JP2016087615A - Compound roll - Google Patents

Compound roll Download PDF

Info

Publication number
JP2016087615A
JP2016087615A JP2014221406A JP2014221406A JP2016087615A JP 2016087615 A JP2016087615 A JP 2016087615A JP 2014221406 A JP2014221406 A JP 2014221406A JP 2014221406 A JP2014221406 A JP 2014221406A JP 2016087615 A JP2016087615 A JP 2016087615A
Authority
JP
Japan
Prior art keywords
ceramic
roll
iron
outer layer
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014221406A
Other languages
Japanese (ja)
Other versions
JP6358044B2 (en
Inventor
井上 剛
Takeshi Inoue
剛 井上
秀 内田
Hide Uchida
秀 内田
誠司 伊東
Seiji Ito
誠司 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014221406A priority Critical patent/JP6358044B2/en
Publication of JP2016087615A publication Critical patent/JP2016087615A/en
Application granted granted Critical
Publication of JP6358044B2 publication Critical patent/JP6358044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a roll excellent in a fatigue resistant characteristic, that is, a compound roll having both favorable abrasion resistance and an excellent fatigue resistant characteristic, being not only excellent in abrasion resistance as a rolling roll but also hardly causing a pit and a spore ring by fatigue, even under a fatigue-easily advancing rolling condition such as a high Hertz contact stress and a high rolling frequency.SOLUTION: A compound roll is provided with an outer layer material of sintering a compound material of iron base alloy powder and a ceramic material on the outside of a roll axis material composed of a ferrous material. In the compound roll, a C quantity of an iron base alloy in the outer layer material is 0.1 mass%-0.8 mass%, and ceramic fiber of an average fiber diameter of 1-50 μm is included as the ceramic material of the outer layer material, and a rate of the ceramic fiber in the outer layer material is 10 vol.% or more, and moreover, a rate of the whole ceramic material in the outer layer material is 10-40 vol.%.SELECTED DRAWING: None

Description

本発明は、薄板鋼帯等の金属製品の製造プロセスで使用されるロールに関するものであり、特に胴部の外層が、鉄基合金にセラミックを配合した複合材からなる複合ロールに関するものである。   The present invention relates to a roll used in a manufacturing process of a metal product such as a thin steel strip, and more particularly to a composite roll in which an outer layer of a body portion is made of a composite material in which ceramic is mixed with an iron-based alloy.

熱間圧延ロールや冷間圧延ロール等の圧延ロールとしては、従来から、鉄もしくは鉄系合金からなる金属マトリックスに炭化物などの微小粒子が分散された硬度の高い材料、例えば工具鋼(いわゆるハイス系合金等)などが使用されている。このような圧延ロール材は、一般的に鋳造法や鍛造法で製造されており、成分調整や熱処理条件などの最適化によって、圧延ロールとして使用するのに必要な強度や硬度を確保している。
例えば冷間圧延ロールのロール材としては、軸受鋼に近いものが使用されており、一般的にC量が0.8〜1.2wt%、Cr量が3〜10wt%の鍛鋼ロールが使用されている。
Conventionally, as a rolling roll such as a hot rolling roll and a cold rolling roll, a material having high hardness in which fine particles such as carbide are dispersed in a metal matrix made of iron or an iron-based alloy, for example, tool steel (so-called high-speed rolling roll). Alloys etc.) are used. Such a rolling roll material is generally manufactured by a casting method or a forging method, and the strength and hardness necessary for use as a rolling roll are ensured by optimization of component adjustment and heat treatment conditions. .
For example, as a roll material for a cold rolling roll, a material close to bearing steel is used, and generally a forged steel roll having a C content of 0.8 to 1.2 wt% and a Cr content of 3 to 10 wt% is used. ing.

ところで圧延ロールのうちでも、鋼材などの熱間圧延用のワークロールとしては、そのロール胴部表面の耐摩耗性を向上させると同時に、内側の軸部分の靭性を確保するため、軸材(内層材)として鍛鋼等の高靭性の材料を用い、その外側、特にロール胴部の外周面となる部分に、複合材料からなる外層を形成した複合ロールが使用されるようになっている。この場合、上記の外層の複合材料としては、鉄基合金等の金属マトリックス中にアルミナ(Al)や炭化ケイ素(SiC)、VC等のセラミック成分を繊維あるいは粒子の形態で分散・一体化させた焼結材料とするのが一般的である。このような複合ロールの製造方法としては、例えば鍛鋼からなる軸材の外面に、鉄基合金粉末と、セラミック成分(繊維もしくは粒子粉末)を混合し、その混合粉末を、例えば鍛鋼からなる軸材の外面に配して高温で焼結する方法が一般的である。 By the way, among the rolls, as a work roll for hot rolling such as steel, the shaft material (inner layer) is used to improve the wear resistance of the surface of the roll body and to secure the toughness of the inner shaft portion. As a material, a high-toughness material such as forged steel is used, and a composite roll in which an outer layer made of a composite material is formed on the outer side, particularly on the outer peripheral surface of the roll body, is used. In this case, as the composite material of the outer layer, ceramic components such as alumina (Al 2 O 3 ), silicon carbide (SiC), and VC are dispersed and integrated in the form of fibers or particles in a metal matrix such as an iron-based alloy. Generally, a sintered material is used. As a method for producing such a composite roll, for example, an iron base alloy powder and a ceramic component (fiber or particle powder) are mixed on the outer surface of a shaft made of forged steel, and the mixed powder is made of, for example, a shaft made of forged steel. A method of sintering at a high temperature is generally used.

上述のように外層材として焼結材料からなる複合材料を用いた複合ロールの従来技術としては、特許文献1〜3に示すような技術が提案されている。   As described above, techniques as shown in Patent Documents 1 to 3 have been proposed as conventional techniques for a composite roll using a composite material made of a sintered material as an outer layer material.

特許文献1には、外層材にセラミック粒子を複合させたロール(熱間圧延用、冷間圧延用を問わない)として、マトリックスの鉄基合金のC量が1.2〜2.3wt%の範囲内で、平均粒径が1〜20μmのVC炭化物が1〜15wt%複合され、焼結法で製造されたロール材が開示されている。   In Patent Document 1, as a roll in which ceramic particles are combined with an outer layer material (whether for hot rolling or cold rolling), the amount of C of the matrix iron-based alloy is 1.2 to 2.3 wt%. Within the range, 1 to 15 wt% of VC carbide having an average particle diameter of 1 to 20 μm is combined, and a roll material manufactured by a sintering method is disclosed.

また、特許文献2、特許文献3には、鉄基合金に、アルミナ(Al)などのセラミックの繊維や粒子を複合して、焼結法で製造されたロール材(FRM材)が開示されており、鋳造製のロール材よりも優れた耐摩耗性や耐焼付き性を示し得るとされている。但し、特許文献2、特許文献3の提案のロールは、主に熱間圧延用として使用されることを前提として設計されたものであって、セラミック繊維やセラミック粒子の配合量は、最大70体積%まで、マトリックスの鉄基合金のC量は0.8〜3.5wt%が必要とされている。 Patent Documents 2 and 3 disclose a roll material (FRM material) manufactured by a sintering method in which ceramic fibers and particles such as alumina (Al 2 O 3 ) are combined with an iron-based alloy. It is disclosed that it can exhibit wear resistance and seizure resistance superior to those of a cast roll material. However, the rolls proposed in Patent Document 2 and Patent Document 3 are designed on the assumption that they are mainly used for hot rolling, and the blending amount of ceramic fibers and ceramic particles is 70 volumes at maximum. %, The amount of C in the matrix iron-based alloy is required to be 0.8 to 3.5 wt%.

特開平2−290951号公報JP-A-2-290951 国際公開第2014/010547号International Publication No. 2014/010547 特開平11−28508号公報Japanese Patent Laid-Open No. 11-28508

近年、高強度鋼材の圧延量の増加や圧延速度の高速化など、圧延ロールの使用環境はますます厳しい条件になってきており、圧延ロールにはさらなる耐摩耗性の改善が必要となってきている。とりわけ冷間圧延ロールは、熱間圧延ロールよりも小径でかつ圧延速度が速く、またロール径の小さい6Hi圧延機で使用されることが多いため、熱間圧延ロールよりも高いヘルツ接触応力下で、より多くの転動回数にも耐えることが必要である。   In recent years, the usage environment of rolling rolls has become increasingly severe, such as increasing the amount of rolling of high-strength steel materials and increasing the rolling speed, and it has become necessary to further improve the wear resistance of rolling rolls. Yes. In particular, the cold rolling roll has a smaller diameter and a higher rolling speed than the hot rolling roll, and is often used in a 6Hi rolling mill having a smaller roll diameter. Therefore, the cold rolling roll has a higher Hertz contact stress than the hot rolling roll. It is necessary to endure more rolling times.

しかしながら、従来の鍛鋼ロール材からなる一般的な冷間圧延ロールでは、耐摩耗性が不十分であって、近年の高強度鋼材の圧延量増加や圧延速度の高速化に伴い、ロール交換頻度が増して、生産性が悪くなるという問題がある。   However, conventional cold rolled rolls made of conventional forged steel roll materials have insufficient wear resistance, and roll replacement frequency has increased with the recent increase in the amount of rolling of high-strength steel materials and the increase in rolling speed. In addition, there is a problem that productivity becomes worse.

一方、特許文献1〜3で提案されているような外層にセラミックを複合化したロールでは、セラミック成分の存在によって耐摩耗性は優れた性能を発揮させることができるが、耐疲労特性は、圧延用ロールとして十分ではなかった。そのため、転動回数の増大に伴って疲労起因のピットやスポーリングが発生しやすくなり、疲労によりロール表面肌が悪化しやすく、ロールの交換頻度が高くなって、生産性が劣らざるを得ないという問題がある。   On the other hand, in the roll in which the ceramic is combined with the outer layer as proposed in Patent Documents 1 to 3, the wear resistance can be exhibited by the presence of the ceramic component. It was not enough as a roll. Therefore, pits and spalling due to fatigue are likely to occur with an increase in the number of rolling, the surface of the roll surface is likely to deteriorate due to fatigue, the replacement frequency of the roll is increased, and productivity must be inferior. There is a problem.

本発明は以上の事情を背景としてなされたもので、特に圧延用のロールとして、耐摩耗性が優れるばかりでなく、高ヘルツ接触応力かつ高転動回数のような疲労が進みやすい圧延条件でも、疲労によるピットやスポーリングが発生しにくく、耐疲労特性が優れたロール、すなわち良好な耐摩耗性と優れた耐疲労特性を兼ね備えた複合ロールを提供することを課題としている。   The present invention was made in the background of the above circumstances, particularly as a roll for rolling, not only has excellent wear resistance, but also in rolling conditions where fatigue such as high hertz contact stress and high number of rolling is likely to proceed, It is an object of the present invention to provide a roll that hardly causes pits and spalling due to fatigue and has excellent fatigue resistance, that is, a composite roll having both good wear resistance and excellent fatigue resistance.

本発明者らは、上述した課題を解決すべく、複合ロールの外層材の構成について鋭意実験・検討を重ねた結果、外層材を構成する複合材料焼結体のマトリックスの鉄基合金のC量を適切に規制すると同時に、マトリックス中に分散するセラミック成分、とりわけセラミック繊維の配合量等を適切に調整することによって、良好な耐摩耗性を維持しながら、優れた耐疲労特性を得ることができることを見い出し、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have conducted extensive experiments and studies on the configuration of the outer layer material of the composite roll, and as a result, the amount of C in the matrix iron-based alloy of the composite material sintered body constituting the outer layer material. It is possible to obtain excellent fatigue resistance while maintaining good wear resistance by appropriately adjusting the amount of ceramic components dispersed in the matrix, especially the amount of ceramic fibers, etc. As a result, the present invention has been made.

具体的には、本発明の基本的な態様(第1の態様)の複合ロールは、
鉄系材料からなるロール軸材の外側に、鉄基合金粉末とセラミック材との複合材料を焼結してなる外層材を設けた複合ロールであって、
前記外層材における鉄基合金のC量が0.1mass%以上、0.8mass%未満であり、
前記外層材のセラミック材として、平均繊維直径が1μm以上、50μm以下の範囲内のセラミック繊維を含み、
かつ前記外層材における平均繊維直径が1μm以上、50μm以下の範囲内のセラミック繊維の割合が、鉄基合金粉末とセラミック材との合計量に対して10体積%以上であり、
しかも前記外層材における前記セラミック繊維を含む全セラミック材の割合が、鉄基合金粉末とセラミック材との合計量に対して10〜40体積%であることを特徴とするものである。
Specifically, the composite roll of the basic aspect of the present invention (first aspect)
A composite roll provided with an outer layer material formed by sintering a composite material of an iron-based alloy powder and a ceramic material on the outside of a roll shaft material made of an iron-based material,
C amount of the iron-based alloy in the outer layer material is 0.1 mass% or more and less than 0.8 mass%,
The ceramic material of the outer layer material includes ceramic fibers having an average fiber diameter of 1 μm or more and 50 μm or less,
And the ratio of the ceramic fiber in the range whose average fiber diameter in the said outer-layer material is 1 micrometer or more and 50 micrometers or less is 10 volume% or more with respect to the total amount of an iron-base alloy powder and a ceramic material,
And the ratio of the whole ceramic material containing the said ceramic fiber in the said outer layer material is 10-40 volume% with respect to the total amount of an iron-base alloy powder and a ceramic material, It is characterized by the above-mentioned.

このように、焼結体からなる外層材について、マトリックスを構成する鉄基合金のC量を0.1wt%以上0.8wt%未満という比較的少量とすることによって、耐疲労特性を向上させ、同時に、平均繊維直径が1〜50μmのセラミック繊維を10体積%以上の配合割合とするとともに、全セラミック材の配合割合を10〜40体積%とすることによって、良好な耐摩耗性、すなわち特許文献1〜3に示されるような複合ロールと同等レベルの耐摩耗性を確保することが可能となった。したがって、熱間圧延の場合よりも高ヘルツ接触応力条件および高転動回数で実施されることが多い冷間圧延のような条件下でも、セラミック材を複合させた高耐摩耗性ロールを適用することができ、例えば従来の鍛鋼製ロールよりも耐摩耗性で1.5倍以上、疲労強度で同等レベル以上を確保することが可能となり、圧延ロールの交換周期の大幅な延長が達成でき、生産性や歩留まりを向上させることができる。   Thus, for the outer layer material made of a sintered body, the fatigue resistance is improved by making the amount of C of the iron-based alloy constituting the matrix a relatively small amount of 0.1 wt% or more and less than 0.8 wt%, At the same time, the ceramic fiber having an average fiber diameter of 1 to 50 μm is blended at a ratio of 10% by volume or more, and the blending ratio of all ceramic materials is set to 10 to 40% by volume. It became possible to ensure the wear resistance of the same level as the composite roll as shown in 1-3. Therefore, high wear-resistant rolls with a composite of ceramic materials are applied even under conditions such as cold rolling, which is often performed at high hertz contact stress conditions and at a higher rolling frequency than in hot rolling. For example, it is possible to ensure a wear resistance of 1.5 times or more than conventional forged steel rolls and an equivalent level of fatigue strength or more, and a significant extension of the rolling roll replacement cycle can be achieved. And the yield can be improved.

また本発明の第2の態様の複合ロールは、前記第1の態様の複合ロールにおいて、前記セラミック材の全量が前記セラミック繊維であることを特徴とするものである。   Moreover, the composite roll of the 2nd aspect of this invention is a composite roll of the said 1st aspect, The whole quantity of the said ceramic material is the said ceramic fiber, It is characterized by the above-mentioned.

また本発明の第3の態様の複合ロールは、前記第1の態様の複合ロールにおいて、
前記セラミック材として、前記セラミック繊維と、平均粒径が1μm以上50μm以下のセラミック粒子とが用いられていることを特徴とするものである。
The composite roll of the third aspect of the present invention is the composite roll of the first aspect,
As the ceramic material, the ceramic fiber and ceramic particles having an average particle diameter of 1 μm or more and 50 μm or less are used.

本発明の複合ロールは、高ヘルツ接触応力条件および高転動回数で実施される圧延で使用される圧延ロール、とりわけ冷間圧延に使用されるロールとして、耐摩耗性が優れるばかりでなく、耐疲労特性も充分に優れており、そのため、疲労に起因する肌荒れの早期の進行を防止して、ロールの交換周期の大幅な延長を達成することができ、したがって従来よりも生産性や歩留まりの向上を図ることができる。   The composite roll of the present invention is not only excellent in wear resistance but also as a rolling roll used in rolling performed under high hertz contact stress conditions and a high number of rolling cycles, particularly a roll used in cold rolling. Fatigue characteristics are also excellent enough to prevent early progress of rough skin due to fatigue and achieve a significant extension of the roll change cycle, thus improving productivity and yield compared to conventional methods. Can be achieved.

以下に、本発明の複合ロールについて、実施形態に基づいて説明する。
本発明の複合ロールは、基本的には、鍛鋼や軸受鋼、Cr−Mo鋼などの高靭性の鉄系材料を、ロールの軸材(内層材)とし、その外面、特に被圧延材に接する胴部の外周面に、鉄基合金粉末とセラミック材との複合材の焼結体からなる外層材を形成したいわゆる複合ロールを前提とし、その外層材を構成する焼結体のセラミック材と鉄基合金を規定している。特に、外層材を構成する焼結体の鉄基合金粉末としては、C量が0.1mass%以上、0.8mass%未満という比較的低炭素量の鉄基合金を用いることとし、一方、同じく外層材を構成する焼結体のセラミック材の割合(但し焼結前における、鉄基合金粉末とセラミック材との合計量に対するセラミック材の配合量の割合)を、10〜40体積%の範囲内とすると同時に、そのセラミック材のうちの平均繊維直径が1〜50μmの範囲内のセラミック繊維の割合(前記と同じく焼結前の鉄基合金における、鉄基合金粉末とセラミック材との合計量に対するセラミック繊維の配合量の割合)を、10体積%以上としている。
Below, the composite roll of this invention is demonstrated based on embodiment.
The composite roll of the present invention basically uses a high-toughness iron-based material such as forged steel, bearing steel, or Cr—Mo steel as a shaft material (inner layer material) of the roll, and is in contact with the outer surface, particularly the material to be rolled. On the premise of a so-called composite roll in which an outer layer material composed of a sintered body of a composite material of iron-based alloy powder and ceramic material is formed on the outer peripheral surface of the body portion, the sintered ceramic material and iron constituting the outer layer material Specifies the base alloy. In particular, as the iron-based alloy powder of the sintered body constituting the outer layer material, a relatively low carbon content iron-based alloy having a C content of 0.1 mass% or more and less than 0.8 mass% is used, The ratio of the ceramic material of the sintered body constituting the outer layer material (however, the ratio of the amount of the ceramic material to the total amount of the iron-based alloy powder and the ceramic material before sintering) is in the range of 10 to 40% by volume. At the same time, the ratio of ceramic fibers having an average fiber diameter in the range of 1 to 50 μm in the ceramic material (with respect to the total amount of the iron-based alloy powder and the ceramic material in the iron-based alloy before sintering as described above) The ratio of the ceramic fiber content) is 10% by volume or more.

なお、鉄基合金には、炭化物が含まれるのが通常であるが、鉄基合金中の炭化物は、本発明で鉄基合金に対して配合するとしているセラミック材(セラミック繊維、セラミック粒子)の配合量に比べて非常に少量であるから、本発明で規定するセラミック材の配合量に含まれるものではない。   The iron-base alloy usually contains carbides, but the carbides in the iron-base alloy are ceramic materials (ceramic fibers, ceramic particles) that are to be blended with the iron-base alloy in the present invention. Since it is a very small amount compared to the blending amount, it is not included in the blending amount of the ceramic material defined in the present invention.

また本発明で規定するセラミック材(セラミック繊維、セラミック粒子)は、鉄基合金よりも融点が高く鉄基合金と反応しないものであるから、焼結前のセラミック材の配合割合は、焼結工程や熱処理工程を経て製品としての圧延ロールになったときの、外層材を構成する焼結体のセラミック材の配合割合に等しい。したがって、焼結前における、鉄基合金粉末とセラミック材との合計量に対するセラミック材の配合量の割合を10〜40体積%の範囲内とすると同時に、セラミック材のうちの平均繊維直径が1〜50μmの範囲内のセラミック繊維の割合(前記と同じく焼結前の鉄基合金における、鉄基合金粉末とセラミック材との合計量に対するセラミック繊維の配合量の割合)を10体積%とすれば、実質的に、焼結後のセラミック材の配合量の割合が10〜40体積%の範囲内で、且つ焼結後のセラミック材のうちの平均繊維直径が1〜50μmの範囲内のセラミック繊維の割合が10体積%となる。
そこで、まず外層材焼結体を構成する各材料の条件について説明する。
Moreover, since the ceramic material (ceramic fiber, ceramic particles) defined in the present invention has a melting point higher than that of the iron-based alloy and does not react with the iron-based alloy, the mixing ratio of the ceramic material before sintering is determined by the sintering process. It is equal to the blending ratio of the ceramic material of the sintered body constituting the outer layer material when it becomes a rolling roll as a product through the heat treatment process. Therefore, the ratio of the amount of the ceramic material to the total amount of the iron-based alloy powder and the ceramic material before sintering is within the range of 10 to 40% by volume, and the average fiber diameter of the ceramic material is 1 to If the ratio of the ceramic fiber in the range of 50 μm (the ratio of the amount of the ceramic fiber to the total amount of the iron-based alloy powder and the ceramic material in the iron-based alloy before sintering as described above) is 10% by volume, Substantially, the ratio of the amount of the ceramic material after sintering is within the range of 10 to 40% by volume, and the average fiber diameter of the sintered ceramic material is within the range of 1 to 50 μm. The ratio is 10% by volume.
First, the conditions of each material constituting the outer layer material sintered body will be described.

<鉄基合金>
Cは、焼結体におけるマトリックスの鉄基合金の硬さを向上させて、耐摩耗性の向上に寄与する元素であるが、C量が多くて硬さが大きければ、疲労強度が低下し、ロールの転動回数の増加に伴って、基地の鉄基合金から疲労起因のピットやスポーリングが発生しやすくなる。すなわち、圧延用ロールとして望まれる優れた耐疲労特性を得ることが困難となる。
一方、鉄基合金のC量を少なくすれば、疲労強度の低下を少なくすることが可能ではあるが、硬さの低下による耐摩耗性の低下を招く。しかるに、本発明の場合、耐摩耗性は、主としてセラミック材(とりわけセラミック繊維)によって担保することとして、疲労強度向上の観点から、比較的低C量の鉄基合金の粉末を用いることとしている。
<Iron-based alloy>
C is an element that improves the hardness of the iron-based alloy of the matrix in the sintered body and contributes to the improvement of wear resistance, but if the amount of C is large and the hardness is large, the fatigue strength decreases, As the number of rolls increases, fatigue-based pits and spalling are likely to occur from the base iron-based alloy. That is, it becomes difficult to obtain excellent fatigue resistance desired as a rolling roll.
On the other hand, if the C content of the iron-based alloy is reduced, it is possible to reduce the decrease in fatigue strength, but the wear resistance is reduced due to the decrease in hardness. However, in the case of the present invention, wear resistance is mainly secured by a ceramic material (particularly ceramic fiber), and from the viewpoint of improving fatigue strength, a relatively low C amount of iron-based alloy powder is used.

ここで、鉄基合金のC量が0.1mass%より少なければ、どのような合金元素を添加しても、ロールとして必要とする硬度レベルを熱処理によって得ることが困難となり、またセラミック材(とりわけセラミック繊維)の配合による耐摩耗性補償効果にも限界があり、そのため外層材として充分な耐摩耗性を確保することが困難となる。一方、鉄基合金のC量が0.8mass%以上となれば、熱処理によってロールとして必要とする硬度レベルを確保することは容易であるが、疲労強度が低下して、鉄基合金の基地から疲労起因のピットが発生しやすくなる。そこで鉄基合金の粉末としては、C量が0.1mass%以上、0.8mass%のものを用いることとしている。   Here, if the amount of C of the iron-based alloy is less than 0.1 mass%, it becomes difficult to obtain the hardness level required for the roll by heat treatment, regardless of the addition of any alloy element, and ceramic materials (especially There is a limit to the effect of compensating the wear resistance due to the blending of the ceramic fibers), so that it is difficult to ensure sufficient wear resistance as the outer layer material. On the other hand, if the C content of the iron-based alloy is 0.8 mass% or more, it is easy to secure the required hardness level as a roll by heat treatment, but the fatigue strength decreases, and the iron-based alloy base is reduced. Pits caused by fatigue tend to occur. Therefore, iron-based alloy powder having a C content of 0.1 mass% or more and 0.8 mass% is used.

外層材を構成する焼結体の鉄基合金におけるC量以外の合金元素については、特に限定しないが、この種の圧延ロール外層の鉄基合金としては、一般に耐摩耗性向上のために炭化物形成元素であるCr、Mo、V、W、Nb等のうちの1種以上を添加することが多い。また、同じく炭化物形成元素であるTi、Zr、Mgの少なくとも1種類以上を微量添加することがある。本発明で使用する鉄基合金でも、これらの炭化物形成元素の1種以上を含有させることが好ましいが、過剰に添加すれば、靭性や耐疲労特性を損なうこともあるから、これらの炭化物形成元素を添加する場合の添加量は、合計で、15mass%、好ましくは10mass%以下に規制することが望ましい。また、これらの炭化物形成元素の添加によって耐摩耗性向上を図る場合、合計で、1mass%、好ましくは2mass%以上添加することが好ましい。   Alloy elements other than the C content in the sintered iron-base alloy constituting the outer layer material are not particularly limited, but as an iron-base alloy of this type of rolling roll outer layer, carbide formation is generally performed to improve wear resistance. In many cases, one or more of elements such as Cr, Mo, V, W, and Nb are added. Also, a trace amount of at least one of Ti, Zr, and Mg, which are also carbide forming elements, may be added. Even in the iron-based alloy used in the present invention, it is preferable to contain one or more of these carbide-forming elements, but if added excessively, the toughness and fatigue resistance may be impaired. It is desirable that the total amount of addition of is controlled to 15 mass%, preferably 10 mass% or less. Moreover, when improving abrasion resistance by adding these carbide forming elements, it is preferable to add 1 mass% in total, preferably 2 mass% or more.

上記の炭化物形成元素の中でも、Crは炭化物を形成するだけでなく、鉄基合金の焼入れ性を向上させ熱処理による硬度向上に寄与する。Crは0.5〜10mass%、好適には1〜8mass%添加することが好ましい。Cr添加量が過剰になれば、ロールとして必要な靭性を確保することができず、Cr添加量が過少となれば、焼入れ性を向上させることが困難となって、必要な硬度を得ることが困難になることがある。
またMoは炭化物を形成するだけでなく、鉄基合金の高温硬さや高温強度を向上させる効果があり、高速圧延時にロール表面温度が上昇しても高硬度を維持する効果がある。Moは0〜5mass%、好適には0〜3mass%添加することが好ましい。Mo添加量が過剰となれば、靭性や耐肌荒れ性の点で好ましくない。
Vは高硬度のMC型炭化物を形成するだけでなく、鉄基合金とセラミックとの濡れ性を改善して、金属とセラミックとの焼結時の結合強度の向上に寄与する。なおVは0〜6mass%、好適には0〜3mass%添加することが好ましい。V添加量が過剰となれば、炭化物が粗大化して脱落しやすくなり、逆に耐摩耗性を低下させるおそれがある。
Among the carbide forming elements described above, Cr not only forms carbides, but also improves the hardenability of the iron-based alloy and contributes to the improvement of hardness by heat treatment. Cr is added in an amount of 0.5 to 10 mass%, preferably 1 to 8 mass%. If the amount of Cr added is excessive, the toughness required for a roll cannot be ensured. If the amount of Cr added is too small, it is difficult to improve the hardenability and the required hardness can be obtained. It can be difficult.
Mo not only forms carbides, but also has the effect of improving the high-temperature hardness and high-temperature strength of the iron-based alloy, and has the effect of maintaining high hardness even when the roll surface temperature rises during high-speed rolling. Mo is added in an amount of 0 to 5 mass%, preferably 0 to 3 mass%. If the amount of Mo added is excessive, it is not preferable in terms of toughness and rough skin resistance.
V not only forms a high-hardness MC type carbide, but also improves the wettability between the iron-based alloy and the ceramic, and contributes to an increase in the bond strength during sintering of the metal and the ceramic. V is added in an amount of 0 to 6 mass%, preferably 0 to 3 mass%. If the amount of V added is excessive, the carbides become coarse and easily fall off, and conversely, wear resistance may be reduced.

そのほか、この種の鉄基合金には、焼入れ性や焼き戻し性などの熱処理特性向上のためにNiやCoが添加されることがある。
Niは、焼入れ性を向上させ鉄基合金の硬度向上に寄与するものであるから、0〜8mass%、好適には0〜5mass%添加することが好ましい。Ni添加量が過剰になれば、圧延中に肌荒れを発生しやすくなる。
またCoは、焼き戻し時の2次硬化に寄与するものであり、0〜2mass%、好適には0〜1mass%添加することが好ましい。Co添加量が過剰となれば、焼入れ性を悪化させるおそれがある。
In addition, Ni and Co may be added to this type of iron-based alloy to improve heat treatment characteristics such as hardenability and temperability.
Ni improves hardenability and contributes to improving the hardness of the iron-based alloy, so 0 to 8 mass%, preferably 0 to 5 mass% is preferably added. If the amount of Ni added becomes excessive, rough skin is likely to occur during rolling.
Further, Co contributes to secondary hardening during tempering, and is added in an amount of 0 to 2 mass%, preferably 0 to 1 mass%. If the amount of Co addition is excessive, the hardenability may be deteriorated.

以上の各合金元素のほかは、基本的にはFeおよび不可避的不純物であればよい。不純物としては、Mn、Si、P、Sなどがあるが、MnとSiの合計量は多くても3mass%以下、好適には2mass%以下、PとSの合計量は0.1mass%未満が好ましい。   In addition to the above alloy elements, basically, Fe and inevitable impurities may be used. Impurities include Mn, Si, P, S, etc. The total amount of Mn and Si is at most 3 mass%, preferably 2 mass% or less, and the total amount of P and S is less than 0.1 mass%. preferable.

〔セラミック材の形態〕
本発明において、外層材を構成する複合材料焼結体中のセラミック材としては、繊維状のもの(セラミック繊維)を単独で使用しても、また繊維状のもの(セラミック繊維)と紛体粒子状のもの(セラミック粒子)とを併用してもよい。但し、耐疲労特性の向上には、これらのうちセラミック繊維が寄与し、セラミック粒子は耐摩耗性向上には寄与するが、耐疲労特性の向上には寄与しない。そこで、セラミック材としては、セラミック繊維を必須(10体積%以上の配合量が必須)としている。すなわち、セラミック繊維は、鉄基合金マトリックス中において線状あるいは網状、枝分かれ状等として存在し、そのため疲労亀裂の進展を阻止する効果を示すから、耐疲労特性の向上に有効である。
[Ceramic material form]
In the present invention, as a ceramic material in the composite material sintered body constituting the outer layer material, a fibrous material (ceramic fiber) can be used alone, or a fibrous material (ceramic fiber) and powder particles can be used. (Ceramic particles) may be used in combination. However, among these, ceramic fibers contribute to the improvement of fatigue resistance, and ceramic particles contribute to the improvement of wear resistance, but do not contribute to the improvement of fatigue resistance. Therefore, ceramic fibers are essential as the ceramic material (a blending amount of 10% by volume or more is essential). That is, the ceramic fiber is present in the iron-based alloy matrix as a line, network, branch, or the like, and therefore exhibits an effect of preventing the progress of fatigue cracks, and is effective in improving the fatigue resistance.

〔セラミック材の種類〕
セラミック材としては、セラミック繊維、セラミック粒子を問わず、酸化物、炭化物、窒化物の1種類もしくは2種類以上を使用することができる。但し、セラミック材としては、焼結時に鉄基合金と反応しないものを選択することが望ましい。すなわち、焼結時に鉄基合金と反応するセラミック材を用いた場合、脆化物を形成して、圧延用ロールとして必要な強度が得られなくなるおそれがある。したがって本発明で使用するセラミック材としては、焼結時に鉄基合金と反応しない(あるいは反応するおそれが少ない)ものとして、例えば、アルミナ、ジルコニア、チタニア、窒化ケイ素、窒化ジルコニウム、窒化チタン、炭化チタン、炭化バナジウム等が好ましい。なお、炭化珪素,炭化ホウ素は、鉄基合金と焼結時に反応するおそれがあるため、使用しないことが望まれる。
[Types of ceramic materials]
As the ceramic material, one kind or two or more kinds of oxides, carbides and nitrides can be used regardless of ceramic fibers and ceramic particles. However, it is desirable to select a ceramic material that does not react with the iron-based alloy during sintering. That is, when a ceramic material that reacts with an iron-based alloy at the time of sintering is used, there is a possibility that an embrittled product is formed and the strength required for a roll for rolling cannot be obtained. Accordingly, the ceramic material used in the present invention is one that does not react (or is less likely to react) with an iron-based alloy during sintering, for example, alumina, zirconia, titania, silicon nitride, zirconium nitride, titanium nitride, titanium carbide. Vanadium carbide and the like are preferable. Note that silicon carbide and boron carbide are desired not to be used because they may react with an iron-based alloy during sintering.

〔セラミック繊維の平均繊維直径:1μm〜50μm〕
セラミック繊維の平均繊維直径が1μmよりも小さければ、鉄基合金とセラミック繊維とを混合した際に繊維が絡み合って凝集し、欠陥となって健全な品質のロールが製造できなくなる。一方、セラミック繊維として平均繊維直径が50μmよりも大きいものを使用すれば、セラミック繊維自身が疲労亀裂の起点・進展経路となって、かえってピット状の肌荒れやスポーリングを起こしやすくなる。そこでセラミック繊維としては、平均繊維直径が1μm〜50μmの範囲内のものを使用することとした。なおこの範囲内でも、特に平均繊維直径が5μm〜30μmの範囲内のものが好ましい。
なおセラミック繊維のアスペクト比は、繊維凝集を発生させずに混合することができれば、特に制約するものではないが、混合粉末の製造効率の観点からは、現実的には5〜50、好ましくは10〜30程度が好ましい。
[Average fiber diameter of ceramic fibers: 1 μm to 50 μm]
If the average fiber diameter of the ceramic fibers is smaller than 1 μm, when the iron-base alloy and the ceramic fibers are mixed, the fibers are entangled and aggregated, resulting in a defect that makes it impossible to produce a sound quality roll. On the other hand, if a ceramic fiber having an average fiber diameter larger than 50 μm is used, the ceramic fiber itself becomes a starting point / propagation path of fatigue cracks, which tends to cause pit-like rough skin and spalling. Accordingly, ceramic fibers having an average fiber diameter in the range of 1 μm to 50 μm are used. Even within this range, those having an average fiber diameter in the range of 5 to 30 μm are particularly preferable.
The aspect ratio of the ceramic fiber is not particularly limited as long as it can be mixed without causing fiber aggregation. However, from the viewpoint of production efficiency of the mixed powder, it is actually 5 to 50, preferably 10 About 30 is preferable.

〔セラミック繊維の配合割合:10体積%以上〕
セラミック繊維の配合量が、鉄基合金粉末及びセラミック材の合計量に対する割合で10体積%よりも小さければ、必要な耐疲労特性を得ることが困難となる。すなわち、10体積%以上セラミック繊維が混合されていなければ、焼結後のロールの破壊靭性値や亀裂進展特性が、圧延用ロールとして使用可能なレベルを維持することが困難となる。特に亀裂進展特性に関しては、焼結法で製作された鉄基合金は極端に悪くなりやすいから、セラミック繊維を複合していなければ、圧延用ロールとして必要な性能を確保することが困難となる。そこで、セラミック繊維の配合量は、10体積%以上とした。なお、セラミック繊維の配合量は好ましくは13体積%以上とする。
なお、セラミック繊維の配合量の上限は、次に述べる全セラミック材の配合量の上限(40体積%)との関係から、必然的に40体積%となる。
[Mixing ratio of ceramic fiber: 10% by volume or more]
If the blending amount of the ceramic fiber is smaller than 10% by volume with respect to the total amount of the iron-based alloy powder and the ceramic material, it is difficult to obtain necessary fatigue resistance characteristics. That is, if 10% by volume or more of ceramic fibers are not mixed, it becomes difficult to maintain the fracture toughness value and crack propagation characteristic of the roll after sintering at a level that can be used as a roll for rolling. In particular, regarding the crack growth characteristics, an iron-based alloy manufactured by a sintering method tends to be extremely deteriorated. Therefore, if ceramic fibers are not combined, it is difficult to ensure performance required for a roll for rolling. Therefore, the blending amount of the ceramic fiber is set to 10% by volume or more. The blending amount of the ceramic fiber is preferably 13% by volume or more.
In addition, the upper limit of the compounding quantity of ceramic fiber will be necessarily 40 volume% from the relationship with the upper limit (40 volume%) of the compounding quantity of all the ceramic materials described below.

〔全セラミック材の配合割合:10〜40体積%〕
全セラミック材の配合量が、鉄基合金粉末と全セラミック材の合計量に対する割合で10体積%よりも小さければ、必要とする耐摩耗性が得られない。また前述のようにセラミック繊維の配合量が10体積%未満となれば、充分な耐疲労特性を得ることができない。一方、セラミック材の配合量が鉄基合金粉末と全セラミック材の合計量に対する割合で40体積%を上回り、とりわけセラミック繊維の配合量が40体積%を上回れば、セラミック繊維と鉄基合金粉末を混合する際にセラミック繊維が絡み合って凝集し、欠陥となって健全な品質のロールが製造できない。またここで、セラミック繊維の配合量が40体積%を上廻っていなくても、セラミック粒子を含めて全セラミックの配合量が40体積%を上回れば、セラミック繊維や粒子を保持する鉄基合金の割合が小さくなり、高速圧延時や高接触応力での圧延時にセラミック繊維や粒子が欠け落ちて製品の表面品位を低下させるおそれがある。そこで、全セラミック材の配合割合は、10〜40体積%の範囲内とした。なおその範囲内でも、特に13〜35体積%の範囲内が好ましい。
[Mixing ratio of all ceramic materials: 10 to 40% by volume]
If the blending amount of all the ceramic materials is smaller than 10% by volume with respect to the total amount of the iron-based alloy powder and all the ceramic materials, the required wear resistance cannot be obtained. Further, as described above, if the blending amount of the ceramic fiber is less than 10% by volume, sufficient fatigue resistance characteristics cannot be obtained. On the other hand, if the blending amount of the ceramic material exceeds 40% by volume with respect to the total amount of the iron-based alloy powder and the total ceramic material, especially if the blending amount of the ceramic fiber exceeds 40% by volume, the ceramic fiber and the iron-based alloy powder When mixing, the ceramic fibers are entangled and agglomerated, resulting in defects that cannot produce a sound quality roll. Here, even if the blending amount of the ceramic fibers does not exceed 40% by volume, if the blending amount of all ceramics including the ceramic particles exceeds 40% by volume, the iron-based alloy that holds the ceramic fibers and particles can be used. The ratio becomes small, and there is a risk that ceramic fibers and particles are chipped off during high-speed rolling or rolling with a high contact stress, thereby reducing the surface quality of the product. Therefore, the blending ratio of all ceramic materials is set within a range of 10 to 40% by volume. Even within this range, the range of 13 to 35% by volume is particularly preferable.

ここで、セラミック繊維による耐疲労特性は、セラミック繊維の配合量が20体積%を越えれば、実質的に飽和する。一方、耐摩耗性については、セラミック繊維の配合量が20体積%を越えても、さらなる向上を図ることができる。しかしながら、耐摩耗性の向上効果は、セラミック繊維よりもセラミック粒子の方が大きい。
そこで、比較的耐摩耗性を重視する観点からは、セラミック繊維の配合量が10体積%を越える全セラミック材配合分量、とりわけ13体積%を越える全セラミック材配合分量については、セラミック粒子に置き換えてもよい。
Here, the fatigue resistance characteristics of the ceramic fiber are substantially saturated when the blending amount of the ceramic fiber exceeds 20% by volume. On the other hand, the wear resistance can be further improved even when the blending amount of the ceramic fiber exceeds 20% by volume. However, the effect of improving wear resistance is greater for ceramic particles than for ceramic fibers.
Therefore, from the viewpoint of relatively focusing on wear resistance, the total ceramic material content exceeding 10% by volume of ceramic fiber, especially the total ceramic material content exceeding 13% by volume, is replaced with ceramic particles. Also good.

〔セラミック粒子の平均粒径:1〜50μm〕
セラミック粒子の平均粒径が1μm未満では、セラミック粒子の配合による耐摩耗性向上効果が期待できない。一方、セラミック粒子の平均粒径が50μmを越えれば、圧延中にセラミック粒子が脱落しやすくなり、脱落したセラミック粒子が製品に押し込まれたり、またはバックアップロールを疵付けてロール疵の原因ないしはバックアップロールの摩耗を促進したりする。そこでセラミック粒子の平均粒径は、1〜50μmの範囲内とした。
[Average particle size of ceramic particles: 1 to 50 μm]
When the average particle size of the ceramic particles is less than 1 μm, the effect of improving the wear resistance by the mixing of the ceramic particles cannot be expected. On the other hand, if the average particle size of the ceramic particles exceeds 50 μm, the ceramic particles easily fall off during rolling, and the dropped ceramic particles are pushed into the product, or a backup roll is attached to cause the roll flaw or the backup roll. To promote wear. Therefore, the average particle size of the ceramic particles was set in the range of 1 to 50 μm.

なお、本発明の複合ロールにおける胴部外表面部分を構成する焼結体からなる外層材の厚みは特に限定されないが、通常は20〜50mm程度である。また、高靭性材料からなる軸材と焼結体外層材との間に、Ni基合金等からなる中間層が介在していてもよい。さらに外層材の焼結体を形成するにあたって使用する原料粉末としては、前述のような鉄基合金粉末とセラミック材(セラミック繊維、又はセラミック繊維とセラミック粒子粉末)との混合材料を用いればよい。ここで、焼結助剤は特に必要ないが、鉄基合金やセラミック繊維ならびにセラミック粒子と反応しない酸化物等が添加されていてもよい。   In addition, although the thickness of the outer layer material which consists of a sintered compact which comprises the trunk | drum outer surface part in the composite roll of this invention is not specifically limited, Usually, it is about 20-50 mm. Further, an intermediate layer made of a Ni-based alloy or the like may be interposed between the shaft material made of a high toughness material and the sintered body outer layer material. Furthermore, as the raw material powder used for forming the sintered body of the outer layer material, a mixed material of the iron-based alloy powder and the ceramic material (ceramic fiber or ceramic fiber and ceramic particle powder) as described above may be used. Here, a sintering aid is not particularly required, but iron-based alloys, ceramic fibers, and oxides that do not react with ceramic particles may be added.

〔製造方法〕
本発明の複合ロールを製造するための方法は特に限定されるものではないが、例えば次のように焼結方法としてHIP法を用いた方法が好適に適用される。
すなわち、予め鋳造―鍛造―切削などの通常のプロセスによって、鍛鋼や軸受鋼、Cr−Mo鋼などの高靭性の鉄系材料からなるロール軸材を所定の形状、寸法に作っておく。一方、鉄基合金粉末とセラミックの繊維(もしくは繊維と粒子状粉末)を所定の割合で混合して混合粉末とする。そして軸材(内層材)のロール胴部外周部に相当する部分の外周面を取り囲むように、鋼などからなる中空円筒状のカプセルを配置する。次いでカプセルの内面とロール軸芯外周面との間の隙間に混合粉末を充填した後、カプセルを密閉してカプセル内を真空脱気する。そしてカプセルの全体をHIP用の耐圧容器内に挿入して、カプセルの外側から高温高圧力を加え、カプセル内の混合粉末を高温高圧下で焼結させる。その後、冷却してからカプセルを除去し、必要に応じて熱処理を行う。ここで熱処理条件は、鉄基合金の成分によっても異なるが、例えば冷間圧延用ロールとして適用する場合、通常の冷延鍛鋼ロール材と同じ熱処理条件(例えば、950℃〜1100℃に30分以上加熱・保定後、水焼入れを実施し、サブゼロ処理後に、120℃〜200℃で1時間以上保定後、炉冷もしくは空冷を適用すればよい。
〔Production method〕
The method for producing the composite roll of the present invention is not particularly limited. For example, a method using the HIP method is suitably applied as a sintering method as follows.
That is, a roll shaft made of a tough iron-based material such as forged steel, bearing steel, or Cr—Mo steel is prepared in a predetermined shape and size in advance by a normal process such as casting, forging, and cutting. On the other hand, iron-base alloy powder and ceramic fiber (or fiber and particulate powder) are mixed at a predetermined ratio to obtain a mixed powder. And the hollow cylindrical capsule which consists of steel etc. is arrange | positioned so that the outer peripheral surface of the part corresponded to the roll trunk | drum outer peripheral part of a shaft material (inner layer material) may be surrounded. Next, after the mixed powder is filled in the gap between the inner surface of the capsule and the outer peripheral surface of the roll axis, the capsule is sealed and the inside of the capsule is vacuum deaerated. Then, the entire capsule is inserted into a pressure-resistant container for HIP, high temperature and high pressure are applied from the outside of the capsule, and the mixed powder in the capsule is sintered under high temperature and pressure. Then, after cooling, the capsule is removed, and heat treatment is performed as necessary. Here, the heat treatment conditions vary depending on the components of the iron-based alloy, but when applied as a roll for cold rolling, for example, the same heat treatment conditions as a normal cold-rolled forged steel roll material (for example, 950 ° C. to 1100 ° C. for 30 minutes or more) After heating and holding, water quenching is performed, and after sub-zero treatment, holding at 120 ° C. to 200 ° C. for 1 hour or longer may be applied to furnace cooling or air cooling.

以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。なお確認実験は、特に高ヘルツ接触応力条件および高転動回数で実施されることが多い冷間圧延条件を模擬した条件で実施した。
鉄基合金粉末としては、質量%でCを0.05%〜1.2%、Crを1.8%、Vを0.2%,Moを0.4%を含み、そのほか不可避的にSi、Mn、P、Sを含有し、残部が実質的にFeからなる合金の粉末(表1から表4)と、表5に示す成分の鉄基合金粉末5種類とを使用した。なお、鉄基合金粉末の平均粒径はいずれも15μmである。セラミック材のうち、セラミック繊維としては、平均繊維直径が0.4μm〜95μm、アスペクト比が20〜30の範囲内の酸化アルミニウム(Al)繊維、もしくは平均繊維直径が0.4〜11.0μm、アスペクト比が20〜30の範囲内の窒化珪素(Si)繊維を使用し、セラミック粒子粉末として、酸化アルミニウム(Al)、もしくは炭化チタン(TiC)を用いた。これらの平均粒径は0.5〜120μmのものを使用した。酸化アルミニウム粒子の平均粒径は0.5〜120μm、炭化チタン粒子の平均粒径は15μmである。
Below, the result of the confirmation experiment performed in order to confirm the effectiveness of this invention is demonstrated. Note that the confirmation experiment was performed under conditions simulating cold rolling conditions, which are often performed at high hertz contact stress conditions and high rolling times.
The iron-base alloy powder contains 0.05% to 1.2% C, 1.8% Cr, 0.2% V, 0.4% Mo, and inevitably Si. , Mn, P, and S, with the balance being substantially composed of Fe (Tables 1 to 4) and five types of iron-based alloy powders having the components shown in Table 5. The average particle size of the iron-based alloy powder is 15 μm. Among the ceramic materials, the ceramic fiber has an average fiber diameter of 0.4 μm to 95 μm and an aluminum oxide (Al 2 O 3 ) fiber having an aspect ratio of 20 to 30 or an average fiber diameter of 0.4 to 11. Silicon nitride (Si 3 N 4 ) fibers having a diameter of 0.0 μm and an aspect ratio of 20 to 30 were used, and aluminum oxide (Al 2 O 3 ) or titanium carbide (TiC) was used as the ceramic particle powder. Those having an average particle diameter of 0.5 to 120 μm were used. The average particle diameter of the aluminum oxide particles is 0.5 to 120 μm, and the average particle diameter of the titanium carbide particles is 15 μm.

これら鉄基合金粉末およびセラミック材(セラミック繊維、もしくはセラミック繊維とセラミック粒子粉末)を、表1〜表4に示すように配合して混合し、その混合材料を、軸材の外周上にHIP法によって焼結させ、複合ロール材を模した試験片として、転動摩耗試験片(直径80mm、厚さ10mmの円板形状)と転動疲労試験片(直径200mm、厚さ50mmの円板形状)を製作した。   These iron-based alloy powder and ceramic material (ceramic fiber, or ceramic fiber and ceramic particle powder) are blended and mixed as shown in Tables 1 to 4, and the mixed material is formed on the outer periphery of the shaft by the HIP method. As a test piece simulating a composite roll material, a rolling wear test piece (a disk shape having a diameter of 80 mm and a thickness of 10 mm) and a rolling fatigue test piece (a disk shape having a diameter of 200 mm and a thickness of 50 mm) Was made.

HIP法による具体的な焼結方法としては、軸材として直径60mmもしくは120mmの丸棒状のCr−Mo鋼を使用し、その軸材の周囲を、軸材外周面とカプセル内周面との間隙が、焼結後の外層材の厚みで約10mmとなるように円筒状のカプセルによって取り囲み、軸材外周面とカプセル内周面との間の空隙に、前述の混合原料を充填した。なおカプセルの材料としては、厚み4mmの軟鋼材を用いた。そしてカプセルの蓋を溶接してカプセル内を密封した後、カプセルの中を真空脱気して、カプセル外から90MPaの圧力を等方的に加えながら、1050℃に120分間加熱して混合材料を焼結させた。室温まで冷却した後、カプセル材を除去し、ショア硬度Hsが90以上になるように、従来の冷延鍛鋼ロールと同じ条件で熱処理を行った。転動摩耗試験片は直径80mm、幅10mmの大きさに、転動疲労試験片は直径200mm、幅50mmの大きさに、それぞれ加工(外層材厚さは約10mm)して各試験片を作成した。なお、焼結前に配合したセラミック材(セラミック繊維、セラミック粒子)の配合量と、焼結後の試験片として仕上がった状態でのセラミック材(セラミック繊維、セラミック粒子)の配合量(表面露出量)とがほぼ同じであることを確認した。   As a specific sintering method by the HIP method, a round bar-shaped Cr-Mo steel having a diameter of 60 mm or 120 mm is used as a shaft material, and a gap between the shaft material outer peripheral surface and the capsule inner peripheral surface is formed around the shaft material. However, it was surrounded by a cylindrical capsule so that the thickness of the outer layer material after sintering was about 10 mm, and the gap between the outer peripheral surface of the shaft member and the inner peripheral surface of the capsule was filled with the aforementioned mixed raw material. Note that a soft steel material having a thickness of 4 mm was used as the material of the capsule. The capsule lid is welded to seal the inside of the capsule, and then the inside of the capsule is vacuum degassed and heated to 1050 ° C. for 120 minutes while isotropically applying a pressure of 90 MPa from the outside of the capsule. Sintered. After cooling to room temperature, the capsule material was removed, and heat treatment was performed under the same conditions as a conventional cold-rolled forged steel roll so that the Shore hardness Hs was 90 or more. Rolling wear test pieces are 80 mm in diameter and 10 mm in width, and rolling fatigue test pieces are 200 mm in diameter and 50 mm in width (outer layer thickness is about 10 mm) to create each test piece. did. The amount of ceramic material (ceramic fibers and ceramic particles) blended before sintering and the amount of ceramic material (ceramic fibers and ceramic particles) in the finished state as a test piece after sintering (surface exposure) ) Was almost the same.

こうして製作した転動摩耗試験片を用いて耐摩耗性の評価試験を行うとともに、転動疲労試験片を用いて耐疲労特性の評価試験を行った。
すなわち、耐摩耗性の評価試験としては、転動摩耗試験による試験片の表面粗度の低下しにくさを耐摩耗性の指標(初期粗度Raに対する試験後の表面粗度Raの比率:100%が初期粗度が転動試験後もそのまま維持)とし、また、耐疲労特性の評価試験としては、転動疲労試験による疲労起因のピット発生までの転動回数を調査した。なお、各試験片製作後には、試験片の表面硬度を測定するとともに、超音波欠陥検査により凝集欠陥の有無を調査した。
An abrasion resistance evaluation test was performed using the rolling wear test piece thus produced, and an fatigue resistance evaluation test was performed using the rolling fatigue test piece.
That is, in the wear resistance evaluation test, the resistance to decrease in the surface roughness of the test piece by the rolling wear test is used as an index of wear resistance (ratio of the surface roughness Ra after the test to the initial roughness Ra: 100). %, The initial roughness is maintained as it is after the rolling test), and as the fatigue resistance evaluation test, the number of rolling until fatigue-induced pit generation by the rolling fatigue test was investigated. In addition, after each test piece manufacture, while measuring the surface hardness of the test piece, the presence or absence of the aggregation defect was investigated by ultrasonic defect inspection.

転動摩耗試験の条件は、S45C製の相手片(直径160mm、厚さ15mm、被圧延鋼材に相当)を用いて、相手片温度を200℃、荷重70kg、回転速度3000rpm、すべり率4.4%、相手片温度を200℃、試験片温度を室温レベルとして、合計10万回転動摩擦を与えた後の摩耗量を、表面粗度の低減率で調査した。なお、試験片の初期粗度は約0.3μmRaにそろえて実験を行った。   The rolling wear test was performed using S45C mating pieces (diameter 160 mm, thickness 15 mm, equivalent to steel to be rolled), mating piece temperature 200 ° C., load 70 kg, rotation speed 3000 rpm, slip rate 4.4. %, The amount of wear after applying a total of 100,000 rotational dynamic friction with the temperature of the mating piece being 200 ° C. and the temperature of the test piece being room temperature, was investigated by the reduction rate of the surface roughness. The experiment was performed with the initial roughness of the test piece set to about 0.3 μmRa.

転動疲労試験の条件は、相手片にSUJ2(Hs68〜72、バックアップロールに相当)製の直径200mm、厚さ50mmで表面はR500mmのクラウン加工を施した試験相手片を準備して、すべり率ゼロで荷重約4000kgfをかけて試験片と相手片を押しつけ、1000rpmで転動疲労を負荷した。一定間隔で試験片の接触面の表面観察を行い、疲労起点のピットが発生するまでの転動回数を調査した。なお各試験片の初期粗度は、約0.3μmRaにそろえて各実験を行った。
その結果を、表1〜表5中に示す。
The conditions of the rolling fatigue test were as follows: Prepare a test counterpart piece with SUJ2 (Hs 68-72, equivalent to a backup roll) diameter 200 mm, thickness 50 mm and R500 mm surface on the counterpart piece. The test piece and the counterpart were pressed against each other with a load of about 4000 kgf at zero, and rolling fatigue was applied at 1000 rpm. The surface of the contact surface of the test piece was observed at regular intervals, and the number of rolling until the fatigue starting pit occurred was investigated. Each experiment was performed with the initial roughness of each specimen set to about 0.3 μmRa.
The results are shown in Tables 1-5.

Figure 2016087615
Figure 2016087615

Figure 2016087615
Figure 2016087615

Figure 2016087615
Figure 2016087615

Figure 2016087615
Figure 2016087615

Figure 2016087615
Figure 2016087615

表1〜表4に示すように、外層材焼結体の鉄基合金のC量及びセラミック材の条件が、本発明範囲内にある実施例(本発明例)では、表面粗度残存率で評価される耐摩耗性が優れ、しかもピット発生転動回数で評価される耐疲労特性が優れていることが確認された。またいずれの本発明例でも、凝集欠陥がないことが確認された。   As shown in Tables 1 to 4, in Examples (invention examples) in which the amount of C of the iron-based alloy of the outer layer material sintered body and the conditions of the ceramic material are within the scope of the present invention, the surface roughness residual ratio is It was confirmed that the evaluated wear resistance was excellent and the fatigue resistance evaluated by the number of rolling pits was excellent. Moreover, it was confirmed that there is no aggregation defect in any of the present invention examples.

これに対して、セラミック材としてセラミック繊維(アルミナ)のみを用いて、全セラミック材の配合割合(すなわちセラミック材の配合割合)が過剰であったNo.4の比較例、及びセラミック材としてセラミック繊維(アルミナ)およびセラミック粒子(アルミナ)を用いて、全セラミック材の配合割合(すなわちセラミック材の配合割合)が過剰であったNo.19の比較例では、凝集欠陥が生じてしまった。
またセラミック材としてセラミック繊維(アルミナ)のみを用いて、全セラミック材の配合割合(すなわちセラミック材の配合割合)が過少であったNo.6の比較例では、表面粗度残存率で評価される耐摩耗性が劣っていた。
On the other hand, only ceramic fiber (alumina) was used as the ceramic material, and the mixing ratio of all ceramic materials (namely, the mixing ratio of ceramic materials) was excessive. No. 4 in which the ceramic fiber (alumina) and ceramic particles (alumina) were used as the ceramic material, and the mixing ratio of all ceramic materials (that is, the mixing ratio of the ceramic material) was excessive. In 19 comparative examples, agglomeration defects occurred.
In addition, only ceramic fiber (alumina) was used as the ceramic material, and the mixing ratio of all ceramic materials (that is, the mixing ratio of ceramic materials) was too low. In the comparative example of 6, the wear resistance evaluated by the surface roughness remaining rate was inferior.

さらに、鉄基合金のC量が低すぎたNo.7、No.8、No.34、No.35の比較例では、いずれも表面粗度残存率で評価される耐摩耗性が劣っていた。
一方、鉄基合金のC量が高すぎたNo.13〜No.15、No.41,No.42の比較例では、いずれもピット発生転動回数で評価される耐疲労特性が劣っていた。
さらに、セラミック繊維の平均繊維直径が小さすぎたNo.27、No.43の比較例では、凝集欠陥が生じてしまった。
Furthermore, No. in which the C content of the iron-based alloy was too low. 7, no. 8, no. 34, no. In all of the 35 comparative examples, the wear resistance evaluated by the surface roughness remaining rate was inferior.
On the other hand, the iron content of the iron-based alloy was too high. 13-No. 15, no. 41, no. In all of the 42 comparative examples, the fatigue resistance characteristics evaluated by the number of rolling pit occurrences were inferior.
Furthermore, the average fiber diameter of ceramic fibers was too small. 27, no. In the comparative example of 43, an agglomeration defect occurred.

一方、セラミック繊維の平均繊維直径が大き過ぎたNo.31、No.32、No.47〜No.49の比較例では、いずれもピット発生転動回数で評価される耐疲労特性が劣っていた。   On the other hand, the average fiber diameter of ceramic fibers was too large. 31, no. 32, no. 47-No. In all of the 49 comparative examples, the fatigue resistance properties evaluated by the number of rolling pit occurrences were inferior.

なおNo.53の比較例は、従来から冷間圧延用ロールとして用いられている5%Cr鍛鋼ロール材の試験片についての例(従来例)である。この例から、本発明例が従来例よりも優れた性能を示すことが明らかである。   No. The comparative example 53 is an example (conventional example) of a test piece of 5% Cr forged steel roll material that has been conventionally used as a roll for cold rolling. From this example, it is clear that the inventive example shows performance superior to the conventional example.

また、表5に示すように本発明で規定する範囲内のC量で添加元素の組成を変えた鉄基合金粉末を用いて作成した複合ロール材(No.53〜No.58の本発明例)についても、欠陥の無い試験片を製作することが可能で、耐疲労特性や耐摩耗性に優れた特性を示すことが確認された。   Moreover, as shown in Table 5, composite roll materials (Examples 53 to 58 of the present invention) prepared by using iron-based alloy powders in which the composition of the additive element was changed by the amount of C within the range defined by the present invention. )), It was confirmed that it was possible to produce a defect-free test piece and exhibited excellent fatigue resistance and wear resistance.

以上のような実験結果から、本発明の複合ロールは、従来の冷間圧延用鍛鋼ロールの1.5倍以上の耐摩耗性を有し、しかも耐疲労特性も従来の冷間圧延用鍛鋼ロールよりも優れていて、疲労起因のピット発生転動回数が従来の冷延用鍛鋼ロールよりも向上することが明らかになった。   From the experimental results as described above, the composite roll of the present invention has a wear resistance 1.5 times or more that of a conventional forging steel roll for cold rolling, and also has a fatigue resistance characteristic of a conventional forging steel roll for cold rolling. It was found that the number of rolling pits caused by fatigue is improved over conventional cold-rolled forged steel rolls.

以上、本発明の好ましい実施形態および実験例について説明したが、これらの実施形態、実験例は、あくまで本発明の要旨の範囲内の一つの例に過ぎず、本発明の要旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。すなわち本発明は、前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定され、その範囲内で適宜変更可能であることはもちろんである。   The preferred embodiments and experimental examples of the present invention have been described above. However, these embodiments and experimental examples are merely examples within the scope of the gist of the present invention, and do not depart from the gist of the present invention. Thus, addition, omission, replacement, and other changes of the configuration are possible. That is, the present invention is not limited by the above description, is limited only by the scope of the appended claims, and can be appropriately changed within the scope.

Claims (3)

鉄系材料からなるロール軸材の外側に、鉄基合金粉末とセラミック材との複合材料を焼結してなる外層材を設けた複合ロールであって、
前記外層材における鉄基合金のC量が0.1mass%以上、0.8mass%未満であり、
前記外層材のセラミック材として、平均繊維直径が1μm以上、50μm以下の範囲内のセラミック繊維を含み、
かつ前記外層材における平均繊維直径が1μm以上、50μm以下の範囲内のセラミック繊維の割合が、焼結前の配合量で鉄基合金粉末とセラミック材との合計量に対して10体積%以上であり、
しかも前記外層材における前記セラミック繊維を含む全セラミック材の割合が、鉄基合金粉末とセラミック材との合計量に対して10〜40体積%であることを特徴とする複合ロール。
A composite roll provided with an outer layer material formed by sintering a composite material of an iron-based alloy powder and a ceramic material on the outside of a roll shaft material made of an iron-based material,
C amount of the iron-based alloy in the outer layer material is 0.1 mass% or more and less than 0.8 mass%,
The ceramic material of the outer layer material includes ceramic fibers having an average fiber diameter of 1 μm or more and 50 μm or less,
And the ratio of the ceramic fiber in the range whose average fiber diameter in the said outer-layer material is 1 micrometer or more and 50 micrometers or less is 10 volume% or more with respect to the total amount of iron-base alloy powder and a ceramic material by the compounding quantity before sintering. Yes,
And the ratio of the total ceramic material containing the said ceramic fiber in the said outer layer material is 10-40 volume% with respect to the total amount of an iron-base alloy powder and a ceramic material, The composite roll characterized by the above-mentioned.
請求項1に記載の複合ロールにおいて、
前記セラミック材の全量が前記セラミック繊維であることを特徴とする複合ロール。
In the composite roll according to claim 1,
A composite roll, wherein the total amount of the ceramic material is the ceramic fiber.
請求項1に記載の複合ロールにおいて,
前記セラミック材として、前記セラミック繊維と、平均粒径が1μm以上50μm以下のセラミック粒子とが用いられていることを特徴とする複合ロール。
In the composite roll according to claim 1,
A composite roll comprising the ceramic fiber and ceramic particles having an average particle diameter of 1 μm or more and 50 μm or less as the ceramic material.
JP2014221406A 2014-10-30 2014-10-30 Composite roll Active JP6358044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014221406A JP6358044B2 (en) 2014-10-30 2014-10-30 Composite roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221406A JP6358044B2 (en) 2014-10-30 2014-10-30 Composite roll

Publications (2)

Publication Number Publication Date
JP2016087615A true JP2016087615A (en) 2016-05-23
JP6358044B2 JP6358044B2 (en) 2018-07-18

Family

ID=56015972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221406A Active JP6358044B2 (en) 2014-10-30 2014-10-30 Composite roll

Country Status (1)

Country Link
JP (1) JP6358044B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119554A (en) * 2001-07-27 2003-04-23 Nippon Steel Corp Method for manufacturing fiber reinforced metal
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
WO2014010547A1 (en) * 2012-07-09 2014-01-16 新日鐵住金株式会社 Composite roll and rolling method
JP2014005543A (en) * 2013-08-20 2014-01-16 Jfe Steel Corp Iron-based powder mixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119554A (en) * 2001-07-27 2003-04-23 Nippon Steel Corp Method for manufacturing fiber reinforced metal
JP2007197814A (en) * 2005-08-12 2007-08-09 Jfe Steel Kk Method for producing high-density iron-based compact and high-strength high-density iron-based sintered body
WO2014010547A1 (en) * 2012-07-09 2014-01-16 新日鐵住金株式会社 Composite roll and rolling method
JP2014005543A (en) * 2013-08-20 2014-01-16 Jfe Steel Corp Iron-based powder mixture

Also Published As

Publication number Publication date
JP6358044B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP5594441B2 (en) Composite roll and rolling method
JP5136138B2 (en) Centrifugal cast composite roll for hot rolling
WO2013057914A1 (en) Roll surface-layer material for hot rolling with excellent fatigue resistance produced by centrifugal casting, and composite roll for hot rolling produced through centrifugal casting
WO2014132628A1 (en) Roll outer layer material, and composite roll for hot rolling
JP2020501027A (en) Powder metallurgically produced steel material comprising hard material particles, a method for producing parts from such steel material, and parts produced from steel material
JP5270926B2 (en) Iron-based sintered alloy powder
TWI804570B (en) Composite rolls made of superhard alloy and superhard alloy for rolling
JP6016927B2 (en) Hot rolling roll
JP5434276B2 (en) Centrifugal cast composite roll for hot rolling
JP5703718B2 (en) Outer layer material and composite roll made of centrifugal cast for hot rolling
JP5121276B2 (en) High-speed steel alloy composite products
JP6358044B2 (en) Composite roll
JP6838441B2 (en) Reinforcing roll for rolling mill
JP5516545B2 (en) Centrifugal cast roll outer layer material for hot rolling with excellent fatigue resistance and composite roll made of centrifugal cast for hot rolling
JP5434249B2 (en) Centrifugal cast composite roll for hot rolling
JP5447812B2 (en) Centrifugal cast composite roll for hot rolling
JP6352959B2 (en) Method for producing wear-resistant iron-based sintered alloy, compact for sintered alloy, and wear-resistant iron-based sintered alloy
JP4330157B2 (en) Screw for injection molding machine and its assembly parts
JP6842345B2 (en) Abrasion-resistant iron-based sintered alloy manufacturing method
JP5867143B2 (en) Centrifugal cast roll outer layer material for hot rolling excellent in fatigue resistance, centrifugal cast composite roll for hot rolling, and production method thereof
JP5327342B2 (en) Centrifugal cast roll outer layer material for hot rolling with excellent fatigue resistance and composite roll made of centrifugal cast for hot rolling
JP2018161655A (en) Roll outer layer material for hot rolling and compound roll for hot rolling
JP2022178535A (en) Roll outer layer material for hot rolling, and composite roll for hot rolling
JP4368032B2 (en) Powder for high speed tool steel and powder high speed tool steel
JP2021023940A (en) Hot-rolling roll outer layer material and hot-rolling compound roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6358044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350