JP2016084756A - Engine cooling device - Google Patents

Engine cooling device Download PDF

Info

Publication number
JP2016084756A
JP2016084756A JP2014218353A JP2014218353A JP2016084756A JP 2016084756 A JP2016084756 A JP 2016084756A JP 2014218353 A JP2014218353 A JP 2014218353A JP 2014218353 A JP2014218353 A JP 2014218353A JP 2016084756 A JP2016084756 A JP 2016084756A
Authority
JP
Japan
Prior art keywords
pump
engine
power
flow path
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218353A
Other languages
Japanese (ja)
Other versions
JP6399395B2 (en
Inventor
浅野 雅樹
Masaki Asano
雅樹 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014218353A priority Critical patent/JP6399395B2/en
Publication of JP2016084756A publication Critical patent/JP2016084756A/en
Application granted granted Critical
Publication of JP6399395B2 publication Critical patent/JP6399395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate a power pump as an auxiliary pump for an electric pump.SOLUTION: Cooling water flows at a main flow passage. A power pump 5 is arranged at the main flow passage and driven by power of an engine 2. An electric pump 7 is arranged at the main flow passage in series with the power pump 5 and driven by electrical power. An electromagnetic clutch 6 can switch ON/OFF state of a power force inputted from the engine 2 to the power pump 5. A power pump bypass flow passage 10 is branched from the main flow passage 3 at an upstream side of the power pump 5 and emerges into the main flow passage 3 at the downstream side of the power pump 5. First electronic control thermostat 11 can increase or decrease a flow rate of cooling water flowing from the main flow passage 3 into the power pump bypass flow passage 10. An engine speed sensor 30 and a torque sensor 31 detect an operating state of the engine 2. A water pump ECU 32 controls the electric pump 7, the electromagnetic clutch 6 and the first electronic control thermostat 11.SELECTED DRAWING: Figure 3

Description

本発明は、車両に搭載されるエンジン冷却装置に関する。   The present invention relates to an engine cooling device mounted on a vehicle.

特許文献1には、エンジンの冷却水の循環流路内に、電力によって駆動される電動ポンプとカムシャフトの回転に同期して駆動される動力ポンプとを直列に配置し、動力ポンプによる冷却不足を電動ポンプによって補うエンジン冷却装置が記載されている。   In Patent Document 1, an electric pump driven by electric power and a power pump driven in synchronism with rotation of a camshaft are arranged in series in a circulation flow path of engine cooling water, and cooling by the power pump is insufficient. The engine cooling device which supplements the above with an electric pump is described.

特開平11−303635号公報JP-A-11-303635

電動ポンプと動力ポンプとを併用するエンジン冷却装置において、電動ポンプを使用頻度が高い主ポンプとして機能させ、動力ポンプを電動ポンプの能力不足を補完する補助ポンプとして機能させたい場合がある。   In an engine cooling device that uses both an electric pump and a power pump, there is a case where the electric pump is caused to function as a main pump that is frequently used, and the power pump is desired to function as an auxiliary pump that complements the lack of capacity of the electric pump.

しかし、特許文献1の装置では、動力ポンプが常時駆動するので、動力ポンプを補助ポンプとして機能させることができない。   However, in the apparatus of Patent Document 1, since the power pump is always driven, the power pump cannot function as an auxiliary pump.

そこで、本発明は、電動ポンプを使用頻度が高い主ポンプとして機能させ、動力ポンプを電動ポンプの能力不足を補完する補助ポンプとして機能させることが可能なエンジン冷却装置の提供を目的とする。   Therefore, an object of the present invention is to provide an engine cooling device that allows an electric pump to function as a main pump that is frequently used, and allows a power pump to function as an auxiliary pump that complements the insufficient capacity of the electric pump.

上記目的を達成すべく、本発明の第1態様のエンジン冷却装置は、メイン流路と第1ポンプと第2ポンプと断接手段と第1バイパス流路と第1流量制御手段と状態検出手段と冷却制御手段とを備える。   In order to achieve the above object, an engine cooling apparatus according to a first aspect of the present invention includes a main flow path, a first pump, a second pump, a connection / disconnection means, a first bypass flow path, a first flow rate control means, and a state detection means. And a cooling control means.

メイン流路は、エンジンを冷却するための冷却水が流通する。第1ポンプは、メイン流路に配置され、エンジンの動力によって駆動される動力ポンプである。第2ポンプは、第1ポンプと直列にメイン流路に配置され、電力によって駆動される電動ポンプである。断接手段は、エンジンから第1ポンプに入力される動力を断接可能なものである。   Cooling water for cooling the engine flows through the main channel. The first pump is a power pump that is disposed in the main flow path and is driven by engine power. The second pump is an electric pump that is disposed in the main flow path in series with the first pump and is driven by electric power. The connection / disconnection means is capable of connecting / disconnecting power input from the engine to the first pump.

第1バイパス流路は、第1ポンプの上流側のメイン流路から分岐して第1ポンプの下流側のメイン流路に合流する。第1流量制御手段は、メイン流路から第1バイパス流路へ流入する冷却水の流量を増減可能なものである。   The first bypass channel branches from the main channel on the upstream side of the first pump and merges with the main channel on the downstream side of the first pump. The first flow rate control means can increase or decrease the flow rate of the cooling water flowing from the main flow path to the first bypass flow path.

状態検出手段は、エンジンの運転状態を検出する。冷却制御手段は、状態検出手段が検出するエンジンの運転状態に基づいて、第2ポンプと断接手段と第1流量制御手段とを制御する。   The state detection means detects the operating state of the engine. The cooling control unit controls the second pump, the connection / disconnection unit, and the first flow rate control unit based on the operating state of the engine detected by the state detection unit.

上記構成では、断接手段の断接と第1流量制御手段の流量制御とによって、電動ポンプのみを使用する動力ポンプの停止状態と、電動ポンプと動力ポンプとを併用する併用状態との切り替えが可能となり、電動ポンプを使用頻度が高い主ポンプとして機能させ、動力ポンプを電動ポンプの能力不足を補完する補助ポンプとして機能させることができる。   In the above-described configuration, switching between the power pump stop state using only the electric pump and the combined state using both the electric pump and the power pump is performed by the connection / disconnection of the connection / disconnection unit and the flow rate control of the first flow rate control unit. Thus, the electric pump can be made to function as a main pump that is frequently used, and the power pump can be made to function as an auxiliary pump that complements the lack of capacity of the electric pump.

電動ポンプを主ポンプとして機能させることで、動力ポンプの使用頻度が低下する。これにより、エンジンの負荷が減り、燃費性能が向上する。   By making the electric pump function as the main pump, the frequency of use of the power pump decreases. This reduces the load on the engine and improves fuel efficiency.

そして、動力ポンプのみでは十分に冷却できない可能性があるエンジンの低回転高負荷運転時において、電動ポンプと動力ポンプとを併用することによって、十分な冷却が可能となる。また、動力ポンプのみでは冷却できない車両停止時でも冷却できるので、冷却に対する要求が高い登坂終了後の停止時等においても冷却が可能となる。これにより、冷却性能が向上する。   In addition, when the engine is operated at a low rotation and high load, which may not be sufficiently cooled only by the power pump, sufficient cooling is possible by using the electric pump and the power pump in combination. Further, since cooling can be performed even when the vehicle is stopped, which cannot be cooled only by the power pump, cooling can be performed even when the vehicle is stopped after completion of the climbing, which has a high demand for cooling. Thereby, cooling performance improves.

さらに、電動ポンプを主ポンプとして機能させることで、降坂時に消費電力が増大し、エンジンブレーキの力が増大するので、安全性能が向上し、ブレーキメンテナンスのインターバルが拡大する。   Furthermore, by causing the electric pump to function as the main pump, power consumption increases during downhill, and the engine braking force increases, so that safety performance is improved and the brake maintenance interval is extended.

そして、電動ポンプと動力ポンプの併用時には冷却水量が増大するので、冷却性能を維持したままラジエータを小型化できる。   And since the amount of cooling water increases at the time of using together an electric pump and a power pump, a radiator can be reduced in size, maintaining cooling performance.

また、電動ポンプの能力不足を動力ポンプによって補完するので、乗用車よりも高い冷却能力が要求される大型車両であっても、電動ポンプやバッテリを大型化することなく、乗用車と同程度の能力の電動ポンプによってエンジンの冷却が可能となる。   In addition, since the power pump compensates for the lack of capacity of the electric pump, even a large vehicle that requires a higher cooling capacity than a passenger car has the same capacity as a passenger car without increasing the size of the electric pump or battery. The engine can be cooled by the electric pump.

本発明の第2態様のエンジン冷却装置は、上記第1態様のエンジン冷却装置であって、第2バイパス流路と第2流量制御手段とを備える。   An engine cooling device according to a second aspect of the present invention is the engine cooling device according to the first aspect, and includes a second bypass flow path and a second flow rate control means.

第2バイパス流路は、第2ポンプの上流側のメイン流路から分岐して第2ポンプの下流側のメイン流路に合流する。第2流量制御手段は、メイン流路から第2バイパス流路で流入する冷却水の流量を増減可能なものである。   The second bypass flow path branches off from the main flow path on the upstream side of the second pump and merges with the main flow path on the downstream side of the second pump. The second flow rate control means can increase or decrease the flow rate of the cooling water flowing from the main flow path through the second bypass flow path.

冷却制御手段は、状態検出手段が検出するエンジンの運転状態に基づいて、第2流量制御手段を制御する。   The cooling control unit controls the second flow rate control unit based on the engine operating state detected by the state detection unit.

本発明のエンジン冷却装置によれば、電動ポンプを使用頻度が高い主ポンプとして機能させ、動力ポンプを電動ポンプの能力不足を補完する補助ポンプとして機能させることが可能となる。   According to the engine cooling device of the present invention, it is possible to cause the electric pump to function as a main pump that is frequently used, and to allow the power pump to function as an auxiliary pump that supplements the lack of capacity of the electric pump.

本発明の実施形態に係るエンジン冷却装置の模式図である。It is a mimetic diagram of an engine cooling device concerning an embodiment of the present invention. 図1に示す電磁クラッチの構造を示す断面図であり、(a)は切り離した状態を、(b)は接続した状態をそれぞれ示す。It is sectional drawing which shows the structure of the electromagnetic clutch shown in FIG. 1, (a) shows the disconnected state, (b) shows the connected state, respectively. 各ウォータポンプの配線図である。It is a wiring diagram of each water pump. ウォータポンプECUによる処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process by water pump ECU. エンジン回転数とトルク特性との関係を示すグラフである。It is a graph which shows the relationship between an engine speed and a torque characteristic.

以下、本発明の一実施形態について図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すエンジン冷却装置1は、車両に搭載されるエンジン2を冷却する装置であり、ラジエータ4で冷却された冷却水をエンジン2のウォータジャケット2aに循環させる。エンジン冷却装置1は、ウォータポンプECU32(図3参照)によって動作が制御されるものであり、メイン流路3と、ラジエータ4と、動力ポンプ5と、電磁クラッチ6と、電動ポンプ7と、ラジエータバイパス流路8と、感温弁9と、動力ポンプバイパス流路10と、第1電子制御サーモスタット11と、電動ポンプバイパス流路12と、第2電子制御サーモスタット13とを備える。   An engine cooling device 1 shown in FIG. 1 is a device that cools an engine 2 mounted on a vehicle, and circulates cooling water cooled by a radiator 4 to a water jacket 2 a of the engine 2. The operation of the engine cooling device 1 is controlled by a water pump ECU 32 (see FIG. 3), and the main flow path 3, the radiator 4, the power pump 5, the electromagnetic clutch 6, the electric pump 7, and the radiator A bypass passage 8, a temperature sensitive valve 9, a power pump bypass passage 10, a first electronic control thermostat 11, an electric pump bypass passage 12, and a second electronic control thermostat 13 are provided.

メイン流路3は、ウォータジャケット2aから引き出され、ラジエータ4、電動ポンプ7、動力ポンプ5を経由してから再びウォータジャケット2aに引き込まれる流路であり、エンジン2を冷却するための冷却水が循環して流通する。   The main flow path 3 is a flow path that is drawn out from the water jacket 2a, is drawn into the water jacket 2a again after passing through the radiator 4, the electric pump 7, and the power pump 5, and is supplied with cooling water for cooling the engine 2. Circulate and circulate.

ラジエータ4は、メイン流路3に配置され、エンジン2を冷却したことで加熱された冷却水を冷却する。   The radiator 4 is disposed in the main flow path 3 and cools the cooling water heated by cooling the engine 2.

動力ポンプ5は、ラジエータ4の下流側で、ラジエータ4と直列にメイン流路3に配置される。この動力ポンプ5は、エンジン2の動力によって駆動される第1ポンプであり、メイン流路3内の冷却水を循環させる。   The power pump 5 is disposed in the main flow path 3 in series with the radiator 4 on the downstream side of the radiator 4. The power pump 5 is a first pump driven by the power of the engine 2 and circulates the cooling water in the main flow path 3.

電磁クラッチ6は、エンジン2から動力ポンプ5に入力される動力を断接可能な断接手段である。電磁クラッチ6が、エンジン2から動力ポンプ5に入力される動力を切り離した場合、動力ポンプ5は停止する。一方、電磁クラッチ6が、エンジン2から動力ポンプ5に入力される動力を接続した場合、動力ポンプ5は入力された動力によって駆動される。なお、電磁クラッチ6の具体的な構成は、後述する。   The electromagnetic clutch 6 is a connection / disconnection means capable of connecting / disconnecting power input from the engine 2 to the power pump 5. When the electromagnetic clutch 6 disconnects the power input from the engine 2 to the power pump 5, the power pump 5 stops. On the other hand, when the electromagnetic clutch 6 connects power input from the engine 2 to the power pump 5, the power pump 5 is driven by the input power. The specific configuration of the electromagnetic clutch 6 will be described later.

電動ポンプ7は、ラジエータ4の下流側であって動力ポンプ5の上流側で、ラジエータ4及び動力ポンプ5と直列にメイン流路3に配置される。この電動ポンプ7は、モータ7aを備えることで電力によって駆動される第2ポンプであり、メイン流路3内の冷却水を循環させる。   The electric pump 7 is disposed in the main flow path 3 in series with the radiator 4 and the power pump 5 on the downstream side of the radiator 4 and on the upstream side of the power pump 5. The electric pump 7 is a second pump that is driven by electric power by including the motor 7 a, and circulates the cooling water in the main flow path 3.

ラジエータバイパス流路8は、ラジエータ4の上流側のメイン流路3から分岐してラジエータ4の下流側のメイン流路3に合流する。このラジエータバイパス流路8は、メイン流路3を流通する冷却水を、ラジエータ4から迂回させるための流路である。   The radiator bypass flow path 8 branches from the main flow path 3 on the upstream side of the radiator 4 and merges with the main flow path 3 on the downstream side of the radiator 4. The radiator bypass flow path 8 is a flow path for diverting the cooling water flowing through the main flow path 3 from the radiator 4.

感温弁9は、ラジエータ4の上流側のメイン流路3からラジエータバイパス流路8が分岐する地点に配置される。この感温弁9は、冷却水の温度が所定の設定温度未満ではラジエータ4側のメイン流路3を遮断してラジエータバイパス流路8を開放し、冷却水の温度が所定の設定温度以上ではラジエータ4側のメイン流路3を開放してラジエータバイパス流路8を遮断する。これにより、冷却水は、暖機運転時にはラジエータ4を迂回してラジエータバイパス流路8を流通し、通常運転時にはラジエータ4を流通して冷却される。   The temperature sensing valve 9 is disposed at a point where the radiator bypass flow path 8 branches from the main flow path 3 on the upstream side of the radiator 4. The temperature sensing valve 9 shuts off the main flow path 3 on the radiator 4 side and opens the radiator bypass flow path 8 when the temperature of the cooling water is lower than a predetermined set temperature, and opens the radiator bypass flow path 8 when the temperature of the cooling water is equal to or higher than the predetermined set temperature. The main flow path 3 on the side of the radiator 4 is opened, and the radiator bypass flow path 8 is shut off. Thereby, the cooling water bypasses the radiator 4 during the warm-up operation and flows through the radiator bypass flow path 8 and is cooled through the radiator 4 during the normal operation.

動力ポンプバイパス流路10は、動力ポンプ5の上流側のメイン流路3から分岐して動力ポンプ5の下流側のメイン流路3に合流する第1バイパス流路である。この動力ポンプバイパス流路10は、メイン流路3を流通する冷却水を、動力ポンプ5から迂回させるための流路である。   The power pump bypass flow path 10 is a first bypass flow path that branches from the main flow path 3 on the upstream side of the power pump 5 and merges with the main flow path 3 on the downstream side of the power pump 5. The power pump bypass flow path 10 is a flow path for diverting the cooling water flowing through the main flow path 3 from the power pump 5.

第1電子制御サーモスタット11は、動力ポンプバイパス流路10に配置されており、開閉することで、メイン流路3から動力ポンプバイパス流路10へ流入する冷却水の流量を増減可能な第1流量制御手段である。   The first electronic control thermostat 11 is disposed in the power pump bypass flow channel 10 and is a first flow rate capable of increasing or decreasing the flow rate of cooling water flowing from the main flow channel 3 to the power pump bypass flow channel 10 by opening and closing. It is a control means.

電動ポンプバイパス流路12は、電動ポンプ7の上流側のメイン流路3から分岐して電動ポンプ7の下流側のメイン流路3に合流する第2バイパス流路である。この電動ポンプバイパス流路12は、メイン流路3を流通する冷却水を、電動ポンプ7から迂回させるための流路である。   The electric pump bypass flow path 12 is a second bypass flow path that branches from the main flow path 3 on the upstream side of the electric pump 7 and merges with the main flow path 3 on the downstream side of the electric pump 7. The electric pump bypass flow path 12 is a flow path for diverting the cooling water flowing through the main flow path 3 from the electric pump 7.

第2電子制御サーモスタット13は、電動ポンプバイパス流路12に配置されており、開閉することで、メイン流路3から電動ポンプバイパス流路12へ流入する冷却水の流量を増減可能な第2流量制御手段である。   The second electronic control thermostat 13 is disposed in the electric pump bypass flow path 12 and can be opened and closed to increase or decrease the flow rate of the cooling water flowing from the main flow path 3 to the electric pump bypass flow path 12. It is a control means.

図2(a)及び図2(b)に示すように、電磁クラッチ6は、冷却ファン(図示省略)の駆動機構20とともに、動力ポンプ5のウォータポンプハウジング5aに設けられている。   As shown in FIGS. 2A and 2B, the electromagnetic clutch 6 is provided in the water pump housing 5a of the power pump 5 together with the drive mechanism 20 of the cooling fan (not shown).

駆動機構20は、ベアリング21と、ウォータポンププーリ22と、冷却ファンアダプタ23と、冷却ファンフランジ24とを備える。   The drive mechanism 20 includes a bearing 21, a water pump pulley 22, a cooling fan adapter 23, and a cooling fan flange 24.

ベアリング21は、静止系であるウォータポンプハウジング5aに嵌め込まれ、ウォータポンププーリ22の回転中心となる。ウォータポンププーリ22は、ベアリング21を介してウォータポンプハウジング5aに回転可能に取り付けられる。このウォータポンププーリ22には、エンジン2(図1参照)のクランクシャフト(図示省略)と同期して走行する駆動ベルトが巻き掛けられる。これにより、ウォータポンププーリ22は、エンジン2のクランクシャフトと同期して回転する。   The bearing 21 is fitted into the water pump housing 5 a that is a stationary system, and serves as the rotation center of the water pump pulley 22. The water pump pulley 22 is rotatably attached to the water pump housing 5a via a bearing 21. The water pump pulley 22 is wound around a drive belt that travels in synchronization with a crankshaft (not shown) of the engine 2 (see FIG. 1). Thereby, the water pump pulley 22 rotates in synchronization with the crankshaft of the engine 2.

冷却ファンアダプタ23は、ウォータポンププーリ22に固定され、ウォータポンププーリ22と一体となって回転する。冷却ファンフランジ24は、冷却ファン(図示省略)を冷却ファンアダプタ23に固定する。この冷却ファンフランジ24は、冷却ファンアダプタ23とともに、ウォータポンププーリ22と一体となって回転する。   The cooling fan adapter 23 is fixed to the water pump pulley 22 and rotates integrally with the water pump pulley 22. The cooling fan flange 24 fixes a cooling fan (not shown) to the cooling fan adapter 23. The cooling fan flange 24 rotates together with the cooling fan adapter 23 together with the water pump pulley 22.

電磁クラッチ6は、電磁クラッチステータ6aと電磁クラッチロータ6bとを備える。電磁クラッチステータ6aは、ウォータポンププーリ22に形成された環状の空間に収容されるように、静止系であるウォータポンプハウジング5aに固定されている。この電磁クラッチステータ6aは、通電することで磁力を発生させ、電磁クラッチロータ6bをウォータポンププーリ22に引き付ける。   The electromagnetic clutch 6 includes an electromagnetic clutch stator 6a and an electromagnetic clutch rotor 6b. The electromagnetic clutch stator 6a is fixed to a water pump housing 5a which is a stationary system so as to be accommodated in an annular space formed in the water pump pulley 22. The electromagnetic clutch stator 6 a generates a magnetic force when energized, and attracts the electromagnetic clutch rotor 6 b to the water pump pulley 22.

電磁クラッチロータ6bは、鉄などの磁性体からなる回転体である。この電磁クラッチロータ6bは、動力ポンプ5のウォータポンプシャフト5bの一端に固定され、ウォータポンプシャフト5bと一体となって回転する。また、電磁クラッチロータ6bは、図示を省略するバネによって、ウォータポンププーリ22から離れる方向に常時付勢されており(図2(a)参照)、電磁クラッチステータ6aが磁力を発生させた場合に、ウォータポンププーリ22に引き付けられる(図2(b)参照)。ウォータポンププーリ22に引き付けられた電磁クラッチロータ6bは、ウォータポンププーリ22の回転によって、ウォータポンププーリ22と一体となって回転し、ウォータポンプシャフト5bを回転させる。これにより、動力ポンプ5が駆動する。   The electromagnetic clutch rotor 6b is a rotating body made of a magnetic material such as iron. The electromagnetic clutch rotor 6b is fixed to one end of the water pump shaft 5b of the power pump 5, and rotates integrally with the water pump shaft 5b. Further, the electromagnetic clutch rotor 6b is always urged away from the water pump pulley 22 by a spring (not shown) (see FIG. 2A), and when the electromagnetic clutch stator 6a generates a magnetic force. Then, it is attracted to the water pump pulley 22 (see FIG. 2B). The electromagnetic clutch rotor 6b attracted to the water pump pulley 22 rotates integrally with the water pump pulley 22 by the rotation of the water pump pulley 22, and rotates the water pump shaft 5b. Thereby, the power pump 5 is driven.

図3に示すように、エンジン冷却装置1は、エンジン回転数センサ30と、トルクセンサ31と、ウォータポンプECU(ウォータポンプElectric Control Unit)32とを備える。   As shown in FIG. 3, the engine cooling device 1 includes an engine speed sensor 30, a torque sensor 31, and a water pump ECU (Water Pump Electric Control Unit) 32.

エンジン回転数センサ30は、エンジン2の運転状態を検出する状態検出手段の一つである。このエンジン回転数センサ30は、エンジン2のクランクシャフト(図示省略)の回転数eng_spdを検出し、その検出信号をA/D変換してから演算ECU(演算Electric Control Unit)33に送信する。なお、回転数eng_spdの検出信号は、エンジン2の運転状態を表した信号の一つと言える。   The engine speed sensor 30 is one of state detection means for detecting the operating state of the engine 2. The engine speed sensor 30 detects the speed eng_spd of the crankshaft (not shown) of the engine 2, A / D converts the detected signal, and transmits it to a calculation ECU (Calculation Electric Control Unit) 33. Note that the detection signal of the rotational speed eng_spd can be said to be one of the signals representing the operating state of the engine 2.

トルクセンサ31は、エンジン2の運転状態を検出する状態検出手段の一つである。このトルクセンサ31は、エンジン2のトルクの値trq_actを検出し、その検出信号をA/D変換してから演算ECU33に送信する。なお、トルクの値trq_actの検出信号は、エンジン2の運転状態を表した信号の一つと言える。   The torque sensor 31 is one of state detection means for detecting the operating state of the engine 2. The torque sensor 31 detects a torque value trq_act of the engine 2, A / D converts the detection signal, and transmits the detected signal to the arithmetic ECU 33. It can be said that the detection signal of the torque value trq_act is one of the signals representing the operating state of the engine 2.

演算ECU33は、エンジン2の指示噴射量Qst_trgを演算する手段であり、CPU(Central Processing Unit)と記憶部とを備えている。記憶部は、ROM(Read Only Memory)やRAM(Random Access Memory)等を含む。CPUは、記憶部に格納されたプログラムを読み出して各処理を実行する。このような演算ECU33は、エンジン回転数センサ30による回転数eng_spdの検出信号やトルクセンサ31によるトルクの値trq_actの検出信号等の各種信号に基づいて、エンジン2の指示噴射量Qst_trgを演算する。そして、演算ECU33は、各種信号を、CAN(Controller Area Network:車載ネットワーク)の伝送路を介してエンジンECU(エンジンElectric Control Unit)34に送信する。   The calculation ECU 33 is a means for calculating the command injection amount Qst_trg of the engine 2 and includes a CPU (Central Processing Unit) and a storage unit. The storage unit includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The CPU reads the program stored in the storage unit and executes each process. Such a calculation ECU 33 calculates the command injection amount Qst_trg of the engine 2 based on various signals such as a detection signal of the rotation speed eng_spd by the engine rotation speed sensor 30 and a detection signal of the torque value trq_act by the torque sensor 31. Then, the arithmetic ECU 33 transmits various signals to an engine ECU (engine electric control unit) 34 via a CAN (Controller Area Network) transmission path.

エンジンECU34は、エンジン2を制御する手段であり、CPU(Central Processing Unit)と記憶部とを備えている。記憶部は、ROM(Read Only Memory)やRAM(Random Access Memory)等を含む。CPUは、記憶部に格納されたプログラムを読み出して各処理を実行する。このようなエンジンECU34は、演算ECU33から送信された各種信号を、CANの伝送路を介してウォータポンプECU32に送信する。   The engine ECU 34 is means for controlling the engine 2 and includes a CPU (Central Processing Unit) and a storage unit. The storage unit includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The CPU reads the program stored in the storage unit and executes each process. Such an engine ECU 34 transmits various signals transmitted from the arithmetic ECU 33 to the water pump ECU 32 via a CAN transmission path.

ウォータポンプECU32は、エンジン2を冷却するために、電磁クラッチ6と、電動ポンプ7と、第1電子制御サーモスタット11と、第2電子制御サーモスタット13とを制御する冷却制御手段であり、CPU(Central Processing Unit)と記憶部とを備えている。記憶部は、ROM(Read Only Memory)やRAM(Random Access Memory)等を含む。CPUは、記憶部に格納されたプログラムを読み出して各処理を実行する。具体的に、CPUは、判定部32aとして機能して各種信号の判定を行う。また、CPUは、制御部32aとして機能して、電磁クラッチ6と、電動ポンプ7と、第1電子制御サーモスタット11と、第2電子制御サーモスタット13とを制御する。   The water pump ECU 32 is a cooling control means for controlling the electromagnetic clutch 6, the electric pump 7, the first electronic control thermostat 11, and the second electronic control thermostat 13 in order to cool the engine 2. Processing Unit) and a storage unit. The storage unit includes a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The CPU reads the program stored in the storage unit and executes each process. Specifically, the CPU functions as the determination unit 32a and determines various signals. Further, the CPU functions as the control unit 32 a and controls the electromagnetic clutch 6, the electric pump 7, the first electronic control thermostat 11, and the second electronic control thermostat 13.

判定部32aは、車両のイグニッションキーがON状態のとき、指示噴射量Qst_trgがゼロを超える(Qst_trg>0)か否かを判定するエンジン始動判定を行う。そして、判定部32aは、指示噴射量Qst_trgがゼロを超える場合、エンジン2のクランクシャフトの回転数eng_spdがゼロを超える(eng_spd>0)か否かを判定する。また、判定部32aは、回転数eng_spdがゼロを超える場合、エンジン2のトルクの値trq_actがゼロを超える(trq_act>0)か否かを判定する。さらに、判定部32aは、エンジン2のトルクの値trq_actがゼロを超える場合、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係を判定する。   The determination unit 32a performs engine start determination to determine whether or not the command injection amount Qst_trg exceeds zero (Qst_trg> 0) when the ignition key of the vehicle is ON. Then, when the command injection amount Qst_trg exceeds zero, the determination unit 32a determines whether the crankshaft rotation speed eng_spd of the engine 2 exceeds zero (eng_spd> 0). Further, when the rotational speed eng_spd exceeds zero, the determination unit 32a determines whether or not the torque value trq_act of the engine 2 exceeds zero (trq_act> 0). Furthermore, when the torque value trq_act of the engine 2 exceeds zero, the determination unit 32a determines the relationship between the crankshaft rotation speed eng_spd of the engine 2 and the torque value trq_act of the engine 2.

そして、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係を判定した場合、当該関係が第1の条件C1(図5参照)を満たすか否かを判定する。また、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第1の条件C1を満たしていない場合、当該関係が第2の条件C2(図5参照)を満たすか否かを判定する。なお、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第2の条件C2を満たしていない場合、当該関係が第3の条件C3(図5参照)を満たすと判定する。   When the determination unit 32a determines the relationship between the crankshaft rotation speed eng_spd of the engine 2 and the torque value trq_act of the engine 2, whether or not the relationship satisfies the first condition C1 (see FIG. 5). Determine whether. Further, when the relationship between the rotation speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 does not satisfy the first condition C1, the determination unit 32a determines that the relationship is the second condition C2 (FIG. 5) is determined. It should be noted that if the relationship between the crankshaft speed eng_spd of the engine 2 and the torque value trq_act of the engine 2 does not satisfy the second condition C2, the determination unit 32a determines that the relationship is the third condition C3 (FIG. 5)).

制御部32bは、指示噴射量Qst_trgがゼロを超えないと判定部32aが判定した場合には、電磁クラッチ6のリレー36に対し、OFFを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを最小と指示する信号を送信する。そして、制御部32bは、エンジン2のクランクシャフトの回転数eng_spdがゼロを超えないと判定部32aが判定した場合、あるいはエンジン2のトルクの値trq_actがゼロを超えないと判定部32aが判定した場合には、指示噴射量Qst_trgがゼロを超えないと判定部32aが判定した場合と同様の信号を送信する。   When the determination unit 32a determines that the command injection amount Qst_trg does not exceed zero, the control unit 32b transmits a signal to instruct OFF to the relay 36 of the electromagnetic clutch 6 and A signal indicating that the duty of power from the battery 35 is minimum is transmitted. Then, when the determination unit 32a determines that the rotation speed eng_spd of the crankshaft of the engine 2 does not exceed zero, or the determination unit 32a determines that the torque value trq_act of the engine 2 does not exceed zero. In this case, the same signal as that when the determination unit 32a determines that the command injection amount Qst_trg does not exceed zero is transmitted.

一方、制御部32bは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係について、第1の条件C1(図5参照)を満たすと判定部32aが判定した場合には、電磁クラッチ6のリレー36に対し、OFFを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを、エンジン2のクランクシャフトの回転数eng_spdとエンジン2のトルクの値trq_actとを乗じた値(eng_spd×trq_act)に比例したものと指示する信号を送信する。さらにこの場合、制御部32bは、第1電子制御サーモスタット11のリレー37に対し、ONを指示する信号を送信するとともに、第2電子制御サーモスタット13のリレー38に対し、OFFを指示する信号を送信する。   On the other hand, when the determination unit 32a determines that the first condition C1 (see FIG. 5) is satisfied with respect to the relationship between the rotation speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 Is transmitted to the relay 36 of the electromagnetic clutch 6, and the duty of the electric power from the battery 35 is set to the electric pump 7, the rotational speed eng_spd of the crankshaft of the engine 2 and the engine 2. A signal indicating that the value is proportional to a value (eng_spd × trq_act) obtained by multiplying the torque value trq_act is transmitted. Further, in this case, the control unit 32b transmits a signal for instructing ON to the relay 37 of the first electronic control thermostat 11, and transmits a signal for instructing OFF to the relay 38 of the second electronic control thermostat 13. To do.

そして、制御部32bは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係について、第2の条件C2(図5参照)を満たすと判定部32aが判定した場合には、電磁クラッチ6のリレー36に対し、ONを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティをゼロと指示する信号を送信する。さらにこの場合、制御部32bは、第1電子制御サーモスタット11のリレー37に対し、OFFを指示する信号を送信するとともに、第2電子制御サーモスタット13のリレー38に対し、ONを指示する信号を送信する。   When the determination unit 32a determines that the second condition C2 (see FIG. 5) is satisfied with respect to the relationship between the rotation speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 In addition, a signal for instructing ON is transmitted to the relay 36 of the electromagnetic clutch 6, and a signal for instructing the duty of electric power from the battery 35 to be zero is transmitted to the electric pump 7. Further, in this case, the control unit 32b transmits a signal instructing OFF to the relay 37 of the first electronic control thermostat 11, and transmits a signal instructing ON to the relay 38 of the second electronic control thermostat 13. To do.

また、制御部32bは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係について、第3の条件C3(図5参照)を満たすと判定部32aが判定した場合には、電磁クラッチ6のリレー36に対し、ONを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを最大と指示する信号を送信する。さらにこの場合、制御部32bは、第1電子制御サーモスタット11のリレー37に対し、OFFを指示する信号を送信するとともに、第2電子制御サーモスタット13のリレー38に対し、OFFを指示する信号を送信する。   Further, when the determination unit 32a determines that the third condition C3 (see FIG. 5) is satisfied with respect to the relationship between the rotation speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 In addition, a signal for instructing ON is transmitted to the relay 36 of the electromagnetic clutch 6, and a signal for instructing the duty of power from the battery 35 to be maximum is transmitted to the electric pump 7. Further, in this case, the control unit 32b transmits a signal instructing OFF to the relay 37 of the first electronic control thermostat 11, and transmits a signal instructing OFF to the relay 38 of the second electronic control thermostat 13. To do.

すなわち、ウォータポンプECU32は、エンジン回転数センサ30が検出するエンジン2のクランクシャフトの回転数eng_spdと、トルクセンサ31が検出するエンジン2のトルクの値trq_actと、演算ECU33が演算した指示噴射量Qst_trgとに基づいて、電動ポンプ7と、電磁クラッチ6と、第1電子制御サーモスタット11と、第2電子制御サーモスタット13とを制御する。   That is, the water pump ECU 32 detects the engine 2 crankshaft rotation speed eng_spd detected by the engine rotation speed sensor 30, the engine 2 torque value trq_act detected by the torque sensor 31, and the command injection quantity Qst_trg calculated by the calculation ECU 33. Based on the above, the electric pump 7, the electromagnetic clutch 6, the first electronic control thermostat 11, and the second electronic control thermostat 13 are controlled.

具体的に、ウォータポンプECU32は、電動ポンプ7に対し、バッテリ35からの電力のデューティを指示する信号を送信する。また、ウォータポンプECU32は、バッテリ35からの電力のスイッチとなるリレー36,37,38に対し、ON−OFFを指示する信号を送信する。   Specifically, the water pump ECU 32 transmits a signal instructing the duty of the power from the battery 35 to the electric pump 7. Further, the water pump ECU 32 transmits a signal for instructing ON-OFF to the relays 36, 37, 38 serving as a switch of electric power from the battery 35.

電動ポンプ7は、ウォータポンプECU32からの信号に基づいて、バッテリ35からの電力で駆動する。   The electric pump 7 is driven by the electric power from the battery 35 based on the signal from the water pump ECU 32.

電磁クラッチ6は、ウォータポンプECU32からのONの信号に基づいてリレー36が繋がれることで、バッテリ35からの電力が供給される。電磁クラッチ6は、バッテリ35からの電力が供給されることで、エンジン2から動力ポンプ5に入力される動力を接続する(図1及び図2(b)参照)。一方、電磁クラッチ6は、ウォータポンプECU32からのOFFの信号に基づいてリレー36が切り離されることで、バッテリ35からの電力が遮断される。電磁クラッチ6は、バッテリ35からの電力が遮断されることで、エンジン2から動力ポンプ5に入力される動力を切り離す(図1及び図2(a)参照)。   The electromagnetic clutch 6 is supplied with electric power from the battery 35 when the relay 36 is connected based on an ON signal from the water pump ECU 32. The electromagnetic clutch 6 is connected to power input from the engine 2 to the power pump 5 by being supplied with electric power from the battery 35 (see FIGS. 1 and 2B). On the other hand, in the electromagnetic clutch 6, the power from the battery 35 is cut off by disconnecting the relay 36 based on the OFF signal from the water pump ECU 32. The electromagnetic clutch 6 cuts off the power input from the engine 2 to the power pump 5 by cutting off the power from the battery 35 (see FIGS. 1 and 2A).

第1電子制御サーモスタット11は、ウォータポンプECU32からのONの信号に基づいてリレー37が繋がれることで、バッテリ35からの電力が供給される。第1電子サーモスタット11は、バッテリ35からの電力が供給されることで駆動して、動力ポンプバイパス流路10(図1参照)へ冷却水が流入することを許容する。一方、第1電子制御サーモスタット11は、ウォータポンプECU32からのOFFの信号に基づいてリレー37が切り離されることで、バッテリ35からの電力が遮断される。第1電子制御サーモスタット11は、バッテリ35からの電力が遮断されることで停止して、動力ポンプバイパス流路10へ冷却水が流入することを遮断する。   The first electronic control thermostat 11 is supplied with electric power from the battery 35 when the relay 37 is connected based on an ON signal from the water pump ECU 32. The first electronic thermostat 11 is driven by being supplied with electric power from the battery 35 and allows the cooling water to flow into the power pump bypass passage 10 (see FIG. 1). On the other hand, in the first electronic control thermostat 11, the power from the battery 35 is cut off by disconnecting the relay 37 based on the OFF signal from the water pump ECU 32. The first electronic control thermostat 11 stops when the power from the battery 35 is cut off, and blocks the cooling water from flowing into the power pump bypass passage 10.

第2電子制御サーモスタット13は、ウォータポンプECU32からのONの信号に基づいてリレー38が繋がれることで、バッテリ35からの電力が供給される。第2電子サーモスタット13は、バッテリ35からの電力が供給されることで駆動して、電動ポンプバイパス流路12(図1参照)へ冷却水が流入することを許容する。一方、第2電子制御サーモスタット13は、ウォータポンプECU32からのOFFの信号に基づいてリレー38が切り離されることで、バッテリ35からの電力が遮断される。第2電子制御サーモスタット13は、バッテリ35からの電力が遮断されることで停止して、電動ポンプバイパス流路12へ冷却水が流入することを遮断する。   The second electronic control thermostat 13 is connected to the relay 38 based on the ON signal from the water pump ECU 32, so that power from the battery 35 is supplied. The second electronic thermostat 13 is driven by being supplied with electric power from the battery 35 and allows cooling water to flow into the electric pump bypass passage 12 (see FIG. 1). On the other hand, in the second electronic control thermostat 13, the relay 38 is disconnected based on the OFF signal from the water pump ECU 32, thereby cutting off the power from the battery 35. The second electronic control thermostat 13 stops when the electric power from the battery 35 is cut off, and blocks the cooling water from flowing into the electric pump bypass passage 12.

次に、ウォータポンプECU32による処理の流れを、図4及び図5を参照して説明する。本処理は、車両のイグニッションキーがON状態のとき、所定時間毎に繰り返して実行される(ステップS1)。   Next, the flow of processing by the water pump ECU 32 will be described with reference to FIGS. This process is repeatedly executed at predetermined time intervals when the ignition key of the vehicle is in the ON state (step S1).

本処理が開始されると、判定部32aは、指示噴射量Qst_trgがゼロを超える(Qst_trg>0)か否かを判定するエンジン始動判定を行う(ステップS2)。   When this process is started, the determination unit 32a performs engine start determination to determine whether or not the command injection amount Qst_trg exceeds zero (Qst_trg> 0) (step S2).

指示噴射量Qst_trgがゼロを超える場合(ステップS2:YES)には、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdがゼロを超える(eng_spd>0)か否かを判定する(ステップS3)。   When the command injection amount Qst_trg exceeds zero (step S2: YES), the determination unit 32a determines whether or not the rotational speed eng_spd of the crankshaft of the engine 2 exceeds zero (eng_spd> 0) (step S3). ).

回転数eng_spdがゼロを超える場合(ステップS3:YES)には、判定部32aは、エンジン2のトルクの値trq_actがゼロを超える(trq_act>0)か否かを判定する(ステップS4)。   When the rotational speed eng_spd exceeds zero (step S3: YES), the determination unit 32a determines whether or not the torque value trq_act of the engine 2 exceeds zero (trq_act> 0) (step S4).

エンジン2のトルクの値trq_actがゼロを超える場合(ステップS4:YES)には、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係を判定する(ステップS5)。   When the torque value trq_act of the engine 2 exceeds zero (step S4: YES), the determination unit 32a determines the relationship between the rotation speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2. (Step S5).

そして、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第1の条件C1を満たすか否かを判定する(ステップS6)。   Then, the determination unit 32a determines whether or not the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 satisfies the first condition C1 (step S6).

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第1の条件C1を満たさない場合(ステップS6:NO)には、判定部32aは、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第2の条件C2を満たすか否かを判定する(ステップS7)。   When the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 does not satisfy the first condition C1 (step S6: NO), the determination unit 32a displays the crankshaft of the engine 2 It is determined whether the relationship between the engine speed eng_spd and the torque value trq_act of the engine 2 satisfies the second condition C2 (step S7).

指示噴射量Qst_trgがゼロを超えない場合(ステップS2:NO)には、制御部32bは、電磁クラッチ6のリレー36に対し、OFFを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを最小と指示する信号を送信する(ステップS8)。これにより、エンジン冷却装置1は、動力ポンプ5が停止し、電動ポンプ7が最小の力を発生させるように駆動するフェールセーフモードで動作する。   When the command injection amount Qst_trg does not exceed zero (step S2: NO), the control unit 32b transmits a signal instructing OFF to the relay 36 of the electromagnetic clutch 6, and the battery to the electric pump 7. A signal indicating that the duty of the power from 35 is the minimum is transmitted (step S8). Thereby, the engine cooling device 1 operates in a fail-safe mode in which the power pump 5 is stopped and the electric pump 7 is driven to generate a minimum force.

回転数eng_spdがゼロを超えない場合(ステップS3:NO)には、制御部32bは、電磁クラッチ6のリレー36に対し、OFFを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを最小と指示する信号を送信する(ステップS8)。これにより、エンジン冷却装置1は、上記と同様のフェールセーフモードで動作する。   When the rotational speed eng_spd does not exceed zero (step S3: NO), the control unit 32b transmits a signal instructing OFF to the relay 36 of the electromagnetic clutch 6, and to the electric pump 7 the battery 35. A signal instructing that the duty of the power from the minimum is transmitted (step S8). Thereby, the engine cooling device 1 operates in the same failsafe mode as described above.

エンジン2のトルクの値trq_actがゼロを超えない場合(ステップS4:NO)には、制御部32bは、電磁クラッチ6のリレー36に対し、OFFを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを最小と指示する信号を送信する(ステップS8)。これにより、エンジン冷却装置1は、上記と同様のフェールセーフモードで動作する。   When the torque value trq_act of the engine 2 does not exceed zero (step S4: NO), the control unit 32b transmits a signal instructing OFF to the relay 36 of the electromagnetic clutch 6, and to the electric pump 7. On the other hand, a signal indicating that the duty of the electric power from the battery 35 is minimum is transmitted (step S8). Thereby, the engine cooling device 1 operates in the same failsafe mode as described above.

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第1の条件C1を満たす場合(ステップS6:YES)には、制御部32bは、電磁クラッチ6のリレー36に対し、OFFを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを、エンジン2のクランクシャフトの回転数eng_spdとエンジン2のトルクの値trq_actとを乗じた値(eng_spd×trq_act)に比例したものと指示する信号を送信する。さらにこの場合、制御部32bは、第1電子制御サーモスタット11のリレー37に対し、ONを指示する信号を送信するとともに、第2電子制御サーモスタット13のリレー38に対し、OFFを指示する信号を送信する(ステップS9)。これにより、エンジン冷却装置1は、動力ポンプ5が停止し、第1電子制御サーモスタット11が開き、電動ポンプ7がエンジン2の運転状態に応じて駆動し、第2電子制御サーモスタット13が閉じる。   When the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 satisfies the first condition C1 (step S6: YES), the control unit 32b performs the relay 36 of the electromagnetic clutch 6. In addition, a signal indicating OFF is transmitted to the electric pump 7 and the duty of the electric power from the battery 35 is multiplied by the crankshaft rotation speed eng_spd of the engine 2 and the torque value trq_act of the engine 2. A signal indicating that it is proportional to (eng_spd × trq_act) is transmitted. Further, in this case, the control unit 32b transmits a signal for instructing ON to the relay 37 of the first electronic control thermostat 11, and transmits a signal for instructing OFF to the relay 38 of the second electronic control thermostat 13. (Step S9). Thereby, in the engine cooling apparatus 1, the power pump 5 is stopped, the first electronic control thermostat 11 is opened, the electric pump 7 is driven according to the operating state of the engine 2, and the second electronic control thermostat 13 is closed.

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第2の条件C2を満たす場合(ステップS7:YES)には、制御部32bは、電磁クラッチ6のリレー36に対し、ONを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティをゼロと指示する信号を送信する。さらにこの場合、制御部32bは、第1電子制御サーモスタット11のリレー37に対し、OFFを指示する信号を送信するとともに、第2電子制御サーモスタット13のリレー38に対し、ONを指示する信号を送信する(ステップS10)。これにより、エンジン冷却装置1は、動力ポンプ5が駆動し、第1電子制御サーモスタット11が閉じ、電動ポンプ7が停止し、第2電子制御サーモスタット13が開く。   When the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 satisfies the second condition C2 (step S7: YES), the control unit 32b performs the relay 36 of the electromagnetic clutch 6. On the other hand, a signal instructing ON is transmitted, and a signal instructing that the duty of power from the battery 35 is zero is transmitted to the electric pump 7. Further, in this case, the control unit 32b transmits a signal instructing OFF to the relay 37 of the first electronic control thermostat 11, and transmits a signal instructing ON to the relay 38 of the second electronic control thermostat 13. (Step S10). Thereby, in the engine cooling apparatus 1, the power pump 5 is driven, the first electronic control thermostat 11 is closed, the electric pump 7 is stopped, and the second electronic control thermostat 13 is opened.

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第2の条件C2を満たさない場合(ステップS7:NO)、すなわち、当該関係が第3の条件C3を満たす場合には、制御部32bは、電磁クラッチ6のリレー36に対し、ONを指示する信号を送信するとともに、電動ポンプ7に対し、バッテリ35からの電力のデューティを最大と指示する信号を送信する。さらにこの場合、制御部32bは、第1電子制御サーモスタット11のリレー37に対し、OFFを指示する信号を送信するとともに、第2電子制御サーモスタット13のリレー38に対し、OFFを指示する信号を送信する(ステップS11)。これにより、エンジン冷却装置1は、動力ポンプ5が駆動し、第1電子制御サーモスタット11が閉じ、電動ポンプ7が最大の力を発生させるように駆動し、第2電子制御サーモスタット13が閉じる。   When the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 does not satisfy the second condition C2 (step S7: NO), that is, the relationship satisfies the third condition C3. In this case, the control unit 32b transmits a signal for instructing ON to the relay 36 of the electromagnetic clutch 6, and also transmits a signal for instructing the duty of the power from the battery 35 to the maximum to the electric pump 7. . Further, in this case, the control unit 32b transmits a signal instructing OFF to the relay 37 of the first electronic control thermostat 11, and transmits a signal instructing OFF to the relay 38 of the second electronic control thermostat 13. (Step S11). Thereby, the engine cooling apparatus 1 is driven so that the power pump 5 is driven, the first electronic control thermostat 11 is closed, the electric pump 7 is driven to generate the maximum force, and the second electronic control thermostat 13 is closed.

次に、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係を、図5を参照して説明する。   Next, the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 will be described with reference to FIG.

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第1の条件C1を満たす場合として、エンジン2のクランクシャフトの回転数eng_spdが第1の閾値N1以下、又はエンジン2のトルクの値trq_actが第1の閾値T1以下の場合が設定されている。この第1の条件C1は、電動ポンプ7のみでエンジン2を十分に冷却可能であり、電動ポンプ7のみを駆動するための条件である。   Assuming that the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 satisfies the first condition C1, the rotational speed eng_spd of the crankshaft of the engine 2 is equal to or less than the first threshold N1. The case where the torque value trq_act of the engine 2 is equal to or less than the first threshold value T1 is set. The first condition C1 is a condition for driving only the electric pump 7 so that the engine 2 can be sufficiently cooled only by the electric pump 7.

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第2の条件C2を満たす場合として、エンジン2のクランクシャフトの回転数eng_spdが第1の閾値N1を超えるとともに、エンジン2のトルクの値trq_actが第1の閾値T1を超える場合であって、更に、エンジン2のクランクシャフトの回転数eng_spdが第2の閾値N2以下、又はエンジン2のトルクの値trq_actが第2の閾値T2以下のときが設定されている。この第2の条件C2は、電動ポンプ7のみでもエンジン2を冷却可能であるが、燃費を考慮して、電動ポンプ7を停止して動力ポンプ5のみを駆動するための条件である。   Assuming that the relationship between the rotational speed eng_spd of the crankshaft of the engine 2 and the torque value trq_act of the engine 2 satisfies the second condition C2, the rotational speed eng_spd of the crankshaft of the engine 2 exceeds the first threshold value N1. Further, when the torque value trq_act of the engine 2 exceeds the first threshold value T1, the rotation speed eng_spd of the crankshaft of the engine 2 is equal to or less than the second threshold value N2, or the torque value trq_act of the engine 2 is 2 or less is set as the threshold value T2. The second condition C2 is a condition for driving only the power pump 5 with the electric pump 7 stopped in consideration of fuel efficiency, although the engine 2 can be cooled only by the electric pump 7.

エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第3の条件C3を満たす場合として、エンジン2のクランクシャフトの回転数eng_spdが第2の閾値N2を超えるとともに、エンジン2のトルクの値trq_actが第2の閾値T2を超える場合が設定されている。この第3の条件C3は、電動ポンプ7のみではエンジン2の冷却能力が不足するために、電動ポンプ7を動力ポンプ5で補完するための条件である。   Assuming that the relationship between the engine 2 crankshaft speed eng_spd and the engine 2 torque value trq_act satisfies the third condition C3, the engine 2 crankshaft speed eng_spd exceeds the second threshold value N2. The case where the torque value trq_act of the engine 2 exceeds the second threshold T2 is set. The third condition C3 is a condition for supplementing the electric pump 7 with the power pump 5 because the cooling capacity of the engine 2 is insufficient with the electric pump 7 alone.

本実施形態によれば、電磁クラッチ6の断接と第1電子制御サーモスタット11の流量制御とによって、電動ポンプ7のみを使用する動力ポンプ5の停止状態と、電動ポンプ7と動力ポンプ5とを併用する併用状態との切り替えが可能となり、電動ポンプ7を使用頻度が高い主ポンプとして機能させ、動力ポンプ5を電動ポンプ7の能力不足を補完する補助ポンプとして機能させることができる。   According to the present embodiment, the state in which the power pump 5 that uses only the electric pump 7 is stopped, and the electric pump 7 and the power pump 5 are controlled by connecting / disconnecting the electromagnetic clutch 6 and the flow control of the first electronic control thermostat 11. It is possible to switch to the combined state to be used together, the electric pump 7 can function as a main pump that is frequently used, and the power pump 5 can function as an auxiliary pump that complements the lack of capacity of the electric pump 7.

電動ポンプ7を主ポンプとして機能させることで、動力ポンプ5の使用頻度が低下する。これにより、エンジン2の負荷が減り、燃費性能が向上する。   By making the electric pump 7 function as a main pump, the frequency of use of the power pump 5 decreases. As a result, the load on the engine 2 is reduced and the fuel efficiency is improved.

そして、動力ポンプ5のみでは十分に冷却できない可能性があるエンジン2の低回転高負荷運転時において、電動ポンプ7と動力ポンプ5とを併用することによって、十分な冷却が可能となる。また、動力ポンプ5のみでは冷却できない車両停止時でも冷却できるので、冷却に対する要求が高い登坂終了後の停止時等においても冷却が可能となる。これにより、冷却性能が向上する。   When the engine 2 is operated at a low rotation and high load, which may not be sufficiently cooled only by the power pump 5, sufficient cooling is possible by using the electric pump 7 and the power pump 5 together. Further, since cooling can be performed even when the vehicle is stopped, which cannot be cooled only by the power pump 5, it is possible to perform cooling even when the vehicle is stopped after the end of climbing where the demand for cooling is high. Thereby, cooling performance improves.

さらに、電動ポンプ7を主ポンプとして機能させることで、降坂時に消費電力が増大し、エンジンブレーキの力が増大するので、安全性能が向上し、ブレーキメンテナンスのインターバルが拡大する。   Furthermore, by causing the electric pump 7 to function as a main pump, power consumption increases when the vehicle is downhill, and the engine braking force increases. Therefore, safety performance is improved, and the brake maintenance interval is extended.

そして、電動ポンプ7と動力ポンプ5の併用時には冷却水量が増大するので、冷却性能を維持したままラジエータ4を小型化できる。   Since the amount of cooling water increases when the electric pump 7 and the power pump 5 are used together, the radiator 4 can be reduced in size while maintaining the cooling performance.

また、電動ポンプ7の能力不足を動力ポンプ5によって補完するので、乗用車よりも高い冷却能力が要求される大型車両であっても、電動ポンプ7やバッテリ35を大型化することなく、乗用車と同程度の能力の電動ポンプ7によってエンジン2の冷却が可能となる。   Further, since the power pump 5 compensates for the lack of capacity of the electric pump 7, even in a large vehicle that requires a higher cooling capacity than that of a passenger car, the electric pump 7 and the battery 35 are not increased in size, and the same as that of the passenger car. The engine 2 can be cooled by the electric pump 7 having a sufficient capacity.

なお、本実施形態において、動力ポンプ5による電動ポンプ7の能力の補完と捉えた場合には、エンジン2のクランクシャフトの回転数eng_spdと、エンジン2のトルクの値trq_actとの関係が第2の条件C2を満たすときにおいても、第1の条件C1を満たすときと同様に、動力ポンプ5を停止して電動ポンプ7のみを駆動させるようにしてもよい。すなわち、エンジン2のクランクシャフトの回転数eng_spdが第2の閾値N2以下、又はエンジン2のトルクの値trq_actが第2の閾値T2以下の場合を、第1の条件C1と設定するようにしてもよい。   In the present embodiment, when it is considered that the power pump 5 complements the capability of the electric pump 7, the relationship between the crankshaft rotation speed eng_spd of the engine 2 and the torque value trq_act of the engine 2 is second. Even when the condition C2 is satisfied, the power pump 5 may be stopped and only the electric pump 7 may be driven as in the case where the first condition C1 is satisfied. That is, the first condition C1 is set when the engine speed eng_spd of the crankshaft of the engine 2 is equal to or smaller than the second threshold value N2 or the torque value trq_act of the engine 2 is equal to or smaller than the second threshold value T2. Good.

また、本実施形態において、メイン流路3に配置される動力ポンプ5と電動ポンプ7との順番は、車両に搭載するスペースの都合で決定したにすぎない。よって、本実施形態において、メイン流路3に配置される動力ポンプ5と電動ポンプ7との順番を入れ替えるようにしてよい。   Further, in the present embodiment, the order of the power pump 5 and the electric pump 7 arranged in the main flow path 3 is merely determined for the convenience of the space mounted on the vehicle. Therefore, in this embodiment, you may make it replace the order of the power pump 5 arrange | positioned in the main flow path 3, and the electric pump 7. FIG.

以上、本発明者によってなされた発明を適用した実施形態について説明したが、この実施形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the discussion and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

本発明のエンジン冷却装置は、エンジンを備える様々な車両に適用することができる。   The engine cooling device of the present invention can be applied to various vehicles including an engine.

1 エンジン冷却装置
2 エンジン
3 メイン流路
5 動力ポンプ(第1ポンプ)
6 電磁クラッチ(断接手段)
7 電動ポンプ(第2ポンプ)
10 動力ポンプバイパス流路(第1バイパス流路)
11 第1電子制御サーモスタット(第1流量制御手段)
12 電動ポンプバイパス流路(第2バイパス流路)
13 第2電子制御サーモスタット(第2流量制御手段)
30 エンジン回転数センサ(状態検出手段)
31 トルクセンサ(状態検出手段)
32 ウォータポンプECU(冷却制御手段)
DESCRIPTION OF SYMBOLS 1 Engine cooling device 2 Engine 3 Main flow path 5 Power pump (1st pump)
6 Electromagnetic clutch (connection / disconnection means)
7 Electric pump (second pump)
10 Power pump bypass channel (first bypass channel)
11 First electronic control thermostat (first flow rate control means)
12 Electric pump bypass channel (second bypass channel)
13 Second electronic control thermostat (second flow rate control means)
30 Engine speed sensor (state detection means)
31 Torque sensor (state detection means)
32 Water pump ECU (cooling control means)

Claims (2)

エンジンを冷却するための冷却水が流通するメイン流路と、
前記メイン流路に配置され、前記エンジンの動力によって駆動される第1ポンプと、
前記第1ポンプと直列に前記メイン流路に配置され、電力によって駆動される第2ポンプと、
前記エンジンから前記第1ポンプに入力される動力を断接可能な断接手段と、
前記第1ポンプの上流側の前記メイン流路から分岐して前記第1ポンプの下流側の前記メイン流路に合流する第1バイパス流路と、
前記メイン流路から前記第1バイパス流路へ流入する前記冷却水の流量を増減可能な第1流量制御手段と、
前記エンジンの運転状態を検出する状態検出手段と、
前記状態検出手段が検出する前記エンジンの運転状態に基づいて、前記第2ポンプと前記断接手段と前記第1流量制御手段とを制御する冷却制御手段とを備えた
ことを特徴とするエンジン冷却装置。
A main flow path through which cooling water for cooling the engine flows;
A first pump disposed in the main flow path and driven by power of the engine;
A second pump disposed in the main flow path in series with the first pump and driven by electric power;
Connecting / disconnecting means capable of connecting / disconnecting power input from the engine to the first pump;
A first bypass passage that branches off from the main passage on the upstream side of the first pump and merges with the main passage on the downstream side of the first pump;
First flow rate control means capable of increasing or decreasing the flow rate of the cooling water flowing from the main flow path to the first bypass flow path;
State detecting means for detecting an operating state of the engine;
Cooling control means for controlling the second pump, the connecting / disconnecting means, and the first flow rate control means based on the operating state of the engine detected by the state detecting means. apparatus.
請求項1に記載のエンジン冷却装置であって、
前記第2ポンプの上流側の前記メイン流路から分岐して前記第2ポンプの下流側の前記メイン流路に合流する第2バイパス流路と、
前記メイン流路から前記第2バイパス流路へ流入する前記冷却水の流量を増減可能な第2流量制御手段とを備え、
前記冷却制御手段は、前記状態検出手段が検出する前記エンジンの運転状態に基づいて、前記第2流量制御手段を制御する
ことを特徴とするエンジン冷却装置。
The engine cooling device according to claim 1,
A second bypass flow path branched from the main flow path on the upstream side of the second pump and joined to the main flow path on the downstream side of the second pump;
A second flow rate control means capable of increasing or decreasing the flow rate of the cooling water flowing from the main flow channel into the second bypass flow channel,
The engine cooling device, wherein the cooling control means controls the second flow rate control means based on the operating state of the engine detected by the state detection means.
JP2014218353A 2014-10-27 2014-10-27 Engine cooling system Expired - Fee Related JP6399395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218353A JP6399395B2 (en) 2014-10-27 2014-10-27 Engine cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218353A JP6399395B2 (en) 2014-10-27 2014-10-27 Engine cooling system

Publications (2)

Publication Number Publication Date
JP2016084756A true JP2016084756A (en) 2016-05-19
JP6399395B2 JP6399395B2 (en) 2018-10-03

Family

ID=55973454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218353A Expired - Fee Related JP6399395B2 (en) 2014-10-27 2014-10-27 Engine cooling system

Country Status (1)

Country Link
JP (1) JP6399395B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019160757A (en) * 2018-03-16 2019-09-19 トヨタ自動車株式会社 Fuel cell system
US10422269B2 (en) 2017-04-28 2019-09-24 Toyota Jidosha Kabushiki Kaisha Cooling device for internal combustion engine
JP2020007971A (en) * 2018-07-09 2020-01-16 株式会社豊田自動織機 Engine cooling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109028A (en) * 1990-08-27 1992-04-10 Nippondenso Co Ltd Cooling device for internal combustion engine
JPH07103405A (en) * 1993-10-07 1995-04-18 Hitachi Zosen Corp Circulating water supplying device in discharged gas economizer
JPH11303635A (en) * 1998-04-23 1999-11-02 Aisin Seiki Co Ltd Cooling device for engine
JP2004293430A (en) * 2003-03-27 2004-10-21 Mitsubishi Motors Corp Engine cooling device
JP2013130167A (en) * 2011-12-22 2013-07-04 Denso Corp Engine coolant circulation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109028A (en) * 1990-08-27 1992-04-10 Nippondenso Co Ltd Cooling device for internal combustion engine
JPH07103405A (en) * 1993-10-07 1995-04-18 Hitachi Zosen Corp Circulating water supplying device in discharged gas economizer
JPH11303635A (en) * 1998-04-23 1999-11-02 Aisin Seiki Co Ltd Cooling device for engine
JP2004293430A (en) * 2003-03-27 2004-10-21 Mitsubishi Motors Corp Engine cooling device
JP2013130167A (en) * 2011-12-22 2013-07-04 Denso Corp Engine coolant circulation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422269B2 (en) 2017-04-28 2019-09-24 Toyota Jidosha Kabushiki Kaisha Cooling device for internal combustion engine
JP2019160757A (en) * 2018-03-16 2019-09-19 トヨタ自動車株式会社 Fuel cell system
JP2020007971A (en) * 2018-07-09 2020-01-16 株式会社豊田自動織機 Engine cooling device
JP7035865B2 (en) 2018-07-09 2022-03-15 株式会社豊田自動織機 Engine cooling device

Also Published As

Publication number Publication date
JP6399395B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
EP1747364B1 (en) Motor-assisted turbo charger for an internal combustion engine
EP3050769B1 (en) Hybrid vehicle
JP5171789B2 (en) Engine stop determination device and engine stop determination method
JP2008126798A (en) Engine cooling system for vehicle
JP6399395B2 (en) Engine cooling system
EP2935821B1 (en) Cooling system for a mechanically and hydraulically powered hybrid vehicle
CN106104091B (en) The control device and control method of electric oil pump
EP3128147B1 (en) Engine cooling device
JP6037000B2 (en) Cooling water control device
JPH11350956A (en) Cooling system of vehicle
JP2000227150A (en) Power output device
KR102030880B1 (en) Fluid supply device
JP2012239344A (en) Warm-up device of electric vehicle
JP5879940B2 (en) Cooling device for internal combustion engine and cooling method for internal combustion engine
JP2011026956A (en) Diagnostic device of cooling system
JP2004293430A (en) Engine cooling device
US9868346B2 (en) Method for operating a hybrid drive system for a motor vehicle and a hybrid drive device
JP2001330141A (en) Control device for vehicle with clutch mechanism
JP2017128293A (en) Cooling system
JP2014231824A (en) Engine cooling device
JP2012197842A (en) Controller for motor-driven oil pump
JP2009293711A (en) Oil pump drive unit
JP2016084755A (en) Engine cooling device
JP2015004420A (en) Hydraulic pressure supplying system for power transmission device
JP7452123B2 (en) Cooling system control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6399395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees