JP2016081898A - 照明装置、パターン照射装置およびシステム - Google Patents

照明装置、パターン照射装置およびシステム Download PDF

Info

Publication number
JP2016081898A
JP2016081898A JP2015052453A JP2015052453A JP2016081898A JP 2016081898 A JP2016081898 A JP 2016081898A JP 2015052453 A JP2015052453 A JP 2015052453A JP 2015052453 A JP2015052453 A JP 2015052453A JP 2016081898 A JP2016081898 A JP 2016081898A
Authority
JP
Japan
Prior art keywords
light
unit
pattern irradiation
emitted
irradiation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015052453A
Other languages
English (en)
Inventor
高橋 達也
Tatsuya Takahashi
達也 高橋
藤田 和弘
Kazuhiro Fujita
和弘 藤田
村井 俊晴
Toshiharu Murai
俊晴 村井
丈裕 西森
Takehiro Nishimori
丈裕 西森
貴洋 加戸
Takahiro Kato
貴洋 加戸
潤 岸和田
Jun Kishiwada
潤 岸和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US14/879,427 priority Critical patent/US9863759B2/en
Priority to EP15189522.4A priority patent/EP3009886B1/en
Publication of JP2016081898A publication Critical patent/JP2016081898A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

【課題】高い光出力を得られるとともに、サイズおよびコストを小さくすることが可能なパターン照射装置を提供する。【解決手段】投映面30に所定のパターンの画像を照射するパターン照射装置20であって、光を出射する発光部31と、発光部から出射された光を集光する集光部32と、集光部32により集光された光を拡散させる拡散部33と、拡散部により拡散された光を入射して、輝度分布を入射された光よりも均一化して出射する均一化光学系34(ライトトンネル)と、均一化光学系から出射された光を所定の画像パターンに応じて透過する画像形成部35と、画像形成部35を透過した光を投映面30に照射する照射光学系36と、を備える。【選択図】図2

Description

本発明は、照明装置、パターン照射装置およびシステムに関する。
従来より、トレイに積載された対象物(ワーク)をロボットを用いてハンドリングして、対象物を次工程の装置へと搬送したり、対象物を用いて製品を組み立てたりするシステムが知られている。このようなシステムでは、三次元測定装置によりトレイ上の対象物の距離を測定し、測定結果に基づき対象物の位置および姿勢を認識してハンドリングをする。また、このようなシステムでは、パターン照射装置によりトレイ上の対象物に所定のパターンの光を照射して、三次元測定装置による距離測定の精度を向上させる(例えば、特許文献1、2)。パターン照射装置は、例えば、DMD(Digital Mirror Device)または液晶パネル等を用いた投射装置(プロジェクタ)と同様の構成で実現することができる。
ところで、DMDまたは液晶パネルを用いたプロジェクタの光学系は、リレー光学系および各色を合成するための光学系を備えるので、部品点数が多い。従って、このようなプロジェクタと同様の構成のパターン照射装置は、サイズが大きく、コストも高かった。
本発明は、上記に鑑みてなされたものであって、高い光出力を得られるとともに、サイズおよびコストを小さくすることができる照明装置、パターン照射装置およびシステムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る照明装置は、光を出射する発光部と、前記発光部から出射された光を集光する集光部と、前記集光部により集光された光を拡散させる拡散部と、前記拡散部により拡散された光を入射して、輝度分布を入射された光よりも均一化して出射する均一化光学系と、を備える。
本発明によれば、高い光出力を得られるとともに、サイズおよびコストを小さくすることができる。
図1は、第1実施形態に係るハンドリングシステムを示す図である。 図2は、第1実施形態に係るパターン照射装置の構成を示す図である。 図3は、ライトトンネルでの光路の一例を示す図である。 図4は、第1実施形態に係るパターン照射装置の一部分の斜視図である。 図5は、第2実施形態に係るパターン照射装置の構成を示す図である。 図6は、反射拡散板での光路の一例を示す図である。 図7は、反射拡散板が脱落した場合の光路の一例を示す図である。 図8は、第3実施形態に係るパターン照射装置の構成を示す図である。 図9は、テーパライトトンネルでの光路の一例を示す図である。 図10は、第4実施形態に係るパターン照射装置の構成を示す図である。 図11は、第4実施形態に係る第1のミラー群およびレンズ等の配置の一例を示す図である。 図12の(a)は、単板ミラーを用いた場合の光路を示す図であり、図12の(b)は、第1のミラー群を用いた場合の光路を示す図である。 図13は、第5実施形態に係るパターン照射装置の構成を示す図である。 図14は、第5実施形態に係る第2のミラー群およびシリンドリカルレンズ等の配置の一例を示す図である。 図15は、第6実施形態に係るパターン照射装置の構成を示す図である。 図16は、第6実施形態に係る第3のミラー群等の配置の一例を示す図である。 図17は、第7実施形態に係るパターン照射装置の構成を示す図である。 図18は、第8実施形態に係るパターン照射装置の構成を示す図である。 図19は、可動蛍光部および第1の駆動部の一例を示す図である。 図20は、第9実施形態に係るパターン照射装置の構成を示す図である。 図21は、反射蛍光部を側面側から見た図である。 図22は、第10実施形態に係るパターン照射装置の構成を示す図である。 図23は、第11実施形態に係るパターン照射装置の構成を示す図である。
以下に添付図面を参照して、本発明の実施形態に係るハンドリングシステム10を詳細に説明する。
(第1実施形態)
図1は、第1実施形態に係るハンドリングシステム10を示す図である。ハンドリングシステム10は、対象物11(ワーク)をハンドリングし、対象物11を次工程の装置へと搬送したり、対象物11を用いて製品を組み立てたりする。
ハンドリングシステム10は、トレイ12と、ロボット13と、パターン照射装置20と、三次元測定装置21と、認識装置22と、ロボットコントローラ23とを備える。トレイ12は、少なくとも1つの対象物11を積載する。
ロボット13は、トレイ12に積載された何れかの対象物11をアームを移動させてハンドリングし、ハンドリングした対象物11を指定された位置に移動させたり、指定された姿勢で保持したりする。ロボット13は、爪を開閉して対象物11を挟んでハンドリングしてもよいし、エアー吸着により対象物11をハンドリングしてもよいし、電磁力で対象物11をハンドリングしてもよい。
パターン照射装置20は、対象物11が積載されたトレイ12に対して、単色の所定の画像パターンの光を照射する。これにより、トレイ12に積載されたそれぞれの対象物11の表面における露出した部分には、所定の画像パターンが照射される。本実施形態においては、パターン照射装置20は、青色の画像パターンの光を照射するが、青に限らずどのような色であってもよく、また、白色であってもよい。
三次元測定装置21は、パターン照射装置20により所定の画像パターンの光が照射された状態において、トレイ12に積載されたそれぞれの対象物11の露出した表面の各位置までの距離を測定する。三次元測定装置21は、一例として、ステレオカメラ等により距離を測定して、画像内の各位置までの距離を表す三次元情報を生成する。
認識装置22は、三次元測定装置21により測定されたそれぞれの対象物11の表面の各位置までの距離に基づき、それぞれの対象物11の位置および姿勢を認識する。認識装置22は、一例として、3次元モデルとのマッチング処理またはサーフェースマッチング処理等のマッチング処理を実行して、それぞれの対象物11の位置および姿勢を認識する。さらに、認識装置22は、輝度情報に基づきエッジ抽出等を行ってマッチング処理の補完をしてもよい。
ロボットコントローラ23は、予め登録されている制御フローに従って、認識装置22により認識されたそれぞれの対象物11の位置および姿勢に基づきロボット13の動作を制御する。そして、ロボットコントローラ23は、トレイ12上の指定された対象物11をハンドリングさせる。
このようなハンドリングシステム10において、パターン照射装置20は、三次元測定装置21による三次元測定の精度を向上させるような画像パターンの光を、トレイ12上に積載されたそれぞれの対象物11に照射する。これにより、ハンドリングシステム10によれば、トレイ12に積載されたそれぞれの対象物11の位置および姿勢を精度良く認識し、精度良く対象物11をハンドリングすることができる。
図2は、第1実施形態に係るパターン照射装置20の構成を示す図である。パターン照射装置20は、投影面30に、三次元測定装置21による距離の測定精度を向上させるような画像パターンの光を照射する。投影面30は、ハンドリングシステム10における対象物11が積載されるトレイ12に対応する。
パターン照射装置20は、発光部31と、集光部32と、透過拡散板33と、ライトトンネル34と、画像形成部35と、照射光学系36とを備える。
なお、図中において、x、y、zは、互いに直交する方向を示す。x方向は、ライトトンネル34の光軸に平行な方向を表す。y方向は、x方向に直交する方向を表す。z方向は、x方向およびy方向に直交する方向を表す。
発光部31は、光を出射する。本実施形態において、発光部31は、複数本の平行光束のレーザ光を同一方向に出射する。
発光部31は、光源である複数のレーザダイオード41と、複数のコリメータレンズ42とを有する。複数のレーザダイオード41は、互いに同一方向に、コヒーレント光であるレーザ光を出射する。本実施形態において、それぞれのレーザダイオード41は、例えば440nm以上500nm以下の波長の青色のレーザ光を発光する青色レーザダイオードである。なお、それぞれのレーザダイオード41は、青色に限らず、他の色であってもよい。また、三次元測定装置21が照射した光を検出できれば、レーザダイオード41は、可視光以外のレーザ光を出射してもよい。
複数のコリメータレンズ42は、複数のレーザダイオード41のそれぞれに一対一に対応して設けられる。それぞれのコリメータレンズ42は、対応するレーザダイオード41から出射されたレーザ光を入射して、平行光束として出射する。これにより、発光部31は、同一方向に複数本の平行光束のレーザ光を出射することができる。
集光部32は、発光部31から出射された光を透過拡散板33上に集光する。本実施形態においては、集光部32は、レンズであり、複数本のレーザ光を透過拡散板33上の略一点に集光する。
透過拡散板33は、入射した光を拡散させる拡散部である。透過拡散板33は、全体が平板状であって、少なくとも一方の平面に微細でランダムな凹凸等が形成されている。透過拡散板33は、集光部32により集光された複数本のレーザ光を入射し、入射した光を透過して拡散させながらライトトンネル34へと出射する。透過拡散板33は、一例として、半値全幅の5°以上10°以下の拡散角で光を拡散させる。
ライトトンネル34は、通過する光の光軸方向(x方向)に垂直な面(y方向およびz方向)の輝度分布を入射された光よりも均一化する均一化光学系である。ライトトンネル34は、透過拡散板33により拡散された光を入射し、入射した光を通過させて、輝度分布を入射された光よりも均一化して出射する。
画像形成部35は、ライトトンネル34から出射された光を所定の画像パターンに応じて透過および遮断(または反射)して、光軸に垂直な面に所定の画像パターンの像を形成する。画像形成部35を透過した光は、照射光学系36へと入射される。所定の画像パターンは、対象物11に照射した場合に距離測定の精度を向上させる2次元の模様である。
画像形成部35は、一例として、ガラス等の透明な板に所定の画像パターンが描かれた長方形の板状のフォトマスクである。また、画像形成部35は、電気信号により透過する画像パターンを形成することができる板状の透過型液晶素子であってもよい。この場合、画像形成部35は、外部の情報処理装置から取り込んだ画像データに応じて画像パターンを形成することができる。
照射光学系36は、画像形成部35を透過した光を、指定された倍率に拡大して投影面30に照射する。
図3は、ライトトンネル34での光路の一例を示す図である。ライトトンネル34は、図3に示されるように、筒状であって、筒の内部には内側へと光を反射する反射側面43が形成されている。そして、ライトトンネル34は、筒の内部が、光を通過させる光路44として機能する。光路44は、光を通過させることができれば、中空であってもよいし、ガラス等の透明な部材で充填されていてもよい。
透過拡散板33により拡散された光は、入力口45から光路44内に入射される。入射された光は、反射側面43を反射しながら光路44を通過する。そして、光路44を通過した光は、出力口46から外部へと出射される。このような、ライトトンネル34は、入射された光が反射側面43を反射しながら光路44の内部を通過するので、出射する光の輝度分布を入射された光よりも均一化することができる。
また、ライトトンネル34の反射側面43は、光軸に対して平行に設けられている。このため、ライトトンネル34に入射される光の角度θaと、ライトトンネル34から出射される光の角度θbとは同一となる。従って、ライトトンネル34は、透過拡散板33と同一の拡散角の光を出射することができる。
また、本実施形態においては、ライトトンネル34の光軸方向(x方向)に垂直な面の形状は、長方形である。ライトトンネル34の光軸に垂直な面の形状は、画像形成部35と略同一のアスペクト比であることが好ましい。
また、ライトトンネル34の出力口46は、少なくとも後段の画像形成部35の全面に光が照射できる大きさであればよい。もっとも、出力口46は、後段の画像形成部35よりも大きい場合には、出射された光が画像形成部35の外部に漏れて無駄になるので、組み付け精度等を考慮して画像形成部35と略同一程度にするのが好ましい。
また、ライトトンネル34は、光軸方向が長いほど、光路44内での光の反射回数が増えて輝度分布をより均一化することができるが、損失も大きくなる。従って、ライトトンネル34の光軸方向の長さは、目的の均一化度が得られる最小の長さであることが好ましい。
なお、ライトトンネル34は、ホモジナイザまたはライトパイプと呼ばれる場合もある。また、パターン照射装置20は、均一化光学系であれば、ライトトンネル34に代えて他の部材を備えてもよい。例えば、パターン照射装置20は、ライトトンネル34に代えてフライアイを備えてもよい。
図4は、第1実施形態に係るパターン照射装置20の一部分の斜視図である。発光部31は、一例として、2×4のマトリクス状に配列された8個のレーザダイオード41を有する。さらに、発光部31は、それぞれのレーザダイオード41に対応して設けられた8個のコリメータレンズ42を有する。このような発光部31は、同一方向に8本の平行光束を出射することができる。
このように、発光部31は、複数個のレーザダイオード41を有するので、出力する光のエネルギーを大きくすることができる。なお、発光部31が有するレーザダイオード41の個数および配置は、同一方向にレーザ光を出射できれば、どのような個数および配置であってもよい。
また、透過拡散板33は、リレー光学系等を介さずに、ライトトンネル34の直前に配置されている。これにより、パターン照射装置20は、透過拡散板33とライトトンネル34の間の光学的な距離を短くして、拡散した光がライトトンネル34の外部へと漏れてしまうことを防止することができる。従って、パターン照射装置20は、光の伝達の効率を高め、出力するエネルギーを大きくすることができる。
また、集光部32は、発光部31から出射された複数本のレーザ光を透過拡散板33上に集光する。従って、発光部31が有するレーザダイオード41の個数を増加させても、レーザダイオード41から出射された光をライトトンネル34内に漏れなく入射させることができる。従って、パターン照射装置20は、出力するエネルギーを容易に大きくすることができる。
また、レーザ光は直進性が高い。従って、もし、コリメータレンズ42から出射されたレーザ光を直接入射した場合、ライトトンネル34は、輝度分布を効率良く均一化させることは困難である。しかし、本実施形態において、ライトトンネル34は、透過拡散板33により拡散されたレーザ光を入射するので、輝度分布を効率良く均一化することができる。従って、パターン照射装置20は、ライトトンネル34の光軸方向の長さを短くして装置の小型化を図ることができる。
また、画像形成部35は、リレー光学系等を介さずに、ライトトンネル34の直後に配置されている。これにより、パターン照射装置20は、ライトトンネル34と画像形成部35との光学的な距離を短くして、ライトトンネル34から出射された拡散された光が外部へと漏れてしまうことを防止することができる。従って、パターン照射装置20は、光の伝達の効率を高め、出力するエネルギーを大きくすることができる。
また、本実施形態においては、レーザダイオード41は、青色のレーザ光を発光する。これにより、パターン照射装置20は、より精度良く距離測定をさせることができるとともに、作業者に良好な作業環境を提供することができる。この理由は、以下の通りである。
例えば、オスラム株式会社のプロジェクタ用の光源P1Wが知られている(http://www.osram.jp/osram_jp/press/press-releases/_trade_press/2013/osram-led-power-packs-for-projectors/)。この光源P1Wは、青色が500lm、赤色が1250lm、緑色が4150lmの明るさで発光する。lmは、光束の単位であり、視感度を考慮した明るさである。視感度を考慮しない光の放射束(単位W)は、光束(lm)=683×放射束(W)×Y刺激値により算出される。各色の代表的なスペクトルから換算係数lm/Wを算出した場合、青色が40lm/W、赤色が200lm/W、緑色が480lm/Wとなる。よって、放射束は、光束と換算係数より、青色が12.5W、赤色が6.3W、緑色が8.6Wとなる。つまり、放射束は、青色が最も高い。
距離測定のための画像パターンを照射するパターン照射装置20では、人の目の感度、つまり視感度の考慮された光束量ではなく、純粋な光の出力である放射束が高い光源を備えることが好ましい。青色レーザダイオードは、上述のように販売されている光源のうち、高い放射束が得られる。従って、レーザダイオード41が青色のレーザ光を出射するので、パターン照射装置20は、対象物11を高いエネルギーで照明でき、対象物11が黒色等であっても精度良く距離測定をさせることができる。
一方、青色は、光束が低く、人の目には眩しくない。従って、レーザダイオード41が青色のレーザ光を出射するので、パターン照射装置20は、作業者が対象物11を目視しやすく、良好な作業環境を提供することができる。また、青色は、可視光である。従って、レーザダイオード41が青色のレーザ光を出射するので、パターン照射装置20は、作業者に照明エリアを目視させることができ、作業者が照明エリアを調整しやすい環境を提供することができる。
以上のように、本実施形態に係るパターン照射装置20によれば、高い光出力を得られるとともに、サイズおよびコストを小さくすることができる。さらに、パターン照射装置20は、作業者に良好な作業環境を提供することができる。
(第2実施形態)
つぎに、第2実施形態に係るパターン照射装置50について説明する。第2実施形態に係るパターン照射装置50は、第1実施形態に係るパターン照射装置20に代えて、ハンドリングシステム10に適用される。なお、第3実施形態以降も同様である。
また、第2実施形態に係るパターン照射装置50は、第1実施形態に係るパターン照射装置20と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図5は、第2実施形態に係るパターン照射装置50の構成を示す図である。パターン照射装置50は、発光部31と、集光部32と、反射拡散板51と、ライトトンネル34と、画像形成部35と、照射光学系36とを備える。パターン照射装置50は、拡散部として、透過拡散板33に代えて反射拡散板51を備える点で、第1実施形態と異なる。
集光部32は、発光部31から出射された光を反射拡散板51上に集光する。本実施形態においては、集光部32は、複数本のレーザ光を反射拡散板51上の略一点に集光する。
反射拡散板51は、入射した光を拡散させる拡散部である。反射拡散板51は、集光部32により集光された複数本のレーザ光を入射して、入射した光を反射して拡散させながらライトトンネル34へと出射する。反射拡散板51は、光を反射して拡散させる点において、透過拡散板33と異なるが、他の機能および効果について透過拡散板33と同一である。
ライトトンネル34は、反射拡散板51により拡散された光を入射し、輝度分布を入射された光よりも均一化して出射する。
図6は、反射拡散板51での光路の一例を示す図である。反射拡散板51は、全体が略平板状であって、集光部32側に形成された透過拡散面52と、集光部32とは反対側に形成された反射面53とを含む。
透過拡散面52は、微細でランダムな凹凸が形成されている。透過拡散面52は、光を透過させるとともに、透過する光を拡散させる。透過拡散面52の表面には、反射防止膜が形成されていてもよい。これにより、透過拡散面52は、透過率を高くすることができる。
反射面53は、集光部32から入射して透過拡散面52を透過した光を反射する。反射面53は、一例として、平面であり、光を拡散させない。反射面53は、誘電体多層膜または金属膜等の反射コーティング膜が表面に形成されていてもよい。これにより、反射面53は、反射率を高くすることができる。反射面53を反射した光は、再度、透過拡散面52を透過して、ライトトンネル34へと入射される。
このような反射拡散板51に対して、図6に示されるように、集光部32から光束aが入射されたとする。この場合、光束aは、透過拡散面52の表面側から入射する。そして、光束aは、透過拡散面52において透過および拡散して、拡散光束a1、a2となる。ここでは、拡散光束a1、a2のみを示しているが、光束aの拡散光束は多数存在する。
続いて、拡散光束a1、a2は、反射面53において反射され、再度、透過拡散面52に裏面側から入射する。そして、拡散光束a1、a2は、透過拡散面52においてそれぞれ透過および拡散して、拡散光束a11、a12、a21、a22となる。ここでは、拡散光束a11、a12、a21、a22のみを示しているが、光束a1、a2の拡散光束は多数存在する。
このように、このような構成の反射拡散板51は、光を透過拡散面52で2回拡散させることができる。これにより、反射拡散板51は、拡散効果を高めて、より輝度分布が均一な光を出射させることができる。従って、本実施形態に係るパターン照射装置50によれば、より輝度分布が均一な画像パターンを対象物11に照射することができる。
なお、本実施形態においては、反射拡散板51の集光部32側の面を透過拡散面52としているが、これに代えて、反射拡散板51の集光部32側の面を拡散および反射をする反射拡散面としてもよい。
以上のように、本実施形態に係るパターン照射装置50によれば、反射拡散板51を備えるので、より均一化した光を出力することができる。
図7は、反射拡散板51が脱落した場合の光路の一例を示す図である。本実施形態に係るパターン照射装置50において、故障等により反射拡散板51が脱落または破損等をして、レーザ光が反射拡散板51で反射されなかったとする。この場合、図7に示されるように、発光部31から出射されたレーザ光は、ライトトンネル34に入射されない。従って、この場合、パターン照射装置50は、投影面30に何ら光を照射しない。
このため、パターン照射装置50は、反射拡散板51が脱落または破損等をした場合において、レーザ光が拡散されずに直接外部へと出射されない。これにより、パターン照射装置50は、拡散部が脱落または破損したときのレーザ光の出射防止機構を簡単な構成で実現することができる。
(第3実施形態)
つぎに、第3実施形態に係るパターン照射装置60について説明する。第3実施形態に係るパターン照射装置60は、第2実施形態に係るパターン照射装置50と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図8は、第3実施形態に係るパターン照射装置60の構成を示す図である。パターン照射装置60は、発光部31と、集光部32と、反射拡散板51と、テーパライトトンネル61と、画像形成部35と、照射光学系36とを備える。パターン照射装置60は、均一化光学系として、ライトトンネル34に代えてテーパライトトンネル61を備える点で、第2実施形態と異なる。
テーパライトトンネル61は、反射拡散板51により拡散された光を入射して、輝度分布を入射された光よりも均一化して出射する。テーパライトトンネル61は、形状は異なるが、ライトトンネル34と略同一の構成および機能を有する。
図9は、テーパライトトンネル61での光路の一例を示す図である。テーパライトトンネル61は、図9に示されるように、入力口64より出力口65が大きく、反射側面62が光路63の光軸に対して傾けて形成されている点において、ライトトンネル34と異なる。また、テーパライトトンネル61は、光路63における光軸に垂直方向の面の形状(入力口64および出力口65の形状を含む)は、画像形成部35と略同一のアスペクト比の長方形である。
このようなテーパライトトンネル61は、ライトトンネル34と同様に、入射された光が反射側面62を反射しながら光路63の内部を通過するので、出射する光の輝度分布を入射された光よりも均一化することができる。
ここで、テーパライトトンネル61におけるz方向に垂直な反射側面62は、光軸に対して角度θtでz方向に傾いている。従って、テーパライトトンネル61は、入射される光の角度θcより、出射される光の角度θdの方を小さくすることができる。テーパライトトンネル61は、後段の画像形成部35への光の角度(拡散角)を小さくすることができる。
これにより、パターン照射装置60は、テーパライトトンネル61を備えることで、画像形成部35を通過した後の照射光学系36への光線入射角を小さく、つまり、NAを小さくできる。このため、パターン照射装置60は、照射光学系36への光の取り込み効率を上げて高い光出力を得ることができる。
なお、テーパライトトンネル61は、反射側面62の傾きの角度θtを大きくするほど、出射される光の角度θdを小さくすることができる。傾きの角度θtを大きくするには、入力口64を小さくするか、または、出力口65を大きくすればよい。しかしながら、入力口64を小さくすると、反射拡散板51で反射した光を効率良く取り込むことが困難になり、出力口65を大きくすると画像形成部35より外側を照明する光が無駄となる。従って、傾きの角度θt、入力口64のサイズおよび出力口65のサイズは、これらを考慮しながら適切に設定することが好ましい。
また、テーパライトトンネル61は、入力口64および出力口65のサイズを固定した状態において光軸方向を長くすると、反射回数は増えて輝度分布をより均一化することができる。しかし、テーパライトトンネル61は、光軸方向を長くすると、反射回数増加により効率が低下し、さらに、傾きの角度θtが小さくなり照射光学系36での取り込み効率が低下する。従って、テーパライトトンネル61の光軸方向の長さは、これらを考慮しながら適切に設定することが好ましい。
以上のように、本実施形態に係るパターン照射装置60によれば、テーパライトトンネル61を備えるので、高出力化を図ることができる。
(第4実施形態)
つぎに、第4実施形態に係るパターン照射装置70について説明する。第4実施形態に係るパターン照射装置70は、第3実施形態に係るパターン照射装置60と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図10は、第4実施形態に係るパターン照射装置70の構成を示す図である。パターン照射装置70は、発光部31と、集光部32と、反射拡散板51と、テーパライトトンネル61、画像形成部35と、プリズム71と、照射光学系36とを備える。集光部32は、第1のミラー群72と、レンズ73とを有する。
パターン照射装置70は、プリズム71をさらに備える点で、第3実施形態と異なる。また、パターン照射装置70は、集光部32が第1のミラー群72とレンズ73とを有する点で、第3実施形態と異なる。
第1のミラー群72は、発光部31から同一方向に出射された複数本の平行光束を反射してレンズ73へと導く。第1のミラー群72は、複数のミラー74を有する。それぞれのミラー74は、レーザダイオード41から出射されてコリメータレンズ42により平行光束とされたレーザ光を、レンズ73の方向に反射する。複数のミラー74は、複数本の平行光束を同一方向に、すなわち、複数本の平行光束を平行に反射する。
レンズ73は、平行に入射された複数の平行光束を反射拡散板51上の略一点に集光する。
プリズム71は、画像形成部35と、照射光学系36との間に挿入される。本実施形態において、照射光学系36は、入射光の光軸がテーパライトトンネル61の光軸に対して直交するように配置されている。プリズム71は、画像形成部35から出射された光を反射して、照射光学系36へと入射させる。パターン照射装置70は、このようなプリズム71を備えることにより、小さなスペース内に各構成要素を配置することができる。パターン照射装置70は、プリズム71に代えて、ミラーを備えてもよい。
なお、テーパライトトンネル61と画像形成部35との間にプリズム71を挿入した場合、テーパライトトンネル61から画像形成部35との間の距離が長くなるので、光の損失が大きくなる。レンズ等を用いて集光したとしても部品点数が多くなってしまう。従って、第4実施形態に係るパターン照射装置70によれば、画像形成部35と照射光学系36との間にプリズム71を備えるので、効率を低下させずに配置をコンパクトにすることができる。
図11は、第4実施形態に係る第1のミラー群72およびレンズ73等の配置の一例を示す図である。本実施形態において、発光部31は、2×4のマトリクス状に配列された8個のレーザダイオード41および8個のコリメータレンズ42を有する。
また、本実施形態において、第1のミラー群72は、4個のミラー74を有する。4個のミラー74のそれぞれは、y方向に並んだ2個のレーザダイオード41および2個のコリメータレンズ42に対応して配置される。それぞれのミラー74は、対応する2個のコリメータレンズ42から出射される2本の平行光束を反射する。
なお、第1のミラー群72は、8個のミラー74を有する構成であってもよい。この場合、それぞれのミラー74が、何れか1個のコリメータレンズ42から出射された平行光束を反射する。
図12の(a)は、単板ミラー75を用いた場合の光路を示す図であり、図12の(b)は、第1のミラー群72を用いた場合の光路を示す図である。
パターン照射装置70が第1のミラー群72に代えて、図12の(a)に示すような単板ミラー75を備えていたとする。単板ミラー75は、発光部31から出射された複数本の平行光束に対して45°に傾けて配置されている。従って、単板ミラー75は、発光部31から出射された平行光束を90°曲げることができる。
ここで、発光部31から出射された複数本の平行光束により形成される光束幅をL1とする。単板ミラー75からレンズ73へと入射される複数本の平行光束により形成される光束幅をL2とする。L1とL2とは、同一の長さとなる。
これに対して、図12の(b)に示すように、第1のミラー群72を構成するそれぞれのミラー74も、発光部31から出射された複数本の平行光束に対して45°に傾けて配置されている。従って、それぞれのミラー74は、発光部31から出射された平行光束を90°曲げることができる。
そして、複数のミラー74は、発光部31から同一方向に出射された複数本の平行光束により形成される光束幅を狭くするように、発光部31から出射された複数の光のそれぞれを反射してレンズ73へと導く。従って、複数のミラー74からレンズ73へと入射される複数本の平行光束により形成される光束幅をL3とした場合、L3は、L1よりも短くなる。
このように第1のミラー群72は、レンズ73へと入射する光の光束幅を狭くしている。これにより、パターン照射装置70は、レンズ73のサイズを小さくすることができる。さらに、レンズ73へと入射する光の光束幅が狭いので、パターン照射装置70は、反射拡散板51上に集光される光の入射角を小さくし、これに伴いテーパライトトンネル61から出射する光束の拡散角も小さくすることができる。これにより、パターン照射装置70は、照射光学系36のNAを小さくし、照射光学系36への光の取り込み効率を上げることができる。
以上のように、本実施形態に係るパターン照射装置70によれば、プリズム71および第1のミラー群72により光軸を曲げるので配置をコンパクトにすることができ、さらに、光束幅を狭くすることにより高出力化を図ることができる。
(第5実施形態)
つぎに、第5実施形態に係るパターン照射装置80について説明する。第5実施形態に係るパターン照射装置80は、第4実施形態に係るパターン照射装置70と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図13は、第5実施形態に係るパターン照射装置80の構成を示す図である。第5実施形態に係る集光部32は、第2のミラー群81と、シリンドリカルレンズ82とを有する。パターン照射装置80は、集光部32が第2のミラー群81とシリンドリカルレンズ82とを有する点で、第4実施形態と異なる。
第2のミラー群81は、発光部31から同一方向に出射された複数本の平行光束を反射して、反射拡散板51へと導く。第2のミラー群81は、複数のミラー83を有する。それぞれのミラー83は、レーザダイオード41から出射されてコリメータレンズ42に平行光束とされたレーザ光を、反射拡散板51の方向に反射する。
この場合において、複数のミラー83は、反射角によって、複数本の平行光束を光軸に直交する第1方向に集光する。本実施形態においては、複数のミラー83は、複数本の平行光束のx方向の成分が反射拡散板51上で略一点に照射されるように、反射角が設定されている。従って、第2のミラー群81を構成するそれぞれのミラー83は、第1方向の反射角が互いに異なっている。
シリンドリカルレンズ82は、第2のミラー群81と反射拡散板51との間に設けられる。シリンドリカルレンズ82は、第2のミラー群81から反射拡散板51へと向かう複数本の平行光束を、光軸に直交する方向であって且つ第1方向と直交する第2方向に集光する。
図14は、第5実施形態に係る第2のミラー群81およびシリンドリカルレンズ82等の配置の一例を示す図である。本実施形態において、発光部31は、2×4のマトリクス状に配列された8個のレーザダイオード41および8個のコリメータレンズ42を有する。
また、本実施形態において、第2のミラー群81は、4個のミラー83を有する。4個のミラー83のそれぞれは、y方向に並んだ2個のレーザダイオード41および2個のコリメータレンズ42に対応して配置される。それぞれのミラー83は、対応する2個のコリメータレンズ42から出射される2本の平行光束を反射する。
なお、第2のミラー群81は、8個のミラー83を有する構成であってもよい。この場合、それぞれのミラー83が、何れか1個のコリメータレンズ42から出射された平行光束を反射する。
そして、シリンドリカルレンズ82は、第2のミラー群81から反射拡散板51へと向かう複数本の平行光束を、光軸に直交する方向であって且つ第1方向と直交する第2方向に集光する。本実施形態において、シリンドリカルレンズ82は、複数本の平行光束のy方向の成分が、反射拡散板51上で略一点に照射されるように集光する。
このようにパターン照射装置80は、第1方向(例えばx方向)には、ミラー83の反射角によって集光するので、レンズによる集光作用を用いていない。従って、パターン照射装置80では、シリンドリカルレンズ82に入射する光束幅が比較的に狭くなり、シリンドリカルレンズ82のレンズ径を小さくすることができる。さらに、パターン照射装置80は、シリンドリカルレンズ82のレンズ径を小さくすることができるので、製造可能なコバ厚を確保しながらシリンドリカルレンズ82の曲率半径を小さくすることができる。このため、パターン照射装置80は、シリンドリカルレンズ82から反射拡散板51までの距離を短くすることができ、この結果、装置構成を小さくすることができる。
なお、パターン照射装置80は、シリンドリカルレンズ82に代えて、第1方向(例えばx方向)と第2方向(例えばy方向)とで曲率半径が異なるトロイダルレンズを有してもよい。この場合、第2のミラー群81は、トロイダルレンズの第1方向の集光作用と併せて、複数本の平行光束の第1方向の成分が反射拡散板51上で略一点に照射されるように、反射角が設定される。
(第6実施形態)
つぎに、第6実施形態に係るパターン照射装置90について説明する。第6実施形態に係るパターン照射装置90は、第4実施形態に係るパターン照射装置70と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図15は、第6実施形態に係るパターン照射装置90の構成を示す図である。第6実施形態に係る集光部32は、第3のミラー群91を有する。パターン照射装置90は、集光部32が第3のミラー群91を有する点で、第4実施形態と異なる。
第3のミラー群91は、発光部31から同一方向に出射された複数本の平行光束を反射して、反射拡散板51へと導く。第3のミラー群91は、複数のミラー93を有する。それぞれのミラー93は、レーザダイオード41から出射されてコリメータレンズ42に平行光束とされたレーザ光を、反射拡散板51の方向に反射する。
この場合において、複数のミラー93は、反射角によって、複数本の平行光束のそれぞれを集光する。本実施形態においては、複数のミラー93は、複数本の平行光束が反射拡散板51上で略一点に照射されるように、反射角が設定されている。従って、第3のミラー群91を構成するそれぞれのミラー93は、反射角が互いに異なっている。
図16は、第6実施形態に係る第3のミラー群91等の配置の一例を示す図である。本実施形態において、発光部31は、2×4のマトリクス状に配列された8個のレーザダイオード41および8個のコリメータレンズ42を有する。
また、本実施形態において、第3のミラー群91は、8個のミラー93を有する。8個のミラー93のそれぞれは、何れか1個のレーザダイオード41および1個のコリメータレンズ42に対応して配置される。それぞれのミラー93は、対応する1個のコリメータレンズ42から出射される1本の平行光束を反射する。そして、それぞれのミラー93は、反射した平行光束が反射拡散板51上の略一点に集光されるように反射角が調整されている。
このようにパターン照射装置90は、第3のミラー群91により光束を反射拡散板51上に集光する。従って、パターン照射装置90は、反射拡散板51上に光束を集光するためのレンズを備えなくてよいので、構成が簡易となる。さらに、レンズで集光する場合、レンズから反射拡散板51までの距離に、焦点距離の下限による制限がある。しかし、パターン照射装置90は、第3のミラー群91を構成するミラー93の傾きを調整すればよいので、このような距離の制限が無く配置をコンパクトにすることができる。
(第7実施形態)
つぎに、第7実施形態に係るパターン照射装置110について説明する。第7実施形態に係るパターン照射装置110は、第1実施形態に係るパターン照射装置20と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図17は、第7実施形態に係るパターン照射装置110の構成を示す図である。パターン照射装置110は、発光部31と、集光部32と、透過蛍光部111と、ライトトンネル34と、画像形成部35と、照射光学系36とを備える。パターン照射装置110は、透過拡散板33に代えて透過蛍光部111を備える点で、第1実施形態と異なる。
集光部32は、発光部31から出射された光を透過蛍光部111上に集光する。本実施形態においては、集光部32は、複数本のレーザ光を透過蛍光部111上の略一点に集光する。
透過蛍光部111は、入射した光を励起光として蛍光を発する透過型の蛍光部である。透過蛍光部111は、集光部32により集光された複数本のレーザ光を入射して、入射した光を励起光として蛍光を発する。透過蛍光部111は、発生した蛍光を、集光部32とは反対側に配置されたライトトンネル34へと出射する。
ライトトンネル34は、透過蛍光部111により発光された蛍光を入射し、輝度分布を入射された光よりも均一化して出射する。ライトトンネル34は、透過蛍光部111から発光された蛍光の出射角と同一の角度の光を出射することができる。
透過蛍光部111は、一例として、ガラス板等の透明の基板と、基板上に設けられた蛍光体とを有する。これにより、透過蛍光部111は、励起光の入射面とは反対側の面から蛍光を出射することができる。
また、透過蛍光部111は、一例として、蛍光体セラミックスであってもよい。蛍光体セラミックスは、蛍光体を任意の形状(例えば、薄板状)に成形して加熱した焼結体である。なお、透過蛍光部111は、このようなものに限らず、発光部31から発光された光を励起光として蛍光を発し、励起光の入射面とは反対側の面から蛍光を出射する構成であれば、どのようなものであってもよい。
本実施形態においては、発光部31は、青色のレーザ光を発生する。そして、透過蛍光部111は、青色のレーザ光を励起光として、黄色の光を発する。青色のレーザ光を発光するダイオードは、比較的に高出力であり且つ安価である。従って、発光部31が青色のレーザ光を発生することにより、パターン照射装置110は、安価な構成で、高出力の光を対象物11に照射することができる。従って、パターン照射装置110は、対象物11の表面が黒色等であっても、安価な構成で、精度良く距離測定をさせることができる。
なお、発光部31から発せられる光は、青色に限らず、他の波長の光(例えば紫外光、可視光以外の光)であってもよい。また、透過蛍光部111は、黄色に限らず、どのような波長の光(例えば、赤色、緑色、青色または白色等)の蛍光を発してもよい。
また、透過蛍光部111は、コヒーレントな光を励起光として、インコヒーレントな蛍光を発する。従って、透過蛍光部111は、スペックルノイズを含まない均一な光を発することができる。これにより、本実施形態に係るパターン照射装置110によれば、スペックルノイズを除去した画像パターンを対象物11に照射することができる。
また、透過蛍光部111は、リレー光学系等を介さずに、ライトトンネル34の直前に配置されている。従って、透過蛍光部111とライトトンネル34の間の光学的な距離が短い。また、蛍光体から発せられる光は一般にランバート分布である。従って、パターン照射装置110は、蛍光がライトトンネル34の外部へと漏れてしまうことを防止することができる。よって、パターン照射装置110は、光の伝達の効率を高め、出力するエネルギーを大きくすることができる。
また、集光部32は、発光部31から出射された複数本のレーザ光を透過蛍光部111上に集光する。従って、発光部31が有するレーザダイオード41の個数を増加させても、面積が比較的に小さい透過蛍光部111上に光を集光することができる。従って、パターン照射装置110は、蛍光体を小さくしてコストを抑えながら、出力するエネルギーを大きくすることができる。
以上のように、本実施形態に係るパターン照射装置110によれば、画像パターンからスペックルノイズを除去し、さらに、サイズおよびコストを小さくすることができる。
なお、本実施形態に係るパターン照射装置110は、ライトトンネル34に代えて、図9に示すテーパライトトンネル61を備える構成であってもよい。これにより、本実施形態に係るパターン照射装置110は、第3実施形態と同様の効果を得ることができる。
また、本実施形態に係るパターン照射装置110は、図10に示したプリズム71またはミラーを備える構成であってもよい。また、本実施形態に係るパターン照射装置110は、集光部32が図11、図12(a)または図12(b)に示した構成であってもよい。これにより、本実施形態に係るパターン照射装置110は、第4実施形態と同様の効果を得ることができる。
また、本実施形態に係るパターン照射装置110は、集光部32の構成が図13および図14に示した光学構成であってもよい。これにより、本実施形態に係るパターン照射装置110は、第5実施形態と同様の効果を得ることができる。
また、本実施形態に係るパターン照射装置110は、集光部32の構成が図15および図16に示した光学構成であってもよい。これにより、本実施形態に係るパターン照射装置110は、第6実施形態と同様の効果を得ることができる。
(第8実施形態)
つぎに、第8実施形態に係るパターン照射装置120について説明する。第8実施形態に係るパターン照射装置120は、第7実施形態に係るパターン照射装置110と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図18は、第8実施形態に係るパターン照射装置120の構成を示す図である。パターン照射装置120は、発光部31と、集光部32と、可動透過蛍光部121と、第1の駆動部122と、ライトトンネル34と、画像形成部35と、照射光学系36とを備える。パターン照射装置120は、透過蛍光部111に代えて、可動透過蛍光部121および第1の駆動部122を備える点で、第7実施形態と異なる。
可動透過蛍光部121は、光が照射される部分を変更させることが可能な透過型の蛍光部である。可動透過蛍光部121は、集光部32により集光された複数本のレーザ光を入射して、入射した光を励起光として蛍光を発する。可動透過蛍光部121は、発生した蛍光を、集光部32とは反対側に配置されたライトトンネル34へと出射する。第1の駆動部122は、可動透過蛍光部121における光が照射される部分を変更させる。
図19は、可動透過蛍光部121および第1の駆動部122の一例を示す図である。可動透過蛍光部121は、一例として、基板123と、蛍光体124とを含む。基板123は、透明な円板状の薄板であり、中心軸を中心として回転可能である。蛍光体124は、基板123の周縁部分にリング状に設けられる。蛍光体124は、一部分に、集光部32により集光された複数本のレーザ光を入射して、入射した光を励起光として蛍光を発する。
第1の駆動部122は、基板123の中心軸を中心に、可動透過蛍光部121を回転駆動する。これにより、第1の駆動部122は、リング状の蛍光体124における、集光部32により集光されたレーザ光が照射される部分を変更させることができる。
このように第8実施形態に係るパターン照射装置120は、可動透過蛍光部121における光が照射される部分を変更させることができる。これにより、第8実施形態に係るパターン照射装置120は、可動透過蛍光部121の同一の部分にレーザ光を長時間集中して照射することによる劣化を防止することができる。
なお、可動透過蛍光部121は、リング状の蛍光体124が回転可能に設けられた構成でなくてもよい。例えば、可動透過蛍光部121は、長尺状の蛍光体124が、長手方向に沿って往復移動可能に設けられた構成であってもよい。また、可動透過蛍光部121は、多角形状の蛍光体124または長円状の蛍光体124が設けられた構成であってもよい。また、可動透過蛍光部121は、基板123および蛍光体124を含む構成に代えて、蛍光体セラミックスを用いた構成であってもよい。
(第9実施形態)
つぎに、第9実施形態に係るパターン照射装置130について説明する。第9実施形態に係るパターン照射装置130は、第7実施形態に係るパターン照射装置110と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図20は、第9実施形態に係るパターン照射装置130の構成を示す図である。パターン照射装置130は、発光部31と、集光部32と、反射蛍光部131と、ライトトンネル34と、画像形成部35と、照射光学系36とを備える。パターン照射装置130は、透過蛍光部111に代えて反射蛍光部131を備える点で、第7実施形態と異なる。
集光部32は、発光部31から出射された光を反射蛍光部131上に集光する。本実施形態においては、集光部32は、複数本のレーザ光を反射蛍光部131上の略一点に集光する。
反射蛍光部131は、入射した光を励起光として蛍光を発する反射型の蛍光部である。反射蛍光部131は、集光部32により集光された複数本のレーザ光を入射して、入射した光を励起光として蛍光を発する。反射蛍光部131は、発生した蛍光を、集光部32と同一側の面に配置されたライトトンネル34へと出射する。反射蛍光部131は、励起光が入射してきた面側に蛍光を発する。なお、反射蛍光部131は、励起光が入射してきた面側に蛍光を発する点において、透過蛍光部111と異なるが、他の機能および効果について透過蛍光部111と同一である。
ライトトンネル34は、反射蛍光部131により発光された蛍光を入射し、輝度分布を入射された光よりも均一化して出射する。ライトトンネル34は、反射蛍光部131から発光された蛍光の出射角と同一の角度の光を出射することができる。
反射蛍光部131は、一例として、反射基板と、反射基板上に設けられた蛍光体とを有する。発光部31から出射された光は、蛍光体が設けられた側の面から入射される。これにより、反射蛍光部131は、発光した蛍光を発光部31側に反射することができる。反射基板は、レーザ光の波長および蛍光体が発する光の波長を含む帯域の光を反射する。反射基板は、一例として、誘電体多層膜または金属膜等の反射コーティング膜が表面に形成されていてもよい。これにより、反射基板は、反射率を高くすることができる。
また、反射蛍光部131は、一例として、蛍光体セラミックスであってもよい。この場合、反射蛍光部131は、光が入射する面とは反対側の面(発光部31側の面とは反対側の面)に反射コーティング膜が形成される。これにより、反射蛍光部131は、発光した蛍光を発光部31側に反射することができる。なお、反射蛍光部131は、このようなものに限らず、発光部31から発光された光を励起光として蛍光を発し、励起光の入射面側に蛍光を出射する構成であれば、どのようなものであってもよい。
図21は、反射蛍光部131を側面側から見た図である。反射蛍光部131は、入射したレーザ光を励起光として蛍光を発生する。この場合、反射蛍光部131は、蛍光体の表面に沿った方向を0°(360°)および180°とした場合、周囲360°の方向に蛍光を発する。蛍光体は、レーザ光の入射方向に対して45°に傾けて配置される。従って、レーザ光が入射される面側(0°から180°の範囲の方向側)に発光された蛍光は、大部分がライトトンネル34に導かれる。
反対に、レーザ光が入射される面とは反対側(180°から360°の範囲の方向側)に発光された蛍光は、反射基板で反射され、大部分がライトトンネル34に導かれる。また、蛍光体に入射したが、蛍光に変換されなかった励起光(レーザ光)も反射基板で反射し、再度、蛍光に照射されて蛍光に変換され、ライトトンネル34に導かれる。よって、反射蛍光部131は、レーザ光を効率良く蛍光に変換することができる。
以上のように、本実施形態に係るパターン照射装置130によれば、画像パターンからスペックルノイズを除去し、さらに、サイズおよびコストを小さくすることができる。また、本実施形態に係るパターン照射装置130によれば、高い光出力を得ることができる。また、さらに、本実施形態に係るパターン照射装置130は、第2実施形態と同様に、反射蛍光部131が脱落または破損したときのレーザ光の出射防止機構を簡単な構成で実現することができる。
なお、本実施形態に係るパターン照射装置130は、ライトトンネル34に代えて、図9に示すテーパライトトンネル61を備える構成であってもよい。これにより、本実施形態に係るパターン照射装置130は、第3実施形態と同様の効果を得ることができる。
また、本実施形態に係るパターン照射装置130は、図10に示したプリズム71またはミラーを備える構成であってもよい。また、本実施形態に係るパターン照射装置130は、集光部32が図11、図12(a)または図12(b)に示した構成であってもよい。これにより、本実施形態に係るパターン照射装置130は、第4実施形態と同様の効果を得ることができる。
特に、集光部32が図12(b)に示した構成である場合、反射蛍光部131上に集光される光の入射角が小さくなる。これにより、レンズ73と反射蛍光部131の距離を短くしても、レンズ73から出射された光線は、テーパライトトンネル61または反射蛍光部131の側面によりけられることなく、効率良く反射蛍光部131の表面に導かれる。よって、集光部32が図12(b)に示した構成である場合、パターン照射装置130は、レンズ73と反射蛍光部131の間の距離を短くでき、装置を小型化することができる。さらに、パターン照射装置130は、装置を小型化することに伴い、励起光の反射蛍光部131に対する照射位置への公差によるずれが小さくなる。この結果、パターン照射装置130は、反射蛍光部131上の発光面積を小さくすることができる。従って、パターン照射装置130によれば、蛍光を効率良くテーパライトトンネル61に導いて、高出力化を図ることができる。
また、本実施形態に係るパターン照射装置130は、集光部32の構成が図13および図14に示した光学構成であってもよい。これにより、本実施形態に係るパターン照射装置130は、第5実施形態と同様の効果を得ることができる。
また、本実施形態に係るパターン照射装置130は、集光部32の構成が図15および図16に示した光学構成であってもよい。これにより、本実施形態に係るパターン照射装置130は、第6実施形態と同様の効果を得ることができる。
(第10実施形態)
つぎに、第10実施形態に係るパターン照射装置140について説明する。第10実施形態に係るパターン照射装置140は、第9実施形態に係るパターン照射装置130と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図22は、第10実施形態に係るパターン照射装置140の構成を示す図である。パターン照射装置140は、発光部31と、集光部32と、可動反射蛍光部141と、第2の駆動部142と、ライトトンネル34と、画像形成部35と、照射光学系36とを備える。パターン照射装置140は、反射蛍光部131に代えて、可動反射蛍光部141および第2の駆動部142を備える点で、第9実施形態と異なる。
可動反射蛍光部141は、光が照射される部分を変更することが可能な反射型の蛍光部である。可動反射蛍光部141は、集光部32により集光された複数本のレーザ光を入射して、入射した光を励起光として蛍光を発する。可動反射蛍光部141は、発生した蛍光を、集光部32側に配置されたライトトンネル34へと出射する。第2の駆動部142は、可動反射蛍光部141における光が照射される部分を変更させる。
可動反射蛍光部141は、図19に示した構成と略同一であってよい。具体的には、可動反射蛍光部141は、一例として、基板123と、蛍光体124とを含む。この場合、基板123は、光を反射する部材であって、例えば、誘電体多層膜または金属膜等の反射コーティング膜が表面に形成されている。蛍光体124は、基板123の周縁部分にリング状に設けられ、基板123とは反対側の面側から光が入射される。
なお、可動反射蛍光部141も、リング状の蛍光体124が回転可能に設けられた構成に限らない。可動反射蛍光部141は、例えば、長尺状の蛍光体124が、長手方向に沿って往復移動可能に設けられた構成であってもよい。また、可動反射蛍光部141は、多角形状の蛍光体124または長円状の蛍光体124が設けられた構成であってもよい。また、可動反射蛍光部141は、基板123および蛍光体124を含む構成に代えて、蛍光体セラミックスを用いた構成であってもよい。この場合、可動反射蛍光部141は、光が入射する面とは反対側の面(発光部31とは反対側の面)に反射コーティング膜が形成される。
このように第10実施形態に係るパターン照射装置140は、可動反射蛍光部141における光が照射される部分を変更することができる。これにより、第10実施形態に係るパターン照射装置140は、高い光出力を得ることができるとともに、可動反射蛍光部141の同一の部分にレーザ光を長時間集中して照射することによる劣化を防止することができる。
(第11実施形態)
つぎに、第11実施形態に係るパターン照射装置150について説明する。第11実施形態に係るパターン照射装置150は、第4実施形態に係るパターン照射装置70と略同一の機能および構成を有する。略同一の機能および構成を有する部材については、同一の符号を付けて、相違点を除き詳細な説明を省略する。
図23は、第11実施形態に係るパターン照射装置150の構成を示す図である。パターン照射装置150は、発光部31と、集光部32と、反射蛍光光学系151と、テーパライトトンネル61、画像形成部35と、プリズム71と、照射光学系36とを備える。パターン照射装置150は、反射拡散板51に代えて、反射蛍光光学系151を備える点で、第4実施形態と異なる。
反射蛍光光学系151は、入射した光を励起光として蛍光を発する反射型の蛍光部を有する光学系である。反射蛍光光学系151は、集光部32により集光された複数本のレーザ光を入射して、入射した光を励起光として蛍光を発する。そして、反射蛍光光学系151は、発生した蛍光を、集光部32側に配置されたテーパライトトンネル61へと出射する。このような反射蛍光光学系151では、集光部32から入射するレーザ光の光軸と、テーパライトトンネル61へと出射する蛍光の光軸とが略垂直となっている。
反射蛍光光学系151は、可動反射蛍光部141と、第2の駆動部142と、凹レンズ152と、ダイクロイックミラー153と、第1集光レンズ154と、第2集光レンズ155とを有する。
可動反射蛍光部141および第2の駆動部142は、第10実施形態と同様の構成を有する。すなわち、可動反射蛍光部141は、光が照射される部分を変更することができる反射型の蛍光部である。さらに、第2の駆動部142は、可動反射蛍光部141における光が照射される部分を変更させる。また、可動反射蛍光部141は、発生した蛍光を、励起光が入射してきた面側に出射する。
凹レンズ152は、集光部32により集光された複数本のレーザ光を入射し、略平行光にして出射する。凹レンズ152から出射されたレーザ光は、ダイクロイックミラー153に入射する。
ダイクロイックミラー153は、発光部31から出射されたレーザ光の波長帯域の光を透過し、可動反射蛍光部141から発せられた蛍光の波長帯域の光を反射する。例えば、レーザ光が青色、蛍光が黄色であれば、ダイクロイックミラー153は、青色の帯域の光を透過し、黄色の帯域の光を反射する。
ダイクロイックミラー153は、凹レンズ152から出射された略平行光のレーザ光を入射する。そして、ダイクロイックミラー153は、凹レンズ152から出射された略平行光のレーザ光を透過する。
第1集光レンズ154は、凹レンズ152から出射され、ダイクロイックミラー153を透過した略平行光のレーザ光を入射する。第1集光レンズ154は、入射したレーザ光を可動反射蛍光部141上に集光する。
可動反射蛍光部141は、第1集光レンズ154により集光されたレーザ光を励起光として蛍光を発する。可動反射蛍光部141から発された蛍光は、元の経路を戻り、第1集光レンズ154を透過してダイクロイックミラー153に到達する。
ダイクロイックミラー153は、可動反射蛍光部141から発された蛍光を第2集光レンズ155の方向に反射する。第2集光レンズ155は、ダイクロイックミラー153からの蛍光をテーパライトトンネル61の入力口64内に集光する。そして、テーパライトトンネル61を通過した蛍光は、画像形成部35、プリズム71および照射光学系36を介して、投影面30に照射される。
本実施形態に係るパターン照射装置150では、可動反射蛍光部141の蛍光体124に対してレーザ光を垂直に入射させるので、可動反射蛍光部141の蛍光体124上に形成される光スポットを小さくすることができる。従って、第1集光レンズ154は、略ランバート分布で発光する蛍光を効率良く取り込むことができ、高出力化を図ることができる。
なお、本実施形態に係るパターン照射装置150は、可動反射蛍光部141に代えて、第9実施形態において示した反射蛍光部131を備えてもよい。また、パターン照射装置150は、凹レンズ152および第1集光レンズ154を備えることにより、ダイクロイックミラー153に入射する光を略平行光として透過効率を向上させている。しかしながら、パターン照射装置150は、凹レンズ152および第1集光レンズ154を備えず、集光部32が可動反射蛍光部141上にレーザ光を集光する構成としてもよい。この場合、ダイクロイックミラー153は、集光部32と可動反射蛍光部141との間に配置される。
また、本実施形態に係るパターン照射装置150は、集光部32の構成が図13および図14に示した光学構成であってもよい。これにより、本実施形態に係るパターン照射装置150は、第5実施形態と同様の効果を得ることができる。
また、本実施形態に係るパターン照射装置150は、集光部32の構成が図15および図16に示した光学構成であってもよい。これにより、本実施形態に係るパターン照射装置150は、第6実施形態と同様の効果を得ることができる。
以上、本発明の実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能である。
10 ハンドリングシステム
11 対象物
12 トレイ
13 ロボット
20,50,60,70,80,90,110,120,130,140,150 パターン照射装置
21 三次元測定装置
22 認識装置
23 ロボットコントローラ
30 投影面
31 発光部
32 集光部
33 透過拡散板
34 ライトトンネル
35 画像形成部
36 照射光学系
41 レーザダイオード
42 コリメータレンズ
43 反射側面
44 光路
45 入力口
46 出力口
51 反射拡散板
52 透過拡散面
53 反射面
61 テーパライトトンネル
62 反射側面
63 光路
64 入力口
65 出力口
71 プリズム
72 第1のミラー群
73 レンズ
74 ミラー
75 単板ミラー
81 第2のミラー群
82 シリンドリカルレンズ
83 ミラー
91 第3のミラー群
93 ミラー
111 透過蛍光部
121 可動透過蛍光部
122 第1の駆動部
123 基板
124 蛍光体
131 反射蛍光部
141 可動反射蛍光部
142 第2の駆動部
151 反射蛍光光学系
152 凹レンズ
153 ダイクロイックミラー
154 第1集光レンズ
155 第2集光レンズ
特開2013−222056号公報 特開2013−257162号公報 特開2014−010181号公報 特開2013−076902号公報

Claims (21)

  1. 光を出射する発光部と、
    前記発光部から出射された光を集光する集光部と、
    前記集光部により集光された光を拡散させる拡散部と、
    前記拡散部により拡散された光を入射して、輝度分布を入射された光よりも均一化して出射する均一化光学系と、
    を備える照明装置。
  2. 光を出射する発光部と、
    前記発光部から出射された光を集光する集光部と、
    前記集光部により集光された光を励起光として光を発する蛍光部と、
    前記蛍光部により発せられた光を入射して、輝度分布を入射された光よりも均一化して出射する均一化光学系と、
    を備える照明装置。
  3. 前記発光部は、互いに同一方向の光を出射する複数の光源を有する
    請求項1または2に記載の照明装置。
  4. 前記光源は、レーザダイオードである
    請求項3に記載の照明装置。
  5. 前記光源は、青色レーザダイオードである
    請求項4に記載の照明装置。
  6. 前記集光部は、前記発光部から出射された光を集光するレンズである
    請求項1から5の何れか1項に記載の照明装置。
  7. 前記拡散部は、透過拡散板である
    請求項1に記載の照明装置。
  8. 前記拡散部は、反射拡散板である
    請求項1に記載の照明装置。
  9. 前記反射拡散板は、前記発光部の側に形成された透過拡散面と、前記発光部とは反対側に形成された反射面とを含む
    請求項8に記載の照明装置。
  10. 前記蛍光部は、透過蛍光部である
    請求項2に記載の照明装置。
  11. 前記蛍光部は、反射蛍光部である
    請求項2に記載の照明装置。
  12. 前記蛍光部は、光が照射される部分を変更させることが可能である
    請求項10または11に記載の照明装置。
  13. 前記均一化光学系は、内側に光を反射する反射側面が形成された光路を有するライトトンネルであって、
    前記ライトトンネルは、光を前記光路の入力口から入射し、前記光路を通過させて、前記光路の出力口から出射する
    請求項1から12の何れか1項に記載の照明装置。
  14. 前記ライトトンネルは、前記入力口より前記出力口の方が大きく、前記反射側面が前記光路の光軸に対して傾けて形成されている
    請求項13に記載の照明装置。
  15. 前記発光部は、それぞれの光源に対応して設けられたコリメータレンズをさらに有し、
    それぞれの前記コリメータレンズは、対応する光源から出射された光を平行光束とする
    請求項1から14の何れか1項に記載の照明装置。
  16. 前記集光部は、
    前記発光部から出射された複数の光束のそれぞれを反射するミラー群と、
    前記ミラー群により反射された複数の光束を集光するレンズと、
    を有し、
    前記ミラー群は、前記発光部から同一方向に出射された複数本の光束により形成される光束幅を狭くするように、前記発光部から出射された複数の光のそれぞれを反射して前記集光部へと導く
    請求項15に記載の照明装置。
  17. 前記集光部は、
    前記発光部から同一方向に出射された複数本の光束のそれぞれを反射し、反射角によって前記複数本の光束を光軸に直交する第1方向に集光するミラー群と、
    前記ミラー群の後段に設けられ、前記複数本の光束を前記第1方向と直交する第2方向に集光するレンズと、
    を有する請求項15に記載の照明装置。
  18. 前記集光部は、前記発光部から同一方向に出射された複数本の光束のそれぞれを反射し、反射角によって集光するミラー群である
    請求項15に記載の照明装置。
  19. 対象物に所定のパターンの画像を照射するパターン照射装置であって、
    請求項1から18の何れか1項に記載された照明装置と、
    前記照明装置から出射された光を所定の画像パターンに応じて透過する画像形成部と、
    前記画像形成部を透過した光を前記対象物に照射する照射光学系と、
    を備えるパターン照射装置。
  20. 請求項19に記載のパターン照射装置と、
    前記パターン照射装置により光が照射された対象物までの距離を測定する三次元測定装置と、
    を備えるシステム。
  21. 対象物をハンドリングするロボットと、
    前記三次元測定装置により測定された前記対象物までの距離に基づき、前記対象物の位置および姿勢を認識する認識装置と、
    前記認識装置により認識された前記対象物の位置および姿勢に基づき前記ロボットの動作を制御して、前記ロボットに前記対象物をハンドリングさせるロボットコントローラと、
    をさらに備える請求項20に記載のシステム。
JP2015052453A 2014-10-17 2015-03-16 照明装置、パターン照射装置およびシステム Pending JP2016081898A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/879,427 US9863759B2 (en) 2014-10-17 2015-10-09 Illumination apparatus, pattern irradiation device, and system
EP15189522.4A EP3009886B1 (en) 2014-10-17 2015-10-13 Handling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014212747 2014-10-17
JP2014212747 2014-10-17

Publications (1)

Publication Number Publication Date
JP2016081898A true JP2016081898A (ja) 2016-05-16

Family

ID=55959020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052453A Pending JP2016081898A (ja) 2014-10-17 2015-03-16 照明装置、パターン照射装置およびシステム

Country Status (1)

Country Link
JP (1) JP2016081898A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737391B2 (en) 2015-09-28 2020-08-11 Ricoh Company, Ltd. System for capturing an image
KR102314742B1 (ko) * 2020-08-19 2021-10-20 다래비젼주식회사 다관절 로봇용 dlp 시스템의 제어방법
KR102356209B1 (ko) * 2020-08-19 2022-02-07 다래비젼주식회사 다관절 로봇용 dlp 시스템

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502096A (ja) * 2004-03-05 2008-01-24 オプティクス ワン,インコーポレーテッド 均一な像を形成する懐中電灯優先権主張本願は、2004年3月5日に出願された、米国出願番号10/794073の優先権を主張するものである。背景情報
JP2008096777A (ja) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp レーザ光源装置及び映像表示装置
JP2011065770A (ja) * 2009-09-15 2011-03-31 Casio Computer Co Ltd 光源ユニット及びプロジェクタ
JP2011137753A (ja) * 2009-12-28 2011-07-14 Canon Inc 計測システム、画像補正方法、及びコンピュータプログラム
JP2013092752A (ja) * 2011-10-06 2013-05-16 Panasonic Corp 光源装置及び画像表示装置
JP2013190548A (ja) * 2012-03-13 2013-09-26 Seiko Epson Corp 光源装置およびプロジェクター
JP2013222056A (ja) * 2012-04-16 2013-10-28 Dainippon Printing Co Ltd 投射装置
JP2014062951A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
JP2014139689A (ja) * 2014-04-01 2014-07-31 Casio Comput Co Ltd 光源装置及びプロジェクタ
JP2014146037A (ja) * 2014-03-05 2014-08-14 Casio Comput Co Ltd 照明光学系、光源装置及びプロジェクタ
US20140293232A1 (en) * 2013-03-27 2014-10-02 Panasonic Corporation Light source device and projection display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502096A (ja) * 2004-03-05 2008-01-24 オプティクス ワン,インコーポレーテッド 均一な像を形成する懐中電灯優先権主張本願は、2004年3月5日に出願された、米国出願番号10/794073の優先権を主張するものである。背景情報
JP2008096777A (ja) * 2006-10-13 2008-04-24 Mitsubishi Electric Corp レーザ光源装置及び映像表示装置
JP2011065770A (ja) * 2009-09-15 2011-03-31 Casio Computer Co Ltd 光源ユニット及びプロジェクタ
JP2011137753A (ja) * 2009-12-28 2011-07-14 Canon Inc 計測システム、画像補正方法、及びコンピュータプログラム
JP2013092752A (ja) * 2011-10-06 2013-05-16 Panasonic Corp 光源装置及び画像表示装置
JP2013190548A (ja) * 2012-03-13 2013-09-26 Seiko Epson Corp 光源装置およびプロジェクター
JP2013222056A (ja) * 2012-04-16 2013-10-28 Dainippon Printing Co Ltd 投射装置
JP2014062951A (ja) * 2012-09-20 2014-04-10 Casio Comput Co Ltd 光源装置及びプロジェクタ
US20140293232A1 (en) * 2013-03-27 2014-10-02 Panasonic Corporation Light source device and projection display device
JP2014146037A (ja) * 2014-03-05 2014-08-14 Casio Comput Co Ltd 照明光学系、光源装置及びプロジェクタ
JP2014139689A (ja) * 2014-04-01 2014-07-31 Casio Comput Co Ltd 光源装置及びプロジェクタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10737391B2 (en) 2015-09-28 2020-08-11 Ricoh Company, Ltd. System for capturing an image
KR102314742B1 (ko) * 2020-08-19 2021-10-20 다래비젼주식회사 다관절 로봇용 dlp 시스템의 제어방법
KR102356209B1 (ko) * 2020-08-19 2022-02-07 다래비젼주식회사 다관절 로봇용 dlp 시스템

Similar Documents

Publication Publication Date Title
US9863759B2 (en) Illumination apparatus, pattern irradiation device, and system
JP6024841B1 (ja) 照明装置、パターン照射装置およびシステム
JP6206560B2 (ja) システム
EP1398659B1 (en) Illumination apparatus and image projection apparatus using the illumination apparatus
US9325955B2 (en) Light source apparatus and projector apparatus with optical system having reduced color irregularity
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
US20200182801A1 (en) Lighting device and inspection apparatus
JP5944156B2 (ja) 照明光学系と結像光学系とが統合された光学系、及びそれを含む3次元映像獲得装置
JP2016081898A (ja) 照明装置、パターン照射装置およびシステム
JP5835828B2 (ja) 光源装置、投写型表示装置及び照明方法
CN113272705B (zh) 准直器透镜、光源装置和图像显示装置
JP6749084B2 (ja) Led照明装置
US10795141B2 (en) LED illumination in microscopy
JP2020064734A (ja) 照明装置
WO2017056479A1 (en) System
JP7027926B2 (ja) 画像検査装置および照明装置
JP6075352B2 (ja) パターン照射装置およびシステム
JP2017037189A (ja) パターン照射装置、システム、操作方法、及びプログラム
JP4232648B2 (ja) 反射光測定装置
KR20160021017A (ko) 조명 장치, 광학 검사 장치 및 광학 현미경
JP2010286688A (ja) 投写型表示装置及び光源装置
JP2018006250A (ja) 照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160815

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160815

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606