JP2016075184A - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
JP2016075184A
JP2016075184A JP2014204860A JP2014204860A JP2016075184A JP 2016075184 A JP2016075184 A JP 2016075184A JP 2014204860 A JP2014204860 A JP 2014204860A JP 2014204860 A JP2014204860 A JP 2014204860A JP 2016075184 A JP2016075184 A JP 2016075184A
Authority
JP
Japan
Prior art keywords
flow path
centrifugal compressor
impeller
fluid
axial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014204860A
Other languages
English (en)
Other versions
JP2016075184A5 (ja
Inventor
中庭 彰宏
Teruhiro Nakaniwa
彰宏 中庭
伸一郎 得山
Shinichiro Tokuyama
伸一郎 得山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Compressor Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Compressor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Heavy Industries Compressor Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014204860A priority Critical patent/JP2016075184A/ja
Priority to CN201580043813.1A priority patent/CN106574630A/zh
Priority to US15/514,648 priority patent/US20170248154A1/en
Priority to PCT/JP2015/062095 priority patent/WO2016051835A1/ja
Publication of JP2016075184A publication Critical patent/JP2016075184A/ja
Publication of JP2016075184A5 publication Critical patent/JP2016075184A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/442Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps rotating diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/025Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal comprising axial flow and radial flow stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】圧縮機内部における部分凝縮を抑制し、圧縮効率を向上し得る遠心圧縮機を提供する。
【解決手段】気相又は超臨界相の流体を圧縮するための遠心圧縮機は、回転シャフトと、前記遠心圧縮機の軸方向に沿って延在する軸方向流路と、前記軸方向流路に連通するとともに、前記軸方向流路の下流側において前記遠心圧縮機の半径方向に沿って延在する半径方向流路と、少なくとも一部が前記半径方向流路に設けられ、前記回転シャフトとともに回転して前記半径方向流路を流れる前記流体を昇圧するように構成されたインペラと、前記軸方向流路において、前記インペラの前縁から上流側に離れた位置に設けられ、前記インペラの前記前縁に導入される前記流体を予め昇圧するように構成された予圧部と、を備える。
【選択図】 図2

Description

本開示は、気相又は超臨界相の流体を圧縮するための遠心圧縮機に関する。
従来、インペラを回転させて流体を径方向へ通流させることで、主として遠心力によって流体を圧縮する遠心圧縮機が知られている。遠心圧縮機は、例えば、化学プラント、ガスタービンプラント、冷凍機等の各種プラントに広く用いられている。
例えば、特許文献1には、複数のインペラが主軸の周りに配置された遠心圧縮機が開示されている。また、特許文献2には、インペラ(遠心流ブレード)を有する遠心ロータを備えたガス圧縮機が開示されている。
特開2002−21784号公報 特表2004−516401号公報
ところで、遠心圧縮機においては、圧縮効率を高く維持することが要求される。遠心圧縮機において高い効率を維持して流体の入口温度を下げることができれば、これにより圧縮機の必要動力を大幅に低減できる。しかし、流体の温度を下げると、圧縮機の内部において飽和圧力以下の部分が局所的に生じて部分凝縮が発生し、圧縮機の性能を著しく低下させる可能性がある。その場合、凝縮により発生した水滴は、遠心力によって広がって流路を閉塞し、圧縮機の性能を低下させることがある。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、圧縮機内部における部分凝縮を抑制し、圧縮効率を向上し得る遠心圧縮機を提供することを目的とする。
本発明者らの鋭意検討の結果、遠心圧縮機の性能低下の一要因となる部分凝縮は、インペラの入口側の流路で発生し易いという知見が得られた。本発明者らは、CFDの結果、インペラの前縁近傍、特に前縁のうち負圧面近傍で、流速が高くなる傾向があることを見出した。この傾向から、遠心圧縮機が稼働している状態においてインペラ周囲の静圧は、インペラの前縁近傍(具体的には、インペラ負圧面の前縁近傍)で最も低くなっており、この部分における部分凝縮のリスクが高いことが分かった。
そこで、遠心圧縮機における圧縮効率の向上を図るためには、インペラの前縁部分における部分凝縮の発生を抑制することが重要である。
本発明の少なくとも一実施形態に係る遠心圧縮機は、本発明者らの上記知見に基づくものであり、
気相又は超臨界相の流体を圧縮するための遠心圧縮機が、
回転シャフトと、
前記遠心圧縮機の軸方向に沿って延在する軸方向流路と、
前記軸方向流路に連通するとともに、前記軸方向流路の下流側において前記遠心圧縮機の半径方向に沿って延在する半径方向流路と、
少なくとも一部が前記半径方向流路に設けられ、前記回転シャフトとともに回転して前記半径方向流路を流れる前記流体を昇圧するように構成されたインペラと、
前記軸方向流路において、前記インペラの前縁から上流側に離れた位置に設けられ、前記インペラの前記前縁に導入される前記流体を予め昇圧するように構成された予圧部と、を備えることを特徴とする。
上記遠心圧縮機によれば、インペラの前縁よりも上流側の軸方向流路に予圧部が設けられ、この予圧部によって流体を予圧するようにしたので、インペラの前縁近傍においても流体の圧力を飽和圧力以上に維持することが容易となり、部分凝縮の発生を抑制できる。これにより、圧縮性能の低下を抑制し、圧縮効率を高く維持することができる。
なお、軸方向流路に設けられた予圧部において部分凝縮が発生することも考えられるが、そういった場合でも、半径方向流路で部分凝縮が発生する場合よりも遠心圧縮機への影響は小さい。その理由として、軸方向流路は流体の流れ方向と遠心力の方向とが異なるので、軸方向流路で部分凝縮が発生しても遠心力によって液滴が軸方向流路の全体に広がることはないからである。これに対し、半径方向流路の入口側で部分凝縮により液滴が発生した場合、遠心力によって液滴が半径方向流路の全体に広がって流路が閉塞してしまう可能性がある。
このように、遠心圧縮機の入口温度が低い場合であっても、軸方向流路に設けた予圧部で流体を昇圧(予圧)することによって、インペラ前縁近傍における圧力を飽和圧力以上に維持可能となり、部分凝縮の発生を抑制できる。よって、遠心圧縮機の入口温度を下げた運転条件(すなわち従来は部分凝縮が起こりやすかった運転条件)での運転が可能になり、圧縮効率の向上が図れる。
幾つかの実施形態において、前記遠心圧縮機は、複数の前記インペラが前記流体の流れ方向に沿って多段に設けられたセクションを少なくとも一つ有する多段圧縮機であり、
前記予圧部は、各セクションの初段インペラの上流側の前記軸方向流路において、前記初段インペラの前縁から上流側に離れた位置に設けられている。
多段圧縮機の場合、初段インペラ近傍の流路は他のインペラ近傍の流路よりも圧力が低いため、最も部分凝縮のリスクが高いと考えられる。そのため、上記実施形態のように、初段インペラの上流側の軸方向流路に予圧部を設け、初段インペラの前縁近傍の半径方向流路に流入する前に流体を予圧することによって、最も凝縮し易い領域(初段インペラの前縁近傍)での部分凝縮を効果的に抑制することができる。
幾つかの実施形態において、前記予圧部は、前記回転シャフトとともに回転して前記流体を昇圧するように構成されている。一実施形態において、前記予圧部は、前記回転シャフトの外周側に設けられ、前記回転シャフトを取り巻くように前記軸方向に沿って螺旋状に延在する螺旋羽根を含む。
上記実施形態によれば、回転シャフトが回転すると、これに伴って予圧部(螺旋羽根)が回転することで、軸方向流路において流体を昇圧しながら半径方向流路側へ導く。このように、予圧部として螺旋羽根を用いれば、回転シャフトの動力によって流体を昇圧することができるので、機器構成の簡素化が図れる。
一実施形態において、前記予圧部は、前記螺旋羽根の外周側に設けられ、前記螺旋羽根を覆うシュラウドをさらに含む。
上記実施形態によれば、螺旋羽根の外周側に設けられたシュラウドによって、螺旋羽根と遠心圧縮機のケーシングとの間のクリアランスを介した流体の漏れ流れを抑制できる。よって、予圧部による流体の昇圧を確実に行うことができ、半径方向流路における部分凝縮の発生をより一層抑制できる。
一実施形態において、前記シュラウドの外周面と、該外周面に対向する前記遠心圧縮機のケーシングの壁面との間に設けられるシール部をさらに備える。
このようにシール部を設けることによって、螺旋羽根と遠心圧縮機のケーシングとの間のクリアランスを介した流体の漏れ流れをより一層抑制できる。
幾つかの実施形態において、前記インペラは、前記螺旋羽根及び前記シュラウドとは別体として形成されている。
これにより、インペラと、シュラウド付き螺旋羽根とを別々に作製することが可能になり、加工が容易になる。
本発明の少なくとも一実施形態によれば、予圧部によって、半径方向流路に流入する流体を予圧するようにしたので、インペラの前縁近傍においても流体の圧力を飽和圧力以上に維持することが容易となり、部分凝縮の発生を抑制できる。これにより、圧縮性能の低下を抑制し、圧縮効率を高く維持することができる。よって、遠心圧縮機の入口温度を下げた運転条件での運転が可能になり、圧縮効率のさらなる向上が図れる。
幾つかの実施形態における遠心圧縮機の概略構成を示す断面図である。 一実施形態における遠心圧縮機の要部拡大図である。 他の実施形態における遠心圧縮機の要部拡大図である。 一実施形態における圧縮システムの構成図である。 インペラの構成例を示す斜視図である。 T−S線図の一例である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
最初に、図1乃至図3を参照して、本実施形態に係る遠心圧縮機1,1A,1Bの概略構成について説明する。ここで、図1は、幾つかの実施形態における遠心圧縮機の概略構成を示す断面図である。図2は、一実施形態における遠心圧縮機の要部拡大図である。図3は、他の実施形態における遠心圧縮機の要部拡大図である。
なお、図1に示す遠心圧縮機1は、低圧セクション4の3段目(吐出側)のインペラ20と、高圧セクション5の3段目(吐出側)のインペラ20とが、互いに背中合わせに対向して配置されたバックツーバック(Back To Back)型の圧縮機である。但し、本実施形態に係る遠心圧縮機の構造はこの型に限定されるものではない。図1に示す低圧セクション4及び高圧セクション5は概ね同一の構成を有するため、図2及び図3には代表して低圧セクション4の初段インペラ20A,20B及びその周辺構造を示している。これらの図において、同一の部位には同一の符号を付している。
以下の実施形態では、一例として多段式の遠心圧縮機(多段圧縮機)1,1A,1Bについて説明する。
図1乃至図3に示すように、幾つかの実施形態における遠心圧縮機1,1A,1Bは、気相又は超臨界相の流体を圧縮するように構成されており、主として、回転シャフト2と、回転シャフト2の周囲に配置された低圧セクション4及び高圧セクション5と、回転シャフト2を軸回りに回転可能に支持するケーシング6と、を備える。
回転シャフト2は、軸受9を介してケーシング6に回転可能に支持される。回転シャフト2は、モータ等の外部の動力によって回転するように構成されている。
ケーシング6は円柱状に形成され、その外周が円筒状のハウジング8で覆われている。また、ケーシング6には、該ケーシング6の中心を貫くように回転シャフト2が配置されており、回転シャフト2の外周側に、圧縮対象である流体のための流路10が形成されている。
低圧セクション4及び高圧セクション5は、それぞれ、流路10と、インペラ(羽根車)20,20A,20Bと、を備えている。なお、低圧セクション4及び高圧セクション5は、それぞれ、インペラ20,20A,20Bよりも下流側に設けられたディフューザ29を備えていてもよい。ディフューザ29は、インペラ20,20A,20Bによって流体に与えられた運動エネルギーを圧力エネルギーに変換するように構成される。
流路10は、ケーシング6及びハウジング8に形成された吸込口11及び吐出口17と、ケーシング6に形成された軸方向流路13と、軸方向流路13に連通した半径方向流路14と、を含んでいる。
具体的な構成例として、流路10は、上流側から下流側に向けて順に、吸込口11と、ストレート流路12と、軸方向流路13と、半径方向流路14と、リターン流路15と、ストレート流路16と、吐出口17と、が互いに連通した状態で配置された構成となっている。
ストレート流路12は、吸込口11に連通しており、遠心圧縮機1,1A,1Bの半径方向に直線状に延在している。吸込口11から吸い込まれた流体は、ストレート流路12を通って、遠心圧縮機1,1A,1Bの径方向外方から内方へ向けて径方向に沿って流れる。
軸方向流路13は、遠心圧縮機1,1A,1Bの軸方向に沿って延在している。軸方向流路13は、回転シャフト2の軸方向に沿って直線状に形成されていてもよい。軸方向流路13の上流端側はコーナー領域を介してストレート流路12に連通し、下流端側は半径方向流路14に連通している。この軸方向流路13は、ストレート流路12にて径方向内方へ向かう流れから軸方向に沿った流れに変換された流体が流入し、該流体が軸方向に沿って所定の距離を流れるように構成されている。
半径方向流路14は、軸方向流路13に連通するとともに、軸方向流路13の下流側において遠心圧縮機1,1A,1Bの半径方向に沿って延在している。半径方向流路14には、上流側(内周側)にインペラ20,20A,20Bが配置され、下流側(外周側)にディフューザ29が配置されている。この半径方向流路14は、インペラ20,20A,20Bが配置された上流側の圧縮領域において、軸方向流路13にて軸方向に沿って流れる流体の方向を径方向外方へ向かう流れに変換し、インペラ20,20A,20Bによって流体を圧縮させるように構成されている。
リターン流路15は、断面略U字状に形成され、上流端側は半径方向流路14に連通しており、下流端側はストレート流路16に連通している。このリターン流路15は、インペラ20,20A,20Bを通過して半径方向流路14を径方向外方に流れてきた流体の流れ方向を径方向内方に反転させて、流体をストレート流路16に送り出すように構成されている。
ストレート流路16は、上流端側がリターン流路15に連通しており、下流端側が次段の軸方向流路13に連通している。
全段のインペラ20,20A,20Bを通過した流体は、最終段のストレート流路16を通って吐出口17より吐出される。
インペラ20,20A,20Bは、回転シャフト2の軸方向に少なくとも一段設けられている。なお、図1では例示的に、初段インペラを含む三段のインペラ20,20A,20Bが設けられた構成を示している。この構成において、インペラ20,20A,20Bは、回転シャフト2の軸方向に間隔をあけて複数(ここでは三段)配列されている。
各段のインペラ20,20A,20Bは、少なくとも一部が半径方向流路14に配置され、回転シャフト2とともに回転して半径方向流路14を流れる流体を昇圧するように構成されている。具体的には、各段のインペラ20,20A,20Bは、回転シャフト2の外周に固定された円盤状のハブ21と、ハブ21に固定され、該ハブ21に対して放射状に配列された複数の羽根(ベーン)22と、を有している。上記した半径方向流路14の圧縮領域は、ハブ21と、隣り合う羽根22とで画成される空間によって構成される。
図2に示す実施形態において、遠心圧縮機1Aは、インペラ20Aを覆うシュラウドを有していない構成となっている。
一方、図3に示す実施形態において、遠心圧縮機1Bは、主に流路10の密閉性向上を目的として、インペラ20Bを覆うように設けられたシュラウド27をさらに備えている。シュラウド27は、インペラ20Bの各羽根22の先端に取り付けられており、回転シャフト2と同心円をなすように配置されている。この実施形態においては、半径方向流路14の圧縮領域は、ハブ21と、隣り合う羽根22と、シュラウド27とで画定される空間によって構成される。シュラウド27とケーシング6との間の隙間には、流体が漏れ出ることを防止するために、シール部28が設けられていてもよい。
図4は、一実施形態における圧縮システム100の構成図である。
一実施形態における圧縮システム100は、低圧圧縮機101Aと、中圧圧縮機101Bと、高圧圧縮機101Cと、冷却器41〜44を含む冷却器群40と、を備えている。低圧圧縮機101A、中圧圧縮機101B及び高圧圧縮機101Cの少なくともいずれかは、上述した遠心圧縮機1,1A,1Bと同一の構成を有している。
低圧圧縮機101Aは、低圧側の第1セクション4A及び高圧側の第2セクション5Aを含んでいる。中圧圧縮機101Bは、低圧側の第3セクション4B及び高圧側の第4セクション5Bを含んでいる。高圧圧縮機101Cは、低圧側の第5セクション4C及び高圧側の第6セクション5Cを含んでいる。すなわち、図1に示す構成例と照らし合わせれば、第1セクション4A、第3セクション4B又は第5セクション4Cが低圧セクション4に相当し、第2セクション5A、第4セクション5B又は第6セクション5Cが高圧セクション5に相当する。
上記圧縮システム100では、低圧圧縮機101Aにおいて、第1セクション4Aで圧縮された流体は、冷却器41にて冷却された後、第2セクション5Aでさらに圧縮されて、冷却器42に送られる。次いで、中圧圧縮機101Bにおいて、冷却器42で冷却された流体は第3セクション4Bに導入され、第3セクション4Bで圧縮された流体は、冷却器43にて冷却された後、第4セクション5Bでさらに圧縮されて、冷却器44に送られる。さらに、高圧圧縮機101Cにおいて、冷却器44で冷却された流体は第5セクション4Cに導入され、第5セクション4Cで圧縮された後、第6セクション5Cでさらに圧縮されて排出される。
通常、圧縮システム100では、上述したように、動力削減を目的として圧縮効率を高めるために冷却器群40によって流体を冷却している。ところが、流体の圧縮機入口温度を下げ過ぎると、遠心圧縮機の内部において飽和圧力以下の部分が局所的に生じて部分凝縮が発生してしまう可能性がある。
本発明者らの鋭意検討の結果、遠心圧縮機1,1A,1Bの性能低下の一要因となる部分凝縮は、図5に示すように、インペラ20の入口側の領域50で発生し易いという知見が得られた。なお、図5は、インペラ20の構成例を示す斜視図である。具体的には、インペラ20の羽根22は、前縁23と、後縁24と、圧力面25と、負圧面26と、を有している。本発明者らは、CFD(数値流体解析:Computational Fluid Dynamics)を行った結果、インペラ20(ここでは羽根22)の前縁23の近傍、特に前縁23のうち負圧面26の近傍の領域50で、流速が高くなる傾向があることを見出した。この傾向から、遠心圧縮機1,1A,1Bが稼働している状態においてインペラ20の周囲の静圧は、インペラ20の前縁23の近傍(具体的には、インペラ20の負圧面26の前縁23の近傍)で最も低くなっており、この部分における静圧が低下することから部分凝縮のリスクが高いことが分かった。圧縮機入口温度を低く設定し、遠心圧縮機1,1A,1Bにおける圧縮効率の向上を図るためには、インペラ20の前縁部分における部分凝縮の発生を抑制することが重要である。
そこで、本実施形態に係る遠心圧縮機1,1A,1Bは、圧縮機内部における部分凝縮を抑制しながら圧縮効率を向上するために、さらに以下の構成を備えている。
図1乃至図3に示すように、幾つかの実施形態において、遠心圧縮機1,1A,1Bは、予圧部30,30A,30Bをさらに備える。
予圧部30,30A,30Bは、軸方向流路13において、インペラ20の前縁23から上流側に離れた位置に設けられる。また、予圧部30は、回転シャフト2とともに軸回りに回転して、軸方向流路13を流れる流体を昇圧するように構成されている。さらに、予圧部30は、インペラ20とは別体で形成されている。
上記実施形態によれば、インペラ20の前縁23よりも上流側の軸方向流路13に予圧部30,30A,30Bが設けられ、この予圧部30,30A,30Bによって流体を予圧するようにしたので、インペラ20の前縁23の近傍においても流体の圧力を飽和圧力以上に維持することが容易となり、部分凝縮の発生を抑制できる。これにより、圧縮性能の低下を抑制し、圧縮効率を高く維持することができる。
なお、軸方向流路13に設けられた予圧部30,30A,30Bにおいて部分凝縮が発生することも考えられるが、そういった場合でも、半径方向流路14で部分凝縮が発生する場合よりも遠心圧縮機1,1A,1Bへの影響は小さい。その理由として、軸方向流路13は流体の流れ方向と遠心力の方向とが異なるので、軸方向流路13で部分凝縮が発生しても遠心力によって液滴が軸方向流路13の全体に広がることはないからである。これに対し、半径方向流路14の入口側で部分凝縮により液滴が発生した場合、遠心力によって液滴が半径方向流路14の全体に広がって流路10が閉塞してしまう可能性がある。
一般的に、図4に示すような圧縮システム100では、部分凝縮が発生する懸念があることから、従来は圧縮機入口温度を理論上の凝縮温度よりもかなり高い温度に設定していた。図6のT−S線図(温度エントロピー線図)に示すように、理論上は、臨界点を含む飽和液線52よりも温度が高い領域であれば凝縮は発生しないと考えられる。しかし、部分凝縮が発生する可能性を考慮して、従来は飽和液線52よりもかなり上方(高温側)に入口温度の運転ライン53が設定されていた。
これに対して、上記実施形態に係る遠心圧縮機1,1A,1Bによれば、部分凝縮の発生を抑制できるため、例えば第4セクション5B(図4参照)では、運転ライン54まで入口温度の設定を下げることができる。これにより、遠心圧縮機1,1A,1Bの動力を大幅に低減することができ、遠心圧縮機の圧縮効率の向上が図れる。
このように、上記実施形態によれば、遠心圧縮機1,1A,1Bの入口温度が低い場合であっても、軸方向流路13に設けた予圧部30,30A,30Bで流体を昇圧(予圧)することによって、インペラ20の前縁23の近傍における圧力を飽和圧力以上に維持可能となり、部分凝縮の発生を抑制できる。よって、遠心圧縮機1,1A,1Bの入口温度を下げた運転条件、すなわち従来は部分凝縮が起こりやすかった運転条件での運転が可能になり、圧縮効率の向上が図れる。
幾つかの実施形態において、遠心圧縮機1,1A,1Bは、複数のインペラ20,20A,20Bが流体の流れ方向に沿って多段に設けられたセクション4,5を少なくとも一つ有する多段圧縮機(図1参照)であり、予圧部30,30A,30Bは、各セクション4,5の初段インペラ20,20A,20Bの上流側の軸方向流路13において、初段インペラ20,20A,20Bの前縁23から上流側に離れた位置に設けられている。
多段圧縮機の場合、初段インペラ20,20A,20B近傍の流路は他のインペラの近傍の流路よりも圧力が低いため、最も部分凝縮のリスクが高いと考えられる。そのため、上記実施形態のように、初段インペラ20,20A,20Bの上流側の軸方向流路に予圧部30,30A,30Bを設け、初段インペラ20,20A,20Bの前縁23の近傍の半径方向流路14に流入する前に流体を予圧することによって、最も凝縮し易い領域(初段インペラの前縁近傍)での部分凝縮を効果的に抑制することができる。
一実施形態において、軸方向流路13は、遠心圧縮機1,1A,1Bの軸方向に沿って直線状に延在しており、所定の距離を有するように構成される。ここで、軸方向流路13の軸方向に沿った距離は、例えば、インペラ20,20A,20Bの前縁23の翼高さ以上とする。
図2及び図3に示すように、一実施形態において、予圧部30A,30Bは、回転シャフト2の外周側に設けられ、回転シャフト2を取り巻くように軸方向に沿って螺旋状に延在する螺旋羽根31A,31Bを含む。
上記実施形態によれば、回転シャフト2が回転すると、これに伴って螺旋羽根31A,31Bが回転することで、軸方向流路13において流体Gが螺旋羽根31A,31Bに流入する。ここで、螺旋羽根31A,31Bは、流体Gを昇圧しながら半径方向流路14側へ導く。螺旋羽根31A,31Bを通過した流体Gは、通過前の流体Gよりも圧力が高くなる。このように、予圧部30A,30Bとして螺旋羽根31A,31Bを用いれば、回転シャフト2の動力によって流体を昇圧することができるので、機器構成の簡素化が図れる。
また、予圧部30A,30Bは、回転シャフト2の外周面を囲むように配置される円筒部(不図示)を有し、該円筒部の外周面に螺旋羽根31A,31Bが設けられた構成としてもよい。これにより、予圧部30A,30Bの回転シャフト2への装着性を向上させることができる。
さらに、一構成例では、軸方向流路13の少なくとも一部は、螺旋羽根31A,31B及びケーシング6により画定される。すなわち、軸方向流路13のうち予圧部30A,30Bが位置する領域において、回転シャフト2の外周にはケーシング6が存在せず、該回転シャフト2の外周面は軸方向流路13に露出している。そして、軸方向流路13に露出した回転シャフト2の外周面に予圧部30A,30B(螺旋羽根31A,31B)が取り付けられる。この構成により、回転シャフト2と共に回転する予圧部30A,30Bの取り付けが容易となる。
図3に示すように、他の実施形態における遠心圧縮機1Bにおいて、予圧部30Bは、螺旋羽根31Bの外周側に設けられ、螺旋羽根31Bを覆うシュラウド32をさらに含む。例えば、シュラウド32は、回転シャフト2の軸Oを中心とした環状に形成される。また、シュラウド32と螺旋羽根31Bとが一体的に構成されてもよい。例えば、シュラウド32は、螺旋羽根31Bの外周面に取り付けられ、回転シャフト2に固定された螺旋羽根31Bと共に回転するように構成される。この場合、シュラウド32と螺旋羽根31Bとを別部材で形成し、溶接等によってこれらの部材を接合して一体化してもよい。
上記実施形態によれば、螺旋羽根31Bの外周側に設けられたシュラウド32によって、螺旋羽根31Bと遠心圧縮機1Bのケーシング6との間のクリアランスを介した流体の漏れ流れを抑制できる。よって、予圧部30Bによる流体の昇圧を確実に行うことができ、半径方向流路14における部分凝縮の発生をより一層抑制できる
また、シュラウド32の外周面と、該外周面に対向する遠心圧縮機1Bのケーシング6の壁面との間に設けられるシール部33をさらに備えてもよい。具体的には、シール部33は、環状に形成されており、ケーシング6のうちシュラウド32に対向する内壁と、シュラウド32の外周面(背面)との間に配置される。シール部33は、軸方向流路13の上流側領域に設けられてもよい。例えば、シュラウド32の外周面又はケーシング6の壁面の少なくとも一方に、回転シャフト2の軸Oを中心とした環状の溝部(不図示)を設けて、この溝部に、環状のシール部33を収容してもよい。
このように、シール部33を設けることによって、螺旋羽根31Bと遠心圧縮機1Bのケーシング6との間のクリアランスを介した流体の漏れ流れをより一層抑制できる。
さらに、インペラ20Bは、螺旋羽根31B及びシュラウド32とは別体として形成されていてもよい。これにより、インペラ20Bと、シュラウド付き螺旋羽根31Bとを別々に作製することが可能になり、加工が容易になる。
上述したように、本発明の実施形態によれば、予圧部30,30A,30Bによって、半径方向流路14に流入する流体を予圧するようにしたので、インペラ20,20A,20Bの前縁23の近傍においても流体の圧力を飽和圧力以上に維持することが容易となり、部分凝縮の発生を抑制できる。これにより、圧縮性能の低下を抑制し、圧縮効率を高く維持することができる。よって、遠心圧縮機1,1A,1Bの入口温度を下げた運転条件での運転が可能になり、圧縮効率のさらなる向上が図れる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
上記実施形態では一例として多段式の遠心圧縮機(多段圧縮機)1,1A,1Bについて記載したが、本実施形態の一部の構成は単段式の圧縮機(1段圧縮機)にも適用可能である。
また、上記実施形態では、予圧部30,30A,30Bとして、螺旋羽根31A,31Bを含む構成について説明したが、予圧部30,30A,30Bはこの構成に限定されるものではない。すなわち、予圧部30,30A,30Bは、軸方向流路13に配置されて、流体を予圧可能な構成であれば、その具体的な構成は特に限定されない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1,1A,1B 遠心圧縮機
2 回転シャフト
4,4A〜4C 低圧セクション
5,5A〜5C 高圧セクション
6 ケーシング
10 流路
11 吸込口
13 軸方向流路
14 半径方向流路
17 吐出口
20,20A,20B インペラ
21 ハブ
22 羽根
27 シュラウド
28 シール部
29 ディフューザ
30,30A,30B 予圧部
31,31A,31B 螺旋羽根
32 シュラウド
33 シール部
52 飽和液線
53 運転ライン
100 圧縮システム
O 軸

Claims (7)

  1. 気相又は超臨界相の流体を圧縮するための遠心圧縮機であり、
    回転シャフトと、
    前記遠心圧縮機の軸方向に沿って延在する軸方向流路と、
    前記軸方向流路に連通するとともに、前記軸方向流路の下流側において前記遠心圧縮機の半径方向に沿って延在する半径方向流路と、
    少なくとも一部が前記半径方向流路に設けられ、前記回転シャフトとともに回転して前記半径方向流路を流れる前記流体を昇圧するように構成されたインペラと、
    前記軸方向流路において、前記インペラの前縁から上流側に離れた位置に設けられ、前記インペラの前記前縁に導入される前記流体を予め昇圧するように構成された予圧部と、を備えることを特徴とする遠心圧縮機。
  2. 前記遠心圧縮機は、複数の前記インペラが前記流体の流れ方向に沿って多段に設けられたセクションを少なくとも一つ有する多段圧縮機であり、
    前記予圧部は、各セクションの初段インペラの上流側の前記軸方向流路において、前記初段インペラの前縁から上流側に離れた位置に設けられたことを特徴とする請求項1に記載の遠心圧縮機。
  3. 前記予圧部は、前記回転シャフトとともに回転して前記流体を昇圧するように構成されたことを特徴とする請求項1又は2に記載の遠心圧縮機。
  4. 前記予圧部は、前記回転シャフトの外周側に設けられ、前記回転シャフトを取り巻くように前記軸方向に沿って螺旋状に延在する螺旋羽根を含むことを特徴とする請求項1乃至3のいずれか一項に記載の遠心圧縮機。
  5. 前記予圧部は、前記螺旋羽根の外周側に設けられ、前記螺旋羽根を覆うシュラウドをさらに含むことを特徴とする請求項4に記載の遠心圧縮機。
  6. 前記シュラウドの外周面と、該外周面に対向する前記遠心圧縮機のケーシングの壁面との間に設けられるシール部をさらに備えることを特徴とする請求項5に記載の遠心圧縮機。
  7. 前記インペラは、前記螺旋羽根及び前記シュラウドとは別体として形成されたことを特徴とする請求項6又は7に記載の遠心圧縮機。
JP2014204860A 2014-10-03 2014-10-03 遠心圧縮機 Withdrawn JP2016075184A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014204860A JP2016075184A (ja) 2014-10-03 2014-10-03 遠心圧縮機
CN201580043813.1A CN106574630A (zh) 2014-10-03 2015-04-21 离心式压缩机
US15/514,648 US20170248154A1 (en) 2014-10-03 2015-04-21 Centrifugal compressor
PCT/JP2015/062095 WO2016051835A1 (ja) 2014-10-03 2015-04-21 遠心圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014204860A JP2016075184A (ja) 2014-10-03 2014-10-03 遠心圧縮機

Publications (2)

Publication Number Publication Date
JP2016075184A true JP2016075184A (ja) 2016-05-12
JP2016075184A5 JP2016075184A5 (ja) 2017-10-19

Family

ID=55629892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014204860A Withdrawn JP2016075184A (ja) 2014-10-03 2014-10-03 遠心圧縮機

Country Status (4)

Country Link
US (1) US20170248154A1 (ja)
JP (1) JP2016075184A (ja)
CN (1) CN106574630A (ja)
WO (1) WO2016051835A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493683B2 (ja) 2020-11-27 2024-05-31 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ 超臨界条件を保証するための少なくとも2つのカスケード圧縮段を有するco2サイクル用圧縮機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20152497A1 (it) * 2015-07-24 2017-01-24 Nuovo Pignone Tecnologie Srl Treno di compressione di gas di carica di etilene
JP2019526736A (ja) * 2016-08-25 2019-09-19 ダンフォス・エイ/エス 冷媒圧縮機
DE102019133244A1 (de) * 2019-12-05 2021-06-10 Efficient Energy Gmbh Wärmepumpe mit stabilitätsverbessertem verdichter
CN115729329A (zh) * 2021-08-26 2023-03-03 春鸿电子科技(重庆)有限公司 两相冷板
US20240060507A1 (en) * 2022-08-22 2024-02-22 FoxRES LLC Sculpted Low Solidity Vaned Diffuser

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375937A (en) * 1981-01-28 1983-03-08 Ingersoll-Rand Company Roto-dynamic pump with a backflow recirculator
US4834611A (en) * 1984-06-25 1989-05-30 Rockwell International Corporation Vortex proof shrouded inducer
US4854818A (en) * 1987-12-28 1989-08-08 Rockwell International Corporation Shrouded inducer pump
JP4503264B2 (ja) * 2003-11-05 2010-07-14 株式会社荏原製作所 インデューサ及びポンプ
JP4642788B2 (ja) * 2007-01-22 2011-03-02 株式会社荏原製作所 多段高圧ポンプ
JP2012145092A (ja) * 2011-01-12 2012-08-02 Shintaro Ishiyama 超臨界二酸化炭素(co2)圧縮用遠心ブロア(コンプレッサー)、超臨界co2ガスタービンならびに発電機を備えた超臨界co2ガスタービン発電技術
JP5773697B2 (ja) * 2011-03-25 2015-09-02 三菱重工業株式会社 多段圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493683B2 (ja) 2020-11-27 2024-05-31 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ 超臨界条件を保証するための少なくとも2つのカスケード圧縮段を有するco2サイクル用圧縮機

Also Published As

Publication number Publication date
WO2016051835A1 (ja) 2016-04-07
CN106574630A (zh) 2017-04-19
US20170248154A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2016051835A1 (ja) 遠心圧縮機
JP5709898B2 (ja) 回転機械
US20160108920A1 (en) Centrifugal compressor
US9568007B2 (en) Multistage centrifugal turbomachine
JP2012007592A (ja) シール装置及びこれを備えた流体機械
EP2977619A1 (en) Centrifugal fluid machine
EP2861870B1 (en) Centrifugal compressor impeller cooling
US20160327050A1 (en) Diaphragm and centrifugal rotating machine
WO2012001997A1 (ja) シール装置及びこれを備えた流体機械
WO2014122819A1 (ja) 遠心圧縮機
JP6496736B2 (ja) マルチセクション遠心圧縮機
US9004857B2 (en) Barrel-shaped centrifugal compressor
JPWO2016038661A1 (ja) 回転機械
WO2018155546A1 (ja) 遠心圧縮機
WO2016024409A1 (ja) 遠心回転機械
WO2015041174A1 (ja) 回転機械
JP5263562B2 (ja) 遠心圧縮機ケーシング
JP2018135815A (ja) 遠心回転機械
US10876544B2 (en) Rotary machine and diaphragm
JP2021089072A (ja) ジャーナル及びスラスト気体軸受
WO2013115361A1 (ja) シール構造及びこれを備えた回転機械
US10697468B2 (en) Casing assembly and rotary machine
KR20150036154A (ko) 저압 터빈
US20190085859A1 (en) Rotating machine comprising a seal ring damping system
JP2015113714A (ja) 回転機械用組立体、及び遠心回転機械

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180409