JP2016070432A - Friction engagement device and drive transmission device - Google Patents

Friction engagement device and drive transmission device Download PDF

Info

Publication number
JP2016070432A
JP2016070432A JP2014202278A JP2014202278A JP2016070432A JP 2016070432 A JP2016070432 A JP 2016070432A JP 2014202278 A JP2014202278 A JP 2014202278A JP 2014202278 A JP2014202278 A JP 2014202278A JP 2016070432 A JP2016070432 A JP 2016070432A
Authority
JP
Japan
Prior art keywords
friction
friction plate
oil
support member
engagement device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014202278A
Other languages
Japanese (ja)
Inventor
糟谷 悟
Satoru Kasuya
悟 糟谷
昌士 鬼頭
Masashi Kito
昌士 鬼頭
祐一 関
Yuichi Seki
祐一 関
洋平 多田
Yohei Tada
洋平 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2014202278A priority Critical patent/JP2016070432A/en
Publication of JP2016070432A publication Critical patent/JP2016070432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types
    • F16D25/123Details not specific to one of the before-mentioned types in view of cooling and lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/648Clutch-plates; Clutch-lamellae for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/064Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially the friction surface being grooved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a technology which can effectively reduce drag torque during the execution of an electric traveling mode.SOLUTION: A friction engagement device CL comprises: at least a single piece of a first friction plate 31B having friction abutment faces on which friction materials 3 are placed at both sides in an axial direction L; a plurality of pieces of second friction plates 31A which have friction abutment faces on which the friction materials 3 are not placed at both sides, and are arranged so as to sandwich the first friction plate 31B from both the sides in the axial direction L; a first support member 40 which rotates integrally with the first friction plate 31B; and a second support member 90 which rotates integrally with the second friction plate 31A. Grooves extending to a radial direction R are formed at friction abutment faces at both sides of the first friction plate 31B in the axial direction L. The first support member 40 is drive-connected to a rotating electric machine MG, and the second support member 90 is drive-connected to an input shaft.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に回転電機を備えた車両用駆動装置における、入力部材と回転電機との間の動力伝達経路に設けられる湿式の摩擦係合装置、及び、そのような摩擦係合装置と当該摩擦係合装置に油を供給する油供給装置とを備えた駆動伝達装置に関する。   The present invention relates to power between an input member and a rotating electrical machine in a vehicle drive device including a rotating electrical machine in a power transmission path that connects an input member that is drivingly connected to an internal combustion engine and an output member that is drivingly connected to a wheel. The present invention relates to a wet friction engagement device provided in a transmission path, and a drive transmission device including such a friction engagement device and an oil supply device that supplies oil to the friction engagement device.

上記のような湿式の摩擦係合装置として、特開2006−298272号公報(特許文献1)に記載されたものが知られている。特許文献1には、回転電機〔モータジェネレータ3〕のトルクのみによって車両を走行させる電動走行モードの実行中に、摩擦係合装置〔湿式多板クラッチ2〕を解放状態に制御して内燃機関〔エンジン〕を回転電機から切り離すことで、エネルギ効率の向上を図ることが記載されている。   As such a wet friction engagement device, one described in Japanese Patent Application Laid-Open No. 2006-298272 (Patent Document 1) is known. In Patent Document 1, the friction engagement device [wet multi-plate clutch 2] is controlled to be in a released state during execution of the electric travel mode in which the vehicle is driven only by the torque of the rotating electrical machine [motor generator 3]. It is described that energy efficiency is improved by separating the engine from the rotating electrical machine.

特開2006−298272号公報(段落0039)JP 2006-298272 A (paragraph 0039)

ところで、湿式の摩擦係合装置に対しては、潤滑や冷却のための油が供給される。そのため、電動走行モードの実行中におけるエネルギ効率の向上の観点から、油の粘性に起因して摩擦係合装置において発生する引き摺りトルクが、できるだけ低く抑えられることが望ましい。しかしながら、特許文献1では、引き摺りトルクの低減に言及した記載はない。   By the way, oil for lubrication and cooling is supplied to the wet friction engagement device. Therefore, from the viewpoint of improving energy efficiency during execution of the electric travel mode, it is desirable that drag torque generated in the friction engagement device due to oil viscosity is suppressed as low as possible. However, in Patent Document 1, there is no description referring to reduction of drag torque.

そこで、電動走行モードの実行中における引き摺りトルクを効果的に低減することが可能な技術の実現が望まれる。   Therefore, it is desired to realize a technique capable of effectively reducing drag torque during execution of the electric travel mode.

上記に鑑みた、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に回転電機を備えた車両用駆動装置における、前記入力部材と前記回転電機との間の動力伝達経路に設けられる湿式の摩擦係合装置の特徴構成は、摩擦材が設けられた摩擦当接面を軸方向の両側に有する少なくとも1枚の第一摩擦板と、摩擦材が設けられていない摩擦当接面を軸方向の両側に有すると共に前記第一摩擦板を軸方向の両側から挟むように配置される複数枚の第二摩擦板と、前記第一摩擦板と一体回転する第一支持部材と、前記第二摩擦板と一体回転する第二支持部材と、を備え、前記第一摩擦板の軸方向両側の前記摩擦当接面に、径方向に延びる溝部が形成され、前記第一支持部材が、前記回転電機に駆動連結されると共に、前記第二支持部材が、前記入力部材に駆動連結される点にある。   In view of the above, in the vehicle drive device provided with the rotating electrical machine in the power transmission path connecting the input member drivingly connected to the internal combustion engine and the output member drivingly connected to the wheel, the input member and the rotating electrical machine The characteristic configuration of the wet friction engagement device provided in the power transmission path between the at least one first friction plate having the friction contact surface provided with the friction material on both sides in the axial direction and the friction material is provided A plurality of second friction plates that have friction contact surfaces that are not provided on both sides in the axial direction and are disposed so as to sandwich the first friction plate from both sides in the axial direction, and rotate integrally with the first friction plate A first support member and a second support member that rotates integrally with the second friction plate, and a groove portion extending in a radial direction is formed on the friction contact surface on both axial sides of the first friction plate, When the first support member is drivingly connected to the rotating electrical machine On the second support member, in that it is drivingly connected to said input member.

本願において、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれてもよい。
また、本願において、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
In the present application, “drive connection” means a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque). This concept includes a state in which the two rotating elements are connected so as to rotate integrally, and a state in which the driving force is transmitted through one or more transmission members. Such transmission members include various members (shafts, gear mechanisms, belts, etc.) that transmit rotation at the same speed or at different speeds, and engaging devices (frictions) that selectively transmit rotation and driving force. Engagement devices, meshing engagement devices, etc.).
Further, in the present application, the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.

上記の特徴構成によれば、第一支持部材が回転電機に駆動連結されるため、摩擦係合装置が解放状態に制御されて電動走行モードが実行されている状態では、回転電機の回転に伴って、第一支持部材と共に第一摩擦板が回転する状態となる。ここで、第一摩擦板の摩擦当接面には、径方向に延びる溝部が形成されているため、第一摩擦板の回転による遠心力を利用して、油を効率的に径方向外側へ流すことができる。これにより、第一支持部材ではなく第二支持部材が回転電機に駆動連結されることにより、回転電機の回転に伴って第一摩擦板ではなく溝部の形成されていない第二摩擦板が回転する場合に比べて、油の排出効果や第一摩擦板と第二摩擦板との引き離し効果といった、引き摺りトルクの低減につながる溝部の効果を高めることができる。この結果、電動走行モードの実行中における引き摺りトルクを効果的に低減することが可能となる。   According to the above characteristic configuration, since the first support member is drivingly connected to the rotating electrical machine, in the state where the friction engagement device is controlled to the released state and the electric travel mode is executed, the rotation of the rotating electrical machine is performed. Thus, the first friction plate rotates together with the first support member. Here, since the groove portion extending in the radial direction is formed on the friction contact surface of the first friction plate, the oil is efficiently discharged radially outward using the centrifugal force generated by the rotation of the first friction plate. It can flow. As a result, the second support member, not the first support member, is drivingly connected to the rotating electrical machine, so that the second friction plate, not the first friction plate, which is not formed with a groove, rotates as the rotating electrical machine rotates. Compared with the case, the effect of the groove part leading to reduction of drag torque, such as the oil discharging effect and the effect of separating the first friction plate and the second friction plate, can be enhanced. As a result, it is possible to effectively reduce drag torque during execution of the electric travel mode.

本発明の実施形態に係る車両用駆動装置の概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a drive device for vehicles concerning an embodiment of the present invention. 本発明の実施形態に係る車両用駆動装置の一部の断面図である。1 is a partial cross-sectional view of a vehicle drive device according to an embodiment of the present invention. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 本発明の実施形態に係る油量調節制御の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the oil quantity adjustment control which concerns on embodiment of this invention. 本発明の実施形態に係る第一摩擦板の一部の軸方向視図である。It is an axial view of a part of the first friction plate according to the embodiment of the present invention. 本発明のその他の実施形態に係る第一摩擦板の一部の軸方向視図である。It is an axial view of a part of a first friction plate according to another embodiment of the present invention. 本発明のその他の実施形態に係る第一摩擦板の一部の軸方向視図である。It is an axial view of a part of a first friction plate according to another embodiment of the present invention.

本発明に係る摩擦係合装置及び駆動伝達装置の実施形態について、図面を参照して説明する。以下の説明では、特に明記している場合を除き、「軸方向L」、「径方向R」、「周方向C」は、摩擦係合装置CLの回転軸心(軸心X、図3参照)を基準として定義している。なお、摩擦係合装置CLの回転軸心は、摩擦係合装置CLが備える回転部材(後述する第一摩擦板31B、第二摩擦板31A、第一支持部材40、第二支持部材90等)の回転軸心である。「軸第一方向L1」は、軸方向Lにおける一方側へ向かう方向を表し、「軸第二方向L2」は、軸方向Lにおける他方側へ向かう方向(軸第一方向L1とは反対方向)を表す。本実施形態では、軸第一方向L1は、軸方向Lに沿って内燃機関E側から回転電機MG側へ向かう方向である。以下の説明における各部材についての方向は、それらが車両用駆動装置1に組み付けられた状態での方向を表す。また、各部材についての方向や位置等に関する用語は、製造上許容され得る誤差による差異を有する状態を含む概念である。   Embodiments of a friction engagement device and a drive transmission device according to the present invention will be described with reference to the drawings. In the following description, unless otherwise specified, the “axial direction L”, “radial direction R”, and “circumferential direction C” are the rotational axis of the frictional engagement device CL (axial center X, see FIG. 3). ) As a standard. The rotation axis of the friction engagement device CL is a rotation member provided in the friction engagement device CL (a first friction plate 31B, a second friction plate 31A, a first support member 40, a second support member 90, etc., which will be described later). Is the axis of rotation. “Axial first direction L1” represents a direction toward one side in the axial direction L, and “Axial second direction L2” represents a direction toward the other side in the axial direction L (a direction opposite to the axial first direction L1). Represents. In the present embodiment, the first axial direction L1 is a direction along the axial direction L from the internal combustion engine E side to the rotating electrical machine MG side. The direction about each member in the following description represents the direction in the state in which they were assembled to the vehicle drive device 1. Moreover, the term regarding the direction, position, etc. about each member is a concept including the state which has the difference by the error which can be accept | permitted on manufacture.

1.車両用駆動装置の全体構成
図1に示すように、摩擦係合装置CLは、内燃機関Eに駆動連結される入力軸10と車輪Wに駆動連結される出力軸Oとを結ぶ動力伝達経路に回転電機MGを備えた車両用駆動装置1における、入力軸10と回転電機MGとの間の動力伝達経路に設けられる。すなわち、摩擦係合装置CLが設けられる車両用駆動装置1は、ハイブリッド車両用の駆動装置である。ハイブリッド車両とは、車輪Wの駆動力源として内燃機関E及び回転電機MGの双方を備える車両であり、車両用駆動装置1は、内燃機関E及び回転電機MGの少なくとも一方のトルクを車輪Wに伝達させて車両を走行させる。本実施形態に係るハイブリッド車両は、内燃機関E及び回転電機MGが摩擦係合装置CLを介して互いに直列に駆動連結される、1モータパラレル方式のハイブリッド車両である。本実施形態では、入力軸10が本発明における「入力部材」に相当し、出力軸Oが本発明における「出力部材」に相当する。
1. Overall Configuration of Vehicle Drive Device As shown in FIG. 1, the friction engagement device CL has a power transmission path that connects an input shaft 10 that is drivingly connected to the internal combustion engine E and an output shaft O that is drivingly connected to the wheels W. In the vehicle drive device 1 provided with the rotating electrical machine MG, it is provided in a power transmission path between the input shaft 10 and the rotating electrical machine MG. That is, the vehicle drive device 1 provided with the friction engagement device CL is a drive device for a hybrid vehicle. The hybrid vehicle is a vehicle that includes both the internal combustion engine E and the rotating electrical machine MG as driving power sources for the wheels W, and the vehicle drive device 1 applies at least one torque of the internal combustion engine E and the rotating electrical machine MG to the wheels W. Transmit the vehicle to run. The hybrid vehicle according to the present embodiment is a one-motor parallel type hybrid vehicle in which the internal combustion engine E and the rotating electrical machine MG are drive-coupled in series with each other via the friction engagement device CL. In the present embodiment, the input shaft 10 corresponds to an “input member” in the present invention, and the output shaft O corresponds to an “output member” in the present invention.

図1に示すように、本実施形態に係る車両用駆動装置1は、入力軸10、出力軸O、回転電機MG、及び摩擦係合装置CLに加えて、変速装置TMを備えている。摩擦係合装置CL、回転電機MG、及び変速装置TMは、入力軸10と出力軸Oとを結ぶ動力伝達経路に、入力軸10の側から記載の順に設けられている。すなわち、変速装置TMは、回転電機MGと出力軸Oとの間の動力伝達経路に設けられている。本実施形態では、入力軸10、摩擦係合装置CL、回転電機MG、及び、変速装置TMの入力軸である変速入力軸50が、同軸に(軸心X上に)配置されている。車両用駆動装置1は、更に、オイルポンプOPと、オイルポンプOPを駆動するポンプ駆動機構60とを備えている。オイルポンプOPは、車両用駆動装置1の下部に設けられた油貯留部(オイルパン等)の油を吸引して油圧を発生させる。オイルポンプOPとして、例えば、内接型又は外接型のギヤポンプや、ベーンポンプ等を用いることができる。ポンプ駆動機構60の詳細については後述する。   As shown in FIG. 1, the vehicle drive device 1 according to the present embodiment includes a transmission TM in addition to the input shaft 10, the output shaft O, the rotating electrical machine MG, and the friction engagement device CL. The friction engagement device CL, the rotating electrical machine MG, and the transmission device TM are provided in the power transmission path connecting the input shaft 10 and the output shaft O in the order described from the input shaft 10 side. That is, the transmission device TM is provided in a power transmission path between the rotating electrical machine MG and the output shaft O. In the present embodiment, the input shaft 10, the friction engagement device CL, the rotating electrical machine MG, and the speed change input shaft 50 that is the input shaft of the speed change device TM are arranged coaxially (on the axis X). The vehicle drive device 1 further includes an oil pump OP and a pump drive mechanism 60 that drives the oil pump OP. The oil pump OP sucks oil from an oil reservoir (oil pan or the like) provided at the lower part of the vehicle drive device 1 to generate hydraulic pressure. As the oil pump OP, for example, an inscribed or circumscribed gear pump, a vane pump, or the like can be used. Details of the pump drive mechanism 60 will be described later.

内燃機関Eは、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(例えば、ガソリンエンジン、ディーゼルエンジン等)である。本実施形態では、入力軸10が、ダンパDを介して、内燃機関Eの出力軸(クランクシャフト等)に駆動連結されている。入力軸10が、ダンパDを介さずに、内燃機関Eの出力軸に直接的に連結される構成としても良い。   The internal combustion engine E is a prime mover (for example, a gasoline engine, a diesel engine, etc.) that is driven by combustion of fuel inside the engine to extract power. In the present embodiment, the input shaft 10 is drivingly connected to an output shaft (crankshaft or the like) of the internal combustion engine E via a damper D. The input shaft 10 may be directly connected to the output shaft of the internal combustion engine E without using the damper D.

摩擦係合装置CLの構造については、後の「2.摩擦係合装置」の項で詳細に説明するが、摩擦係合装置CLは、湿式の摩擦係合装置である。本実施形態では、摩擦係合装置CLは、回転電機MGのロータRoに対して径方向Rの内側であって、径方向Rに見てロータRoと重複する部分を有するように配置されている。上述したように、摩擦係合装置CLは、入力軸10と回転電機MGとの間の動力伝達経路に設けられている。そのため、摩擦係合装置CLが係合した状態では、内燃機関E(入力軸10)と回転電機MGとの間での連結が維持され、摩擦係合装置CLが解放した状態では、内燃機関E(入力軸10)と回転電機MGとの間での連結が解除される。すなわち、摩擦係合装置CLは、車輪W及び回転電機MG等から内燃機関Eを切り離す機能を有する。   The structure of the friction engagement device CL will be described in detail in the section “2. Friction engagement device” later. The friction engagement device CL is a wet friction engagement device. In the present embodiment, the friction engagement device CL is disposed so as to have a portion that is inside the radial direction R with respect to the rotor Ro of the rotating electrical machine MG and overlaps the rotor Ro when viewed in the radial direction R. . As described above, the friction engagement device CL is provided in the power transmission path between the input shaft 10 and the rotating electrical machine MG. Therefore, when the friction engagement device CL is engaged, the connection between the internal combustion engine E (input shaft 10) and the rotating electrical machine MG is maintained, and when the friction engagement device CL is released, the internal combustion engine E is maintained. The connection between (input shaft 10) and rotating electrical machine MG is released. That is, the friction engagement device CL has a function of separating the internal combustion engine E from the wheels W, the rotating electrical machine MG, and the like.

回転電機MGは、蓄電装置(バッテリやキャパシタ等)と電気的に接続されており、蓄電装置から電力の供給を受けて力行し、或いは、内燃機関Eのトルクや車両の慣性力により発電した電力を蓄電装置に供給して蓄電させる。回転電機MGは、ケース2に固定されるステータStと、ステータStに対して回転自在に支持されるロータRoとを備えている。本実施形態では、ロータRoは、ステータStに対して径方向Rの内側に配置されている。変速装置TMは、変速比を段階的に或いは無段階に変更可能な機構(例えば、自動有段変速機構等)を備える。変速装置TMは、回転電機MGのロータRoに駆動連結される変速入力軸50の回転速度を、現時点の変速比で変速して、左右の出力軸O及び車輪Wへ伝達する。本実施形態では、ロータRoは、変速入力軸50と一体回転するように駆動連結されている。   Rotating electric machine MG is electrically connected to a power storage device (battery, capacitor, etc.) and receives power from the power storage device to run or power generated by the torque of internal combustion engine E or the inertial force of the vehicle Is stored in the power storage device. The rotating electrical machine MG includes a stator St fixed to the case 2 and a rotor Ro that is rotatably supported with respect to the stator St. In the present embodiment, the rotor Ro is disposed inside the radial direction R with respect to the stator St. The transmission apparatus TM includes a mechanism (for example, an automatic stepped transmission mechanism or the like) that can change the gear ratio stepwise or steplessly. The speed change device TM shifts the rotational speed of the speed change input shaft 50 that is drivingly connected to the rotor Ro of the rotating electrical machine MG at the current speed ratio, and transmits it to the left and right output shafts O and the wheels W. In the present embodiment, the rotor Ro is drivingly connected so as to rotate integrally with the transmission input shaft 50.

図2に示すように、摩擦係合装置CLや回転電機MG等の車両用駆動装置1を構成する各部材は、ケース2(駆動装置ケース)内に収容されている。ケース2は、回転電機MG及び摩擦係合装置CLに対して軸第一方向L1側に、径方向Rに延びる円環板状の支持部材28を備えると共に、回転電機MG及び摩擦係合装置CLに対して軸第二方向L2側に、径方向Rに延びる円環板状の支持壁25を備えている。なお、本明細書において、部材(但し、後述する溝部4を除く。)の形状に関し、ある方向に「延びる」とは、当該方向を基準方向として、部材の延在方向が前記基準方向に平行な形状に限らず、部材の延在方向が前記基準方向に交差する方向であっても、その交差角度が所定範囲内(例えば45度未満)である形状も含む概念として用いている。   As shown in FIG. 2, each member constituting the vehicle drive device 1 such as the friction engagement device CL and the rotating electrical machine MG is housed in a case 2 (drive device case). The case 2 includes an annular plate-like support member 28 extending in the radial direction R on the first axial direction L1 side with respect to the rotary electric machine MG and the friction engagement device CL, and also includes the rotary electric machine MG and the friction engagement device CL. On the other hand, an annular plate-like support wall 25 extending in the radial direction R is provided on the second axial direction L2 side. In this specification, regarding the shape of a member (excluding a groove portion 4 to be described later), “extending” in a certain direction means that the direction is the reference direction and the extending direction of the member is parallel to the reference direction. Not only the shape but also the direction in which the extending direction of the member intersects the reference direction is used as a concept including a shape whose intersection angle is within a predetermined range (for example, less than 45 degrees).

変速入力軸50及び入力軸10のそれぞれは、ケース2に対して回転可能に支持されている。具体的には、変速入力軸50は、支持部材28を軸方向Lに貫通する状態で、軸受を介して支持部材28に支持されている。また、入力軸10は、支持壁25を軸方向Lに貫通する状態で、軸受を介して支持壁25に支持されている。図3に示すように、本実施形態では、入力軸10は、入力本体部11と、入力本体部11よりも大径であって軸心Xと同軸の筒状に形成された入力筒状部12と、入力本体部11と入力筒状部12とを連結するように径方向Rに延びる円環板状の入力連結部13とを有する。入力連結部13は、入力本体部11の軸第一方向L1側の端部と、入力筒状部12の軸第二方向L2側の端部とを連結している。   Each of the transmission input shaft 50 and the input shaft 10 is supported to be rotatable with respect to the case 2. Specifically, the transmission input shaft 50 is supported by the support member 28 via a bearing in a state of penetrating the support member 28 in the axial direction L. The input shaft 10 is supported by the support wall 25 via a bearing in a state of penetrating the support wall 25 in the axial direction L. As shown in FIG. 3, in this embodiment, the input shaft 10 includes an input main body portion 11 and an input cylindrical portion formed in a cylindrical shape having a larger diameter than the input main body portion 11 and coaxial with the axis X. 12 and an annular plate-like input connecting portion 13 extending in the radial direction R so as to connect the input main body portion 11 and the input cylindrical portion 12. The input connecting portion 13 connects the end portion of the input main body portion 11 on the first axial direction L1 side and the end portion of the input cylindrical portion 12 on the second axial direction L2 side.

2.摩擦係合装置の構成
次に、摩擦係合装置CLの構成について説明する。摩擦係合装置CLは、図3に示すように、少なくとも1枚の第一摩擦板31Bと、第一摩擦板31Bを軸方向Lの両側から挟むように配置される複数枚の第二摩擦板31Aと、第一摩擦板31Bと一体回転する第一支持部材40と、第二摩擦板31Aと一体回転する第二支持部材90と、を備えている。第一支持部材40は、第一摩擦板31Bを径方向Rの一方側から支持し、第二支持部材90は、第二摩擦板31Aを径方向Rの他方側から支持する。第一摩擦板31Bは、第一支持部材40に対して周方向Cの相対回転が規制された状態で軸方向Lに摺動自在に支持されている。また、第二摩擦板31Aは、第二支持部材90に対して周方向Cの相対回転が規制された状態で軸方向Lに摺動自在に支持されている。本実施形態では、摩擦係合装置CLは、複数枚の第一摩擦板31Bを備え、第一摩擦板31Bのそれぞれを軸方向Lの両側から挟むように、複数枚の第二摩擦板31Aが配置されている。すなわち、第一摩擦板31Bと第二摩擦板31Aとは、軸方向Lに沿って1枚ずつ交互に配置されている。第一摩擦板31B及び第二摩擦板31Aのそれぞれは、円環板状の部材(板状で円環形状の部材)である。
2. Next, the configuration of the friction engagement device CL will be described. As shown in FIG. 3, the friction engagement device CL includes at least one first friction plate 31B and a plurality of second friction plates arranged so as to sandwich the first friction plate 31B from both sides in the axial direction L. 31A, a first support member 40 that rotates integrally with the first friction plate 31B, and a second support member 90 that rotates integrally with the second friction plate 31A. The first support member 40 supports the first friction plate 31B from one side in the radial direction R, and the second support member 90 supports the second friction plate 31A from the other side in the radial direction R. The first friction plate 31B is slidably supported in the axial direction L in a state where relative rotation in the circumferential direction C is restricted with respect to the first support member 40. The second friction plate 31 </ b> A is supported slidably in the axial direction L in a state where relative rotation in the circumferential direction C is restricted with respect to the second support member 90. In the present embodiment, the friction engagement device CL includes a plurality of first friction plates 31B, and the plurality of second friction plates 31A are sandwiched between the first friction plates 31B from both sides in the axial direction L. Has been placed. That is, the first friction plate 31B and the second friction plate 31A are alternately arranged along the axial direction L one by one. Each of the first friction plate 31B and the second friction plate 31A is an annular plate-like member (a plate-like and annular member).

図4に示すように、第一摩擦板31Bは、摩擦材3が設けられた摩擦当接面を軸方向Lの両側に有する摩擦板であり、第二摩擦板31Aは、摩擦材3が設けられていない摩擦当接面を軸方向Lの両側に有する摩擦板(セパレートプレート)である。ここで、第一摩擦板31Bの摩擦当接面は、第一摩擦板31Bの軸方向Lの端面における、軸方向Lに見て第二摩擦板31Aと重なる領域であり、第二摩擦板31Aの摩擦当接面は、第二摩擦板31Aの軸方向Lの端面における、軸方向Lに見て第一摩擦板31Bと重なる領域である。摩擦材3は、紙や合成樹脂等を基材として構成される。   As shown in FIG. 4, the first friction plate 31B is a friction plate having friction contact surfaces provided with the friction material 3 on both sides in the axial direction L, and the second friction plate 31A is provided with the friction material 3. It is a friction plate (separate plate) having friction contact surfaces that are not provided on both sides in the axial direction L. Here, the friction contact surface of the first friction plate 31B is a region overlapping the second friction plate 31A when viewed in the axial direction L on the end surface in the axial direction L of the first friction plate 31B. The friction contact surface is an area overlapping the first friction plate 31B when viewed in the axial direction L on the end surface in the axial direction L of the second friction plate 31A. The friction material 3 is configured using paper, synthetic resin, or the like as a base material.

図6に示すように、第一摩擦板31Bの摩擦当接面には、径方向Rに延びる溝部4が形成されている。図示は省略するが、溝部4は、第一摩擦板31Bの軸方向Lの両側の摩擦当接面に形成されている。溝部4は、第一摩擦板31Bの摩擦当接面における、摩擦材3の軸方向Lの外側(第一摩擦板31Bの本体部側とは反対側)の端面よりも、軸方向Lの内側(第一摩擦板31Bの本体部側)に窪んだ部分である。なお、第一摩擦板31Bにおける摩擦材3を除く円環板状の部分である本体部は、金属板により構成される。そして、溝部4について「径方向Rに延びる」とは、溝部4が形成される領域の径方向Rの大きさは問わず、摩擦材3の内周部3a(最内周部)において径方向Rの内側に向けて開口するあらゆる形状の凹部を含む概念として用いている。すなわち、摩擦材3の内周部3aから少しでも径方向Rの外側に窪んでいる凹部は、径方向Rに延びる溝部4である。   As shown in FIG. 6, a groove 4 extending in the radial direction R is formed on the friction contact surface of the first friction plate 31B. Although not shown, the groove 4 is formed on the friction contact surfaces on both sides in the axial direction L of the first friction plate 31B. The groove portion 4 is located on the inner side in the axial direction L from the end surface on the outer side in the axial direction L of the friction material 3 on the friction contact surface of the first friction plate 31B (on the opposite side to the main body portion side of the first friction plate 31B). This is a portion that is recessed to the main body side of the first friction plate 31B. In addition, the main-body part which is an annular plate-shaped part except the friction material 3 in the 1st friction board 31B is comprised with the metal plate. And, “extending in the radial direction R” with respect to the groove portion 4 means that the radial direction R in the inner peripheral portion 3a (innermost peripheral portion) of the friction material 3 is not limited regardless of the size of the radial direction R of the region where the groove portion 4 is formed. It is used as a concept including a concave portion of any shape that opens toward the inside of R. That is, the concave portion that is recessed from the inner peripheral portion 3 a of the friction material 3 to the outside in the radial direction R is a groove portion 4 that extends in the radial direction R.

本実施形態では、図6に示すように、第一摩擦板31Bの摩擦当接面には、複数の摩擦材3(摩擦材セグメント)が、周方向Cに等間隔で配置されている。そして、第一摩擦板31Bの摩擦当接面には、第一溝部4Aと第二溝部4Bとの2種類の溝部4が形成されている。第一溝部4Aは、摩擦材3を成形することにより形成される溝であり、溝の底部において、第一摩擦板31Bの本体部は基本的に露出しない。一方、第二溝部4Bは、周方向Cに隣接する摩擦材3の間の隙間により形成される溝であり、溝の底部は、第一摩擦板31Bの本体部の端面により構成される。本実施形態では、第一溝部4A及び第二溝部4Bの双方が、第一摩擦板31Bに設けられた摩擦材3の内周部3aから外周部3bまで連続した溝とされている。更に、本実施形態では、第一溝部4A及び第二溝部4Bの双方が、軸方向Lに見て径方向Rに平行に延びるように形成されている。第一溝部4A及び第二溝部4Bの少なくとも一方が、軸方向Lに見て径方向Rに対して傾斜した方向に延びる構成や、軸方向Lに見て直線状ではなく曲線状に延びる構成とすることもできる。また、溝の底部において第一摩擦板31Bの本体部が露出する溝部4については、当該露出部に溝の深さを調整するための加工が施されていても良い。   In the present embodiment, as shown in FIG. 6, a plurality of friction materials 3 (friction material segments) are arranged at equal intervals in the circumferential direction C on the friction contact surface of the first friction plate 31 </ b> B. And the two types of groove parts 4 of the 1st groove part 4A and the 2nd groove part 4B are formed in the friction contact surface of the 1st friction board 31B. 4 A of 1st groove parts are grooves formed by shape | molding the friction material 3, and the main-body part of the 1st friction board 31B is not fundamentally exposed in the bottom part of a groove | channel. On the other hand, the 2nd groove part 4B is a groove | channel formed by the clearance gap between the friction materials 3 adjacent to the circumferential direction C, and the bottom part of a groove | channel is comprised by the end surface of the main-body part of the 1st friction board 31B. In the present embodiment, both the first groove 4A and the second groove 4B are continuous grooves from the inner periphery 3a to the outer periphery 3b of the friction material 3 provided on the first friction plate 31B. Further, in the present embodiment, both the first groove portion 4A and the second groove portion 4B are formed so as to extend parallel to the radial direction R when viewed in the axial direction L. A configuration in which at least one of the first groove portion 4A and the second groove portion 4B extends in a direction inclined with respect to the radial direction R when viewed in the axial direction L, or a configuration that extends in a curved shape instead of a linear shape when viewed in the axial direction L. You can also Moreover, about the groove part 4 from which the main-body part of the 1st friction board 31B is exposed in the bottom part of a groove | channel, the process for adjusting the depth of a groove | channel may be given to the said exposed part.

図3に示すように、第一摩擦板31Bを支持する第一支持部材40は、回転電機MGに駆動連結され、第二摩擦板31Aを支持する第二支持部材90は、入力軸10に駆動連結されている。本例では、第一支持部材40は、回転電機MGのロータRoと一体回転するように駆動連結されている。ロータRoは変速入力軸50と一体回転するように駆動連結されているため、第一支持部材40は、変速入力軸50とも一体回転するように駆動連結されている。また、本例では、第二支持部材90は、入力軸10と一体回転するように駆動連結されている。   As shown in FIG. 3, the first support member 40 that supports the first friction plate 31 </ b> B is drivingly connected to the rotating electrical machine MG, and the second support member 90 that supports the second friction plate 31 </ b> A is driven by the input shaft 10. It is connected. In this example, the first support member 40 is drivingly coupled so as to rotate integrally with the rotor Ro of the rotating electrical machine MG. Since the rotor Ro is drivingly connected so as to rotate integrally with the transmission input shaft 50, the first support member 40 is drivingly connected so as to rotate integrally with the transmission input shaft 50. In this example, the second support member 90 is drivingly connected so as to rotate integrally with the input shaft 10.

摩擦係合装置CLが係合した係合状態では、第一支持部材40に駆動連結された回転電機MGと、第二支持部材90に駆動連結された入力軸10との間の連結が、維持される。この際、第一摩擦板31Bと第二摩擦板31Aとの間に発生する摩擦力により、第一支持部材40と第二支持部材90との間でトルクが伝達される。係合状態には、滑り係合状態と直結係合状態とが含まれる。滑り係合状態は、第一摩擦板31Bと第二摩擦板31Aとの間に回転速度差がある係合状態であり、直結係合状態は、第一摩擦板31Bと第二摩擦板31Aとの間に回転速度差がない係合状態である。また、摩擦係合装置CLが解放した解放状態では、第一支持部材40に駆動連結された回転電機MGと、第二支持部材90に駆動連結された入力軸10との間の連結が、解除される。この際、第一摩擦板31Bと第二摩擦板31Aとの間での引き摺りによって、指令とは異なり伝達トルクが生じる場合もあるが、解放状態では基本的に、第一支持部材40と第二支持部材90との間でトルクは伝達されない。例えば、回転電機MGのトルクのみによって車両を走行させる電動走行モードの実行中は、摩擦係合装置CLは基本的に解放状態に制御される。内燃機関E及び回転電機MGの双方のトルクによって車両を走行させるハイブリッド走行モードの実行中は、摩擦係合装置CLは基本的に直結係合状態に制御される。また、例えば、停止状態の内燃機関Eを回転電機MGのトルクによって始動させる場合、坂道等において内燃機関Eのトルクを車輪Wに伝達させた状態で車両を停止させておく場合、内燃機関Eのトルクによって車両を発進させる場合等に、摩擦係合装置CLは滑り係合状態に制御される。   In the engaged state in which the frictional engagement device CL is engaged, the connection between the rotating electrical machine MG drivingly connected to the first support member 40 and the input shaft 10 drivingly connected to the second support member 90 is maintained. Is done. At this time, torque is transmitted between the first support member 40 and the second support member 90 by a frictional force generated between the first friction plate 31B and the second friction plate 31A. The engagement state includes a slip engagement state and a direct engagement state. The sliding engagement state is an engagement state in which there is a difference in rotational speed between the first friction plate 31B and the second friction plate 31A, and the direct engagement state is the first friction plate 31B and the second friction plate 31A. In this engagement state, there is no rotational speed difference. Further, in the released state where the frictional engagement device CL is released, the connection between the rotating electrical machine MG drivingly connected to the first support member 40 and the input shaft 10 drivingly connected to the second support member 90 is released. Is done. At this time, a transmission torque may be generated unlike the command by dragging between the first friction plate 31B and the second friction plate 31A. However, basically, in the released state, the first support member 40 and the second friction plate 31B. Torque is not transmitted to and from the support member 90. For example, during the execution of the electric travel mode in which the vehicle travels only by the torque of the rotating electrical machine MG, the friction engagement device CL is basically controlled to the released state. During execution of the hybrid travel mode in which the vehicle travels with the torque of both the internal combustion engine E and the rotating electrical machine MG, the friction engagement device CL is basically controlled to be in the direct engagement state. Further, for example, when the internal combustion engine E in a stopped state is started by the torque of the rotating electrical machine MG, when the vehicle is stopped in a state where the torque of the internal combustion engine E is transmitted to the wheels W on a slope or the like, For example, when the vehicle is started by torque, the friction engagement device CL is controlled to be in a sliding engagement state.

本実施形態では、摩擦係合装置CLは、供給される油圧に応じて動作する油圧サーボ機構を備えた油圧駆動式の係合装置である。具体的には、図3及び図4に示すように、摩擦係合装置CLは、第二摩擦板31Aとの当接部34aを有して油圧により第一摩擦板31B及び第二摩擦板31Aを軸方向Lに押圧するピストン34(押圧部材の一例)と、ピストン34を油圧による押圧方向とは反対方向に付勢するスプリング35(付勢部材の一例)とを備えている。摩擦係合装置CLは、更に、ピストン34を軸方向Lに移動させるためのシリンダ室36を備え、シリンダ室36の油圧に応じてピストン34を摺動させることで、摩擦係合装置CLの係合の状態が制御される。ピストン34は、当接部34aが当接する摩擦板である第二摩擦板31Aと一体回転するように設けられる。本実施形態では、ピストン34は、第一摩擦板31B及び第二摩擦板31Aを軸第二方向L2側から押圧するように構成されており、スプリング35は、ピストン34を軸第二方向L2側に付勢するように構成されている。本実施形態では、ピストン34が第一摩擦板31B及び第二摩擦板31Aを軸方向Lに押圧する際には、最も軸第一方向L1側に配置された第二摩擦板31Aが押さえ部材(バッキングプレート)として機能する。押さえ部材として機能する第二摩擦板31Aは、厚み(軸方向Lの幅)を除いて他の第二摩擦板31Aと同様に構成される。   In the present embodiment, the friction engagement device CL is a hydraulically driven engagement device including a hydraulic servo mechanism that operates in accordance with the supplied hydraulic pressure. Specifically, as shown in FIGS. 3 and 4, the friction engagement device CL has a contact portion 34 a with the second friction plate 31 </ b> A and is hydraulically applied to the first friction plate 31 </ b> B and the second friction plate 31 </ b> A. And a spring 35 (an example of an urging member) that urges the piston 34 in a direction opposite to the pressing direction by hydraulic pressure. The frictional engagement device CL further includes a cylinder chamber 36 for moving the piston 34 in the axial direction L. By sliding the piston 34 according to the hydraulic pressure of the cylinder chamber 36, the frictional engagement device CL is engaged. The state of the event is controlled. The piston 34 is provided so as to rotate integrally with the second friction plate 31A that is a friction plate with which the contact portion 34a contacts. In this embodiment, the piston 34 is configured to press the first friction plate 31B and the second friction plate 31A from the second axial direction L2 side, and the spring 35 presses the piston 34 to the second axial direction L2 side. It is comprised so that it may bias. In the present embodiment, when the piston 34 presses the first friction plate 31B and the second friction plate 31A in the axial direction L, the second friction plate 31A arranged closest to the first axial direction L1 is used as a pressing member ( It functions as a backing plate). The second friction plate 31A functioning as a pressing member is configured in the same manner as the other second friction plates 31A except for the thickness (width in the axial direction L).

第一支持部材40は、第一摩擦板31Bにおける径方向Rの一方側部分に係合(本例ではスプライン係合)する係合部(本例では後述する第一係合部33b)を備え、当該係合部によって第一摩擦板31Bと一体回転するように構成されている。また、第二支持部材90は、第二摩擦板31Aにおける径方向Rの他方側部分に係合(本例ではスプライン係合)する係合部(本例では後述する第二係合部38b)を備え、当該係合部によって第二摩擦板31Aと一体回転するように構成されている。本実施形態では、第一支持部材40は、第一摩擦板31Bを径方向Rの外側から支持し、第二支持部材90は、第二摩擦板31Aを径方向Rの内側から支持するように構成されている。すなわち、本実施形態では、第一摩擦板31Bは、その径方向Rの外側部分が第一支持部材40(第一係合部33b)に係合し、第二摩擦板31Aは、その径方向Rの内側部分が第二支持部材90(第二係合部38b)に係合するように構成されている。具体的には、図3及び図4に示すように、第一支持部材40は、ロータRoを径方向Rの内側から支持する円筒状のロータ支持部41と、径方向Rに延びるように形成されてロータ支持部41を径方向Rの内側から支持する第一径方向延在部44と、ロータ支持部41に対して径方向Rの内側に設けられて第一摩擦板31Bとの係合部(第一係合部33b)を有する円筒状の第一摩擦板支持部33と、第一摩擦板31B及び第二摩擦板31Aに対して径方向Rの内側から供給された油を排出する排出油路72と、を備えている。ロータ支持部41と、第一径方向延在部44と、第一摩擦板支持部33とは、軸心X周りに一体回転する。   The first support member 40 includes an engagement portion (a first engagement portion 33b described later in this example) that engages (spline engagement in this example) with one side portion of the first friction plate 31B in the radial direction R. The engaging portion is configured to rotate integrally with the first friction plate 31B. Further, the second support member 90 engages with a second side portion of the second friction plate 31A in the radial direction R (spline engagement in this example) (second engagement part 38b described later in this example). And is configured to rotate integrally with the second friction plate 31A by the engaging portion. In the present embodiment, the first support member 40 supports the first friction plate 31B from the outside in the radial direction R, and the second support member 90 supports the second friction plate 31A from the inside in the radial direction R. It is configured. That is, in the present embodiment, the first friction plate 31B has an outer portion in the radial direction R engaged with the first support member 40 (first engagement portion 33b), and the second friction plate 31A has a radial direction. The inner portion of R is configured to engage with the second support member 90 (second engagement portion 38b). Specifically, as shown in FIGS. 3 and 4, the first support member 40 is formed to extend in the radial direction R and a cylindrical rotor support portion 41 that supports the rotor Ro from the inside in the radial direction R. The first radially extending portion 44 that supports the rotor support portion 41 from the inside in the radial direction R and the engagement with the first friction plate 31B that is provided inside the radial direction R with respect to the rotor support portion 41 The oil supplied from the inside in the radial direction R to the cylindrical first friction plate support portion 33 having the first portion (first engagement portion 33b), the first friction plate 31B, and the second friction plate 31A is discharged. A discharge oil passage 72. The rotor support portion 41, the first radially extending portion 44, and the first friction plate support portion 33 rotate integrally around the axis X.

ロータ支持部41及び第一摩擦板支持部33のそれぞれは、軸心Xと同軸の円筒状に形成されている。ロータ支持部41は、ロータRoを径方向Rの内側から保持して、ロータRoと一体回転する。第一摩擦板支持部33は、内周部に形成された第一係合部33bが第一摩擦板31Bの外周部に形成された外周係合部30(図6参照)に対して軸方向Lに相対移動自在に係合した状態で、第一摩擦板31Bと一体回転する。本例では、第一係合部33b及び外周係合部30は、軸方向Lに延びるスプライン歯により構成されている。第一径方向延在部44は、ロータ支持部41の軸第一方向L1側の端部から径方向Rの内側に延びる、円環板状に形成されている。第一径方向延在部44は、第一摩擦板31B及び第二摩擦板31Aの収容空間に対して軸第一方向L1側を、径方向Rに延びるように配置されている。そして、第一径方向延在部44は、その径方向Rの内側の端部において、変速入力軸50に連結(本例ではスプライン連結)されている。   Each of the rotor support portion 41 and the first friction plate support portion 33 is formed in a cylindrical shape coaxial with the axis X. The rotor support portion 41 holds the rotor Ro from the inside in the radial direction R and rotates integrally with the rotor Ro. The first friction plate support portion 33 has an axial direction with respect to the outer peripheral engagement portion 30 (see FIG. 6) in which the first engagement portion 33b formed on the inner peripheral portion is formed on the outer peripheral portion of the first friction plate 31B. While being engaged with L so as to be relatively movable, it integrally rotates with the first friction plate 31B. In this example, the first engaging portion 33b and the outer peripheral engaging portion 30 are configured by spline teeth extending in the axial direction L. The first radially extending portion 44 is formed in an annular plate shape that extends inward in the radial direction R from the end portion on the first axial direction L1 side of the rotor support portion 41. The first radially extending portion 44 is disposed so as to extend in the radial direction R on the first axial direction L1 side with respect to the accommodation space of the first friction plate 31B and the second friction plate 31A. And the 1st radial direction extension part 44 is connected with the transmission input shaft 50 in the edge part inside the radial direction R (spline connection in this example).

第一摩擦板支持部33は、ロータ支持部41に対して径方向Rの内側であって、径方向Rに見てロータ支持部41と重複する部分を有するように配置されている。本実施形態では、第一摩擦板支持部33は、ロータ支持部41とは別部材として構成され、ロータ支持部41と一体回転するように連結されている。本例では、ロータ支持部41と第一摩擦板支持部33とは、スプライン係合部Aにおいて、周方向Cの相対回転が規制された状態で連結されている。ロータ支持部41と第一摩擦板支持部33とは、移動規制部材37(本例では、スナップリング)によって軸方向Lの相対移動が規制されている。具体的には、第一摩擦板支持部33は、ロータ支持部41と一体的に形成された第一径方向延在部44に対して軸第二方向L2側から当接することにより、ロータ支持部41に対する軸第一方向L1側への相対移動が規制されていると共に、軸第二方向L2側に設けられた移動規制部材37によって、ロータ支持部41に対する軸第二方向L2側への相対移動が規制されている。   The first friction plate support portion 33 is disposed so as to have a portion that is inside the radial direction R with respect to the rotor support portion 41 and overlaps with the rotor support portion 41 when viewed in the radial direction R. In the present embodiment, the first friction plate support portion 33 is configured as a separate member from the rotor support portion 41 and is connected to rotate integrally with the rotor support portion 41. In this example, the rotor support part 41 and the first friction plate support part 33 are connected in a state in which relative rotation in the circumferential direction C is restricted in the spline engagement part A. The rotor support portion 41 and the first friction plate support portion 33 are restricted from relative movement in the axial direction L by a movement restricting member 37 (a snap ring in this example). Specifically, the first friction plate support portion 33 is in contact with the first radially extending portion 44 formed integrally with the rotor support portion 41 from the second axial direction L2 side, thereby supporting the rotor. The relative movement in the first axial direction L1 side with respect to the portion 41 is restricted, and the relative movement in the second axial direction L2 side with respect to the rotor support portion 41 is performed by the movement restricting member 37 provided on the second axial direction L2 side. Movement is restricted.

図4に示すように、第一支持部材40には、第一摩擦板支持部33の内面に開口する導入孔33aと、排出油路72を介して導入孔33aと連通する導出孔45とが設けられている。ここで、「内面」とは、第一摩擦板31B及び第二摩擦板31Aの収容空間側の面であり、本例では、径方向Rの内側を向く面である。導入孔33aは、第一摩擦板支持部33を径方向Rに貫通するように形成されている。本実施形態では、導入孔33aは、周方向Cの幅よりも軸方向Lの幅が大きい長孔であり、複数の導入孔33aが周方向Cに分散配置されている。導出孔45は、第一支持部材40における径方向Rに見てロータRoとは重複しない部位の外面に開口するように形成される。ここで、「外面」とは、第一摩擦板31B及び第二摩擦板31Aの収容空間とは反対側の面である。本実施形態では、導出孔45は、ロータ支持部41と第一径方向延在部44との境界部位の外面に開口するように形成されている。ここで、「境界部位」とは、境界とその近傍とを含む概念である。導出孔45は、第一摩擦板支持部33と第一径方向延在部44との当接部よりも径方向Rの外側に配置されている。本実施形態では、導出孔45は、ロータ支持部41と第一径方向延在部44との境界部位を、径方向Rの外側に向かうに従って軸第一方向L1側に向かう方向に貫通するように形成されている。すなわち、導出孔45は、径方向Rの外側に向かうに従って軸第一方向L1側に向かう傾斜状に形成されている。本実施形態では、複数の導出孔45が周方向Cに分散配置されている。   As shown in FIG. 4, the first support member 40 has an introduction hole 33 a that opens on the inner surface of the first friction plate support portion 33, and a lead-out hole 45 that communicates with the introduction hole 33 a through the discharge oil passage 72. Is provided. Here, the “inner surface” is a surface on the accommodation space side of the first friction plate 31B and the second friction plate 31A, and is a surface facing the inner side in the radial direction R in this example. The introduction hole 33a is formed so as to penetrate the first friction plate support portion 33 in the radial direction R. In the present embodiment, the introduction holes 33a are elongated holes having a width in the axial direction L larger than the width in the circumferential direction C, and a plurality of introduction holes 33a are distributed in the circumferential direction C. The lead-out hole 45 is formed so as to open to the outer surface of a portion that does not overlap with the rotor Ro when viewed in the radial direction R in the first support member 40. Here, the “outer surface” is a surface on the side opposite to the accommodation space of the first friction plate 31B and the second friction plate 31A. In the present embodiment, the lead-out hole 45 is formed so as to open to the outer surface of the boundary portion between the rotor support portion 41 and the first radial extension portion 44. Here, the “boundary part” is a concept including a boundary and its vicinity. The lead-out hole 45 is disposed on the outer side in the radial direction R with respect to the contact portion between the first friction plate support portion 33 and the first radial extension portion 44. In the present embodiment, the lead-out hole 45 penetrates the boundary portion between the rotor support portion 41 and the first radial extension portion 44 in a direction toward the first axial direction L1 as it goes outward in the radial direction R. Is formed. That is, the lead-out hole 45 is formed in an inclined shape toward the first axial direction L1 as it goes outward in the radial direction R. In the present embodiment, the plurality of outlet holes 45 are distributed in the circumferential direction C.

図4に示すように、径方向Rにおけるロータ支持部41と第一摩擦板支持部33との間には、軸方向Lに延びる隙間であって、軸第一方向L1側において導出孔45に連通する隙間が形成されている。この隙間によって、導入孔33aと導出孔45とを接続する排出油路72が形成されている。本例では、排出油路72は、周方向Cの全域に亘って形成されている。導出孔45は、第一摩擦板31B及び第二摩擦板31Aの収容空間とは反対側に開口するため、導入孔33aから排出油路72に導入された油は、導出孔45を介して、第一摩擦板31B及び第二摩擦板31Aの収容空間の外部に排出される。この際、上述した移動規制部材37によって、導入孔33aから排出油路72に流入した油の軸第二方向L2側(すなわち、導出孔45とは反対側)への流通が規制される。そして、導出孔45から排出された油は、油貯留部に戻される。なお、導入孔33aには、後述する供給油路73によって第一摩擦板31B及び第二摩擦板31Aに供給された後の油が、径方向Rの内側から供給される。   As shown in FIG. 4, there is a gap extending in the axial direction L between the rotor support portion 41 and the first friction plate support portion 33 in the radial direction R, and is formed in the lead-out hole 45 on the axial first direction L1 side. A communicating gap is formed. A drain oil passage 72 that connects the introduction hole 33a and the outlet hole 45 is formed by this gap. In this example, the drain oil passage 72 is formed over the entire area in the circumferential direction C. Since the lead-out hole 45 opens to the opposite side to the accommodation space of the first friction plate 31B and the second friction plate 31A, the oil introduced into the discharge oil passage 72 from the introduction hole 33a is passed through the lead-out hole 45. The first friction plate 31B and the second friction plate 31A are discharged outside the accommodation space. At this time, the movement restricting member 37 described above restricts the flow of the oil flowing into the discharged oil passage 72 from the introduction hole 33a to the second axial direction L2 side (that is, the side opposite to the outlet hole 45). Then, the oil discharged from the outlet hole 45 is returned to the oil reservoir. In addition, the oil after being supplied to the first friction plate 31B and the second friction plate 31A by a supply oil passage 73 described later is supplied to the introduction hole 33a from the inside in the radial direction R.

図3及び図4に示すように、第二支持部材90は、第二摩擦板31Aとの係合部(第二係合部38b)を有する円筒状の第二摩擦板支持部38と、径方向Rに延びるように形成されて第二摩擦板支持部38を径方向Rの内側から支持する第二径方向延在部32と、径方向Rの内側から供給された油を第一摩擦板31B及び第二摩擦板31Aに供給する供給油路73と、を備えている。第二摩擦板支持部38と第二径方向延在部32とは、軸心X周りに一体回転する。   As shown in FIGS. 3 and 4, the second support member 90 includes a cylindrical second friction plate support portion 38 having an engagement portion (second engagement portion 38b) with the second friction plate 31A, and a diameter. A second radially extending portion 32 formed so as to extend in the direction R and supporting the second friction plate support portion 38 from the inner side in the radial direction R; and oil supplied from the inner side in the radial direction R 31B and a supply oil passage 73 that supplies the second friction plate 31A. The second friction plate support portion 38 and the second radially extending portion 32 rotate integrally around the axis X.

第二摩擦板支持部38は、軸心Xと同軸の円筒状に形成されている。第二摩擦板支持部38は、外周部に形成された第二係合部38bが第二摩擦板31Aの内周部に形成された内周係合部に対して軸方向Lに相対移動自在に係合した状態で、第二摩擦板31Aと一体回転する。本例では、第二係合部38b及び第二摩擦板31Aの内周係合部は、軸方向Lに延びるスプライン歯により構成されている。第二摩擦板支持部38は、更に、第二係合部38bがピストン34に形成された係合部に対して軸方向Lに相対移動自在に係合した状態で、ピストン34と一体回転する。第二径方向延在部32は、第二摩擦板支持部38の軸第一方向L1側の端部から径方向Rの内側に延びる、円環板状に形成されている。第二径方向延在部32は、軸方向Lにおける第一径方向延在部44とピストン34との間を、径方向Rに延びるように配置されている。そして、ピストン34と第二径方向延在部32との軸方向Lの間に、スプリング35が配置されている。第二径方向延在部32は、その径方向Rの内側の端部において、入力軸10(本例では、入力筒状部12の軸第一方向L1側の端部)に連結(例えば、溶接による接合)されている。   The second friction plate support 38 is formed in a cylindrical shape coaxial with the axis X. In the second friction plate support portion 38, the second engagement portion 38b formed on the outer peripheral portion is relatively movable in the axial direction L with respect to the inner peripheral engagement portion formed on the inner peripheral portion of the second friction plate 31A. In the state engaged with the second friction plate 31A, the second friction plate 31A rotates integrally. In the present example, the second engaging portion 38b and the inner peripheral engaging portion of the second friction plate 31A are configured by spline teeth extending in the axial direction L. Further, the second friction plate support portion 38 rotates integrally with the piston 34 in a state where the second engagement portion 38 b is engaged with the engagement portion formed on the piston 34 so as to be relatively movable in the axial direction L. . The second radially extending portion 32 is formed in an annular plate shape that extends inward in the radial direction R from the end portion of the second friction plate support portion 38 on the first axial direction L1 side. The second radially extending portion 32 is disposed so as to extend in the radial direction R between the first radially extending portion 44 and the piston 34 in the axial direction L. A spring 35 is arranged between the piston 34 and the second radial extending portion 32 in the axial direction L. The second radially extending portion 32 is connected to the input shaft 10 (in this example, the end portion on the axial first direction L1 side of the input cylindrical portion 12) at the inner end in the radial direction R (for example, Welded).

図4に示すように、第二支持部材90には、第二摩擦板支持部38の外面(本例では径方向Rの外側を向く面)に開口する供給孔32aが設けられている。供給孔32aは、第二摩擦板支持部38を径方向Rに貫通するように形成されている。本実施形態では、供給孔32aは、円形孔であり、軸方向Lに並ぶ複数(本例では3つ)の供給孔32aの組が、周方向Cに複数分散配置されている。供給孔32aに接続される供給油路73には、後述する油供給部82によって径方向Rの内側から油が供給される。供給油路73に対して油供給部82から供給された油は、図4に示すように、供給孔32aを介して第一摩擦板31B及び第二摩擦板31Aに径方向Rの内側から供給される。第一摩擦板31B及び第二摩擦板31Aに供給された油は、第一摩擦板31Bと第二摩擦板31Aとの間を通って径方向Rの外側に向かって流れる。この際、油は、第一摩擦板31Bや第二摩擦板31Aとの熱交換によって、第一摩擦板31B及び第二摩擦板31Aを冷却する。そして、第一摩擦板31B及び第二摩擦板31Aを冷却した後の油は、導入孔33aを介して排出油路72に供給される。   As shown in FIG. 4, the second support member 90 is provided with a supply hole 32 a that opens to the outer surface of the second friction plate support portion 38 (in this example, the surface facing the outside in the radial direction R). The supply hole 32a is formed so as to penetrate the second friction plate support portion 38 in the radial direction R. In the present embodiment, the supply holes 32a are circular holes, and a plurality of (three in this example) sets of supply holes 32a arranged in the axial direction L are dispersedly arranged in the circumferential direction C. Oil is supplied to the supply oil passage 73 connected to the supply hole 32a from the inside in the radial direction R by an oil supply portion 82 described later. As shown in FIG. 4, the oil supplied from the oil supply part 82 to the supply oil passage 73 is supplied from the inside in the radial direction R to the first friction plate 31B and the second friction plate 31A through the supply holes 32a. Is done. The oil supplied to the first friction plate 31B and the second friction plate 31A flows between the first friction plate 31B and the second friction plate 31A toward the outside in the radial direction R. At this time, the oil cools the first friction plate 31B and the second friction plate 31A by heat exchange with the first friction plate 31B and the second friction plate 31A. The oil after cooling the first friction plate 31B and the second friction plate 31A is supplied to the discharge oil passage 72 through the introduction hole 33a.

供給油路73は、少なくとも一部(本例では一部のみ)が第二径方向延在部32に形成される。本実施形態では、図3に示すように、第二支持部材90は、第二径方向延在部32に対して軸第二方向L2側において、第二径方向延在部32との間に軸方向Lの隙間を空けて配置される油路形成部材39を備えている。図4に示すように、この隙間によって、供給油路73の一部が形成されている。本例では、油路形成部材39は、第二径方向延在部32に対して軸第二方向L2側に配置される円環板状の本体部39aに加えて、本体部39aの径方向Rの外側端部から軸第二方向L2側に向かって延びる筒状に形成された第一筒状部39bと、本体部39aの径方向Rの内側端部から軸第二方向L2側に向かって延びる筒状に形成された第二筒状部39cとを備えている。第一筒状部39bは、第二摩擦板支持部38に対して径方向Rの内側において、第二摩擦板支持部38との間に径方向Rの隙間を空けて配置され、この隙間には、供給孔32aが開口している。また、第二筒状部39cは、入力筒状部12に対して径方向Rの外側において、入力筒状部12との間に径方向Rの隙間を空けて配置され、この隙間には、後述する第一油孔16が開口している。第一筒状部39bと第二摩擦板支持部38との間の隙間と、第二筒状部39cと入力筒状部12との間の隙間の双方は、軸第一方向L1側の端部において、本体部39aと第二径方向延在部32との間の隙間に連通している。なお、スプリング35は、本体部39aに対して軸第二方向L2側から当接した状態で、第一筒状部39bと第二筒状部39cとの径方向Rの間に配置されている。   At least a part (only a part in this example) of the supply oil path 73 is formed in the second radial extension part 32. In the present embodiment, as shown in FIG. 3, the second support member 90 is between the second radially extending portion 32 and the second radially extending portion 32 on the second axial direction L2 side. An oil passage forming member 39 arranged with a gap in the axial direction L is provided. As shown in FIG. 4, a part of the supply oil passage 73 is formed by this gap. In this example, the oil passage forming member 39 is arranged in the radial direction of the main body 39a in addition to the annular plate-shaped main body 39a disposed on the second axial direction L2 side with respect to the second radial extending portion 32. A first cylindrical portion 39b formed in a cylindrical shape extending from the outer end portion of R toward the second axial direction L2 side, and from the inner end portion of the main body portion 39a in the radial direction R toward the second axial direction L2 side. And a second cylindrical portion 39c formed in a cylindrical shape extending in the direction. The first tubular portion 39b is disposed in the radial direction R with respect to the second friction plate support portion 38 with a gap in the radial direction R between the second friction plate support portion 38 and the second friction plate support portion 38. The supply hole 32a is open. The second cylindrical portion 39c is disposed outside the radial direction R with respect to the input cylindrical portion 12 with a gap in the radial direction R between the second cylindrical portion 39c and the input cylindrical portion 12. A first oil hole 16 to be described later is opened. Both the gap between the first cylindrical portion 39b and the second friction plate support portion 38 and the gap between the second cylindrical portion 39c and the input cylindrical portion 12 are ends on the axial first direction L1 side. The portion communicates with the gap between the main body portion 39a and the second radially extending portion 32. The spring 35 is disposed between the first cylindrical portion 39b and the second cylindrical portion 39c in the radial direction R in a state where the spring 35 is in contact with the main body portion 39a from the second axial direction L2 side. .

そして、互いに連通する3つの隙間である、本体部39aと第二径方向延在部32との間の隙間と、第一筒状部39bと第二摩擦板支持部38との間の隙間と、第二筒状部39cと入力筒状部12との間の隙間とによって、供給油路73が形成されている。なお、第一筒状部39bと第二摩擦板支持部38との間の隙間は、本体部39aと第二径方向延在部32との間の隙間との連通部と、供給孔32aが開口する部分を除いて閉塞され、第二筒状部39cと入力筒状部12との間の隙間は、本体部39aと第二径方向延在部32との間の隙間との連通部と、第一油孔16が開口する部分を除いて閉塞されている。   And three gaps communicating with each other, a gap between the main body portion 39a and the second radially extending portion 32, a gap between the first cylindrical portion 39b and the second friction plate support portion 38, A supply oil passage 73 is formed by the gap between the second cylindrical portion 39 c and the input cylindrical portion 12. Note that the gap between the first cylindrical portion 39b and the second friction plate support portion 38 is such that the communication portion between the main body portion 39a and the second radially extending portion 32 and the supply hole 32a are provided. The gap between the second cylindrical portion 39c and the input cylindrical portion 12 is closed except for the opening portion, and the communicating portion with the gap between the main body portion 39a and the second radially extending portion 32 is The first oil hole 16 is closed except for the opening.

3.摩擦係合装置に対する油の供給構造
次に、摩擦係合装置CLに油を供給する油供給装置6について説明する。本実施形態では、油供給装置6は、第二支持部材90が備える供給油路73に対して油を供給する。油供給装置6は、第一摩擦板31B及び第二摩擦板31Aに対して径方向Rの内側から油を供給する油供給部82(図2、図3参照)と、油供給部82への供給油量を調節する油量調節装置80(図1参照)と、を備えている。そして、このような油供給装置6と摩擦係合装置CLとを備えて駆動伝達装置7が構成されている。図3に示すように、本実施形態では、油供給部82は、変速入力軸50に径方向Rに貫通形成された第三油孔51により構成されている。第三油孔51には、支持部材28に形成された第一油路71と、変速入力軸50の内部に形成された第二油路76とを介して、オイルポンプOPから吐出された油が供給される。なお、第二油路76は、変速入力軸50の内部に軸方向Lに延びるように形成される複数の軸内油路の1つであり、当該複数の軸内油路には、入力連結部13に形成された第二油孔17を介してシリンダ室36に連通する油路も含まれる。
3. Next, the oil supply device 6 that supplies oil to the friction engagement device CL will be described. In the present embodiment, the oil supply device 6 supplies oil to the supply oil passage 73 provided in the second support member 90. The oil supply device 6 includes an oil supply unit 82 (see FIGS. 2 and 3) that supplies oil from the inside in the radial direction R to the first friction plate 31 </ b> B and the second friction plate 31 </ b> A, and the oil supply unit 82. And an oil amount adjusting device 80 (see FIG. 1) for adjusting the amount of supplied oil. And the drive transmission apparatus 7 is comprised including such an oil supply apparatus 6 and the friction engagement apparatus CL. As shown in FIG. 3, in the present embodiment, the oil supply unit 82 is configured by a third oil hole 51 that is formed through the transmission input shaft 50 in the radial direction R. The oil discharged from the oil pump OP is passed through the third oil hole 51 via a first oil passage 71 formed in the support member 28 and a second oil passage 76 formed inside the transmission input shaft 50. Is supplied. The second oil passage 76 is one of a plurality of in-shaft oil passages formed in the transmission input shaft 50 so as to extend in the axial direction L, and the plurality of in-shaft oil passages are connected to the input connection. An oil passage communicating with the cylinder chamber 36 through the second oil hole 17 formed in the portion 13 is also included.

油供給部82は、変速入力軸50の回転に伴う遠心力を利用して、第一摩擦板31B及び第二摩擦板31Aに対して径方向Rの内側から油を供給する。本実施形態では、第三油孔51を介して変速入力軸50の外周部に供給された油は、入力連結部13と後述するポンプ駆動部材61との間の隙間を介して入力筒状部12に貫通形成された第一油孔16に供給される。本例では、第一油孔16は、径方向Rの外側に向かうに従って軸第一方向L1側に向かう傾斜状に形成されている。そして、第一油孔16を介して、油供給部82からの油が供給油路73に供給される。なお、入力連結部13とポンプ駆動部材61との間には軸受が配置されており、当該軸受の内部や周辺の隙間を介して、入力連結部13とポンプ駆動部材61との間の隙間を油が径方向Rの外側に向けて流動する。   The oil supply unit 82 supplies oil from the inside in the radial direction R to the first friction plate 31B and the second friction plate 31A by using the centrifugal force accompanying the rotation of the transmission input shaft 50. In the present embodiment, the oil supplied to the outer peripheral portion of the transmission input shaft 50 through the third oil hole 51 is input through the gap between the input connecting portion 13 and a pump drive member 61 described later. 12 is supplied to a first oil hole 16 penetratingly formed in 12. In the present example, the first oil hole 16 is formed in an inclined shape toward the first axial direction L1 as it goes outward in the radial direction R. Then, the oil from the oil supply unit 82 is supplied to the supply oil passage 73 through the first oil hole 16. In addition, a bearing is disposed between the input connecting portion 13 and the pump driving member 61, and a gap between the input connecting portion 13 and the pump driving member 61 is provided via a gap in the inside or the periphery of the bearing. Oil flows toward the outside in the radial direction R.

本実施形態では、図1に示すように、ポンプ駆動機構60は、内燃機関E及び回転電機MGのうちの回転速度の高い方のトルクによってオイルポンプOPを駆動するように構成されている。具体的には、図3に示すように、ポンプ駆動機構60は、互いに駆動連結された、ポンプ駆動部材61と、第一伝達部材63と、第二伝達部材66とを備えている。ポンプ駆動部材61と、第一支持部材40の径方向Rの内側端部に形成された筒状部分との間に、これらの双方に接する状態で第一ワンウェイクラッチF1が配置されていると共に、ポンプ駆動部材61と入力軸10の入力筒状部12との間に、これらの双方に接する状態で第二ワンウェイクラッチF2が配置されている。そして、第一ワンウェイクラッチF1によるポンプ駆動部材61に対する第一支持部材40の相対回転の規制方向と、第二ワンウェイクラッチF2によるポンプ駆動部材61に対する入力軸10の相対回転の規制方向とは、互いに同一方向となっている。このため、ポンプ駆動部材61は、入力軸10(内燃機関E)と第一支持部材40(回転電機MG)のうちの回転速度が高い方と同速で回転する。   In the present embodiment, as shown in FIG. 1, the pump drive mechanism 60 is configured to drive the oil pump OP with torque having a higher rotational speed of the internal combustion engine E and the rotating electrical machine MG. Specifically, as shown in FIG. 3, the pump drive mechanism 60 includes a pump drive member 61, a first transmission member 63, and a second transmission member 66 that are drivingly connected to each other. The first one-way clutch F1 is disposed between the pump drive member 61 and the cylindrical portion formed at the inner end portion in the radial direction R of the first support member 40 in a state of contacting both of them. Between the pump drive member 61 and the input cylindrical portion 12 of the input shaft 10, the second one-way clutch F2 is disposed in contact with both of them. And the restriction | limiting direction of the relative rotation of the 1st support member 40 with respect to the pump drive member 61 by the 1st one-way clutch F1 and the restriction | limiting direction of the relative rotation of the input shaft 10 with respect to the pump drive member 61 by the 2nd one-way clutch F2 mutually. They are in the same direction. For this reason, the pump drive member 61 rotates at the same speed as the higher one of the input shaft 10 (the internal combustion engine E) and the first support member 40 (the rotating electrical machine MG).

ポンプ駆動部材61の回転は、第一伝達部材63を介して第二伝達部材66に伝達される。なお、第一伝達部材63は、第一径方向延在部44に軸方向Lに貫通形成された軸挿通孔46に配置されている。軸挿通孔46は、周方向Cに複数分散配置されており、軸挿通孔46のそれぞれに、第一伝達部材63が配置されている。第一伝達部材63は、ポンプ駆動部材61に形成されたギヤに噛み合うギヤと、第二伝達部材66に形成されたギヤに噛み合うギヤとを、第一径方向延在部44を挟んで軸方向Lの両側に備えている。第二伝達部材66は、チェーン69が巻きかけられるスプロケットを有し、チェーン69はオイルポンプOPのポンプ軸に連結されたスプロケットにも巻きかけられている。よって、オイルポンプOPは、第一伝達部材63及び第二伝達部材66を介して伝達される、内燃機関E及び回転電機MGのうちの回転速度の高い方のトルクによって駆動される。   The rotation of the pump drive member 61 is transmitted to the second transmission member 66 via the first transmission member 63. The first transmission member 63 is disposed in a shaft insertion hole 46 that is formed through the first radial extending portion 44 in the axial direction L. A plurality of shaft insertion holes 46 are dispersedly arranged in the circumferential direction C, and the first transmission member 63 is arranged in each of the shaft insertion holes 46. The first transmission member 63 has an axial direction between a gear meshing with a gear formed on the pump drive member 61 and a gear meshing with a gear formed on the second transmission member 66 with the first radially extending portion 44 interposed therebetween. L on both sides. The second transmission member 66 has a sprocket around which the chain 69 is wound, and the chain 69 is also wound around a sprocket connected to the pump shaft of the oil pump OP. Therefore, the oil pump OP is driven by the torque having the higher rotational speed of the internal combustion engine E and the rotating electrical machine MG, which is transmitted via the first transmission member 63 and the second transmission member 66.

図示は省略するが、オイルポンプOPから油供給部82に至る油路には各種のバルブ(例えばリニアソレノイドバルブ)が設けられており、油量調節装置80は、当該バルブの動作(油圧制御装置の動作)を制御することで、油供給部82への供給油量を調節する。油量調節装置80は、CPU等の演算処理装置を中核部材として備えると共に、RAMやROM等の記憶装置等を有して構成される。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、油量調節装置80が実行する各機能が実現される。油量調節装置80は、車両全体を統合して制御する統合制御装置(図示せず)の一部を構成し、或いは、当該統合制御装置と通信可能な別の装置とされる。油量調節装置80は、統合制御装置の各機能部と各種情報を共有すると共に協調制御を行うように構成されている。統合制御装置は、車両に備えられた各種センサ(例えば、アクセル開度センサ、車速センサ、油温センサ等)による検出結果の情報を取得可能に構成されており、直接或いは他の制御装置を介して、回転電機MG、内燃機関E、及び油圧制御装置の動作制御を行う。   Although illustration is omitted, various valves (for example, linear solenoid valves) are provided in the oil passage from the oil pump OP to the oil supply unit 82, and the oil amount adjusting device 80 operates the valve (hydraulic control device). The amount of oil supplied to the oil supply unit 82 is adjusted. The oil amount adjusting device 80 includes an arithmetic processing device such as a CPU as a core member, and includes a storage device such as a RAM and a ROM. Each function executed by the oil amount adjusting device 80 is realized by software (program) stored in the ROM or the like, hardware such as a separately provided arithmetic circuit, or both. The oil amount adjusting device 80 constitutes a part of an integrated control device (not shown) that controls the entire vehicle in an integrated manner, or is another device that can communicate with the integrated control device. The oil amount adjusting device 80 is configured to share various information with each functional unit of the integrated control device and perform cooperative control. The integrated control device is configured to be able to acquire information on detection results from various sensors (for example, an accelerator opening sensor, a vehicle speed sensor, an oil temperature sensor, etc.) provided in the vehicle, and can be obtained directly or via another control device. Thus, operation control of the rotating electrical machine MG, the internal combustion engine E, and the hydraulic control device is performed.

油量調節装置80は、摩擦係合装置CLの係合の状態に応じて油供給部82への供給油量を調節する。油量調節装置80は、摩擦係合装置CLの係合の状態が移行する移行期間を除いて、摩擦係合装置CLが滑り係合状態に制御されている状態での油供給部82への供給油量を、摩擦係合装置CLが直結係合状態又は解放状態に制御されている状態での油供給部82への供給油量よりも多くするように構成されている。以下、図5を参照して、本実施形態に係る油量調節装置80による油圧調整制御の処理手順について説明する。   The oil amount adjusting device 80 adjusts the amount of oil supplied to the oil supply unit 82 according to the state of engagement of the friction engagement device CL. The oil amount adjusting device 80 is supplied to the oil supply unit 82 in a state in which the friction engagement device CL is controlled to be in the slip engagement state except for a transition period in which the engagement state of the friction engagement device CL is shifted. The supply oil amount is configured to be larger than the supply oil amount to the oil supply unit 82 in a state where the friction engagement device CL is controlled to be in the direct engagement state or the release state. Hereinafter, with reference to FIG. 5, a processing procedure of hydraulic pressure adjustment control by the oil amount adjusting device 80 according to the present embodiment will be described.

図5に示すように、摩擦係合装置CLを滑り係合状態に制御する要求が発生していない状態(ステップ#02:No)では、摩擦係合装置CLは直結係合状態又は解放状態に制御されているため、油量調節装置80は、小潤滑モードに従って油供給部82への供給油量を調整する。小潤滑モードでは、油供給部82への供給油量が、第一摩擦板31Bや第二摩擦板31Aの潤滑のために最低限必要な第一流量(ゼロを含む)に設定される。なお、摩擦係合装置CLを滑り係合状態に制御する要求は、運転者による操作や車両の状態(例えば蓄電装置の状態等)等に基づき発生する。   As shown in FIG. 5, in a state where no request for controlling the frictional engagement device CL to be in the sliding engagement state is generated (step # 02: No), the frictional engagement device CL is in the direct engagement state or the release state. Since it is controlled, the oil amount adjusting device 80 adjusts the amount of oil supplied to the oil supply unit 82 in accordance with the small lubrication mode. In the small lubrication mode, the amount of oil supplied to the oil supply unit 82 is set to the first flow rate (including zero) that is the minimum required for lubricating the first friction plate 31B and the second friction plate 31A. The request to control the friction engagement device CL to the slip engagement state is generated based on the operation by the driver, the state of the vehicle (for example, the state of the power storage device, etc.) and the like.

摩擦係合装置CLを滑り係合状態に制御する要求が発生すると(ステップ#02:Yes)、油量調節装置80は、油供給部82への供給油量の調整モードを小潤滑モードから大潤滑モードに切り替え、大潤滑モードに従った油供給部82への供給油量の調整を開始する(ステップ#03)。また、摩擦係合装置CLの係合の状態が、油量調節装置80又は他の制御装置によって、滑り係合状態に切り替えられる(ステップ#04)。大潤滑モードでは、油供給部82への供給油量が、第一流量よりも多い第二油量に設定される。第二油量は、固定値としても可変値(例えば、摩擦係合装置CLの温度又は発熱量に応じて可変に設定される可変値)としても良い。   When a request for controlling the friction engagement device CL to be in the slip engagement state is generated (step # 02: Yes), the oil amount adjustment device 80 changes the adjustment mode of the amount of oil supplied to the oil supply unit 82 from the small lubrication mode to the large adjustment mode. The mode is switched to the lubrication mode, and adjustment of the amount of oil supplied to the oil supply unit 82 according to the large lubrication mode is started (step # 03). Further, the engagement state of the friction engagement device CL is switched to the slip engagement state by the oil amount adjustment device 80 or another control device (step # 04). In the large lubrication mode, the amount of oil supplied to the oil supply unit 82 is set to a second oil amount that is greater than the first flow rate. The second oil amount may be a fixed value or a variable value (for example, a variable value variably set according to the temperature or the heat generation amount of the friction engagement device CL).

摩擦係合装置CLを滑り係合状態に制御する要求が解除されるまでの間(ステップ#05:No)、大潤滑モードに従った油供給部82への供給油量の調整が継続されると共に、摩擦係合装置CLを滑り係合状態に維持する制御が継続される。なお、摩擦係合装置CLを滑り係合状態に制御する要求は、運転者による操作や車両の状態等に基づき解除される。そして、摩擦係合装置CLを滑り係合状態に制御する要求が解除されると(ステップ#05:Yes)、摩擦係合装置CLの係合の状態が、油量調節装置80又は他の制御装置によって、直結係合状態又は解放状態に切り替えられる(ステップ#06)。その後、摩擦係合装置CLの温度が所定値(予め定められた閾値)以下になるまでの間は(ステップ#07:No)、大潤滑モードに従った油供給部82への供給油量の調整が継続され、摩擦係合装置CLの温度が当該所定値以下になると(ステップ#07:Yes)、油量調節装置80は、油供給部82への供給油量の調整モードを大潤滑モードから小潤滑モードに切り替える(ステップ#08)。このような制御の結果、摩擦係合装置CLの耐久性の観点から適切な温度まで摩擦係合装置CLの温度が低下するまでの間は、第一摩擦板31B及び第二摩擦板31Aを積極的に冷却することができ、摩擦係合装置CLを滑り係合状態に制御する要求が解除されたことを条件に油供給部82への供給油量の調整モードが大潤滑モードから小潤滑モードに切り替えられる場合に比べて、摩擦係合装置CLの耐久性の低下を抑制することができる。また、摩擦係合装置CLの耐久性の観点から適切な温度まで摩擦係合装置CLの温度が低下した後は、油供給部82への供給油量が少なく設定されるため、大潤滑モードに従った油供給部82への供給油量の調整が必要以上に長く行われることを抑制して、摩擦係合装置CLでの油の撹拌抵抗により発生する引き摺りトルクを抑制することが可能となっている。   Until the request for controlling the frictional engagement device CL to be in the sliding engagement state is released (step # 05: No), the adjustment of the amount of oil supplied to the oil supply unit 82 according to the large lubrication mode is continued. At the same time, the control for maintaining the friction engagement device CL in the sliding engagement state is continued. The request to control the friction engagement device CL to the slip engagement state is canceled based on the operation by the driver, the state of the vehicle, and the like. When the request to control the friction engagement device CL to the slip engagement state is released (step # 05: Yes), the engagement state of the friction engagement device CL is changed to the oil amount adjusting device 80 or other control. The device is switched to the direct engagement state or the release state (step # 06). Thereafter, until the temperature of the friction engagement device CL becomes equal to or lower than a predetermined value (a predetermined threshold value) (step # 07: No), the amount of oil supplied to the oil supply unit 82 according to the large lubrication mode is increased. When the adjustment is continued and the temperature of the friction engagement device CL becomes equal to or lower than the predetermined value (step # 07: Yes), the oil amount adjustment device 80 sets the adjustment mode of the amount of oil supplied to the oil supply unit 82 to the large lubrication mode. Is switched to the small lubrication mode (step # 08). As a result of such control, the first friction plate 31B and the second friction plate 31A are positively moved until the temperature of the friction engagement device CL is lowered to an appropriate temperature from the viewpoint of durability of the friction engagement device CL. The mode of adjusting the amount of oil supplied to the oil supply unit 82 is changed from the large lubrication mode to the small lubrication mode on the condition that the request to control the friction engagement device CL to the sliding engagement state is released. Compared with the case where it can switch to, the fall of durability of the friction engagement apparatus CL can be suppressed. In addition, after the temperature of the friction engagement device CL is lowered to an appropriate temperature from the viewpoint of durability of the friction engagement device CL, the amount of oil supplied to the oil supply unit 82 is set to be small. Accordingly, it is possible to suppress the drag torque generated by the oil stirring resistance in the friction engagement device CL by suppressing the adjustment of the amount of oil supplied to the oil supply unit 82 from being longer than necessary. ing.

なお、摩擦係合装置CLの温度は、温度センサによって計測される実測値であっても、推測値であっても良い。摩擦係合装置CLの温度の推測値は、例えば、第一摩擦板31Bと第二摩擦板31Aとの間の回転速度差、摩擦係合装置CLにより伝達されるトルクの大きさ、油温、摩擦係合装置CLが滑り係合状態に制御されていた時間、摩擦係合装置CLの係合の状態が滑り係合状態から直結係合状態又は解放状態に切り替えられた時点からの経過時間の、少なくとも一部の情報に基づき導出される構成とすることができる。なお、これらの回転速度差やトルクの大きさは、摩擦係合装置CLが滑り係合状態に制御されていた状態での値とすることができる。   Note that the temperature of the friction engagement device CL may be an actually measured value measured by a temperature sensor or an estimated value. The estimated value of the temperature of the friction engagement device CL is, for example, the rotational speed difference between the first friction plate 31B and the second friction plate 31A, the magnitude of torque transmitted by the friction engagement device CL, the oil temperature, The time during which the friction engagement device CL is controlled to the sliding engagement state, the elapsed time from the time when the engagement state of the friction engagement device CL is switched from the sliding engagement state to the direct coupling state or the release state. The configuration may be derived based on at least part of information. Note that these rotational speed differences and torque magnitudes can be values in a state in which the friction engagement device CL is controlled to be in a sliding engagement state.

4.その他の実施形態
最後に、本発明に係るその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
4). Other Embodiments Finally, other embodiments according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises.

(1)上記の実施形態では、第一摩擦板31Bの摩擦当接面に第一溝部4Aと第二溝部4Bとの2種類の溝部4が形成される構成を例として説明した。しかし、本発明の実施形態はこれに限定されず、第一摩擦板31Bの摩擦当接面に、第一溝部4Aと第二溝部4Bとのいずれか一方の溝部4のみが形成される構成とすることもできる。例えば、図7に示すように、第一摩擦板31Bの摩擦当接面に第一溝部4Aのみが形成される構成とすることができる。この例では、第一摩擦板31Bの摩擦当接面には、環状の摩擦材3が配置されており、当該摩擦材3を成形することにより、周方向Cに沿って等間隔に第一溝部4Aが形成されている。また、上記の実施形態では、第一摩擦板31Bの摩擦当接面に形成される溝部4が、第一摩擦板31Bに設けられた摩擦材3の内周部3aから外周部3bまで連続した溝である構成を例として説明した。しかし、本発明の実施形態はこれに限定されず、例えば図8に示す例のように、溝部4が摩擦材3の外周部3bまで連続しない溝であっても良い。図8に示す例では、溝部4は、摩擦材3の内周部3aから摩擦材3における径方向Rの中央部分まで延びるように形成されている。また、この例では、溝部4の周方向Cの幅が、径方向Rの外側に向かうに従って小さくなるように形成されている。これにより、径方向Rの外側に向けて流れる油による、第一摩擦板31Bと第二摩擦板31Aとの引き離し効果の増大が図られている。更に、この例では、摩擦材3の外周部3bのみに開口する内径側非開口溝5も形成され、油の排出性の向上が図られている。 (1) In the above embodiment, the configuration in which the two types of groove portions 4 of the first groove portion 4A and the second groove portion 4B are formed on the friction contact surface of the first friction plate 31B has been described as an example. However, the embodiment of the present invention is not limited thereto, and only one of the first groove 4A and the second groove 4B is formed on the friction contact surface of the first friction plate 31B. You can also For example, as shown in FIG. 7, only the first groove 4A can be formed on the friction contact surface of the first friction plate 31B. In this example, an annular friction material 3 is disposed on the friction contact surface of the first friction plate 31B, and the first groove portion is formed at equal intervals along the circumferential direction C by molding the friction material 3. 4A is formed. Moreover, in said embodiment, the groove part 4 formed in the friction contact surface of the 1st friction board 31B continued from the inner peripheral part 3a of the friction material 3 provided in the first friction board 31B to the outer peripheral part 3b. The configuration that is a groove has been described as an example. However, the embodiment of the present invention is not limited to this. For example, as shown in the example shown in FIG. 8, the groove 4 may be a groove that does not continue to the outer peripheral portion 3 b of the friction material 3. In the example shown in FIG. 8, the groove 4 is formed so as to extend from the inner peripheral portion 3 a of the friction material 3 to the central portion in the radial direction R of the friction material 3. Further, in this example, the width in the circumferential direction C of the groove portion 4 is formed so as to decrease toward the outside in the radial direction R. Thereby, an increase in the effect of separating the first friction plate 31B and the second friction plate 31A by the oil flowing toward the outside in the radial direction R is achieved. Furthermore, in this example, the inner diameter side non-opening groove 5 that opens only in the outer peripheral portion 3b of the friction material 3 is also formed, and the oil discharge performance is improved.

(2)上記の実施形態では、導出孔45がロータ支持部41と第一径方向延在部44との境界部位の外面に開口するように形成される構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。例えば、導出孔45が、ロータ支持部41における径方向Rに見てロータRoと重複しない部位(上記実施形態の例では、ロータRoよりも軸第一方向L1側の部分)の外面に開口するように形成される構成とすることもできる。この場合、導出孔45は、例えば、当該部位を径方向Rに平行に貫通するように形成される。また、導出孔45が、第一径方向延在部44の外面(軸第一方向L1側の面)に開口するように形成される構成とすることもできる。この場合、導出孔45は、例えば、第一径方向延在部44を軸方向Lに平行に貫通するように形成される。また、この場合、導出孔45が、ロータ支持部41と第一径方向延在部44との境界部位に形成されても良い。 (2) In the above embodiment, the configuration in which the lead-out hole 45 is formed so as to open to the outer surface of the boundary portion between the rotor support portion 41 and the first radial extension portion 44 has been described as an example. However, the embodiment of the present invention is not limited to this. For example, the lead-out hole 45 opens on the outer surface of a portion that does not overlap with the rotor Ro when viewed in the radial direction R in the rotor support portion 41 (in the example of the above embodiment, the portion on the first axial direction L1 side with respect to the rotor Ro). It can also be set as the structure formed in this way. In this case, the lead-out hole 45 is formed, for example, so as to penetrate the part in parallel with the radial direction R. Moreover, it can also be set as the structure formed so that the derivation | leading-out hole 45 may open to the outer surface (surface at the side of the 1st axial direction L1) of the 1st radial direction extension part 44. FIG. In this case, the lead-out hole 45 is formed, for example, so as to penetrate the first radial extending portion 44 in parallel with the axial direction L. In this case, the lead-out hole 45 may be formed at a boundary portion between the rotor support portion 41 and the first radial extension portion 44.

(3)上記の実施形態では、第一摩擦板支持部33がロータ支持部41とは別部材である構成を例として説明した。しかし、本発明の実施形態はこれに限定されず、第一摩擦板支持部33とロータ支持部41とが一体的に形成される構成(同一部材における互いに異なる部位である構成)、すなわち、ロータ支持部41が第一摩擦板支持部33を兼ねる構成とすることもできる。 (3) In the above embodiment, the configuration in which the first friction plate support portion 33 is a separate member from the rotor support portion 41 has been described as an example. However, the embodiment of the present invention is not limited to this, and a configuration in which the first friction plate support portion 33 and the rotor support portion 41 are formed integrally (a configuration in which the same member is different from each other), that is, the rotor The support portion 41 may also serve as the first friction plate support portion 33.

(4)上記の実施形態では、第一支持部材40が第一摩擦板31Bを径方向Rの外側から支持し、第二支持部材90が第二摩擦板31Aを径方向Rの内側から支持する構成を例として説明した。しかし、本発明の実施形態はこれに限定されず、第一支持部材40が第一摩擦板31Bを径方向Rの内側から支持し、第二支持部材90が第二摩擦板31Aを径方向Rの外側から支持する構成とすることもできる。 (4) In the above embodiment, the first support member 40 supports the first friction plate 31B from the outside in the radial direction R, and the second support member 90 supports the second friction plate 31A from the inside in the radial direction R. The configuration has been described as an example. However, the embodiment of the present invention is not limited to this, and the first support member 40 supports the first friction plate 31B from the inside in the radial direction R, and the second support member 90 supports the second friction plate 31A in the radial direction R. It can also be set as the structure supported from the outer side.

(5)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。従って、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。 (5) Regarding other configurations, it should be understood that the embodiments disclosed herein are illustrative in all respects and that the scope of the present invention is not limited thereby. Those skilled in the art will readily understand that modifications can be made as appropriate without departing from the spirit of the present invention. Accordingly, other embodiments modified without departing from the spirit of the present invention are naturally included in the scope of the present invention.

5.本発明の実施形態の概要
以上で説明した本発明の実施形態は、少なくとも以下の構成を備えている。
内燃機関(E)に駆動連結される入力部材(10)と車輪(W)に駆動連結される出力部材(O)とを結ぶ動力伝達経路に回転電機(MG)を備えた車両用駆動装置(1)における、前記入力部材(10)と前記回転電機(MG)との間の動力伝達経路に設けられる湿式の摩擦係合装置(CL)であって、摩擦材(3)が設けられた摩擦当接面を軸方向(L)の両側に有する少なくとも1枚の第一摩擦板(31B)と、摩擦材(3)が設けられていない摩擦当接面を軸方向(L)の両側に有すると共に前記第一摩擦板(31B)を軸方向(L)の両側から挟むように配置される複数枚の第二摩擦板(31A)と、前記第一摩擦板(31B)と一体回転する第一支持部材(40)と、前記第二摩擦板(31A)と一体回転する第二支持部材(90)と、を備え、前記第一摩擦板(31B)の軸方向(L)両側の前記摩擦当接面に、径方向(R)に延びる溝部(4)が形成され、前記第一支持部材(40)が、前記回転電機(MG)に駆動連結されると共に、前記第二支持部材(90)が、前記入力部材(10)に駆動連結される。
5. Outline of Embodiment of the Present Invention The embodiment of the present invention described above has at least the following configuration.
A vehicular drive device including a rotating electrical machine (MG) in a power transmission path connecting an input member (10) drivingly connected to the internal combustion engine (E) and an output member (O) drivingly connected to the wheels (W) ( 1), a wet friction engagement device (CL) provided in a power transmission path between the input member (10) and the rotating electrical machine (MG), wherein the friction material (3) is provided. At least one first friction plate (31B) having contact surfaces on both sides in the axial direction (L) and friction contact surfaces not provided with the friction material (3) are provided on both sides in the axial direction (L). A plurality of second friction plates (31A) disposed so as to sandwich the first friction plate (31B) from both sides in the axial direction (L), and a first rotating integrally with the first friction plate (31B). A support member (40) and a second support member (9 that rotates integrally with the second friction plate (31A)) ), Grooves (4) extending in the radial direction (R) are formed on the friction contact surfaces on both sides in the axial direction (L) of the first friction plate (31B), and the first support member ( 40) is drivingly connected to the rotating electrical machine (MG), and the second support member (90) is drivingly connected to the input member (10).

このような構成によれば、第一支持部材が回転電機に駆動連結されるため、摩擦係合装置が解放状態に制御されて電動走行モードが実行されている状態では、回転電機の回転に伴って、第一支持部材と共に第一摩擦板が回転する状態となる。ここで、第一摩擦板の摩擦当接面には、径方向に延びる溝部が形成されているため、第一摩擦板の回転による遠心力を利用して、油を効率的に径方向外側へ流すことができる。これにより、第一支持部材ではなく第二支持部材が回転電機に駆動連結されることにより、回転電機の回転に伴って第一摩擦板ではなく溝部の形成されていない第二摩擦板が回転する場合に比べて、油の排出効果や第一摩擦板と第二摩擦板との引き離し効果といった、引き摺りトルクの低減につながる溝部の効果を高めることができる。この結果、電動走行モードの実行中における引き摺りトルクを効果的に低減することが可能となる。   According to such a configuration, since the first support member is drivingly connected to the rotating electrical machine, the rotation of the rotating electrical machine is performed in a state where the friction engagement device is controlled to the released state and the electric travel mode is executed. Thus, the first friction plate rotates together with the first support member. Here, since the groove portion extending in the radial direction is formed on the friction contact surface of the first friction plate, the oil is efficiently discharged radially outward using the centrifugal force generated by the rotation of the first friction plate. It can flow. As a result, the second support member, not the first support member, is drivingly connected to the rotating electrical machine, so that the second friction plate, not the first friction plate, which is not formed with a groove, rotates as the rotating electrical machine rotates. Compared with the case, the effect of the groove part leading to reduction of drag torque, such as the oil discharging effect and the effect of separating the first friction plate and the second friction plate, can be enhanced. As a result, it is possible to effectively reduce drag torque during execution of the electric travel mode.

また、本発明の実施形態は、前記第一支持部材(40)は、前記第一摩擦板(31B)を径方向(R)外側から支持し、前記第二支持部材(90)は、前記第二摩擦板(31A)を径方向(R)内側から支持すると好適である。   In the embodiment of the present invention, the first support member (40) supports the first friction plate (31B) from the outside in the radial direction (R), and the second support member (90) The two friction plates (31A) are preferably supported from the inside in the radial direction (R).

この構成によれば、電動走行モードが実行されている状態では、第一摩擦板と共に回転する第一支持部材が、第一摩擦板及び第二摩擦板に対して径方向外側に配置される。よって、第一摩擦板や第二摩擦板から径方向外側に排出された油を、第一支持部材に作用する遠心力を利用して摩擦係合装置の外側に排出することができる。よって、電動走行モードが実行されている状態での摩擦係合装置からの油の排出を円滑化して、引き摺り損失の低減をより一層図ることができる。   According to this configuration, in the state where the electric travel mode is being executed, the first support member that rotates together with the first friction plate is disposed radially outward with respect to the first friction plate and the second friction plate. Therefore, the oil discharged to the outside in the radial direction from the first friction plate and the second friction plate can be discharged to the outside of the friction engagement device using the centrifugal force acting on the first support member. Therefore, the oil can be smoothly discharged from the friction engagement device in the state where the electric travel mode is executed, and the drag loss can be further reduced.

また、本発明の実施形態は、前記第一支持部材(40)は、前記回転電機(MG)のロータ(Ro)を径方向(R)内側から支持する円筒状のロータ支持部(41)と、径方向(R)に延びるように形成されて前記ロータ支持部(41)を径方向(R)内側から支持する第一径方向延在部(44)と、前記ロータ支持部(41)に対して径方向(R)内側に設けられて前記第一摩擦板(31B)との係合部(33b)を有する円筒状の第一摩擦板支持部(33)と、前記第一摩擦板(31B)及び前記第二摩擦板(31A)に対して径方向(R)内側から供給された油を排出する排出油路(72)と、を備え、前記排出油路(72)は、前記第一摩擦板支持部(33)の内面に開口する導入孔(33a)と、前記ロータ支持部(41)における径方向(R)に見て前記ロータ(Ro)と重複しない部位の外面に開口する導出孔(45)、又は前記ロータ支持部(41)と前記第一径方向延在部(44)との境界部位の外面に開口する導出孔(45)と、を接続すると好適である。   In the embodiment of the present invention, the first support member (40) includes a cylindrical rotor support portion (41) that supports the rotor (Ro) of the rotating electrical machine (MG) from the inside in the radial direction (R). A first radially extending portion (44) formed to extend in the radial direction (R) and supporting the rotor support portion (41) from the inside in the radial direction (R); and the rotor support portion (41). On the other hand, a cylindrical first friction plate support portion (33) provided on the inner side in the radial direction (R) and having an engagement portion (33b) with the first friction plate (31B), and the first friction plate ( 31B) and an oil discharge passage (72) for discharging oil supplied from the inside in the radial direction (R) with respect to the second friction plate (31A), and the oil discharge passage (72) An introduction hole (33a) that opens to the inner surface of one friction plate support (33), and the rotor support (41) A lead-out hole (45) that opens to the outer surface of a portion that does not overlap with the rotor (Ro) when viewed in the radial direction (R), or between the rotor support portion (41) and the first radial extension portion (44). It is preferable to connect the lead-out hole (45) that opens to the outer surface of the boundary part.

この構成によれば、第一摩擦板や第二摩擦板から径方向外側に排出された油を導入孔から排出油路に導入させると共に、当該油を導出孔から摩擦係合装置の外部に排出することができる。すなわち、排出油路を設けることで、第一摩擦板や第二摩擦板から径方向外側に排出された油が摩擦係合装置の外部に排出されるまでの油の流れを円滑にすることができ、引き摺り損失の低減をより一層図ることができる。   According to this configuration, the oil discharged radially outward from the first friction plate and the second friction plate is introduced into the discharge oil passage from the introduction hole, and the oil is discharged from the lead-out hole to the outside of the friction engagement device. can do. That is, by providing the drain oil passage, the oil flow from the first friction plate or the second friction plate to the outside in the radial direction can be smoothly performed until the oil is discharged to the outside of the friction engagement device. This can further reduce drag loss.

また、本発明の実施形態は、前記第二摩擦板(31A)との当接部(34a)を有して油圧により前記第一摩擦板(31B)及び前記第二摩擦板(31A)を軸方向(L)に押圧するピストン(34)と、前記ピストン(34)を油圧による押圧方向とは反対方向に付勢するスプリング(35)とを備え、前記第二支持部材(90)は、前記第二摩擦板(31A)との係合部(38b)を有する円筒状の第二摩擦板支持部(38)と、径方向(R)に延びるように形成されて前記第二摩擦板支持部(38)を径方向(R)内側から支持する第二径方向延在部(32)と、径方向(R)内側から供給された油を前記第一摩擦板(31B)及び前記第二摩擦板(31A)に供給する供給油路(73)と、を備え、前記スプリング(35)は、前記ピストン(34)と前記第二径方向延在部(32)との軸方向(L)の間に配置され、前記供給油路(73)は、少なくとも一部が前記第二径方向延在部(32)に形成されると共に、前記第二摩擦板支持部(38)の外面に開口する供給孔(32a)に接続されていると好適である。   Further, the embodiment of the present invention has a contact portion (34a) with the second friction plate (31A), and the first friction plate (31B) and the second friction plate (31A) are pivoted by hydraulic pressure. A piston (34) that presses in the direction (L), and a spring (35) that biases the piston (34) in a direction opposite to the pressing direction by hydraulic pressure, and the second support member (90) A cylindrical second friction plate support portion (38) having an engagement portion (38b) with the second friction plate (31A), and the second friction plate support portion formed so as to extend in the radial direction (R). A second radially extending portion (32) for supporting (38) from the inside in the radial direction (R), and oil supplied from the inside in the radial direction (R) for the first friction plate (31B) and the second friction. A supply oil passage (73) for supplying to the plate (31A), and the spring (35) Arranged between the ston (34) and the second radial extending portion (32) in the axial direction (L), at least a part of the supply oil passage (73) is the second radial extending portion. It is preferable that it is formed in (32) and connected to a supply hole (32a) opened in the outer surface of the second friction plate support (38).

この構成によれば、径方向内側から供給された油が第一摩擦板及び第二摩擦板に対して供給されるまでの油の流れを円滑にすることができ、第一摩擦板や第二摩擦板の冷却が必要な場合に、これらの摩擦板に対して油を適切に供給することができる。   According to this configuration, the flow of oil until the oil supplied from the radially inner side is supplied to the first friction plate and the second friction plate can be made smooth. When the friction plates need to be cooled, oil can be appropriately supplied to these friction plates.

また、本発明の実施形態は、前記溝部(4)は、前記第一摩擦板(31B)に設けられた摩擦材(3)の内周部(3a)から外周部(3b)まで連続した溝であると好適である。   Further, in the embodiment of the present invention, the groove (4) is a continuous groove from the inner peripheral portion (3a) to the outer peripheral portion (3b) of the friction material (3) provided on the first friction plate (31B). Is preferable.

この構成によれば、溝部による油の排出効果を高めて、引き摺りトルクの低減効果の向上を図ることができる。   According to this configuration, it is possible to enhance the oil draining effect by the groove and improve the drag torque reducing effect.

また、本発明の実施形態は、駆動伝達装置(7)が、前記摩擦係合装置(CL)と、前記摩擦係合装置(CL)に油を供給する油供給装置(6)と、を備え、前記油供給装置(6)は、前記第一摩擦板(31B)及び前記第二摩擦板(31A)に対して径方向(R)内側から油を供給する油供給部(82)と、前記油供給部(82)への供給油量を調節する油量調節装置(80)と、を備え、前記油量調節装置(80)は、前記摩擦係合装置(CL)の係合の状態に応じて前記油供給部(82)への供給油量を調節すると好適である。   In the embodiment of the present invention, the drive transmission device (7) includes the friction engagement device (CL) and an oil supply device (6) for supplying oil to the friction engagement device (CL). The oil supply device (6) includes an oil supply unit (82) for supplying oil from the inside in the radial direction (R) to the first friction plate (31B) and the second friction plate (31A), An oil amount adjusting device (80) for adjusting the amount of oil supplied to the oil supply unit (82), and the oil amount adjusting device (80) is in an engaged state of the friction engagement device (CL). Accordingly, it is preferable to adjust the amount of oil supplied to the oil supply section (82).

この構成によれば、電動走行モードの実行中における引き摺りトルクを、より効果的に低減することができる。補足説明すると、油供給部への供給油量が摩擦係合装置の係合の状態に応じて調節されない場合には、油供給部への供給油量は、発熱量の大きい滑り係合状態での冷却性能を確保できるような、比較的大きな油量に設定される。これに対し、上記の構成では、油供給部への供給油量を摩擦係合装置の係合の状態に応じて調節することができるため、滑り係合状態に比べて発熱量の小さい解放状態に摩擦係合装置が制御されている場合には、油供給部への供給油量を減らし或いは零にすることができる。よって、油供給部への供給油量が摩擦係合装置の係合の状態に応じて調節されない場合に比べて、電動走行モードの実行中における引き摺りトルクをより低減することができる。   According to this configuration, it is possible to more effectively reduce drag torque during execution of the electric travel mode. Supplementally, if the amount of oil supplied to the oil supply unit is not adjusted according to the state of engagement of the friction engagement device, the amount of oil supplied to the oil supply unit is the slip engagement state where the heat generation amount is large. The oil amount is set to be relatively large so that the cooling performance can be secured. On the other hand, in the above configuration, since the amount of oil supplied to the oil supply unit can be adjusted according to the engagement state of the friction engagement device, the released state has a smaller calorific value than the slip engagement state. When the friction engagement device is controlled, the amount of oil supplied to the oil supply unit can be reduced or made zero. Therefore, the drag torque during execution of the electric travel mode can be further reduced as compared with the case where the amount of oil supplied to the oil supply unit is not adjusted according to the state of engagement of the friction engagement device.

本発明は、内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に回転電機を備えた車両用駆動装置における、入力部材と回転電機との間の動力伝達経路に設けられる湿式の摩擦係合装置、及び、そのような摩擦係合装置と当該摩擦係合装置に油を供給する油供給装置とを備えた駆動伝達装置に利用することができる。   The present invention relates to power between an input member and a rotating electrical machine in a vehicle drive device including a rotating electrical machine in a power transmission path that connects an input member that is drivingly connected to an internal combustion engine and an output member that is drivingly connected to a wheel. The present invention can be applied to a wet friction engagement device provided in a transmission path, and a drive transmission device including such a friction engagement device and an oil supply device that supplies oil to the friction engagement device.

1:車両用駆動装置
3:摩擦材
3a:内周部
3b:外周部
4:溝部
6:油供給装置
7:駆動伝達装置
10:入力軸(入力部材)
31A:第二摩擦板
31B:第一摩擦板
32:第二径方向延在部
32a:供給孔
33:第一摩擦板支持部
33a:導入孔
33b:第一係合部(係合部)
34:ピストン
34a:当接部
35:スプリング
38:第二摩擦板支持部
38b:第二係合部(係合部)
40:第一支持部材
41:ロータ支持部
44:第一径方向延在部
45:導出孔
72:排出油路
73:供給油路
80:油量調節装置
82:油供給部
90:第二支持部材
CL:摩擦係合装置
E:内燃機関
L:軸方向
MG:回転電機
O:出力軸(出力部材)
R:径方向
Ro:ロータ
W:車輪
1: Vehicle drive device 3: Friction material 3a: Inner peripheral portion 3b: Outer peripheral portion 4: Groove portion 6: Oil supply device 7: Drive transmission device 10: Input shaft (input member)
31A: second friction plate 31B: first friction plate 32: second radially extending portion 32a: supply hole 33: first friction plate support portion 33a: introduction hole 33b: first engagement portion (engagement portion)
34: Piston 34a: Contact portion 35: Spring 38: Second friction plate support portion 38b: Second engagement portion (engagement portion)
40: first support member 41: rotor support portion 44: first radial extending portion 45: outlet hole 72: discharge oil passage 73: supply oil passage 80: oil amount adjusting device 82: oil supply portion 90: second support Member CL: Friction engagement device E: Internal combustion engine L: Axial direction MG: Electric rotating machine O: Output shaft (output member)
R: radial direction Ro: rotor W: wheel

Claims (6)

内燃機関に駆動連結される入力部材と車輪に駆動連結される出力部材とを結ぶ動力伝達経路に回転電機を備えた車両用駆動装置における、前記入力部材と前記回転電機との間の動力伝達経路に設けられる湿式の摩擦係合装置であって、
摩擦材が設けられた摩擦当接面を軸方向の両側に有する少なくとも1枚の第一摩擦板と、摩擦材が設けられていない摩擦当接面を軸方向の両側に有すると共に前記第一摩擦板を軸方向の両側から挟むように配置される複数枚の第二摩擦板と、前記第一摩擦板と一体回転する第一支持部材と、前記第二摩擦板と一体回転する第二支持部材と、を備え、
前記第一摩擦板の軸方向両側の前記摩擦当接面に、径方向に延びる溝部が形成され、
前記第一支持部材が、前記回転電機に駆動連結されると共に、前記第二支持部材が、前記入力部材に駆動連結される摩擦係合装置。
A power transmission path between the input member and the rotating electrical machine in a vehicle drive device having a rotating electrical machine in a power transmission path that connects an input member that is drivingly coupled to an internal combustion engine and an output member that is drivingly coupled to a wheel. A wet friction engagement device provided in
At least one first friction plate having a friction contact surface provided with a friction material on both sides in the axial direction, and a friction contact surface not provided with a friction material on both sides in the axial direction and the first friction A plurality of second friction plates arranged so as to sandwich the plate from both sides in the axial direction, a first support member that rotates integrally with the first friction plate, and a second support member that rotates integrally with the second friction plate And comprising
Groove portions extending in the radial direction are formed on the friction contact surfaces on both axial sides of the first friction plate,
The friction engagement device, wherein the first support member is drivingly connected to the rotating electrical machine, and the second support member is drivingly connected to the input member.
前記第一支持部材は、前記第一摩擦板を径方向外側から支持し、前記第二支持部材は、前記第二摩擦板を径方向内側から支持する請求項1に記載の摩擦係合装置。   2. The friction engagement device according to claim 1, wherein the first support member supports the first friction plate from a radially outer side, and the second support member supports the second friction plate from a radially inner side. 前記第一支持部材は、前記回転電機のロータを径方向内側から支持する円筒状のロータ支持部と、径方向に延びるように形成されて前記ロータ支持部を径方向内側から支持する第一径方向延在部と、前記ロータ支持部に対して径方向内側に設けられて前記第一摩擦板との係合部を有する円筒状の第一摩擦板支持部と、前記第一摩擦板及び前記第二摩擦板に対して径方向内側から供給された油を排出する排出油路と、を備え、
前記排出油路は、前記第一摩擦板支持部の内面に開口する導入孔と、前記ロータ支持部における径方向に見て前記ロータと重複しない部位の外面に開口する導出孔、又は前記ロータ支持部と前記第一径方向延在部との境界部位の外面に開口する導出孔と、を接続する請求項2に記載の摩擦係合装置。
The first support member includes a cylindrical rotor support portion that supports the rotor of the rotating electrical machine from the radially inner side, and a first diameter that extends in the radial direction and supports the rotor support portion from the radially inner side. A direction-extending portion, a cylindrical first friction plate support portion provided radially inward with respect to the rotor support portion and having an engagement portion with the first friction plate, the first friction plate, and the A discharge oil passage for discharging oil supplied from the radially inner side to the second friction plate,
The drain oil passage includes an introduction hole that opens to an inner surface of the first friction plate support portion, a lead-out hole that opens to an outer surface of a portion that does not overlap the rotor when viewed in the radial direction of the rotor support portion, or the rotor support The friction engagement device according to claim 2, wherein a lead-out hole that opens to an outer surface of a boundary portion between the first portion and the first radially extending portion is connected.
前記第二摩擦板との当接部を有して油圧により前記第一摩擦板及び前記第二摩擦板を軸方向に押圧するピストンと、前記ピストンを油圧による押圧方向とは反対方向に付勢するスプリングとを備え、
前記第二支持部材は、前記第二摩擦板との係合部を有する円筒状の第二摩擦板支持部と、径方向に延びるように形成されて前記第二摩擦板支持部を径方向内側から支持する第二径方向延在部と、径方向内側から供給された油を前記第一摩擦板及び前記第二摩擦板に供給する供給油路と、を備え、
前記スプリングは、前記ピストンと前記第二径方向延在部との軸方向の間に配置され、
前記供給油路は、少なくとも一部が前記第二径方向延在部に形成されると共に、前記第二摩擦板支持部の外面に開口する供給孔に接続されている請求項2又は3に記載の摩擦係合装置。
A piston having a contact portion with the second friction plate and pressing the first friction plate and the second friction plate in the axial direction by hydraulic pressure, and urging the piston in a direction opposite to the pressing direction by the hydraulic pressure And a spring to
The second support member has a cylindrical second friction plate support portion having an engagement portion with the second friction plate, and is formed to extend in the radial direction so that the second friction plate support portion is radially inward. A second radially extending portion that is supported from, and a supply oil path that supplies oil supplied from the radially inner side to the first friction plate and the second friction plate,
The spring is disposed between the piston and the axial direction of the second radially extending portion;
4. The supply oil passage according to claim 2, wherein at least a part of the supply oil passage is formed in the second radially extending portion and is connected to a supply hole that opens to an outer surface of the second friction plate support portion. Friction engagement device.
前記溝部は、前記第一摩擦板に設けられた摩擦材の内周部から外周部まで連続した溝である請求項1から4のいずれか一項に記載の摩擦係合装置。   5. The friction engagement device according to claim 1, wherein the groove is a groove that is continuous from an inner periphery to an outer periphery of a friction material provided in the first friction plate. 請求項1から5のいずれか一項に記載の摩擦係合装置と、前記摩擦係合装置に油を供給する油供給装置と、を備えた駆動伝達装置であって、
前記油供給装置は、前記第一摩擦板及び前記第二摩擦板に対して径方向内側から油を供給する油供給部と、前記油供給部への供給油量を調節する油量調節装置と、を備え、
前記油量調節装置は、前記摩擦係合装置の係合の状態に応じて前記油供給部への供給油量を調節する駆動伝達装置。
A drive transmission device comprising: the friction engagement device according to any one of claims 1 to 5; and an oil supply device that supplies oil to the friction engagement device,
The oil supply device includes an oil supply unit that supplies oil from a radially inner side to the first friction plate and the second friction plate, and an oil amount adjustment device that adjusts the amount of oil supplied to the oil supply unit. With
The oil amount adjusting device is a drive transmission device that adjusts the amount of oil supplied to the oil supply unit according to the state of engagement of the friction engagement device.
JP2014202278A 2014-09-30 2014-09-30 Friction engagement device and drive transmission device Pending JP2016070432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202278A JP2016070432A (en) 2014-09-30 2014-09-30 Friction engagement device and drive transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202278A JP2016070432A (en) 2014-09-30 2014-09-30 Friction engagement device and drive transmission device

Publications (1)

Publication Number Publication Date
JP2016070432A true JP2016070432A (en) 2016-05-09

Family

ID=55864357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202278A Pending JP2016070432A (en) 2014-09-30 2014-09-30 Friction engagement device and drive transmission device

Country Status (1)

Country Link
JP (1) JP2016070432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226312A1 (en) 2016-03-31 2017-10-04 Nichia Corporation Light emitting device
JP2018057221A (en) * 2016-09-30 2018-04-05 アイシン精機株式会社 Drive power generation device
WO2021085538A1 (en) * 2019-10-30 2021-05-06 アイシン・エィ・ダブリュ工業株式会社 Vehicle drive transmission device and vehicle drive device provided with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226312A1 (en) 2016-03-31 2017-10-04 Nichia Corporation Light emitting device
JP2018057221A (en) * 2016-09-30 2018-04-05 アイシン精機株式会社 Drive power generation device
WO2021085538A1 (en) * 2019-10-30 2021-05-06 アイシン・エィ・ダブリュ工業株式会社 Vehicle drive transmission device and vehicle drive device provided with same
US11890937B2 (en) 2019-10-30 2024-02-06 Aisin Fukui Corporation Vehicle drive transmission device and vehicle drive device including same

Similar Documents

Publication Publication Date Title
JP6844690B2 (en) Vehicle drive
JP5417873B2 (en) Control device for hybrid vehicle
EP2573910B1 (en) Driving-force transmission device
US9522642B2 (en) Oil supply device
US8308595B2 (en) Hybrid drive device
CN102007012B (en) Vehicle drive device
JP6303770B2 (en) Drive device
US20130008759A1 (en) Hybrid drive device
US9027724B2 (en) Starting device
JP2013095389A (en) Drive device for vehicle
JP6020724B2 (en) Vehicle clutch hydraulic system
JP2016070432A (en) Friction engagement device and drive transmission device
JP6213002B2 (en) Coil end oil cooling structure for rotating electrical machines
KR101602586B1 (en) Clutch unit
JP5533494B2 (en) Vehicle clutch device
JP2013199183A (en) Vehicle drive device
JP2013071624A (en) Driving unit
JP2013095247A (en) Vehicle control device
JP2015155292A (en) vehicle drive device
JP2015178862A (en) friction engagement device
JP2017180730A (en) Drive unit for vehicle
JP2011214655A (en) Friction engaging device
JP2013163462A (en) Hybrid drive device
JP2020173017A (en) Hydraulic clutch
JP5338360B2 (en) Control device for hybrid vehicle