JP2016086308A - Piezoelectric resonator, and method of manufacturing piezoelectric resonator - Google Patents

Piezoelectric resonator, and method of manufacturing piezoelectric resonator Download PDF

Info

Publication number
JP2016086308A
JP2016086308A JP2014218431A JP2014218431A JP2016086308A JP 2016086308 A JP2016086308 A JP 2016086308A JP 2014218431 A JP2014218431 A JP 2014218431A JP 2014218431 A JP2014218431 A JP 2014218431A JP 2016086308 A JP2016086308 A JP 2016086308A
Authority
JP
Japan
Prior art keywords
piezoelectric
thin film
piezoelectric thin
film thickness
piezoelectric resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218431A
Other languages
Japanese (ja)
Other versions
JP6417849B2 (en
Inventor
諭卓 岸本
Yutaka Kishimoto
諭卓 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2014218431A priority Critical patent/JP6417849B2/en
Publication of JP2016086308A publication Critical patent/JP2016086308A/en
Application granted granted Critical
Publication of JP6417849B2 publication Critical patent/JP6417849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric resonator which allows for accurate measurement of the thickness of a piezoelectric thin film, and to provide a method of manufacturing a piezoelectric resonator.SOLUTION: A piezoelectric resonator 10 includes a translucent piezoelectric thin film 20 on which functional conductors 211, 212 are formed, a support substrate arranged on one principal surface side of the piezoelectric thin film 20, a fixing layer for fixing the piezoelectric thin film 20 to the support substrate, and a film thickness measurement pattern 50 formed on the principal surface of the piezoelectric thin film 20 on the fixing layer side, and arranged on the outside of the formation region of the functional conductors 211, 212 in the plan view.SELECTED DRAWING: Figure 1

Description

本発明は、圧電単結晶の薄膜を用いた圧電共振器、及び圧電共振器の製造方法に関する。   The present invention relates to a piezoelectric resonator using a piezoelectric single crystal thin film and a method for manufacturing the piezoelectric resonator.

近年、圧電単結晶の薄膜を用いた圧電デバイスが多く開発されている。このような圧電デバイスには、圧電デバイスとして機能する電極が形成された圧電薄膜と、その圧電薄膜を支持する支持体とを有し、電極が形成された領域と、支持体との間に空間を形成するメンブレン構造が用いられているものがある。   In recent years, many piezoelectric devices using a piezoelectric single crystal thin film have been developed. Such a piezoelectric device has a piezoelectric thin film on which an electrode that functions as a piezoelectric device is formed, and a support that supports the piezoelectric thin film, and a space between the region where the electrode is formed and the support. Some membrane structures are used.

特許文献1には、メンブレン構造の圧電デバイスの製造方法が記載されている。特許文献1に記載の製造方法では、圧電基板の一方面に、後に空隙となる犠牲層を形成し、犠牲層が形成された圧電基板の表面に支持体を接合する。その後、圧電基板から圧電薄膜を剥離形成し、圧電薄膜にエッチング窓を形成した上で、そのエッチング窓から犠牲層を除去している。   Patent Document 1 describes a method for manufacturing a piezoelectric device having a membrane structure. In the manufacturing method described in Patent Document 1, a sacrificial layer that later becomes a void is formed on one surface of a piezoelectric substrate, and a support is bonded to the surface of the piezoelectric substrate on which the sacrificial layer is formed. Thereafter, the piezoelectric thin film is peeled off from the piezoelectric substrate, an etching window is formed in the piezoelectric thin film, and the sacrificial layer is removed from the etching window.

国際公開2011/052551号パンフレットInternational publication 2011/052551 pamphlet

この圧電デバイスの特性が最適かどうかを判断するために、圧電基板の薄板化後の圧電薄膜の膜厚を測定する必要がある。しかしながら、特許文献1に記載の圧電デバイスの場合、圧電薄膜の下に空隙又は支持体(材料の異なる複数の膜)が存在するため、圧電薄膜のみの膜厚を正確に測定することは困難であった。   In order to determine whether the characteristics of the piezoelectric device are optimal, it is necessary to measure the film thickness of the piezoelectric thin film after the piezoelectric substrate is thinned. However, in the case of the piezoelectric device described in Patent Document 1, since there are voids or supports (a plurality of films of different materials) under the piezoelectric thin film, it is difficult to accurately measure the film thickness of only the piezoelectric thin film. there were.

そこで、本発明の目的は、圧電薄膜の膜厚を精度よく測定できる圧電共振器、及び圧電共振器の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a piezoelectric resonator capable of measuring the film thickness of a piezoelectric thin film with high accuracy, and a method for manufacturing the piezoelectric resonator.

本発明に係る圧電共振器は、機能用導体が形成された透光性の圧電薄膜と、前記圧電薄膜の一方主面側に配置された支持基板と、前記圧電薄膜を前記支持基板に固定する固定層と、前記固定層側の前記圧電薄膜の主面に形成され、平面視で、前記機能用導体の形成領域の外側に配置された膜厚測定用パターンとを備えたことを特徴とする。   A piezoelectric resonator according to the present invention includes a translucent piezoelectric thin film on which a functional conductor is formed, a support substrate disposed on one main surface side of the piezoelectric thin film, and fixing the piezoelectric thin film to the support substrate. A fixed layer and a film thickness measurement pattern formed on the main surface of the piezoelectric thin film on the fixed layer side and disposed outside the functional conductor forming region in a plan view. .

この構成では、膜厚測定用パターンが固定層側の圧電薄膜の主面に形成されているため、この膜厚測定用パターンへ光を照射し、膜厚測定用パターンで反射した光を受光することで、圧電薄膜の膜厚を測定できる。膜厚測定用パターンは、固定層と圧電薄膜との間で、機能用導体の形成領域の外側に配置される。このため、機能用導体及び固定層の影響を受けることなく、圧電薄膜の膜厚を精度よく測定できる。また、膜厚測定用パターンへ光を照射すれば、圧電薄膜の膜厚を測定できるため、測定作業に追加工程を必要としない。   In this configuration, since the film thickness measurement pattern is formed on the main surface of the piezoelectric thin film on the fixed layer side, the film thickness measurement pattern is irradiated with light and the light reflected by the film thickness measurement pattern is received. Thus, the film thickness of the piezoelectric thin film can be measured. The film thickness measurement pattern is disposed outside the functional conductor forming region between the fixed layer and the piezoelectric thin film. Therefore, the film thickness of the piezoelectric thin film can be accurately measured without being affected by the functional conductor and the fixed layer. In addition, if the film thickness measurement pattern is irradiated with light, the film thickness of the piezoelectric thin film can be measured, so that no additional process is required for the measurement work.

前記固定層は、前記形成領域と前記支持基板との間に形成された空隙部を有し、前記膜厚測定用パターンは、平面視で、前記空隙部の外側に配置されていることが好ましい。   It is preferable that the fixed layer has a gap formed between the formation region and the support substrate, and the film thickness measurement pattern is disposed outside the gap in plan view. .

この構成では、メンブレン型の圧電共振器の場合であっても、空隙部を避けて圧電薄膜の膜厚を精度よく測定できる。   With this configuration, even in the case of a membrane-type piezoelectric resonator, the thickness of the piezoelectric thin film can be accurately measured while avoiding the gap.

前記固定層は、音響インピーダンスが異なる複数種類の層を積層した音響反射層であることが好ましい。   The fixed layer is preferably an acoustic reflection layer in which a plurality of types of layers having different acoustic impedances are stacked.

この構成では、音響多層膜型の共振子であっても、圧電薄膜の膜厚を精度よく測定できる。   With this configuration, the thickness of the piezoelectric thin film can be accurately measured even with an acoustic multilayer film type resonator.

本発明は、機能用導体が形成された圧電薄膜と、前記圧電薄膜の一方主面側に配置された支持基板と、前記圧電薄膜を前記支持基板に固定する固定層とを備えた圧電共振器の製造方法において、透光性の圧電基板の一方主面に膜厚測定用パターンを形成する工程と、前記圧電基板の前記一方主面に無機層を形成する無機層形成工程と、前記無機層の前記圧電基板と反対側の面に支持基板を貼り合わせる工程と、前記圧電基板から前記圧電薄膜を剥離形成する工程と、前記膜厚測定用パターンを基準に、前記圧電薄膜の一方主面に機能用導体を形成する工程とを備えたことを特徴とする。   The present invention relates to a piezoelectric resonator comprising a piezoelectric thin film on which a functional conductor is formed, a support substrate disposed on one main surface side of the piezoelectric thin film, and a fixed layer for fixing the piezoelectric thin film to the support substrate. In the manufacturing method, a step of forming a film thickness measurement pattern on one main surface of a translucent piezoelectric substrate, an inorganic layer forming step of forming an inorganic layer on the one main surface of the piezoelectric substrate, and the inorganic layer A step of attaching a support substrate to a surface opposite to the piezoelectric substrate, a step of peeling and forming the piezoelectric thin film from the piezoelectric substrate, and a first main surface of the piezoelectric thin film based on the film thickness measurement pattern. And a step of forming a functional conductor.

この構成では、機能用導体及び固定層の影響を受けることなく、圧電薄膜の膜厚を精度よく測定でき、また、測定作業に追加工程を必要としない圧電共振器を製造できる。   With this configuration, it is possible to accurately measure the thickness of the piezoelectric thin film without being affected by the functional conductor and the fixed layer, and it is possible to manufacture a piezoelectric resonator that does not require an additional process for the measurement work.

本発明によれば、機能用導体及び固定層の影響を受けることなく、圧電薄膜の膜厚を精度よく測定できる。   According to the present invention, the film thickness of the piezoelectric thin film can be accurately measured without being affected by the functional conductor and the fixed layer.

実施形態1に係る圧電共振器の平面図FIG. 3 is a plan view of the piezoelectric resonator according to the first embodiment. 図1のII−II線における圧電共振器の側面断面図Side sectional view of the piezoelectric resonator taken along line II-II in FIG. 図1のIII−III線における圧電共振器の側面断面図Side sectional view of the piezoelectric resonator taken along line III-III in FIG. 実施形態に係る圧電共振器の製造方法における各工程での形状を示す側面断面図Side surface sectional drawing which shows the shape in each process in the manufacturing method of the piezoelectric resonator which concerns on embodiment 実施形態に係る圧電共振器の製造方法における各工程での形状を示す側面断面図Side surface sectional drawing which shows the shape in each process in the manufacturing method of the piezoelectric resonator which concerns on embodiment 圧電共振器がBAW共振器の場合の断面図Sectional view when the piezoelectric resonator is a BAW resonator 実施形態2に係る圧電共振器の構成を示す側面断面図Side surface sectional drawing which shows the structure of the piezoelectric resonator which concerns on Embodiment 2. FIG. 実施形態2に係る圧電共振器の製造方法における各工程での形状を示す側面断面図Side surface sectional drawing which shows the shape in each process in the manufacturing method of the piezoelectric resonator which concerns on Embodiment 2. FIG.

(実施形態1)
図1は、本実施形態に係る圧電共振器の平面図である。図2は、図1のII−II線における圧電共振器の側面断面図である。図3は、図1のIII−III線における圧電共振器の側面断面図である。なお、図1及び図2において、一部が透過した状態を示し、その透過部分を破線で示す。
(Embodiment 1)
FIG. 1 is a plan view of the piezoelectric resonator according to the present embodiment. 2 is a side sectional view of the piezoelectric resonator taken along line II-II in FIG. 3 is a side sectional view of the piezoelectric resonator taken along line III-III in FIG. In FIGS. 1 and 2, a part of the light is transmitted, and the transmitted part is indicated by a broken line.

圧電共振器10は、圧電薄膜20と、固定層30と、支持基板40とを備えている。圧電薄膜20は、LN(LiNbO)、LT(LiTaO)等の透光性の圧電体である。固定層30は、SiO等の絶縁体である。支持基板40は、Si、サファイヤ、ガラス等の剛性が高い絶縁体である。 The piezoelectric resonator 10 includes a piezoelectric thin film 20, a fixed layer 30, and a support substrate 40. The piezoelectric thin film 20 is a translucent piezoelectric material such as LN (LiNbO 3 ) or LT (LiTaO 3 ). The fixed layer 30 is an insulator such as SiO 2 . The support substrate 40 is an insulator having high rigidity such as Si, sapphire, or glass.

圧電薄膜20の一方主面(以下、裏面という)には固定層30と支持基板40とが順に接着されている。すなわち、圧電薄膜20は、固定層30により支持基板40に固定されている。圧電薄膜20の他方主面(以下、表面という)には、機能用導体211,212が形成されている。機能用導体211,212は平面視して櫛歯形状である。機能用導体211,212は、所謂IDT(Inter Digital Transducer)を形成するように配置されている。機能用導体211,212は、平面視で後述する空隙300と重なる位置に配置されている。この構成により、圧電共振器10が構成される。   A fixed layer 30 and a support substrate 40 are sequentially bonded to one main surface (hereinafter referred to as a back surface) of the piezoelectric thin film 20. That is, the piezoelectric thin film 20 is fixed to the support substrate 40 by the fixed layer 30. Functional conductors 211 and 212 are formed on the other main surface (hereinafter referred to as a surface) of the piezoelectric thin film 20. The functional conductors 211 and 212 have a comb-teeth shape in plan view. The functional conductors 211 and 212 are arranged so as to form a so-called IDT (Inter Digital Transducer). The functional conductors 211 and 212 are disposed at positions that overlap a gap 300 described later in plan view. With this configuration, the piezoelectric resonator 10 is configured.

圧電薄膜20の表面には、配線導体221,222が形成されている。配線導体221は、機能用導体211に接続されている。配線導体222は、機能用導体212に接続されている。配線導体221,222は、機能用導体211,212を外部回路に接続する導体である。機能用導体211,212、配線導体221,222は、Al等の導電率の高い材料である。以下、機能用導体211,212が形成された領域を、機能部領域と言う。   Wiring conductors 221 and 222 are formed on the surface of the piezoelectric thin film 20. The wiring conductor 221 is connected to the functional conductor 211. The wiring conductor 222 is connected to the functional conductor 212. The wiring conductors 221 and 222 are conductors that connect the functional conductors 211 and 212 to an external circuit. The functional conductors 211 and 212 and the wiring conductors 221 and 222 are materials having high conductivity such as Al. Hereinafter, the region where the functional conductors 211 and 212 are formed is referred to as a functional portion region.

固定層30は、平面視で機能部領域を囲うように、圧電薄膜20に接着されている。これによって、機能部領域に対向する位置には、圧電薄膜20の裏面と固定層30の内壁面とによって囲まれた空隙300が形成される。圧電薄膜20には貫通孔200が形成されていて、空隙300は、その貫通孔200と連通している。貫通孔200は、後に詳述するが、空隙300を形成する際に利用される。   The fixed layer 30 is bonded to the piezoelectric thin film 20 so as to surround the functional part region in plan view. As a result, a gap 300 surrounded by the back surface of the piezoelectric thin film 20 and the inner wall surface of the fixed layer 30 is formed at a position facing the functional part region. A through hole 200 is formed in the piezoelectric thin film 20, and the gap 300 communicates with the through hole 200. The through-hole 200 will be described later in detail, but is used when the gap 300 is formed.

圧電薄膜20と固定層30との間には、膜厚測定用パターン50が形成されている。膜厚測定用パターン50は、Alを含む導体膜であって、平面視で、配線導体221,222、及び空隙300よりも外側で、圧電薄膜20の表面の角部に形成されている。膜厚測定用パターン50は、圧電薄膜20の膜厚測定に利用される。詳しくは、膜厚測定用パターン50は、膜厚測定器(不図示)から圧電薄膜20に照射された測定用の光を反射する。膜厚測定器は反射された光を受光することで、圧電薄膜20の膜厚を算出する。   A film thickness measurement pattern 50 is formed between the piezoelectric thin film 20 and the fixed layer 30. The film thickness measurement pattern 50 is a conductor film containing Al, and is formed on the corner of the surface of the piezoelectric thin film 20 outside the wiring conductors 221 and 222 and the gap 300 in a plan view. The film thickness measurement pattern 50 is used for film thickness measurement of the piezoelectric thin film 20. Specifically, the film thickness measurement pattern 50 reflects the measurement light applied to the piezoelectric thin film 20 from a film thickness measuring device (not shown). The film thickness measuring device receives the reflected light and calculates the film thickness of the piezoelectric thin film 20.

このような構成からなる圧電共振器10は、以下に示す工程によって形成される。   The piezoelectric resonator 10 having such a configuration is formed by the following steps.

図4及び図5は、本実施形態に係る圧電共振器10の製造方法における各工程での形状を示す側面断面図である。なお、膜厚測定用パターン50及び空隙300等は、同じ断面図には表れない位置関係に配置されているが、説明の便宜上、図4及び図5では、膜厚測定用パターン50及び空隙300等を同じ断面図に示している。   4 and 5 are side cross-sectional views showing shapes at respective steps in the method for manufacturing the piezoelectric resonator 10 according to the present embodiment. The film thickness measurement pattern 50 and the gap 300 are arranged in a positional relationship that does not appear in the same sectional view. However, for convenience of explanation, the film thickness measurement pattern 50 and the gap 300 are shown in FIGS. Etc. are shown in the same cross-sectional view.

まず、透光性の圧電基板P20の裏面に膜厚測定用パターン50を形成する。膜厚測定用パターン50は、蒸着リフトオフ法によりTi/Al/Tiが形成されて成膜される。次に、圧電基板P20の裏面に犠牲層31を形成する。犠牲層31は、膜厚測定用パターン50の内側に位置するよう形成される。犠牲層31は、例えばZnOである。   First, the film thickness measurement pattern 50 is formed on the back surface of the translucent piezoelectric substrate P20. The film thickness measurement pattern 50 is formed by forming Ti / Al / Ti by the vapor deposition lift-off method. Next, the sacrificial layer 31 is formed on the back surface of the piezoelectric substrate P20. The sacrificial layer 31 is formed so as to be positioned inside the film thickness measurement pattern 50. The sacrificial layer 31 is, for example, ZnO.

続いて、圧電基板P20の裏面に、膜厚測定用パターン50及び犠牲層31を覆うように、固定層30を形成する。これにより、膜厚測定用パターン50は、圧電基板P20と固定層30との間に配置されるようになる。固定層30は、犠牲層31等を覆うよう形成するため、圧電基板P20と反対側の面に凹凸が生じるため、CMP(Chemical Mechanical Polishing)により凹凸のある圧電基板P20の面を平坦化研磨する。   Subsequently, the fixed layer 30 is formed on the back surface of the piezoelectric substrate P <b> 20 so as to cover the film thickness measurement pattern 50 and the sacrificial layer 31. As a result, the film thickness measurement pattern 50 is disposed between the piezoelectric substrate P20 and the fixed layer 30. Since the fixed layer 30 is formed so as to cover the sacrificial layer 31 and the like, unevenness occurs on the surface opposite to the piezoelectric substrate P20. Therefore, the surface of the uneven piezoelectric substrate P20 is planarized and polished by CMP (Chemical Mechanical Polishing). .

次に、図5に示すように、平坦化した固定層30の主面に支持基板40を樹脂接着剤により接着する。そして、圧電基板P20を研磨等によって薄膜化し、圧電薄膜20を形成する。その形成した圧電薄膜20の表面に、機能用導体211,212を形成する。機能用導体211,212は、蒸着リフトオフ法によりAl/Tiが形成されてなる。この際、図示していないが、配線導体221,222も圧電薄膜20の表面に、蒸着リフトオフ法により形成する。   Next, as shown in FIG. 5, the support substrate 40 is bonded to the main surface of the flattened fixing layer 30 with a resin adhesive. Then, the piezoelectric substrate P20 is thinned by polishing or the like to form the piezoelectric thin film 20. Functional conductors 211 and 212 are formed on the surface of the formed piezoelectric thin film 20. The functional conductors 211 and 212 are formed of Al / Ti by a vapor deposition lift-off method. At this time, although not shown, the wiring conductors 221 and 222 are also formed on the surface of the piezoelectric thin film 20 by a vapor deposition lift-off method.

次に、圧電薄膜20の所定の位置に、ドライエッチングにより貫通孔200を形成する。そして、貫通孔200を介して、犠牲層31を除去する。例えば、犠牲層31をウェットエッチングによって除去する。この処理によって、固定層30には空隙300が形成される。   Next, the through hole 200 is formed at a predetermined position of the piezoelectric thin film 20 by dry etching. Then, the sacrificial layer 31 is removed through the through hole 200. For example, the sacrificial layer 31 is removed by wet etching. By this treatment, voids 300 are formed in the fixed layer 30.

以上の製造方法を得ることによって、圧電共振器10が形成される。この圧電共振器10は、圧電薄膜20と固定層30との間に膜厚測定用パターン50が配置されている。膜厚測定時に、膜厚測定用パターン50へ測定用光を照射すれば、機能用導体211,212及び固定層30の影響を受けることなく、圧電薄膜20の膜厚を測定できる。また、圧電共振器10の製造時に膜厚測定用パターン50を形成するため、圧電薄膜20の膜厚測定時には膜厚測定用パターン50へ光を照射するだけでよく、測定作業に追加工程を必要としない。   The piezoelectric resonator 10 is formed by obtaining the above manufacturing method. In the piezoelectric resonator 10, a film thickness measurement pattern 50 is disposed between the piezoelectric thin film 20 and the fixed layer 30. When the film thickness measurement pattern 50 is irradiated with measurement light during the film thickness measurement, the film thickness of the piezoelectric thin film 20 can be measured without being affected by the functional conductors 211 and 212 and the fixed layer 30. Further, since the film thickness measurement pattern 50 is formed when the piezoelectric resonator 10 is manufactured, it is only necessary to irradiate the film thickness measurement pattern 50 with light when measuring the film thickness of the piezoelectric thin film 20, and an additional process is required for the measurement work. And not.

なお、本実施形態では、圧電共振器10は板波を用いた共振器として説明したが、圧電共振器はBAW共振器又は板波共振器であってもよい。   In the present embodiment, the piezoelectric resonator 10 has been described as a resonator using a plate wave, but the piezoelectric resonator may be a BAW resonator or a plate wave resonator.

図6は、圧電共振器10AがBAW共振器の場合の断面図である。圧電共振器10Aは、圧電共振器10と電極形成が異なっている。詳しくは、圧電薄膜20の表面及び裏面それぞれに機能用導体231,232が形成されている。なお、他の構成は圧電共振器10と同じであるため説明は省略する。   FIG. 6 is a cross-sectional view when the piezoelectric resonator 10A is a BAW resonator. The piezoelectric resonator 10A is different from the piezoelectric resonator 10 in electrode formation. Specifically, functional conductors 231 and 232 are formed on the front and back surfaces of the piezoelectric thin film 20, respectively. Since the other configuration is the same as that of the piezoelectric resonator 10, the description thereof is omitted.

圧電共振器10AがBAW共振器の場合であっても、膜厚測定用パターン50を形成することで、機能用導体231,232及び固定層30に影響を受けることなく、圧電薄膜20の膜厚を精度よく測定できる。また、圧電共振器10Aの製造時に膜厚測定用パターン50を形成するため、圧電薄膜20の膜厚測定時には膜厚測定用パターン50へ光を照射するだけでよく、測定作業に追加工程を必要としない。   Even when the piezoelectric resonator 10A is a BAW resonator, the film thickness measurement pattern 50 is formed, so that the film thickness of the piezoelectric thin film 20 is not affected by the functional conductors 231 and 232 and the fixed layer 30. Can be measured accurately. Further, since the film thickness measurement pattern 50 is formed when the piezoelectric resonator 10A is manufactured, it is only necessary to irradiate the film thickness measurement pattern 50 with light when measuring the film thickness of the piezoelectric thin film 20, and an additional process is required for the measurement work. And not.

(実施形態2)
図7は、本実施形態に係る圧電共振器10Bの構成を示す側面断面図である。本実施形態に係る圧電共振器10Bは、圧電共振器10の固定層30が音響反射層60によって形成されている点で異なる。
(Embodiment 2)
FIG. 7 is a side sectional view showing the configuration of the piezoelectric resonator 10B according to the present embodiment. The piezoelectric resonator 10 </ b> B according to this embodiment is different in that the fixed layer 30 of the piezoelectric resonator 10 is formed by the acoustic reflection layer 60.

音響反射層60は、音響インピーダンスが異なる複数の層を積層することによって形成されている。低音響インピーダンス層は、例えばSiO2であり、高音響インピーダンス層は、例えばW等の金属や,AlN,SiN等の誘電体である。音響反射層60は、接着層61によって支持基板40に接着されている。   The acoustic reflection layer 60 is formed by stacking a plurality of layers having different acoustic impedances. The low acoustic impedance layer is, for example, SiO 2, and the high acoustic impedance layer is, for example, a metal such as W or a dielectric such as AlN or SiN. The acoustic reflection layer 60 is bonded to the support substrate 40 with an adhesive layer 61.

圧電薄膜20と音響反射層60との間には、膜厚測定用パターン50が形成されている。そして、実施形態1と同様に、圧電薄膜20の膜厚測定時において、膜厚測定用パターン50を利用することで、精度よく圧電薄膜20の膜厚を測定できる。   A film thickness measurement pattern 50 is formed between the piezoelectric thin film 20 and the acoustic reflection layer 60. As in the first embodiment, when the film thickness of the piezoelectric thin film 20 is measured, the film thickness of the piezoelectric thin film 20 can be accurately measured by using the film thickness measurement pattern 50.

図8は、本実施形態に係る圧電共振器10Bの製造方法における各工程での形状を示す側面断面図である。   FIG. 8 is a side cross-sectional view showing the shape at each step in the method of manufacturing the piezoelectric resonator 10B according to the present embodiment.

まず、透光性の圧電基板P20の裏面に膜厚測定用パターン50を形成する。圧電基板P20にはLiTaO又はLiNbO基板を用いている。膜厚測定用パターン50は、蒸着リフトオフ法によりTi/Al/Tiが形成されて成膜される。 First, the film thickness measurement pattern 50 is formed on the back surface of the translucent piezoelectric substrate P20. A LiTaO 3 or LiNbO 3 substrate is used for the piezoelectric substrate P20. The film thickness measurement pattern 50 is formed by forming Ti / Al / Ti by the vapor deposition lift-off method.

次に、圧電基板P20の裏面に音響反射層60を形成する。音響反射層60は、低音響インピーダンス膜と高音響インピーダンス膜とを積層し、SiOとAlNとを、例えば100〜300nmずつ積層して形成される。そして、圧電基板P20とは反対側の音響反射層60の面に、接着層61によって支持基板40を接着する。 Next, the acoustic reflection layer 60 is formed on the back surface of the piezoelectric substrate P20. The acoustic reflection layer 60 is formed by laminating a low acoustic impedance film and a high acoustic impedance film, and laminating SiO 2 and AlN, for example, by 100 to 300 nm. Then, the support substrate 40 is bonded to the surface of the acoustic reflection layer 60 opposite to the piezoelectric substrate P20 by the adhesive layer 61.

圧電基板P20を研磨等によって薄膜化し、圧電薄膜20を形成する。その形成した圧電薄膜20の表面に、機能用導体211,212を蒸着リフトオフ法により形成する。   The piezoelectric substrate P20 is thinned by polishing or the like to form the piezoelectric thin film 20. The functional conductors 211 and 212 are formed on the surface of the formed piezoelectric thin film 20 by a vapor deposition lift-off method.

以上の製造方法を得ることによって、圧電共振器10Bが形成される。この圧電共振器10Bの圧電薄膜20の膜厚測定時に、膜厚測定用パターン50へ測定用光を照射すれば、機能用導体211,212及び音響反射層60の影響を受けることなく、圧電薄膜20の膜厚を測定できる。また、圧電共振器10Bの製造時に膜厚測定用パターン50を形成するため、圧電薄膜20の膜厚測定時には膜厚測定用パターン50へ光を照射するだけでよく、測定作業に追加工程を必要としない。   By obtaining the above manufacturing method, the piezoelectric resonator 10B is formed. When measuring the film thickness of the piezoelectric thin film 20 of the piezoelectric resonator 10B, if the measurement light is applied to the film thickness measuring pattern 50, the piezoelectric thin film is not affected by the functional conductors 211 and 212 and the acoustic reflection layer 60. A film thickness of 20 can be measured. Further, since the film thickness measurement pattern 50 is formed at the time of manufacturing the piezoelectric resonator 10B, it is only necessary to irradiate the film thickness measurement pattern 50 with light when measuring the film thickness of the piezoelectric thin film 20, and an additional process is required for the measurement work. And not.

10,10A,10B…圧電共振器
20…圧電薄膜
30…固定層
31…犠牲層
40…支持基板
50…膜厚測定用パターン
60…音響反射層
61…接着層
200…貫通孔
211,212…機能用導体
221,222…配線導体
231,232…機能用導体
300…空隙
P20…圧電基板
DESCRIPTION OF SYMBOLS 10, 10A, 10B ... Piezoelectric resonator 20 ... Piezoelectric thin film 30 ... Fixed layer 31 ... Sacrificial layer 40 ... Supporting substrate 50 ... Film thickness measurement pattern 60 ... Acoustic reflection layer 61 ... Adhesive layer 200 ... Through-hole 211, 212 ... Function Conductor 221, 222 ... Wiring conductor 231, 232 ... Functional conductor 300 ... Gap P20 ... Piezoelectric substrate

Claims (4)

機能用導体が形成された透光性の圧電薄膜と、
前記圧電薄膜の一方主面側に配置された支持基板と、
前記圧電薄膜を前記支持基板に固定する固定層と、
前記固定層側の前記圧電薄膜の主面に形成され、平面視で、前記機能用導体の形成領域の外側に配置された膜厚測定用パターンと、
を備えた圧電共振器。
A translucent piezoelectric thin film on which a functional conductor is formed;
A support substrate disposed on one main surface side of the piezoelectric thin film;
A fixing layer for fixing the piezoelectric thin film to the support substrate;
A film thickness measurement pattern formed on the principal surface of the piezoelectric thin film on the fixed layer side and disposed outside the functional conductor formation region in plan view;
A piezoelectric resonator comprising:
前記固定層は、前記形成領域と前記支持基板との間に形成された空隙部を有し、
前記膜厚測定用パターンは、平面視で、前記空隙部の外側に配置されている、
請求項1に記載の圧電共振器。
The fixed layer has a gap formed between the formation region and the support substrate,
The film thickness measurement pattern is disposed outside the gap in plan view.
The piezoelectric resonator according to claim 1.
前記固定層は、音響インピーダンスが異なる複数種類の層を積層した音響反射層である、
請求項1に記載の圧電共振器。
The fixed layer is an acoustic reflection layer in which a plurality of types of layers having different acoustic impedances are stacked.
The piezoelectric resonator according to claim 1.
機能用導体が形成された圧電薄膜と、前記圧電薄膜の一方主面側に配置された支持基板と、前記圧電薄膜を前記支持基板に固定する固定層とを備えた圧電共振器の製造方法において、
透光性の圧電基板の一方主面に膜厚測定用パターンを形成する工程と、
前記圧電基板の前記一方主面に無機層を形成する無機層形成工程と、
前記無機層の前記圧電基板と反対側の面に支持基板を貼り合わせる工程と、
前記圧電基板から前記圧電薄膜を剥離形成する工程と、
前記膜厚測定用パターンを基準に、前記圧電薄膜の一方主面に機能用導体を形成する工程と、
を備えた圧電共振器の製造方法。
In a method for manufacturing a piezoelectric resonator, comprising: a piezoelectric thin film on which a functional conductor is formed; a support substrate disposed on one main surface side of the piezoelectric thin film; and a fixed layer that fixes the piezoelectric thin film to the support substrate. ,
Forming a film thickness measurement pattern on one main surface of the translucent piezoelectric substrate;
An inorganic layer forming step of forming an inorganic layer on the one principal surface of the piezoelectric substrate;
Bonding a support substrate to a surface of the inorganic layer opposite to the piezoelectric substrate;
Peeling the piezoelectric thin film from the piezoelectric substrate;
Forming a functional conductor on one main surface of the piezoelectric thin film with reference to the film thickness measurement pattern;
A method for manufacturing a piezoelectric resonator comprising:
JP2014218431A 2014-10-27 2014-10-27 Piezoelectric resonator and manufacturing method of piezoelectric resonator Active JP6417849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218431A JP6417849B2 (en) 2014-10-27 2014-10-27 Piezoelectric resonator and manufacturing method of piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218431A JP6417849B2 (en) 2014-10-27 2014-10-27 Piezoelectric resonator and manufacturing method of piezoelectric resonator

Publications (2)

Publication Number Publication Date
JP2016086308A true JP2016086308A (en) 2016-05-19
JP6417849B2 JP6417849B2 (en) 2018-11-07

Family

ID=55973862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218431A Active JP6417849B2 (en) 2014-10-27 2014-10-27 Piezoelectric resonator and manufacturing method of piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP6417849B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080433A1 (en) * 2020-10-14 2022-04-21 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022138552A1 (en) * 2020-12-22 2022-06-30 株式会社村田製作所 Elastic wave device
WO2022211087A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022224973A1 (en) * 2021-04-21 2022-10-27 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2023033147A1 (en) * 2021-09-06 2023-03-09 株式会社村田製作所 Elastic wave device
WO2023140331A1 (en) * 2022-01-24 2023-07-27 株式会社村田製作所 Elastic wave device
WO2023191089A1 (en) * 2022-04-01 2023-10-05 株式会社村田製作所 Elastic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005577A1 (en) * 2001-07-02 2003-01-16 Matsushita Electric Industrial Co., Ltd. Method for manufacturing surface acoustic wave device
JP2005311511A (en) * 2004-04-19 2005-11-04 Toshiba Corp High-frequency integrated circuit device
JP2010239613A (en) * 2009-03-11 2010-10-21 Panasonic Corp Acoustic wave element, and method of manufacturing the same
WO2011052551A1 (en) * 2009-10-30 2011-05-05 株式会社村田製作所 Piezoelectric device and method of manufacturing piezoelectric device
JP2011142613A (en) * 2009-12-08 2011-07-21 Murata Mfg Co Ltd Method of manufacturing stacked thin film piezoelectric filter
JP2013197553A (en) * 2012-03-22 2013-09-30 Hitachi Cable Ltd Substrate with piezoelectric film, piezoelectric film element, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005577A1 (en) * 2001-07-02 2003-01-16 Matsushita Electric Industrial Co., Ltd. Method for manufacturing surface acoustic wave device
JP2005311511A (en) * 2004-04-19 2005-11-04 Toshiba Corp High-frequency integrated circuit device
JP2010239613A (en) * 2009-03-11 2010-10-21 Panasonic Corp Acoustic wave element, and method of manufacturing the same
WO2011052551A1 (en) * 2009-10-30 2011-05-05 株式会社村田製作所 Piezoelectric device and method of manufacturing piezoelectric device
JP2011142613A (en) * 2009-12-08 2011-07-21 Murata Mfg Co Ltd Method of manufacturing stacked thin film piezoelectric filter
JP2013197553A (en) * 2012-03-22 2013-09-30 Hitachi Cable Ltd Substrate with piezoelectric film, piezoelectric film element, and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080433A1 (en) * 2020-10-14 2022-04-21 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2022138552A1 (en) * 2020-12-22 2022-06-30 株式会社村田製作所 Elastic wave device
WO2022211087A1 (en) * 2021-03-31 2022-10-06 株式会社村田製作所 Elastic wave device
WO2022224973A1 (en) * 2021-04-21 2022-10-27 株式会社村田製作所 Elastic wave device and method for manufacturing elastic wave device
WO2023033147A1 (en) * 2021-09-06 2023-03-09 株式会社村田製作所 Elastic wave device
WO2023140331A1 (en) * 2022-01-24 2023-07-27 株式会社村田製作所 Elastic wave device
WO2023191089A1 (en) * 2022-04-01 2023-10-05 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
JP6417849B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6417849B2 (en) Piezoelectric resonator and manufacturing method of piezoelectric resonator
US11539344B2 (en) Elastic wave device and method for producing the same
JP6092535B2 (en) Lamb wave device and manufacturing method thereof
WO2016093020A1 (en) Piezoelectric device and method for producing piezoelectric device
KR101923573B1 (en) Seismic wave device and manufacturing method thereof
JP2018535595A5 (en)
JP6642499B2 (en) Elastic wave device
JP6464735B2 (en) Elastic wave device and manufacturing method thereof
JP6478902B2 (en) Method for manufacturing through wiring board and method for manufacturing electronic device
JP6451744B2 (en) Piezoelectric module
US10338034B2 (en) Transducer device comprising an insulating film between a through wiring line and a semiconductor substrate
JP2012253405A (en) Ultrasonic transducer, biological sensor, and method for manufacturing ultrasonic transducer
CN105229924B (en) The manufacturing method of piezoelectric device and its manufacturing method and piezoelectricity self-supporting substrate
WO2017094520A1 (en) Piezoelectric element, piezoelectric microphone, piezoelectric resonator and method for manufacturing piezoelectric element
TW201036222A (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
JP2019179961A (en) Acoustic wave device
JP2019208260A (en) Method of manufacturing piezoelectric thin film element
US10924083B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
JP2007201772A (en) Manufacturing method of acoustic wave element, manufacturing method of electronic device, mask and manufacturing method of mask
JP6672877B2 (en) Ultrasonic device, ultrasonic probe, ultrasonic device, and method of manufacturing ultrasonic device
JP5862368B2 (en) Method for manufacturing piezoelectric device
JP7141934B2 (en) Ultrasonic transducer, manufacturing method thereof and ultrasonic imaging device
CN112485775B (en) Transduction device, transduction structure and manufacturing method thereof
JP6265578B1 (en) Device, device manufacturing method, and array-type ultrasonic probe manufacturing method
JP2007295304A (en) Bulk acoustic wave resonator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150