角波40、比較器44は、量子化された値をそのまま取り扱ってもいいし、アナログ電圧を用いることも可能である。この変調によって、各相のスイッチング回路24(図2)の上アーム、下アームの制御信号45を生成する。なお、前記各相の指令値41、42、43は、図3の指令値レジスタ37、38、39に格納された指令値である。   FIG. 5 shows a specific example of the PWM modulator 23 shown in FIG. The PWM modulation unit 23 converts the command value into a pulse width by comparing the appropriately generated triangular wave 40 and the command values 41, 42, 43 of each phase by the comparator 44. This is a general PWM method. At this time, the command values 41, 42, 43, the triangular wave 40, and the comparator 44 may handle the quantized values as they are, or may use analog voltages. By this modulation, control signals 45 for the upper and lower arms of the switching circuit 24 (FIG. 2) for each phase are generated. The command values 41, 42, and 43 for each phase are command values stored in the command value registers 37, 38, and 39 in FIG.

図6にPWM変調の波形を示す。一例として、図4のU相指令値のA部を時間拡大した波形である。三角波40の周期はキャリア周期と呼ばれ、指令値をパルスに分解する分解能にあたる。同図のように指令値41と三角波40を比較することで、指令値41がキャリア周期ごとにパルスの時間幅に変換されPWM波45が生成される。   FIG. 6 shows a PWM modulation waveform. As an example, it is the waveform which expanded the A part of the U-phase command value of FIG. The period of the triangular wave 40 is called a carrier period and corresponds to a resolution for decomposing the command value into pulses. By comparing the command value 41 and the triangular wave 40 as shown in the figure, the command value 41 is converted into a pulse time width for each carrier period, and a PWM wave 45 is generated.

図7に図2のスイッチング回路24の具体例を示す。スイッチング素子60により3相のHブリッジ回路を形成し、制御信号のタイミングに従ってゲートドライバ61によりスイッチング素子60をオンオフして、モータ25の各相を+駆動電源63や−駆動電源64へ接続し、モータ25に駆動電流を流すことで回転を制御する。前記+駆動電源63および−駆動電源64は、それぞれ前記バッテリー6の+端子および−端子である。スイッチング素子60は、一般にパワーMOSFETやIGBTなどが用いられるが、その種類を制限するものではない。   FIG. 7 shows a specific example of the switching circuit 24 of FIG. The switching element 60 forms a three-phase H-bridge circuit, the switching element 60 is turned on / off by the gate driver 61 according to the timing of the control signal, and the phases of the motor 25 are connected to the + drive power supply 63 and the −drive power supply 64, The rotation is controlled by passing a drive current through the motor 25. The + drive power supply 63 and the −drive power supply 64 are a + terminal and a −terminal of the battery 6, respectively. The switching element 60 is generally a power MOSFET, IGBT, or the like, but the type is not limited.

この構成のインホイールモータ装置5によると、制御装置2に一つのCPU20と複数組の相電流の指令値送信部21を設け、制御装置2からは従来のPWM変調部とスイッチング回路を省略する。インホイールモータ装置5に、スイッチング回路24、PWM変調部23、指令値受信部22を内蔵する。1台の制御装置2より複数のインホイールモータ装置5へ指令値を送信して制御を行う。   According to the in-wheel motor device 5 of this configuration, the control device 2 is provided with one CPU 20 and a plurality of sets of phase current command value transmission units 21, and the conventional PWM modulation unit and switching circuit are omitted from the control device 2. The in-wheel motor device 5 includes a switching circuit 24, a PWM modulation unit 23, and a command value receiving unit 22. Control is performed by transmitting a command value from a single control device 2 to a plurality of in-wheel motor devices 5.

このように、従来の制御装置2からインホイールモータ装置5にスイッチング回路24を移設することで、スイッチング回路24への駆動電源線が必要となる代わりに、制御装置2からモータ25のコイルへの各相のモータ電流を流す電線を省略できる。また、モータコイルと同一ハウジング5a内で相電流のスイッチングを行い、各相のモータ電流を流す電線が外部に露出しないため、電磁波ノイズの輻射を大幅に軽減できる。さらに、主要な発熱源であるモータ25のコイルとスイッチング回路24を直近に配置することで、インホイールモータ装置5ではモータ25とスイッチング回路24との放熱器51(図8)を一元化することができ、また、制御装置2では、駆動電流のスイッチングによりスイッチング回路24で生じる熱を放熱する放熱器が不要となり、弱電回路の制御系で発生する熱の放熱を行う放熱器だけで済んで、大幅な小型化が可能となる。   Thus, by transferring the switching circuit 24 from the conventional control device 2 to the in-wheel motor device 5, instead of requiring a drive power line to the switching circuit 24, the coil from the control device 2 to the coil of the motor 25 is used. Electric wires that carry motor currents for each phase can be omitted. In addition, the phase current is switched in the same housing 5a as the motor coil, and the electric wire that passes the motor current of each phase is not exposed to the outside, so that radiation of electromagnetic noise can be greatly reduced. Furthermore, by arranging the coil of the motor 25, which is the main heat generation source, and the switching circuit 24 closest to each other, the in-wheel motor device 5 can unify the radiator 51 (FIG. 8) between the motor 25 and the switching circuit 24. In addition, the control device 2 eliminates the need for a radiator that dissipates heat generated by the switching circuit 24 due to switching of the drive current, and only requires a radiator that dissipates heat generated in the control system of the low-power circuit. Can be miniaturized.

図2の指令値送受信部21は常に連続して送受信を行うことで送受信のための操作は不要とし、モータ25の制御を行うCPU20は、従来通りに演算した相電流指令値を出力すれば良く、制御は従来と同様の方法で行える。インホイールモータ装置5に搭載する回路は単純な構成で実現できるため、車輪4内という環境に置かれても、問題は起きにくい。一方、制御装置2は従来通り車台に固定されるため、制御装置2に搭載する回路は振動や熱などの環境による問題は起き難い。また、指令値の伝送は弱電流で行えるため、1台の制御装置2で複数のインホイールモータ―5を制御するために制御用の電線が長くても、問題は起き難い。よって、複数のインホイールモータ装置5で1台の制御装置2を共用し、小型軽量化やコストダウンを行うことができる。   The command value transmission / reception unit 21 in FIG. 2 always performs transmission / reception continuously, so that an operation for transmission / reception is unnecessary, and the CPU 20 that controls the motor 25 only has to output the phase current command value calculated in the conventional manner. The control can be performed in the same manner as in the past. Since the circuit mounted on the in-wheel motor device 5 can be realized with a simple configuration, even if it is placed in the environment inside the wheel 4, a problem hardly occurs. On the other hand, since the control device 2 is fixed to the chassis as usual, the circuit mounted on the control device 2 is unlikely to cause problems due to environment such as vibration and heat. In addition, since the command value can be transmitted with a weak current, even if the control wires are long for controlling a plurality of in-wheel motors 5 with one control device 2, a problem hardly occurs. Therefore, a plurality of in-wheel motor devices 5 can share one control device 2 to reduce the size and weight and reduce the cost.

このように、このインホイールモータ装置5によると、車台に搭載する1台の制御装置2と車輪4に搭載する複数のインホイールモータ装置5間の配線を削減し、ノイズの輻射を抑制し、制御装置2の放熱を不要にすることができる。   Thus, according to this in-wheel motor device 5, wiring between the one control device 2 mounted on the chassis and the plurality of in-wheel motor devices 5 mounted on the wheel 4 is reduced, and noise radiation is suppressed. Heat dissipation of the control device 2 can be made unnecessary.

図9は、図2の前記相電流指令値演算部19がベクトル制御を行う構成である場合の具体例を示す。この例では、相電流指令値演算部19は、電流指令部50、電流PI制御部51、2相・3相変換部52、および3相・2相変換部53を有する。電流指令部50は、
トルク指令手段18から与えられたトルク指令に従い、モータ電流のd軸電流(界磁成分)O_Idと、q軸電流(トルク成分)O_Iqの二つの指令電流を生成する。
FIG. 9 shows a specific example in the case where the phase current command value calculation unit 19 of FIG. 2 is configured to perform vector control. In this example, the phase current command value calculation unit 19 includes a current command unit 50, a current PI control unit 51, a two-phase / three-phase conversion unit 52, and a three-phase / two-phase conversion unit 53. The current command unit 50
In accordance with the torque command given from the torque command means 18, two command currents of d-axis current (field component) O_Id and q-axis current (torque component) O_Iq of the motor current are generated.

電流PI制御部51は、電流指令部50から出力されたd軸電流O_Id、q軸電流O_Iqの値と、モータ電流および回転子角度から3相・2相変換部53で計算された2相電流Id,Iqとから、PI制御による電圧値による制御量Vd,Vqを算出する。前記3相・2相変換部53では、電流センサ56で検出されたモータ25のu相電流(Iu)とw相電流(Iw)の検出値から、v相電流(Iv)を算出し、Iu,Iv,Iwの3相電流からId,Iqの2相電流に変換する。2相・3相変換部52は、入力された2相の制御量Vd,Vqと、レゾルバ26で得たロータ回転角度位置とから、3相の相電流指令値Vu,Vv,Vwに変換する。この3相の相電流指令値Vu,Vv,Vwが、相電流指令値演算部19の各相の出力とされ、前記指令値送信部21から前記モータ電流制御手段10へ送信される。   The current PI control unit 51 calculates the two-phase current calculated by the three-phase / two-phase conversion unit 53 from the values of the d-axis current O_Id and q-axis current O_Iq output from the current command unit 50, and the motor current and the rotor angle. Control amounts Vd and Vq based on voltage values by PI control are calculated from Id and Iq. The three-phase / two-phase converter 53 calculates the v-phase current (Iv) from the detected values of the u-phase current (Iu) and the w-phase current (Iw) of the motor 25 detected by the current sensor 56, and Iu , Iv and Iw are converted into two-phase currents Id and Iq. The two-phase / three-phase conversion unit 52 converts the input two-phase control amounts Vd, Vq and the rotor rotational angle position obtained by the resolver 26 into three-phase phase current command values Vu, Vv, Vw. . The three-phase phase current command values Vu, Vv, and Vw are used as outputs of the respective phases of the phase current command value calculation unit 19 and transmitted from the command value transmission unit 21 to the motor current control means 10.

モータ電流制御手段10の電力変換手段55は、前記相電流指令値Vu,Vv,Vwに従って各相のモータ電流に変換する手段であり、図2の前記PWM変調部23および前記スイッチング回路24により構成される。   The power conversion means 55 of the motor current control means 10 is means for converting the motor current of each phase according to the phase current command values Vu, Vv, Vw, and is constituted by the PWM modulator 23 and the switching circuit 24 of FIG. Is done.

なお、上記実施形態では3相のブラシレスモータを用いたが、4相以上のブラシレスモータを用い、制御系の相数をその4相以上のモータの相数と同数とすることもできる。また、前記インホイールモータ装置5は、前記減速機27を必ずしも有していなくても良い。   In the above embodiment, a three-phase brushless motor is used. However, a brushless motor having four or more phases may be used, and the number of phases of the control system may be the same as the number of phases of the four or more motors. The in-wheel motor device 5 may not necessarily include the speed reducer 27.

以上、実施例に基づいて本発明を実施するための形態を説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

2…制御装置
4…車輪
5…インホイールモータ装置
5a…ハウジング
8…駆動電源線
9…制御線
10…モータ電流制御手段
18…トルク指令手段
19…相電流指令値演算部
21…相電流の指令値送信部
22…相電流の指令値受信部
23…PWM変調部
24…スイッチング回路
25…モータ
26…レゾルバ(回転位置検出手段)
27…減速機
28…車輪用軸受
60…スイッチング素子
DESCRIPTION OF SYMBOLS 2 ... Control apparatus 4 ... Wheel 5 ... In-wheel motor apparatus 5a ... Housing 8 ... Drive power supply line 9 ... Control line 10 ... Motor current control means 18 ... Torque command means 19 ... Phase current command value calculating part 21 ... Command of phase current Value transmitter 22 ... Phase current command value receiver 23 ... PWM modulator 24 ... Switching circuit 25 ... Motor 26 ... Resolver (rotational position detecting means)
27 ... Reducer 28 ... Wheel bearing 60 ... Switching element

Claims (6)

車輪用軸受と、この車輪用軸受の回転輪を回転駆動するモータとを備えたインホイールモータ装置において、
このインホイールモータ装置のハウジングにモータ電流制御手段を搭載し、このモータ電流制御手段は、複数のスイッチング素子によって形成された3相またはそれ以上のHブリッジ回路からなるスイッチング回路を内蔵し、前記モータのコイルの電気的な接続を切り替えて前記モータの駆動電流を制御することを特徴とするインホイールモータ装置。
In an in-wheel motor device comprising a wheel bearing and a motor that rotationally drives a rotating wheel of the wheel bearing,
The motor current control means is mounted on the housing of the in-wheel motor device, and the motor current control means incorporates a switching circuit composed of a three-phase or more H-bridge circuit formed by a plurality of switching elements, and the motor An in-wheel motor device that controls the drive current of the motor by switching the electrical connection of the coils.
請求項1に記載のインホイールモータ装置において、前記モータ電流制御手段は、PWM変調部を内蔵し、3相またはそれ以上の相電流指令値よりPWM波を生成して前記スイッチング回路を制御するインホイールモータ装置。   The in-wheel motor device according to claim 1, wherein the motor current control unit includes a PWM modulation unit and generates a PWM wave from a phase current command value of three phases or more to control the switching circuit. Wheel motor device. 請求項2に記載のインホイールモータ装置において、前記モータ電流制御手段は相電流の指令値受信部を内蔵し、上位の制御装置よりシリアル伝送された相電流指令値からシリアル−パラレル変換により各相の相電流指令値を生成するインホイールモータ装置。   3. The in-wheel motor device according to claim 2, wherein the motor current control means includes a phase current command value receiving section, and each phase is converted from a phase current command value serially transmitted from a host controller by serial-parallel conversion. An in-wheel motor device that generates a phase current command value. 請求項2に記載のインホイールモータ装置において、前記モータ電流制御手段は、各相の相電流指令値を上位の制御装置より電圧信号で受け取るインホイールモータ装置。   3. The in-wheel motor device according to claim 2, wherein the motor current control means receives a phase current command value of each phase from a higher-level control device as a voltage signal. 請求項3または請求項4に記載のインホイールモータ装置において、前記モータの回転位置を検出する回転位置検出手段を設けたインホイールモータ装置。   5. The in-wheel motor device according to claim 3, further comprising a rotational position detecting unit that detects a rotational position of the motor. 請求項3ないし請求項5のいずれか1項に記載のインホイールモータ装置に対して各相の相電流指令値を送信する装置であって、一つのCPUと、複数組の相電流の指令値送信部を搭載し、
前記モータの回転位置を検出する手段から得たモータの回転位置によって前記モータの各相の相電流指令値を演算し前記各相電流の指令値送信部へ出力する相電流指令値演算部を前記CPUに有し、前記各相電流の指令値送信部は入力された前記各相の相電流指令値を前記相電流の指令値受信部へ送信するインホイールモータ制御装置。
A device for transmitting a phase current command value of each phase to the in-wheel motor device according to any one of claims 3 to 5, wherein one CPU and a command value of a plurality of sets of phase currents Equipped with a transmitter,
A phase current command value calculation unit that calculates a phase current command value for each phase of the motor based on the rotation position of the motor obtained from the means for detecting the rotation position of the motor and outputs the phase current command value to the command value transmission unit for each phase current. The in-wheel motor control apparatus which has in CPU and the command value transmission part of each phase current transmits the phase current command value of each said phase input to the command value reception part of the said phase current.
JP2014225889A 2014-11-06 2014-11-06 In-wheel motor device and in-wheel motor controller therefor Pending JP2016092995A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014225889A JP2016092995A (en) 2014-11-06 2014-11-06 In-wheel motor device and in-wheel motor controller therefor
PCT/JP2015/080149 WO2016072308A1 (en) 2014-11-06 2015-10-26 In-wheel motor device and in-wheel motor control device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225889A JP2016092995A (en) 2014-11-06 2014-11-06 In-wheel motor device and in-wheel motor controller therefor

Publications (1)

Publication Number Publication Date
JP2016092995A true JP2016092995A (en) 2016-05-23

Family

ID=55909034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225889A Pending JP2016092995A (en) 2014-11-06 2014-11-06 In-wheel motor device and in-wheel motor controller therefor

Country Status (2)

Country Link
JP (1) JP2016092995A (en)
WO (1) WO2016072308A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019041543A (en) * 2017-08-28 2019-03-14 株式会社東芝 Motor drive controller
WO2019167261A1 (en) * 2018-03-02 2019-09-06 本田技研工業株式会社 Drive device
WO2019167263A1 (en) * 2018-03-02 2019-09-06 本田技研工業株式会社 Drive device
WO2019167262A1 (en) * 2018-03-02 2019-09-06 本田技研工業株式会社 Drive device
CN111867866A (en) * 2018-03-20 2020-10-30 马自达汽车株式会社 Vehicle drive device
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11273706B2 (en) 2019-09-20 2022-03-15 Subaru Corporation Drive device for four-wheel drive vehicle
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11433766B2 (en) 2019-07-31 2022-09-06 Subaru Corporation Driving device of electric-motor four-wheel drive vehicle
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11691519B2 (en) 2019-01-23 2023-07-04 Denso Corporation Electrically driven vehicle
KR102552572B1 (en) * 2022-02-11 2023-07-05 호남대학교 산학협력단 In-wheel motor assembly with variable magnetic flux
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
KR102661050B1 (en) 2021-12-16 2024-05-29 (주)더존시스템 In-wheel motor, controller for switching driving mode of the in_wheel motor between high-torque mode and low-torque mode, and between high-speed mode and low-speed mode, and electric vehicle comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933227B2 (en) 2016-12-22 2021-09-08 日本電産株式会社 Multi-motor system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201878A (en) * 2012-02-24 2013-10-03 Nissan Motor Co Ltd Mechano-electric motor and assembly method of mechano-electric motor
JP5796257B2 (en) * 2012-05-31 2015-10-21 アイシン・エィ・ダブリュ株式会社 Inverter device
JP5954107B2 (en) * 2012-10-23 2016-07-20 株式会社デンソー Motor control device
JP2014123188A (en) * 2012-12-20 2014-07-03 Canon Inc Distribution control device and distribution control method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
JP2019041543A (en) * 2017-08-28 2019-03-14 株式会社東芝 Motor drive controller
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
WO2019167262A1 (en) * 2018-03-02 2019-09-06 本田技研工業株式会社 Drive device
US11268585B2 (en) 2018-03-02 2022-03-08 Honda Motor Co., Ltd. Driving apparatus
US11306791B2 (en) 2018-03-02 2022-04-19 Honda Motor Co., Ltd. Driving apparatus
WO2019167263A1 (en) * 2018-03-02 2019-09-06 本田技研工業株式会社 Drive device
WO2019167261A1 (en) * 2018-03-02 2019-09-06 本田技研工業株式会社 Drive device
CN111867866B (en) * 2018-03-20 2023-08-18 马自达汽车株式会社 Vehicle driving device
CN111867866A (en) * 2018-03-20 2020-10-30 马自达汽车株式会社 Vehicle drive device
US11691519B2 (en) 2019-01-23 2023-07-04 Denso Corporation Electrically driven vehicle
US11433766B2 (en) 2019-07-31 2022-09-06 Subaru Corporation Driving device of electric-motor four-wheel drive vehicle
US11273706B2 (en) 2019-09-20 2022-03-15 Subaru Corporation Drive device for four-wheel drive vehicle
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
KR102661050B1 (en) 2021-12-16 2024-05-29 (주)더존시스템 In-wheel motor, controller for switching driving mode of the in_wheel motor between high-torque mode and low-torque mode, and between high-speed mode and low-speed mode, and electric vehicle comprising the same
KR102552572B1 (en) * 2022-02-11 2023-07-05 호남대학교 산학협력단 In-wheel motor assembly with variable magnetic flux

Also Published As

Publication number Publication date
WO2016072308A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP2016092995A (en) In-wheel motor device and in-wheel motor controller therefor
CA2698956C (en) Controller of motor
JP5172286B2 (en) Motor control device and control device for hybrid vehicle
JP5065986B2 (en) Semiconductor device driving apparatus and driving method thereof
US7615948B2 (en) Controller for motor and control method for motor
US7583048B2 (en) Controller for motor
US20140253006A1 (en) Power converter
US7872440B2 (en) Controller of electric motor
JP5216449B2 (en) Motor control device, power conversion device, and hybrid vehicle
CN102780442B (en) Electronic device and control method thereof
WO2017006717A1 (en) Motor control device and electric power steering device in which same is mounted
US11833912B2 (en) Traction control system
JP2013005067A (en) Power conversion apparatus
US7728557B2 (en) Electric discharge controller, electric discharge control method and its program
JP6243320B2 (en) Power semiconductor module
JP6272064B2 (en) Power converter
JP2016086491A (en) Semiconductor device
JP2013187939A (en) Motor control device for vehicle and control method
KR102011831B1 (en) Motor driving apparatus and electric vehicle including the same
JP5798951B2 (en) Inverter device
US7352188B2 (en) Electrically operated vehicle abnormality judging device
JP5975797B2 (en) Power converter
JP6989574B2 (en) Control device, vehicle system and control method
US20240042867A1 (en) Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method
JP6759041B2 (en) Brushless motor control method and brushless motor control device