JP2016086091A - Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film - Google Patents

Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film Download PDF

Info

Publication number
JP2016086091A
JP2016086091A JP2014218317A JP2014218317A JP2016086091A JP 2016086091 A JP2016086091 A JP 2016086091A JP 2014218317 A JP2014218317 A JP 2014218317A JP 2014218317 A JP2014218317 A JP 2014218317A JP 2016086091 A JP2016086091 A JP 2016086091A
Authority
JP
Japan
Prior art keywords
optical film
film
cover member
optical
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014218317A
Other languages
Japanese (ja)
Inventor
正幸 藤島
Masayuki Fujishima
正幸 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014218317A priority Critical patent/JP2016086091A/en
Publication of JP2016086091A publication Critical patent/JP2016086091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cover member with a thin film in which a deposition area of an optical film having a film stress which is different between front and rear faces of a transparent member is adjusted, and that is adjusted so as to reduce warpage.SOLUTION: A cover member with a thin film comprises a first optical film 2 formed on a first surface of a transparent member 1, and a second optical film 3 formed on a second surface at an opposite side to the first surface. A film stress of the first optical film 2 is different from that of the second optical film 3. A deposition area of one optical film with a smaller film stress, of the first optical film 2 and the second optical film 3, is larger than that of the other optical film.SELECTED DRAWING: Figure 1

Description

本発明は、薄膜付きカバー部材、固体撮像装置及び薄膜付きカバー部材の製造方法に関する。   The present invention relates to a cover member with a thin film, a solid-state imaging device, and a method for manufacturing the cover member with a thin film.

近年、デジタルカメラやデジタルビデオカメラの薄型化・小型化が進み、これらに使用されているCCD(Charge Coupled Device)やCMOS(complementary metal oxide semiconductor)から構成される固体撮像装置にも薄型化・小型化が求められていることが知られている。   In recent years, digital cameras and digital video cameras have been made thinner and smaller, and solid-state imaging devices composed of CCD (Charge Coupled Device) and CMOS (complementary metal oxide semiconductor) are also being made thinner and smaller. It is known that there is a need for conversion.

さらに近年では、携帯電話や携帯情報端末機、車載カメラ等の多岐にわたる用途で固体撮像装置が用いられ、薄型化・小型化・高性能化の要求がますます高まっている。この要求に応えるため、固体撮像装置のパッケージ方法は、イメージセンサ(固体撮像素子)をセラミック等のパッケージによって気密封止する従来のタイプから、より小型化が可能なイメージセンサとカバー部材を接着し、樹脂により封止するタイプなど、イメージセンサダイと同程度の大きさとなるチップサイズパッケージタイプに移行してきた。
近年では、イメージセンサとカバー部材とをウェハ状態で貼り合わせてから個片化するウェハレベルパッケージにより、イメージセンサと同サイズのパッケージが作製されている。これはリアルチップサイズパッケージと呼ばれ、既に知られている。
Furthermore, in recent years, solid-state imaging devices are used in a wide variety of applications such as mobile phones, personal digital assistants, and in-vehicle cameras, and there is an increasing demand for thinner, smaller, and higher performance. In order to meet this requirement, the solid-state image pickup device packaging method is such that the image sensor (solid-state image pickup device) is hermetically sealed with a ceramic package or the like, and an image sensor that can be made smaller and a cover member are bonded. However, it has shifted to a chip size package type that has the same size as an image sensor die, such as a type sealed with resin.
In recent years, a package of the same size as the image sensor has been manufactured by a wafer level package in which the image sensor and the cover member are bonded in a wafer state and then separated into individual pieces. This is called a real chip size package and is already known.

一方、固体撮像装置の高機能化も加速しており、カバー部材に反射防止膜や赤外線カットフィルタを形成することにより、画像品質を高める構造が一般的になっている。近年では光量、波長だけではなく、カバー部材に偏光を選択するための光学膜を形成した固体撮像装置も報告されている。
しかし、これら光学膜をカバー部材に形成すると、カバー部材に反りが発生してしまうという問題がある。特にウェハレベルパッケージでは、例えば8インチや12インチという直径を持つウェハ同士を接着するため、反りが発生すると接着不良や信頼性低下などが発生し、品質を低下させてしまうという問題があった。
On the other hand, higher functionality of solid-state imaging devices is also accelerating, and a structure that improves image quality by forming an antireflection film or an infrared cut filter on a cover member has become common. In recent years, a solid-state imaging device having an optical film for selecting polarized light on a cover member as well as a light amount and a wavelength has been reported.
However, when these optical films are formed on the cover member, there is a problem that the cover member is warped. In particular, in the wafer level package, wafers having a diameter of, for example, 8 inches or 12 inches are bonded to each other. Therefore, when warping occurs, there is a problem in that defective bonding or a decrease in reliability occurs and the quality is deteriorated.

特許文献1では、ガラス基板の表面に溝を形成することで、ガラス基板上の薄膜による応力を緩和し、ガラス基板の反り量を低減するとともに、薄膜の加工精度の向上を図ることが開示されている。
しかしながら、特許文献1では、ガラス基板に溝を形成し、これに対し薄膜を形成しているため、加工が難しく、生産性が十分でない。また、ガラス基板に溝を形成することにより、ガラス基板の強度が減少してしまう。例えば、ガラス基板と固体撮像素子をウェハレベルで接着する場合、ガラス基板の搬送工程や接着工程でガラス基板が破損する恐れがある。
Patent Document 1 discloses that a groove is formed on the surface of a glass substrate to relieve stress due to the thin film on the glass substrate, reduce the amount of warpage of the glass substrate, and improve the processing accuracy of the thin film. ing.
However, in patent document 1, since the groove | channel is formed in the glass substrate and the thin film is formed with respect to this, a process is difficult and productivity is not enough. Moreover, the intensity | strength of a glass substrate will reduce by forming a groove | channel in a glass substrate. For example, when bonding a glass substrate and a solid-state image sensor at a wafer level, there exists a possibility that a glass substrate may be damaged by the conveyance process and adhesion process of a glass substrate.

特許文献2では、基板上の膜応力が起因となり膜剥離や基板破壊が発生するという問題を解決するために、基板の両面における膜応力のバランスをとる薄膜堆積方法が報告されている。特許文献2では、一方の面における光学膜の光学性能を損なわないように最適設計し、表裏の光学膜厚さを適切な厚さに堆積することで応力を調整している。
しかしながら、表裏の光学膜の材料、プロセスが異なれば、厚さを等しくしても応力は異なってしまうため、特許文献2の薄膜堆積方法では表裏の光学膜が同じ場合に限定され得る。
Patent Document 2 reports a thin film deposition method that balances the film stress on both surfaces of the substrate in order to solve the problem of film peeling and substrate breakage caused by the film stress on the substrate. In Patent Document 2, the optimum design is performed so as not to impair the optical performance of the optical film on one surface, and the stress is adjusted by depositing the optical film thicknesses on the front and back surfaces to an appropriate thickness.
However, if the materials and processes of the front and back optical films are different, the stress will be different even if the thickness is made equal. Therefore, the thin film deposition method of Patent Document 2 can be limited to the case where the front and back optical films are the same.

そこで、本発明は上記課題を鑑み、透明部材の表裏面で異なる膜応力を持つ光学膜の成膜面積が調整され、反りを低減するように調整された薄膜付きカバー部材を提供することを目的とする。   Therefore, in view of the above problems, the present invention has an object to provide a cover member with a thin film in which the film formation areas of optical films having different film stresses on the front and back surfaces of a transparent member are adjusted to reduce warpage. And

上記課題を解決するために、本発明の薄膜付きカバー部材は、透明部材における第1の面に形成された第1の光学膜と、前記第1の面と反対側の第2の面に形成された第2の光学膜とを備え、前記第1の光学膜と前記第2の光学膜は膜応力が異なり、前記第1の光学膜及び第2の光学膜のうち、膜応力の小さい光学膜の成膜面積が、もう一方の光学膜の成膜面積よりも大きいことを特徴とする。   In order to solve the above problems, a cover member with a thin film according to the present invention is formed on a first optical film formed on a first surface of a transparent member, and on a second surface opposite to the first surface. The first optical film and the second optical film have different film stresses, and the first optical film and the second optical film have a small film stress. The film formation area of the film is larger than the film formation area of the other optical film.

本発明によれば、透明部材の表裏面で異なる膜応力を持つ光学膜の成膜面積が調整され、反りを低減するように調整された薄膜付きカバー部材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the film-forming area of the optical film which has different film | membrane stress on the front and back of a transparent member is adjusted, and the cover member with a thin film adjusted so that curvature may be reduced can be provided.

本発明に係るカバー部材の一例における上面図(a)及び断面図(b)である。It is the top view (a) and sectional drawing (b) in an example of the cover member concerning the present invention. 本発明に係るカバー部材の他の例における上面図(a)及び断面図(b)である。It is the top view (a) and sectional drawing (b) in the other example of the cover member based on this invention. 本発明に係る固体撮像装置の一例における断面図である。It is sectional drawing in an example of the solid-state imaging device concerning this invention. 本発明に係る固体撮像装置の他の例における断面図である。It is sectional drawing in the other example of the solid-state imaging device concerning this invention. 本発明に係る固体撮像装置の他の例における断面図である。It is sectional drawing in the other example of the solid-state imaging device concerning this invention.

以下、本発明に係る薄膜付きカバー部材、固体撮像装置及び薄膜付きカバー部材の製造方法について図面を参照しながら説明する。なお、本発明は以下に示す実施形態に限定されるものではなく、他の実施形態、追加、修正、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   Hereinafter, a manufacturing method of a cover member with a thin film, a solid-state imaging device and a cover member with a thin film according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and other embodiments, additions, modifications, deletions, and the like can be changed within a range that can be conceived by those skilled in the art, and any aspect is possible. As long as the functions and effects of the present invention are exhibited, the scope of the present invention is included.

<薄膜付きカバー部材>
本発明の薄膜付きカバー部材は、透明部材1における第1の面に形成された第1の光学膜2と、前記第1の面と反対側の第2の面に形成された第2の光学膜3とを備え、第1の光学膜2と第2の光学膜3は膜応力が異なり、第1の光学膜2及び第2の光学膜3のうち、膜応力の小さい光学膜の成膜面積が、もう一方の光学膜の成膜面積よりも大きいことを特徴とする。なお、以下、「カバー部材」と表記した場合においても、「薄膜付きカバー部材」を意味するものとする。
<Cover member with thin film>
The cover member with a thin film according to the present invention includes a first optical film 2 formed on the first surface of the transparent member 1 and a second optical film formed on the second surface opposite to the first surface. The first optical film 2 and the second optical film 3 have different film stresses, and the first optical film 2 and the second optical film 3 are formed with an optical film having a small film stress. The area is larger than the deposition area of the other optical film. In the following description, the term “cover member” also means “a cover member with a thin film”.

図1に、本発明に係る薄膜付きカバー部材の一例を示す。図1(a)はカバー部材の上面図を示し、図1(b)はカバー部材の断面図を示す。図1には、可視光を透過する透明部材1、透明部材1の第1の面に形成された第1の光学膜2、第1の光学膜2とは異なる膜応力を有する第2の光学膜3が図示されている。   FIG. 1 shows an example of a cover member with a thin film according to the present invention. 1A shows a top view of the cover member, and FIG. 1B shows a cross-sectional view of the cover member. FIG. 1 shows a transparent member 1 that transmits visible light, a first optical film 2 formed on the first surface of the transparent member 1, and a second optical film having a film stress different from that of the first optical film 2. The membrane 3 is shown.

本実施形態に係る薄膜付きカバー部材は、第1の光学膜2と第2の光学膜3が反り量が低減されるように互いに異なる成膜面積を持つことを特徴としている。すなわち、膜応力が強い方の成膜面積が、膜応力が弱い方の成膜面積より小さくなっている。これにより、応力バランスをとることができ、カバー部材全体の反り量を低減することができる。   The cover member with a thin film according to this embodiment is characterized in that the first optical film 2 and the second optical film 3 have different film formation areas so that the amount of warpage is reduced. That is, the film formation area with the higher film stress is smaller than the film formation area with the lower film stress. Thereby, stress balance can be taken and the curvature amount of the whole cover member can be reduced.

本実施形態では、第1の光学膜2と第2の光学膜3は互いに、光学機能、材料、構造、成膜プロセスが異なることも有り得る。このため、第1の光学膜2と第2の光学膜3は異なる膜応力を有し、第1の光学膜2と第2の光学膜3が同じ成膜面積であると、透明部材全体に反りが生じてしまう。そのため、本発明では第1の光学膜2と第2の光学膜3の成膜面積を制御することによって、反り量を抑制することができる。   In the present embodiment, the first optical film 2 and the second optical film 3 may have different optical functions, materials, structures, and film formation processes. Therefore, if the first optical film 2 and the second optical film 3 have different film stresses, and the first optical film 2 and the second optical film 3 have the same film formation area, the entire transparent member Warping will occur. Therefore, in the present invention, the amount of warpage can be suppressed by controlling the film formation areas of the first optical film 2 and the second optical film 3.

本発明において、膜応力の測定方法は特に制限されるものではなく、従来の方法を用いることができる。例えば、特許文献2(特開2007−193357号公報)に開示されている基板の反りから膜応力を算出する方法により測定することができる。基板の反りの計測は市販のレーザ変位計、共焦点顕微鏡、干渉計などで行うことができる。また、結晶質の薄膜に対して用いられる、X線回折を用いて結晶格子の歪から応力を測定する方法により測定することができる。
なお、透明部材1の一方の面に光学膜を形成し、透明部材1の反り量を測定した後、もう一方の光学膜の成膜面積を調整することも可能である。
In the present invention, the method for measuring the film stress is not particularly limited, and a conventional method can be used. For example, it can be measured by a method of calculating film stress from the warpage of the substrate disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2007-193357). Substrate warpage can be measured with a commercially available laser displacement meter, confocal microscope, interferometer, or the like. Moreover, it can measure by the method of measuring a stress from the distortion of a crystal lattice using the X-ray diffraction used with respect to a crystalline thin film.
It is also possible to adjust the deposition area of the other optical film after forming an optical film on one surface of the transparent member 1 and measuring the amount of warpage of the transparent member 1.

本実施形態における薄膜付きカバー部材において、第1の光学膜2及び/又は第2の光学膜3は、偏光選択機能、波長選択機能、光量調整機能及び反射防止機能からなる光学機能の群のうち、2つ以上を有していることが好ましい。また、第1の光学膜2が有する光学機能と第2の光学膜3が有する光学機能とが異なっていることが好ましい。
これにより、薄膜付きカバー部材に複数の光学機能を付与することができ、多機能化を図ることができる。
In the cover member with a thin film in the present embodiment, the first optical film 2 and / or the second optical film 3 is a group of optical functions including a polarization selection function, a wavelength selection function, a light amount adjustment function, and an antireflection function. It is preferable to have two or more. The optical function of the first optical film 2 is preferably different from the optical function of the second optical film 3.
Thereby, a some optical function can be provided to the cover member with a thin film, and multi-functionalization can be achieved.

偏光選択機能としては、例えばワイヤグリッド型偏光フィルタ等が挙げられる。
波長選択機能としては、例えばカラーフィルタや、多層膜バンドパスフィル等が挙げられる。
光量調整機能としては、例えばND(Neutral Density)フィルタ等が挙げられる。
反射防止機能としては、例えば多層膜反射防止フィルタや、SWS(Sub-Wavelength Structure)反射防止構造等が挙げられる。
Examples of the polarization selection function include a wire grid type polarization filter.
Examples of the wavelength selection function include a color filter and a multilayer film bandpass fill.
Examples of the light amount adjustment function include an ND (Neutral Density) filter.
Examples of the antireflection function include a multilayer antireflection filter and a SWS (Sub-Wavelength Structure) antireflection structure.

また、第1の光学膜2と第2の光学膜3の材料は、特に制限されるものではないが、例えばアルミニウムなどの金属材料や、酸化チタン(TiO)、酸化シリコン(SiO)、ニオブ(Nb)、タンタル(Ta)、フッ化マグネシウム(MgF)、酸化ハフニウム(HfO)などの誘電体材料等が挙げられる。
第1の光学膜2と第2の光学膜3の構造としては、特に制限されるものではないが、単層膜の他に、例えば光の波長以下の複数の層から形成される多層膜構造や、光の波長以下の凹凸によって形成されるSWS構造等が挙げられる。
第1の光学膜2と第2の光学膜3の材料及び構造は、同じであってもよいし、異なっていてもよい。また、第1の光学膜2と第2の光学膜3の膜厚は、特に制限されるものではなく、適宜変更が可能である。
The materials of the first optical film 2 and the second optical film 3 are not particularly limited. For example, a metal material such as aluminum, titanium oxide (TiO 3 ), silicon oxide (SiO 2 ), Examples thereof include dielectric materials such as niobium (Nb 2 O 5 ), tantalum (Ta 2 O 5 ), magnesium fluoride (MgF 2 ), and hafnium oxide (HfO 2 ).
The structure of the first optical film 2 and the second optical film 3 is not particularly limited. In addition to the single layer film, for example, a multilayer film structure formed of a plurality of layers having a wavelength equal to or less than the wavelength of light. And an SWS structure formed by unevenness of the wavelength of light or less.
The materials and structures of the first optical film 2 and the second optical film 3 may be the same or different. Moreover, the film thicknesses of the first optical film 2 and the second optical film 3 are not particularly limited, and can be appropriately changed.

透明部材1としては、可視光を透過するものであれば特に制限されるものではなく、例えばガラス基板やプラスチック基板等が挙げられる。また、透明部材1の厚みとしては、特に制限されるものではなく、状況に応じて適宜変更が可能である。   The transparent member 1 is not particularly limited as long as it transmits visible light, and examples thereof include a glass substrate and a plastic substrate. Moreover, it does not restrict | limit especially as thickness of the transparent member 1, According to a condition, it can change suitably.

図2に、本発明に係るカバー部材の他の例を示す。図2(a)はカバー部材の上面図を示し、図2(b)はカバー部材の断面図を示す。図2には、可視光を透過するウェハ状の透明部材4、透明部材1の第1の面に形成された第1の光学膜2、第1の光学膜2とは異なる膜応力を有する第2の光学膜3が図示されている。
本実施形態に係る薄膜付きカバー部材は、透明部材がウェハ状であり、透明部材4に、対となる第1の光学膜2と第2の光学膜3とが複数形成されている。
FIG. 2 shows another example of the cover member according to the present invention. 2A shows a top view of the cover member, and FIG. 2B shows a cross-sectional view of the cover member. FIG. 2 shows a wafer-like transparent member 4 that transmits visible light, a first optical film 2 formed on the first surface of the transparent member 1, and a film stress different from that of the first optical film 2. Two optical films 3 are shown.
In the cover member with a thin film according to this embodiment, the transparent member has a wafer shape, and a plurality of pairs of the first optical film 2 and the second optical film 3 are formed on the transparent member 4.

図1と同様に、第1の光学膜2と第2の光学膜3は透明部材全体の反り量が低減されるように互いに異なる成膜面積を持つことを特徴としている。すなわち、膜応力が強い方の成膜面積が、膜応力が弱い方の成膜面積より小さくなっている。これにより、応力バランスをとることができる。   Similar to FIG. 1, the first optical film 2 and the second optical film 3 are characterized by having different film formation areas so that the amount of warpage of the entire transparent member is reduced. That is, the film formation area with the higher film stress is smaller than the film formation area with the lower film stress. Thereby, stress balance can be taken.

通常、カバー部材はウェハの状態で成膜を行い、ダイシング等の工程により個片化する。これにより、チップ辺りのタクト短縮、低コスト化を図っている。一方、ウェハの状態で成膜をすることで反りが顕著にあらわれるという問題があった。反りが大きいとダイシング時に膜剥がれや、ウェハの破壊が発生してしまう。
また、近年ウェハレベルでカバー部材と固体撮像素子を接着する工程が報告されている。カバー部材の反りが大きいと、接着不良が発生したり、接着後に応力が残留することによる信頼性の低下が発生したりしてしまう。
これに対し本発明では、膜応力を考慮しつつ光学膜の成膜面積を調整し、透明部材1の第1の面と第2の面における光学膜の膜応力のバランスをとることにより、これらの問題を回避することができる。
上記のことから、本発明の薄膜付きカバー部材は、固体撮像装置における固体撮像素子を覆うカバー部材として適用できる他、MEMS(Micro Electoro Mechanical Systems)等のカバー部材として用いることができる。
Usually, the cover member is formed into a film in the state of a wafer and separated into individual pieces by a process such as dicing. As a result, the tact time around the chip is reduced and the cost is reduced. On the other hand, there has been a problem that warpage appears remarkably by forming a film in a wafer state. If the warpage is large, film peeling or wafer breakage occurs during dicing.
In recent years, a process of bonding a cover member and a solid-state image sensor at a wafer level has been reported. When the warpage of the cover member is large, adhesion failure occurs, or reliability decreases due to residual stress after bonding.
On the other hand, in the present invention, by adjusting the film formation area of the optical film in consideration of the film stress and balancing the film stress of the optical film on the first surface and the second surface of the transparent member 1, The problem can be avoided.
From the above, the cover member with a thin film according to the present invention can be used as a cover member that covers a solid-state image sensor in a solid-state imaging device, and can also be used as a cover member for MEMS (Micro Electoro Mechanical Systems) or the like.

<固体撮像装置>
本発明に係る固体撮像装置は、受光素子18と、受光素子18から出力される信号を外部に出力するための電極14と、受光素子18及び電極14を有する基板からなる固体撮像素子10と、受光素子18の受光面に形成されたマイクロレンズ17と、受光素子18の受光面と対向して離間配置されたカバー部材と、受光素子18の外径側において前記基板と前記カバー部材との間を接着する接着部(接着剤11)とを有し、前記カバー部材は、本発明に係る薄膜付きカバー部材であることを特徴とする。
<Solid-state imaging device>
The solid-state imaging device according to the present invention includes a light-receiving element 18, an electrode 14 for outputting a signal output from the light-receiving element 18, and a solid-state imaging element 10 including a substrate having the light-receiving element 18 and the electrode 14. The microlens 17 formed on the light receiving surface of the light receiving element 18, a cover member spaced apart from the light receiving surface of the light receiving element 18, and the substrate and the cover member on the outer diameter side of the light receiving element 18 The cover member is a cover member with a thin film according to the present invention.

図3に、本発明に係る固体撮像装置の一例における断面図を示す。図3には、可視光を透過する透明部材1、透明部材1の第1の面に形成された光学機能を有する第1の光学膜2、透明部材1の第2の面に形成された第1の光学膜2とは異なる膜応力を有する第2の光学膜3が図示されている。
また、入射光を電気信号に変換する固体撮像素子10、透明部材1と固体撮像素子10を接着する接着剤11、インターポーザ基板12、固体撮像素子10とインターポーザ基板12を接着するダイボンド材13、固体撮像素子10とインターポーザ基板12を電気的に接続する金属ワイヤー14、金属ワイヤー14を保護する封止樹脂15が図示されている。また、固体撮像素子10における透明部材1側の面に、マイクロレンズ17、受光素子18が形成されており、集光用のマイクロレンズ17は受光素子18の受光面側に形成されている。
FIG. 3 shows a cross-sectional view of an example of a solid-state imaging device according to the present invention. FIG. 3 shows a transparent member 1 that transmits visible light, a first optical film 2 having an optical function formed on the first surface of the transparent member 1, and a second surface formed on the second surface of the transparent member 1. A second optical film 3 having a film stress different from that of the first optical film 2 is shown.
Also, a solid-state imaging device 10 that converts incident light into an electrical signal, an adhesive 11 that bonds the transparent member 1 and the solid-state imaging device 10, an interposer substrate 12, a die bond material 13 that bonds the solid-state imaging device 10 and the interposer substrate 12, a solid A metal wire 14 that electrically connects the image sensor 10 and the interposer substrate 12 and a sealing resin 15 that protects the metal wire 14 are illustrated. A microlens 17 and a light receiving element 18 are formed on the surface of the solid-state imaging device 10 on the transparent member 1 side, and the condensing microlens 17 is formed on the light receiving surface side of the light receiving element 18.

このように構成される固体撮像装置においては、光は光学機能を有する第1の光学膜2、透明部材1を通過し、受光素子18に入射する。そして、受光素子18から信号が外部に出力される。
なお、カバー部材と接着する対象物として固体撮像素子10を例として挙げたが、ウェハレベル接着・接合プロセスにより一体化する対象は特に制限されるものではない。
In the solid-state imaging device configured as described above, light passes through the first optical film 2 having an optical function and the transparent member 1 and enters the light receiving element 18. Then, a signal is output from the light receiving element 18 to the outside.
In addition, although the solid-state image sensor 10 was mentioned as an example as a target object adhere | attached with a cover member, the object integrated by a wafer level adhesion | attachment / joining process is not restrict | limited in particular.

本実施形態において、第1の光学膜2と第2の光学膜3が透明部材全体の反り量が低減されるように互いに異なる成膜面積を持つことを特徴とする。すなわち、膜応力が強い方の成膜面積が、膜応力が弱い方の成膜面積より小さくなっている。このため、応力バランスをとることができる。これにより、固体撮像素子10との接着部に残留する応力を低減できるため、接着不良の発生、信頼性の低下を抑制でき、短期的、長期的性能を確保できる。   In the present embodiment, the first optical film 2 and the second optical film 3 have different film formation areas so that the amount of warpage of the entire transparent member is reduced. That is, the film formation area with the higher film stress is smaller than the film formation area with the lower film stress. For this reason, stress balance can be taken. Thereby, since the stress which remains in the adhesion part with the solid-state image sensor 10 can be reduced, generation | occurrence | production of adhesion failure and the fall of reliability can be suppressed, and short-term and long-term performance can be ensured.

図4に、本発明に係る固体撮像装置の他の例における断面図を示す。また、図5は個片化する前の状態を示す模式図である。
図4、図5には、可視光を透過するウェハ状の透明部材4、透明部材4の第1の面に形成された光学機能を有する第1の光学膜2、固体撮像素子10、透明部材4を接着する接着剤11、固体撮像素子10と外部基板(インターポーザ基板12等)とを電気的に接続するための貫通電極16が図示されている。また、固体撮像素子10における透明部材1側の面に、マイクロレンズ17、受光素子18が形成されている。
FIG. 4 shows a cross-sectional view of another example of the solid-state imaging device according to the present invention. FIG. 5 is a schematic diagram showing a state before separation.
4 and 5 show a wafer-like transparent member 4 that transmits visible light, a first optical film 2 having an optical function formed on a first surface of the transparent member 4, a solid-state imaging device 10, and a transparent member. 4, an adhesive 11 for bonding 4, and a through electrode 16 for electrically connecting the solid-state imaging device 10 and an external substrate (such as an interposer substrate 12) are illustrated. A microlens 17 and a light receiving element 18 are formed on the surface of the solid-state imaging device 10 on the transparent member 1 side.

第1の光学膜2と第2の光学膜3が透明部材全体の反り量が低減されるように互いに異なる成膜面積を持つことを特徴し、これにより、ウェハの反りによる接着不良や信頼性低下を抑制することができる。   The first optical film 2 and the second optical film 3 are characterized by having different film formation areas so that the amount of warpage of the entire transparent member is reduced, and thereby, poor adhesion and reliability due to wafer warpage. The decrease can be suppressed.

本実施形態に係る固体撮像装置において、第2の光学膜3は、第1の光学膜2よりも成膜面積が小さく、透明部材1における固体撮像素子10と対向する面に形成されているとともに、受光素子18が形成される面積よりも小さいことが好ましい。言い換えると、図4等に示されるように、第2の光学膜3が第1の光学膜2よりも成膜面積が小さい場合、すなわち第2の光学膜3がセンサ(マイクロレンズ17、受光素子18)の一部に限定して形成されている場合である。この場合、画素(受光素子18)に近い面に第2の光学膜3が形成されている。   In the solid-state imaging device according to the present embodiment, the second optical film 3 has a smaller film-forming area than the first optical film 2 and is formed on the surface of the transparent member 1 facing the solid-state imaging element 10. It is preferable that the area is smaller than the area where the light receiving element 18 is formed. In other words, as shown in FIG. 4 and the like, when the second optical film 3 has a smaller deposition area than the first optical film 2, that is, the second optical film 3 is a sensor (microlens 17, light receiving element). This is a case where it is limited to a part of 18). In this case, the second optical film 3 is formed on a surface close to the pixel (light receiving element 18).

このような構成とすることで、光学膜を通過した光が広がり、隣接画素に入射してしまうことを防ぐことができ、有利になる。また、受光素子18に入射する光が、第2の光学膜3を透過したものと透過していないものとなり、1つの固体撮像素子に複数の光学機能を付加することができる。
また、1画素毎に光学膜の機能を異ならせることも可能であり、固体撮像装置を多機能化することができる。
With such a configuration, it is possible to prevent light that has passed through the optical film from spreading and entering an adjacent pixel, which is advantageous. Further, the light incident on the light receiving element 18 is transmitted through the second optical film 3 and not transmitted through the second optical film 3, and a plurality of optical functions can be added to one solid-state imaging device.
In addition, the function of the optical film can be varied for each pixel, and the solid-state imaging device can be multi-functionalized.

一般的に光学膜の寸法が設計値からずれると、光学膜を通過した光が入射すべき画素に光が入射しないことや、その逆の現象が発生する。このため、センサの一部に限定して、光学膜を成膜する場合、あるいは1画素毎に異なる光学膜の機能を付加する場合は、その光学膜を先に成膜した方が有利である。本実施形態の場合、第1の光学膜2よりも第2の光学膜3が先に成膜され、かつセンサに近い側に成膜されることが好ましい。   Generally, when the dimension of the optical film deviates from the design value, the light does not enter the pixel to which the light that has passed through the optical film should be incident, and vice versa. For this reason, when forming an optical film limited to a part of the sensor, or when adding a different optical film function for each pixel, it is advantageous to form the optical film first. . In the case of the present embodiment, it is preferable that the second optical film 3 is formed before the first optical film 2 and is formed on the side closer to the sensor.

<薄膜付きカバー部材の製造方法>
本発明に係る薄膜付きカバー部材の製造方法は、透明部材に光学膜の材料を堆積又は塗布して第1の光学膜2及び第2の光学膜3を形成する工程を少なくとも有することを特徴とする。必要に応じて、その他の工程を有していてもよい。なお、本発明に係るカバー部材の製造方法によって製造されるカバー部材には、図1に示されるカバー部材だけでなく、図2に示されるカバー部材も含まれる。
<Method for producing cover member with thin film>
The method for producing a cover member with a thin film according to the present invention includes at least a step of forming a first optical film 2 and a second optical film 3 by depositing or applying an optical film material on a transparent member. To do. You may have another process as needed. The cover member manufactured by the method for manufacturing a cover member according to the present invention includes not only the cover member shown in FIG. 1 but also the cover member shown in FIG.

透明部材に光学膜の材料を堆積又は塗布する方法としては、特に制限されるものではなく、公知の方法を用いることができる。例えば、CVD(Chemical Vapor Deposition)法、スパッタリング法、スピンコート法等が挙げられる。   The method for depositing or coating the optical film material on the transparent member is not particularly limited, and a known method can be used. Examples thereof include a CVD (Chemical Vapor Deposition) method, a sputtering method, a spin coating method, and the like.

本発明に係る薄膜付きカバー部材の製造方法において、第1の光学膜2及び第2の光学膜3のうち、膜応力が小さい光学膜を形成した後、もう一方の光学膜を形成することが好ましい。これにより、透明部材1の反り量を極力抑えた状態で、もう一方の光学膜を形成することができ、光学膜の形成をより容易に行うことができる。さらに、カバー部材全体の反り量を低減することができる。   In the manufacturing method of the cover member with a thin film according to the present invention, after forming the optical film having a small film stress among the first optical film 2 and the second optical film 3, the other optical film may be formed. preferable. Thereby, the other optical film can be formed in a state where the amount of warping of the transparent member 1 is suppressed as much as possible, and the optical film can be formed more easily. Furthermore, the amount of warpage of the entire cover member can be reduced.

本発明におけるカバー部材を製造する際、すなわち成膜する際には、一度に両面における応力のバランスをとることはできず、必ず膜面全体の応力(片方を成膜した際の反り量)に差が生じてしまう。そのため、膜面全体の応力(片方を成膜した際の反り量)が小さい方、すなわち本発明においては成膜面積の小さい方から成膜する方が有利になる。これにより、透明部材が大きく反った状態での成膜、パターニングに伴う、カバー部材の破損、成膜の均一性低下、パターニング精度の低下などの問題を低減することができる。   When manufacturing the cover member according to the present invention, that is, when forming a film, it is not possible to balance the stress on both surfaces at once, and the stress on the entire film surface (the amount of warpage when one of the films is formed) is always made. There will be a difference. For this reason, it is advantageous to form a film from the one where the stress on the entire film surface (the amount of warpage when one of the films is formed) is small, that is, in the present invention, from the one where the film forming area is small. Thereby, problems such as breakage of the cover member, deterioration of film formation uniformity, and deterioration of patterning accuracy associated with film formation and patterning in a state where the transparent member is largely warped can be reduced.

1、4 基板
2 第1の光学膜
3 第2の光学膜
10 固体撮像素子
11 接着剤
12 インターポーザ基板
13 ダイボンド剤
14 金属ワイヤー
15 封止樹脂
16 貫通電極
17 マイクロレンズ
18 受光素子
DESCRIPTION OF SYMBOLS 1, 4 Board | substrate 2 1st optical film 3 2nd optical film 10 Solid-state image sensor 11 Adhesive agent 12 Interposer board | substrate 13 Die bond agent 14 Metal wire 15 Sealing resin 16 Through-electrode 17 Micro lens 18 Light receiving element

特許第4704792号公報Japanese Patent No. 4704792 特開2007−193357号公報JP 2007-193357 A

Claims (8)

透明部材における第1の面に形成された第1の光学膜と、
前記第1の面と反対側の第2の面に形成された第2の光学膜とを備え、
前記第1の光学膜と前記第2の光学膜は膜応力が異なり、
前記第1の光学膜及び第2の光学膜のうち、膜応力の小さい光学膜の成膜面積が、もう一方の光学膜の成膜面積よりも大きいことを特徴とする薄膜付きカバー部材。
A first optical film formed on the first surface of the transparent member;
A second optical film formed on a second surface opposite to the first surface;
The first optical film and the second optical film have different film stresses,
A cover member with a thin film, characterized in that, of the first optical film and the second optical film, a film formation area of an optical film having a small film stress is larger than a film formation area of the other optical film.
前記第1の光学膜及び/又は第2の光学膜は、偏光選択機能、波長選択機能、光量調整機能及び反射防止機能からなる光学機能の群のうち、2つ以上を有することを特徴とする請求項1に記載の薄膜付きカバー部材。   The first optical film and / or the second optical film has two or more of a group of optical functions including a polarization selection function, a wavelength selection function, a light amount adjustment function, and an antireflection function. The cover member with a thin film according to claim 1. 前記第1の光学膜が有する光学機能と前記第2の光学膜が有する光学機能とが異なることを特徴とする請求項1又は2に記載の薄膜付きカバー部材。   The cover member with a thin film according to claim 1 or 2, wherein an optical function of the first optical film is different from an optical function of the second optical film. 前記透明部材がウェハ状であり、前記透明部材に、対となる前記第1の光学膜と前記第2の光学膜とが複数形成されていることを特徴とする請求項1〜3のいずれかに記載の薄膜付きカバー部材。   The said transparent member is a wafer form, The said 1st optical film and said 2nd optical film which become a pair are formed in the said transparent member in multiple numbers, The any one of Claims 1-3 characterized by the above-mentioned. The cover member with a thin film according to 1. 受光素子と、
該受光素子から出力される信号を外部に出力するための電極と、
該受光素子及び該電極を有する基板を備えた固体撮像素子と、
前記受光素子の受光面に形成されたマイクロレンズと、
前記受光素子の受光面と対向して離間配置されたカバー部材と、
前記受光素子の外径側において前記基板と前記カバー部材との間を接着する接着部とを有し、
前記カバー部材は、請求項1〜4のいずれかに記載の薄膜付きカバー部材であることを特徴とする固体撮像装置。
A light receiving element;
An electrode for outputting a signal output from the light receiving element to the outside;
A solid-state imaging device comprising a substrate having the light receiving element and the electrode;
A microlens formed on the light receiving surface of the light receiving element;
A cover member spaced apart from the light receiving surface of the light receiving element;
An adhesive portion for bonding between the substrate and the cover member on the outer diameter side of the light receiving element;
The said cover member is a cover member with a thin film in any one of Claims 1-4, The solid-state imaging device characterized by the above-mentioned.
前記第2の光学膜は、前記第1の光学膜よりも成膜面積が小さく、前記透明部材における前記固体撮像素子と対向する面に形成されているとともに、前記受光素子が形成される面積よりも小さいことを特徴とする請求項5に記載の固体撮像装置。   The second optical film has a smaller film-forming area than the first optical film, is formed on a surface of the transparent member facing the solid-state imaging element, and has an area where the light receiving element is formed. The solid-state imaging device according to claim 5, wherein 請求項1〜4のいずれかに記載の薄膜付きカバー部材の製造方法であって、
透明部材に光学膜の材料を堆積又は塗布して前記第1の光学膜及び第2の光学膜を形成する工程を少なくとも有することを特徴とする薄膜付きカバー部材の製造方法。
It is a manufacturing method of the cover member with a thin film according to any one of claims 1 to 4,
A method of manufacturing a cover member with a thin film, comprising at least a step of depositing or applying an optical film material on a transparent member to form the first optical film and the second optical film.
前記第1の光学膜及び第2の光学膜のうち、成膜面積が小さい光学膜を前記透明部材に形成した後、もう一方の光学膜を形成することを特徴とする請求項7に記載の薄膜付きカバー部材の製造方法。
8. The optical film according to claim 7, wherein, of the first optical film and the second optical film, an optical film having a small film-forming area is formed on the transparent member, and then the other optical film is formed. Manufacturing method of cover member with thin film.
JP2014218317A 2014-10-27 2014-10-27 Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film Pending JP2016086091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218317A JP2016086091A (en) 2014-10-27 2014-10-27 Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218317A JP2016086091A (en) 2014-10-27 2014-10-27 Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film

Publications (1)

Publication Number Publication Date
JP2016086091A true JP2016086091A (en) 2016-05-19

Family

ID=55972336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218317A Pending JP2016086091A (en) 2014-10-27 2014-10-27 Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film

Country Status (1)

Country Link
JP (1) JP2016086091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769398A (en) * 2016-05-31 2019-05-17 赛峰电子与防务公司 Optically transparent electromagnetic shielding element including multiple regions
WO2021014731A1 (en) * 2019-07-23 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 Semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109769398A (en) * 2016-05-31 2019-05-17 赛峰电子与防务公司 Optically transparent electromagnetic shielding element including multiple regions
WO2021014731A1 (en) * 2019-07-23 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 Semiconductor package

Similar Documents

Publication Publication Date Title
US8896745B2 (en) Image pickup apparatus and camera module
JP7182968B2 (en) Photoelectric conversion device and equipment
US7829908B2 (en) Solid-state image sensors and display devices having anti-reflection film
TWI584453B (en) Curved image sensor systems and methods for manufacturing the same
WO2017126376A1 (en) Image sensor, manufacturing method, and electronic device
JP2007019143A (en) Solid-state imaging device, method of manufacturing the same and camera
US9780132B2 (en) Image sensor and electronic device including the same
JP4672301B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP2015192006A (en) Semiconductor wafer, method of manufacturing light-receiving sensor and light-receiving sensor
JP2012014133A (en) Multi-functional polarizing filter and manufacturing method for the same
JP2016086091A (en) Cover member with thin film, solid-state imaging device, and method of manufacturing cover member with thin film
US11978750B2 (en) Photoelectric conversion device and method of manufacturing photoelectric conversion device
US20180102390A1 (en) Integrated imaging sensor with tunable fabry-perot interferometer
US10916578B2 (en) Semiconductor apparatus and camera
US20130148125A1 (en) Spectroscopic sensor
JP4848876B2 (en) Solid-state imaging device cover and solid-state imaging device
US10700221B2 (en) Microlens having a carrier-free optical interference filter
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
JP4853157B2 (en) Antireflection film, optical element, imaging device, and camera
JP2002006111A (en) Image pickup device and packaged apparatus
JP6467895B2 (en) Optical filter
US20110042767A1 (en) Filters in an image sensor
JP2012151421A (en) Image sensing device
JP7219526B2 (en) transducer device
TW202119643A (en) Optical package