JP2016065328A - Flat multi-lobar cross section polyamide fiber - Google Patents

Flat multi-lobar cross section polyamide fiber Download PDF

Info

Publication number
JP2016065328A
JP2016065328A JP2014193549A JP2014193549A JP2016065328A JP 2016065328 A JP2016065328 A JP 2016065328A JP 2014193549 A JP2014193549 A JP 2014193549A JP 2014193549 A JP2014193549 A JP 2014193549A JP 2016065328 A JP2016065328 A JP 2016065328A
Authority
JP
Japan
Prior art keywords
flat
cross
line segment
polyamide fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014193549A
Other languages
Japanese (ja)
Inventor
健太郎 ▲たか▼木
健太郎 ▲たか▼木
Kentaro Takagi
佳史 佐藤
Yoshifumi Sato
佳史 佐藤
林 剛史
Takashi Hayashi
剛史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014193549A priority Critical patent/JP2016065328A/en
Publication of JP2016065328A publication Critical patent/JP2016065328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat multi-lobar cross section polyamide fiber providing a knitted fabric having water absorption, high strength, soft and dry feeling and elegant brightness.SOLUTION: There is provided a flat multi-lobar cross section polyamide fiber having the content of an inorganic compound of 0 to 3 wt.% (to a polymer), the content of a moisture absorbent of 0 to 6 wt.% (to the polymer), single fiber fineness of 2.5 dtex or less, a cross section shape of the single fiber of a flat multi-leaves shape with 6 to 10 leaves, and satisfying the following formula, where length of a maximum line segment A connecting any two points of salient peaks of the flat multileaves shape is a, length of a line segment B of a circumscription square containing a line parallel to the line segment A and a line with right angle to the same B, where a degree of angle constituted by neighboring lines is 90°, is b, length of a line segment C connecting peaks of the salient neighboring at at least one of convexoconcave formed by the flat multileaves shape is c and length of a vertical line D extending to the line segment C connecting peaks of the salient from recess sandwiched by the salient is d. Flat degree (a/b)=1.5 to 2.2; irregular shape degree (c/d)=1.0 to 8.0.SELECTED DRAWING: Figure 1

Description

本発明は扁平多葉断面を有する異形断面ポリアミド繊維に関するものである。さらに詳しくは、吸水性を備えながらも高強度を有し、ソフトでサラッとした風合いと優雅な光沢を有した織編物を提供しうる扁平多葉断面ポリアミド繊維に関する。 The present invention relates to a modified cross-section polyamide fiber having a flat multilobed cross section. More particularly, the present invention relates to a flat multilobal polyamide fiber capable of providing a woven or knitted fabric having high strength while having water absorption, soft and smooth texture, and elegant luster.

合成繊維であるポリアミド繊維やポリエステル繊維は、機械的・化学的性質において優れた特性を有することから衣料用途や産業用途で広く利用されている。特に、ポリアミド繊維は、肌触り、光沢性において優れた特性を有することから一般衣料製品等の用途で広く使用されている。とりわけ、インナーウェアーについては、ポリアミド繊維の有するしなやかさ、表面のなめらかなタッチ、着用時のひんやり感等が好まれ多く用いられてきている。合成繊維製衣料製品においては風合いの良さや、吸水速乾性など機能付与に対するニーズが強く、異形断面繊維に関する技術の開示は多い。   Synthetic fibers such as polyamide fibers and polyester fibers are widely used in clothing and industrial applications because they have excellent mechanical and chemical properties. In particular, polyamide fibers are widely used in applications such as general clothing products because they have excellent properties in touch and gloss. In particular, innerwear has been favorably used because of its flexibility, the smooth touch of the surface, the cool feeling when worn, and the like. Synthetic fiber apparel products have strong needs for functioning such as good texture and water absorption and quick drying, and there are many disclosures of technologies related to modified cross-section fibers.

しかしながら、ポリアミド繊維はポリエステル繊維等に比較して、特殊断面形状を維持し、安定して紡糸することは困難であり、特に単糸繊度が小さい場合、満足できる特性を有するポリアミドの異形断面繊維は得られていなかった。   However, polyamide fibers maintain a special cross-sectional shape compared to polyester fibers, etc., and it is difficult to stably spin. Especially, when the single yarn fineness is small, polyamide modified cross-section fibers having satisfactory characteristics are It was not obtained.

一方、ポリエステル繊維ではあるが、特殊な形状の吐出孔を有した紡糸口金を用いることで、単繊維断面形状が全体として楕円状で8個の葉部を有することを特徴とした、ハリ・腰を備えながらもソフトでサラッとした風合いと、優雅な光沢を有するポリエステル繊維を得る技術が報告されている(特許文献1,2)。しかしながら、かかるポリエステル繊維によりある程度の風合い、光沢は得られるものの、強度や耐擦過性等の点において劣るので、それらの特性が高いことが強く要求される用途への展開は難しいものであった。また、特許文献1および2記載の技術を転用してポリアミドの異形断面繊維を製造しても、ポリアミド繊維は、ポリエステルに比べ異形断面形状の制御が格段に難しいので、上記特許文献に記載されたような吐出孔形状の紡糸口金を用いる技術のみでは所望の異形断面ポリアミド繊維の断面形状を維持し、安定して紡糸することは困難であった。   On the other hand, although it is a polyester fiber, by using a spinneret having a discharge hole with a special shape, the cross-sectional shape of the single fiber is an ellipse as a whole and has eight leaf parts. Have been reported to obtain polyester fibers having a soft and smooth texture and an elegant gloss (Patent Documents 1 and 2). However, although some texture and gloss can be obtained with such a polyester fiber, it is inferior in terms of strength, scratch resistance and the like, and therefore, it has been difficult to develop into applications in which these properties are strongly required. Moreover, even if the modified cross-section fibers of polyamide are produced by diverting the techniques described in Patent Documents 1 and 2, the control of the modified cross-sectional shape of polyamide fibers is much more difficult than that of polyester. It is difficult to maintain a desired cross-sectional shape of a modified cross-section polyamide fiber and to perform stable spinning only with a technique using a spinneret having such a discharge hole shape.

特開平4−24214号公報Japanese Patent Laid-Open No. 4-24214 特開2005−350777号公報JP 2005-350777 A

本発明は、吸水速乾性と高強度を兼ね備え、ソフトでサラッとした風合いと光沢感を有した扁平多葉断面ポリアミド繊維を提供することを主な目的とする。   The main object of the present invention is to provide a flat multi-leafed polyamide fiber having both a water-absorbing quick-drying property and high strength, and having a soft, smooth texture and gloss.

上記目的を達成するために、本発明の扁平多葉断面ポリアミド繊維は、主として、次の構成を有する。すなわち、
(1)無機化合物の含有量が0〜3重量%(対ポリアミド組成物)、吸湿剤の含有量が0〜6重量%(対ポリアミド組成物)であって、単糸繊度が2.5dtex以下であり、単繊維の繊維断面形状が六〜十葉の扁平多葉形であり、該扁平多葉形の凸部頂点のうち任意の2点を結ぶ最長の線分Aの長さをa、該線分Aに平行な線分とそれに対し直角な線分Bをその辺に含む外接四角形(隣合う辺で構成される角の角度は90°)の線分B長さをb、該扁平多葉形のなす最も大きな凹凸において、隣り合う凸部の頂点間を結ぶ線分Cの長さをc、該凸部に挟まれた凹部の底点から凸部の頂点間を結ぶ線分Cに下ろした垂線Dの長さをdとするとき、下記式を満足するようにしたである扁平多葉断面ポリアミド繊維、
扁平度(a/b)=1.5〜2.2
異形度(c/d)=1.0〜8.0
(2)タフネスが30以上であることを特徴とする上記(1)記載の扁平多葉断面ポリアミド繊維、
(3)ポリアミドの相対粘度が3.0以上であることを特徴とする、上記(1)または(2)記載の扁平多葉断面ポリアミド繊維、
(4)無機化合物が酸化チタン、かつ/または硫酸バリウムであることを特徴とする、上記(1)〜(3)のいずれか記載の扁平多葉断面ポリアミド繊維、
(5)吸湿剤がポリビニルピロリドンであることを特徴とする、上記(1)〜(4)のいずれか記載の扁平多葉断面ポリアミド繊維。
In order to achieve the above object, the flat multi-leafed polyamide fiber of the present invention mainly has the following configuration. That is,
(1) The content of the inorganic compound is 0 to 3% by weight (based on the polyamide composition), the content of the hygroscopic agent is 0 to 6% by weight (based on the polyamide composition), and the single yarn fineness is 2.5 dtex or less. And the cross-sectional shape of the single fiber is a flat multilobal shape having 6 to 10 lobes, and the length of the longest line segment A connecting any two points among the convex vertices of the flat multilobal shape is a, The length of the line segment B of a circumscribed square (the angle formed by the adjacent sides is 90 °) including the line segment B parallel to the line segment A and the line segment B perpendicular to the line segment B is b, the flatness In the largest unevenness formed by the multi-leaf shape, the length of a line segment C connecting the vertices of adjacent convex portions is c, and the line segment C connecting the vertices of the concave portions sandwiched by the convex portions is connected to the vertexes of the convex portions. A flat multilobal polyamide fiber that satisfies the following formula, where d is the length of the perpendicular D drawn downward:
Flatness (a / b) = 1.5 to 2.2
Deformity (c / d) = 1.0-8.0
(2) The flat multilobal polyamide fiber according to the above (1), wherein the toughness is 30 or more,
(3) The flat multilobal polyamide fiber according to the above (1) or (2), wherein the polyamide has a relative viscosity of 3.0 or more,
(4) The flat multilobal section polyamide fiber according to any one of (1) to (3) above, wherein the inorganic compound is titanium oxide and / or barium sulfate,
(5) The flat multilobal polyamide fiber according to any one of (1) to (4) above, wherein the hygroscopic agent is polyvinylpyrrolidone.

本発明の扁平多葉断面ポリアミド繊維は、単糸繊度が小さく、単糸繊維の繊維断面形状が特定の扁平多葉断面糸であるために、吸水速乾性に優れ、ソフトでサラッとした風合いと優雅な光沢を有した織編物を提供することができる。   The flat multi-leaf cross-section polyamide fiber of the present invention has a small single yarn fineness, and the fiber cross-sectional shape of the single yarn fiber is a specific flat multi-leaf cross-section yarn, so it has excellent water absorption and quick drying, and has a soft and smooth texture. A woven or knitted fabric having an elegant gloss can be provided.

本発明の扁平多葉断面ポリアミド繊維の単糸繊維断面を例示する平面図である。It is a top view which illustrates the single yarn fiber cross section of the flat multilobal section polyamide fiber of this invention. 図1で示される単糸繊維断面形状を有する扁平多葉断面ポリアミド繊維を製造するための口金の吐出口形状である。It is the discharge port shape of a nozzle | cap | die for manufacturing the flat multileaf cross-section polyamide fiber which has the single yarn fiber cross-sectional shape shown by FIG.

本発明の扁平異形断面ポリアミド繊維の単糸繊度は、織編物とした際にその生地を柔らかくし、衣料用素材として着用時の快適性を与えるという観点から、2.5dtex以下とする必要がある。好ましくは、2.0dtex以下である。単糸繊度が細ければ細いほど生地は柔らかくなるが、強力も低下することから単糸繊度の下限を0.5dtex以上とすることが好ましい。   The single yarn fineness of the flat deformed cross-section polyamide fiber of the present invention needs to be 2.5 dtex or less from the viewpoint of softening the fabric when it is made into a woven or knitted fabric and giving comfort when worn as a clothing material. . Preferably, it is 2.0 dtex or less. The thinner the single yarn fineness, the softer the fabric, but the lower the single yarn fineness.

本発明のポリアミド繊維の総繊度はインナーやスポーツ素材として用いる際の布帛の軽量性の観点から、60dtex以下が好ましく、56dtex以下がより好ましく、さらに50dtex以下が好ましく、特に好ましくは35dtex以下である。前記のポリアミド繊維の総繊度の下限は、編成に支障をきたさない範囲であれば特に限定はしないが、強力の点から5dtex以上であることが好ましい。
本発明のポリアミド繊維は扁平多葉断面に形成されていることによって適度の剛性を発揮し、布帛等に成形した際にはヘタリ難く、優れたハリコシ感を有する。さらに、繊維表面に形成された多数の凹部は布帛等にしたときにサラッとした風合となり、表面に肌が触れた際にサラサラした感触を与える。
The total fineness of the polyamide fiber of the present invention is preferably 60 dtex or less, more preferably 56 dtex or less, further preferably 50 dtex or less, and particularly preferably 35 dtex or less, from the viewpoint of the lightness of the fabric when used as an inner or sports material. The lower limit of the total fineness of the polyamide fiber is not particularly limited as long as it does not interfere with knitting, but is preferably 5 dtex or more from the viewpoint of strength.
The polyamide fiber of the present invention exhibits an appropriate rigidity by being formed into a flat multilobed cross section, and it is difficult to stick when molded into a fabric or the like, and has an excellent harsh feeling. Furthermore, a large number of recesses formed on the fiber surface have a smooth texture when made into a fabric or the like, and give a smooth feel when the skin touches the surface.

本発明の異形断面ポリアミド繊維は、単繊維の断面形状が六〜十葉の扁平多葉形であるが、特に、六〜八葉の扁平断面のものは、優雅な光沢を発現することができる。とりわけ、扁平八葉断面の場合は、高級感のある光沢を発現することができる。五葉以下の扁平多葉断面糸ではギラツキがあり人工的な光沢となりサラッとした風合いも発現しない。また、十葉を超えると剛性が低下し、ヘタリ感となる。さらに、繊維断面の凹凸により優れた吸水性を発揮する。   The modified cross-section polyamide fiber of the present invention is a flat multilobal shape in which the cross-sectional shape of a single fiber is 6 to 10 leaves. Particularly, the one having a flat cross section of 6 to 8 leaves can express elegant luster. . In particular, in the case of a flat eight-leaf cross section, a gloss with a high-class feeling can be expressed. Flat multi-leaf cross-section yarns of five or less leaves are glaring, have an artificial luster and do not exhibit a smooth texture. Moreover, when it exceeds 10 leaves, rigidity will fall and it will become sticky. Furthermore, it exhibits excellent water absorption due to the unevenness of the fiber cross section.

本発明のポリアミド繊維は、単繊維断面における扁平多葉断面形状が以下の要件を満たしていることが特徴である。図1に単繊維断面の概形例を示すが、この単繊維断面形状が下式を満足する単繊維からなる。   The polyamide fiber of the present invention is characterized in that the flat multilobal cross-sectional shape in the single fiber cross section satisfies the following requirements. FIG. 1 shows an example of a schematic cross section of a single fiber, and this single fiber cross-sectional shape is composed of a single fiber satisfying the following formula.

扁平度(a/b)=1.5〜2.2
異形度(c/d)=1.0〜8.0
ここで、aは該扁平多葉形の凸部頂点のうち任意の2点を結ぶ最長の線分Aの長さである。bは、該線分Aに平行な線分とそれに対し直角な線分Bをその辺に含む外接四角形(隣合う辺で構成される角の角度は90°)の線分Bの長さである。cは該扁平多葉形のなす最も大きな凹凸で、隣り合う凸部の頂点間を結ぶ線分Cの長さである。dは該凸部に挟まれた凹部の底点から凸部の頂点間を結ぶ線分Cに下ろした垂線Dの長さである。
Flatness (a / b) = 1.5 to 2.2
Deformity (c / d) = 1.0-8.0
Here, a is the length of the longest line segment A connecting any two points of the vertices of the flat multilobal convex portion. b is the length of a line segment B of a circumscribed square (an angle formed by adjacent sides is 90 °) including a line segment B parallel to the line segment A and a line segment B perpendicular thereto. is there. c is the largest unevenness formed by the flat multilobal shape, and is the length of a line segment C connecting the vertices of adjacent convex portions. d is the length of a perpendicular line D drawn from the bottom of the concave portion sandwiched between the convex portions to a line segment C connecting the apexes of the convex portions.

本発明においては、糸条を構成する各単糸についてa/b、c/dを算出し、その平均値を扁平度、異形度とする。   In the present invention, a / b and c / d are calculated for each single yarn constituting the yarn, and the average values are defined as flatness and irregularity.

扁平度(a/b)が1.5未満であると、光沢感の向上効果が見られなくなり、また、2.2を越えるとハリコシ感が小さく、ヘタリやすくなる。また、高次加工性の低下や糸条の解舒性が低下する。扁平度(a/b)は、より好ましくは1.6〜2.1であり、更に好ましくは1.6〜2.0である。   When the flatness (a / b) is less than 1.5, the effect of improving the glossiness is not seen, and when it exceeds 2.2, the harshness is small and it becomes easy to wear. In addition, the high-order workability and the yarn unwinding property are reduced. The flatness (a / b) is more preferably 1.6 to 2.1, and still more preferably 1.6 to 2.0.

また、異形度(c/d)は該扁平多葉形断面において、葉と葉の間にある凹部の大きさを表しており、値が大きいと凹部が小さく値が小さいと凹部は大きいことを意味している。c/dが大きくなると凹部は浅く、吸水性が低下し、光沢、風合いの点からも光沢が低下しサラッとした感覚が不十分となる。したがって、c/dは8.0以下にする必要がある。一方、c/dがあまりに小さいと繊維断面の凹部が折れ曲り易くなり、扁平形状を保つことができなくなる。それゆえに、光沢、および風合いが低下するとともに、繊維を形成するポリアミドの異方性が高くなり強度も低下するので好ましくない。さらには、高次工程での糸条の擦過や、また、織編物の構成繊維として用いると衣服の着用や洗濯などで凸部が摩滅して繊維断面が変形したりフィブリル化が起こりやすくなる。このことからc/dは1.0以上が必要である。c/dは前述の点から1.0〜8.0の範囲が好ましい。さらに、光沢と風合いの点から2.0〜7.0が好ましく、3.0〜6.0がより好ましい。   In addition, the degree of irregularity (c / d) represents the size of the concave portion between the leaves in the flat multilobal cross section. When the value is large, the concave portion is small, and when the value is small, the concave portion is large. I mean. When c / d becomes large, the concave portion becomes shallow, the water absorption decreases, and the gloss and texture are also lowered, resulting in insufficient smoothness. Therefore, c / d needs to be 8.0 or less. On the other hand, when c / d is too small, the concave portion of the fiber cross section is easily bent, and the flat shape cannot be maintained. Therefore, the gloss and the texture are lowered, and the anisotropy of the polyamide forming the fiber is increased and the strength is also lowered. Further, when used as a constituent fiber of a yarn in a higher-order process or as a constituent fiber of a woven or knitted fabric, the convex portion is worn away by wearing or washing clothes, and the fiber cross section is easily deformed or fibrillation easily occurs. For this reason, c / d needs to be 1.0 or more. c / d is preferably in the range of 1.0 to 8.0 from the above point. Furthermore, from the point of gloss and texture, 2.0 to 7.0 is preferable, and 3.0 to 6.0 is more preferable.

ここでポリアミドとは、いわゆる炭化水素基が主鎖にアミド結合を介して連結されたポリマーであり、ポリカプロラクタム(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン6,10)、ポリテトラメチレンアジパミド(ナイロン4,6)、1,4−シクロヘキサンビス(メチルアミン)と線状脂肪族ジカルボン酸との縮合重合型ポリアミドなど、及び、これらの共重合体もしくはこれらの混合物が挙げられる。   Here, the polyamide is a polymer in which a so-called hydrocarbon group is connected to the main chain through an amide bond, and polycaprolactam (nylon 6), polyhexamethylene adipamide (nylon 66), polyhexamethylene sebacamide. (Nylon 6,10), polytetramethylene adipamide (nylon 4,6), 1,4-cyclohexanebis (methylamine) and a polycondensation type polyamide of linear aliphatic dicarboxylic acid, etc. Examples thereof include a polymer or a mixture thereof.

また、前記の扁平多葉断面ポリアミド繊維の相対粘度は3.0以上であることが好ましい。ポリアミド繊維の相対粘度を3.0以上にすることにより紡糸時に単糸の断面形状が良好に形成されるので、扁平度および扁平多葉形状を本願規定の範囲に制御し安定して得ることができる。なかでも3.3以上であることがより好ましい。上限としては曳糸性の観点から7.0以下であることが好ましい。上記相対粘度は後述する方法で測定される値である。   Moreover, it is preferable that the relative viscosity of the flat multilobed polyamide fiber is 3.0 or more. By setting the relative viscosity of the polyamide fiber to 3.0 or more, the cross-sectional shape of a single yarn can be satisfactorily formed at the time of spinning, so that the flatness and the flat multi-leaf shape can be controlled stably within the range specified in the present application. it can. Especially, it is more preferable that it is 3.3 or more. The upper limit is preferably 7.0 or less from the viewpoint of spinnability. The relative viscosity is a value measured by a method described later.

本発明の扁平多葉断面ポリアミド繊維は単糸断面バラツキ(CV%)が10%以下であることが必要であり、好ましくは5%以下である。下限としては、0%が最も好ましいが、3%程度であれば、優れた性能を発揮する。かかる単糸断面バラツキ(CV%)は、後述の方法で測定して得られる値である。   The flat multilobed polyamide fiber of the present invention needs to have a single yarn cross-sectional variation (CV%) of 10% or less, and preferably 5% or less. The lower limit is most preferably 0%, but if it is about 3%, excellent performance is exhibited. Such single yarn cross-sectional variation (CV%) is a value obtained by measurement by the method described later.

本発明の扁平多葉断面ポリアミド繊維は、無機化合物の含有量が0〜3重量%(対ポリアミド組成物)であることが好ましい。すなわち、ポリアミドは有機物であり比較的熱伝導率が低く、織編物として肌に直接着用しても、サラッとした風合いは実現し難い。そこで、ポリアミドに比べて熱伝導率が高く、熱容量の低い無機化合物を含有させることにより、着用時に肌から熱を繊維側に素早く移動させ、サラッとした風合いを付与することができる。無機化合物の含有量は0.5重量%以上であれば有効に効果を発揮する。好ましくは1重量%以上である。しかしながら良好な糸特性を維持させるために含有量は3重量%以下が好ましく、特に好ましくは2重量%以下である。尚、本発明では、無機化合物の含有量は、繊維製造時の無機化合物の添加量と同一とした。   The flat multilobed polyamide fiber of the present invention preferably has an inorganic compound content of 0 to 3% by weight (relative to the polyamide composition). That is, polyamide is an organic substance and has a relatively low thermal conductivity, and even if it is directly worn on the skin as a woven or knitted fabric, it is difficult to realize a smooth texture. Therefore, by containing an inorganic compound having a higher thermal conductivity and lower heat capacity than polyamide, heat can be quickly transferred from the skin to the fiber side during wearing, and a smooth texture can be imparted. If the content of the inorganic compound is 0.5% by weight or more, the effect is exhibited effectively. Preferably it is 1 weight% or more. However, in order to maintain good yarn characteristics, the content is preferably 3% by weight or less, particularly preferably 2% by weight or less. In the present invention, the content of the inorganic compound is the same as the amount of the inorganic compound added during fiber production.

ここで、添加物として無機化合物を選択する理由としては、ポリアミド繊維製造時や染色時に悪影響を及ぼさないこと、糸物性を保つこと、さらには耐光性など使用時にポリマーに着色等の発生をさせないためであり、例えば、酸化チタン、硫酸バリウム、酸化アルミニウム、酸化ジルコニウム、酸化カルシウム、酸化マグネシウム等が用いられ、特に酸化チタン、硫酸バリウムが好ましい。   Here, the reason for selecting an inorganic compound as an additive is that it does not adversely affect polyamide fiber production or dyeing, keeps the physical properties of the yarn, and further prevents the polymer from being colored during use such as light resistance. For example, titanium oxide, barium sulfate, aluminum oxide, zirconium oxide, calcium oxide, magnesium oxide and the like are used, and titanium oxide and barium sulfate are particularly preferable.

本発明の異形断面ポリアミド繊維は、吸湿剤の含有量が0〜6重量%(対ポリアミド組成物)であることが好ましい。すなわち、ポリアミドは吸湿性能が若干あるものの、綿などの天然繊維と比較すると低く、織編物として肌に直接着用しても、サラッとした風合いは実現し難い。そこで、吸湿剤を含有させることにより、着用時に肌から水分を繊維側に素早く移動させ、サラッとした風合いを付与することができる。吸湿剤の含有量は2重量%以上であれば有効に効果を発揮する。好ましくは3重量%である。しかしながら良好な糸特性を維持させるために含有量は6重量%以下が好ましい。尚、本発明では、吸湿剤の含有量は、繊維製造時の無機化合物の添加量と同一とした。   The modified cross-section polyamide fiber of the present invention preferably has a moisture absorbent content of 0 to 6% by weight (relative to the polyamide composition). That is, although polyamide has some moisture absorption performance, it is lower than natural fibers such as cotton, and even if it is directly worn on the skin as a woven or knitted fabric, it is difficult to realize a smooth texture. Therefore, by containing a hygroscopic agent, moisture can be quickly moved from the skin to the fiber side during wearing, and a smooth texture can be imparted. If the content of the hygroscopic agent is 2% by weight or more, the effect is effectively exhibited. Preferably it is 3 weight%. However, the content is preferably 6% by weight or less in order to maintain good yarn characteristics. In the present invention, the content of the hygroscopic agent is the same as the amount of the inorganic compound added during fiber production.

吸湿剤としては、ポリビニルピロリドン、ポリエーテルアミド、ポリアルキルレングリコール、ポリエーテルエステルアミド等が用いられ、特にポリビニルピロリドンが好ましい。
本発明の扁平多様断面ポリアミド繊維は、前述したとおり、無機化合物および吸湿剤をかかる範囲に含有させればよいが、無機化合物と吸湿剤はサラッとした風合いを増す作用が異なるため、併用することが好ましい。
As the hygroscopic agent, polyvinyl pyrrolidone, polyether amide, polyalkylene glycol, polyether ester amide and the like are used, and polyvinyl pyrrolidone is particularly preferable.
As described above, the flat various cross-section polyamide fiber of the present invention may contain an inorganic compound and a hygroscopic agent in such a range, but the inorganic compound and the hygroscopic agent have different effects of increasing the smooth texture, and therefore should be used together. Is preferred.

本発明の扁平多葉断面ポリアミド繊維は、口金吐出孔形状が複雑であり単孔断面積が大きくなり、吐出線速度が低くなる関係上、単糸バラツキが大きくなる傾向にある。単糸繊度CV%を10%以下で太細斑なく安定して製糸するために、吐出線速度を2.1m/min以上にする必要がある。吐出線速度が2.1m/min未満であると単糸繊維に太細斑が発生するとともに製糸性が低下し生産に耐えられない。また、吐出線速度の低下は長さ方向の太さ斑の低下にも繋がる。本発明のポリアミド繊維を製造するには、吐出線速度は2.5m/min以上にすることがさらに好ましい。上限としては曳糸性の観点から20m/min以下であることが好ましい。   The flat multi-lobed cross-section polyamide fiber of the present invention has a complicated base discharge hole shape, a single hole cross-sectional area is large, and a discharge linear velocity is low. In order to produce a single yarn fineness CV% of 10% or less and stably without thick spots, the discharge linear velocity needs to be 2.1 m / min or more. If the discharge linear velocity is less than 2.1 m / min, thick and thin spots are generated in the single yarn fiber, and the yarn-making property is deteriorated so that the production cannot be endured. In addition, a decrease in the discharge linear velocity also leads to a decrease in thickness variation in the length direction. For producing the polyamide fiber of the present invention, the discharge linear velocity is more preferably 2.5 m / min or more. The upper limit is preferably 20 m / min or less from the viewpoint of spinnability.

本発明の扁平多葉断面ポリアミド繊維は上記した高粘度のポリアミドを図2に例示したように複数のスリットから構成された吐出孔より溶融紡糸することで製造することができる。溶融紡糸における、溶融温度は紡糸可能であれば特に限定されず、通常のポリアミドの溶融紡糸温度と同程度でもよい。   The flat multi-leaf cross-section polyamide fiber of the present invention can be produced by melt spinning the above-described high-viscosity polyamide through discharge holes composed of a plurality of slits as illustrated in FIG. The melt temperature in melt spinning is not particularly limited as long as spinning is possible, and it may be the same as the melt spinning temperature of ordinary polyamide.

溶融紡糸された糸条は、通常の溶融紡糸と同様に、給油した後に第一ゴデットローラーにて1500〜4000m/min程度で引き取り、次の第二ゴデットローラーにて1.0〜3.0倍程度の延伸を行った後に、3000m/min以上、好ましくは3500〜4500m/minで巻き取る。この際、第一ゴデットローラーと第二ゴデットローラーとの間の延伸倍率や、巻取り速度(ワインダー速度)を適切に設計することにより、狙いとするマルチフィラメントの強伸度を得ることが可能となる。また、第二ゴデットローラーを加熱ローラーとして熱処理を施すことでマルチフィラメントの熱収縮を設計することが好ましい。各ゴデットローラーはネルソンローラー、駆動ローラーに従動型のセパレートローラーがついたもの、片掛けローラーのいずれであってもよい。熱処理温度は120〜180℃であることが好ましい。   The melt-spun yarn is fed at about 1500 to 4000 m / min with a first godet roller after refueling in the same manner as in ordinary melt spinning, and 1.0 to 3.3 with the next second godet roller. After stretching about 0 times, it is wound up at 3000 m / min or more, preferably 3500-4500 m / min. At this time, by appropriately designing the draw ratio between the first godet roller and the second godet roller and the winding speed (winder speed), it is possible to obtain the desired multifilament strength. It becomes possible. Moreover, it is preferable to design the thermal contraction of the multifilament by performing heat treatment using the second godet roller as a heating roller. Each godet roller may be a Nelson roller, a drive roller with a driven separation roller, or a one-sided roller. It is preferable that the heat processing temperature is 120-180 degreeC.

さらには、扁平多葉断面糸は、一般に繊維を形成するポリマーの異方性が高いことから、タフネスが低下する傾向にあり、用途や加工方法が限定される。高次加工性の面からタフネス30以上が好ましく、さらに好ましくは34以上である。   Furthermore, flat multilobal cross-section yarns generally have a high anisotropy of the polymer that forms the fibers, and therefore tend to have reduced toughness, and their applications and processing methods are limited. The toughness is preferably 30 or more, more preferably 34 or more, from the viewpoint of high-order workability.

また、本発明の扁平多葉断面ポリアミド繊維の好ましい伸度は、高次加工の観点から35〜48%が好ましく、強度としては、3.0cN/dtex以上が好ましく、より好ましくは、3.5cN/dtex以上である。   Further, the preferred elongation of the flat multilobed polyamide fiber of the present invention is preferably 35 to 48% from the viewpoint of high-order processing, and the strength is preferably 3.0 cN / dtex or more, more preferably 3.5 cN. / Dtex or more.

以下実施例により本発明をさらに詳細に説明する。実施例中の各測定値は次の方法に従った。   Hereinafter, the present invention will be described in more detail with reference to examples. Each measured value in the examples was according to the following method.

A.相対粘度
試料を秤量した後、濃硫酸(98.0%)に溶解する。その0.5重量%溶液をオストワルド粘度計にて25℃で測定する。
A. Relative viscosity The sample is weighed and then dissolved in concentrated sulfuric acid (98.0%). The 0.5 wt% solution is measured at 25 ° C. with an Ostwald viscometer.

B.ポリアミド繊維の断面形状
繊維の断面写真(倍率:400倍)から、全単糸について下記方法に従い扁平度および異形度を算出し、その平均値を糸条の扁平度および異形度とした。該扁平多葉形の凸部頂点のうち任意の2点を結ぶ最長の線分A、該線分Aに平行な線分とそれに対し直角な線分Bをその辺に含む外接四角形(隣合う辺で構成される角の角度は90°)の線分B、該扁平多葉形のなす最も大きな凹凸において隣り合う凸部の頂点間を結ぶ線分C、該凸部に挟まれた凹部の底点から凸部の頂点間を結ぶ線分Cに下ろした垂線D、それぞれの長さを測定し、次式より算出した。
B. From the cross-sectional photograph (magnification: 400 times) of the cross-sectional shape fiber of the polyamide fiber, the flatness and irregularity were calculated for all single yarns according to the following method, and the average values were taken as the flatness and irregularity of the yarn. The longest line segment A connecting any two points of the vertices of the flat multilobal shape, a circumscribed quadrangle (adjacent to each other) that includes a line segment parallel to the line segment A and a line segment B perpendicular thereto The angle of the angle formed by the side is 90 °), the line segment C connecting the vertices of adjacent protrusions in the largest unevenness formed by the flat multilobal shape, and the recesses sandwiched between the protrusions The perpendicular D drawn down to the line segment C which connects between the vertex of a convex part from a bottom point, and each length were measured, and it computed from following Formula.

扁平度(a/b)=1.5〜2.2
異形度(c/d)=1.0〜8.0 。
Flatness (a / b) = 1.5 to 2.2
Deformation degree (c / d) = 1.0-8.0.

C.単糸断面バラツキCV%
繊維の断面写真(倍率:400倍)から、該扁平多葉形の凸部頂点のうち任意の2点を結ぶ最長の線分Aの長さaを全単糸について測定し、そのCV%を下式により算出し評価した。
C. Single yarn cross section variation CV%
From the cross-sectional photograph of the fiber (magnification: 400 times), the length a of the longest line segment A connecting any two points of the vertices of the flat multilobal convex portion is measured for all single yarns, and the CV% is calculated. It was calculated and evaluated by the following formula.

CV%=(標準偏差)/(平均値)×100
標準偏差=(1/n(Σa2−(Σa)2/n))1/2
平均値=1/n(Σa)
nは単糸数 。
CV% = (standard deviation) / (average value) × 100
Standard deviation = (1 / n (Σa 2 − (Σa) 2 / n)) 1/2
Average value = 1 / n (Σa)
n is the number of single yarns.

D.強度、伸度、タフネス
強度、伸度は、JIS L1013−1999 4.20 引張強さ及び伸び率に準じて測定を行った。試験条件としては、試験機の種類としては定速緊張形、つかみ間隔50cmにて行った。タフネスは、下記式にて求めた。
タフネス={強度(cN/dtex)}×{伸度(%)}1/2
D. Strength, elongation, toughness Strength and elongation were measured according to JIS L1013-1999 4.20 tensile strength and elongation. As the test conditions, the type of the tester was a constant speed tension type with a grip interval of 50 cm. The toughness was obtained by the following formula.
Toughness = {strength (cN / dtex)} × {elongation (%)} 1/2 .

E.吐出線速度
吐出線速度は、下記式にて求めた。
E. Discharge linear velocity The discharge linear velocity was calculated | required with the following formula.

吐出線速度={吐出量(g/min)}÷{単孔断面積(mm)×口金ホール数(個)×ポリマー密度(g/cm)}1/2
ポリマー密度:0.98(g/cm) 。
Discharge linear velocity = {discharge amount (g / min)} ÷ {single hole cross-sectional area (mm 2 ) × number of cap holes (pieces) × polymer density (g / cm 3 )} 1/2
Polymer density: 0.98 (g / cm 3 ).

F.吸水性
筒編み地(42threads/25.4mm)を作製し、大きさ25mm×200mmの試験片を切取り、試験片の下端が水平に20mmの深さまで水に浸漬するように調整し、10分間経過後の吸水高さ(mm)を測定した。各々測定回数5回の平均値をもって吸水性(mm)とした。
F. A water-absorbing tubular knitted fabric (42 threads / 25.4 mm) was prepared, a test piece having a size of 25 mm × 200 mm was cut out, and adjusted so that the lower end of the test piece was immersed horizontally in water to a depth of 20 mm, and 10 minutes passed. The subsequent water absorption height (mm) was measured. Water absorption (mm) was defined as the average value of 5 measurements.

G.速乾性
筒編み地(42threads/25.4mm)から100mm×100mmの試験片を切取り、その大きさを固定させる。20℃×65%RH下の雰囲気で、試験片に0.1gの水を滴下し、0分後、20分後の質量を測定し、下式にて水分の残存率(%)を求め、その値(%)をもって速乾性とした。値が小さいほど水分の残存がなく、乾いていることを示す。各々測定回数5回の平均値をもって速乾性(%)とした。
残留水分率(%)=20分後の水分量(g)/滴下直後の水分量(g)×100 。
G. Quick-drying A test piece of 100 mm × 100 mm is cut from a tubular knitted fabric (42 threads / 25.4 mm), and the size is fixed. In an atmosphere under 20 ° C. × 65% RH, 0.1 g of water was dropped on the test piece, and after 0 minutes, the mass after 20 minutes was measured, and the residual rate of moisture (%) was determined by the following equation. The value (%) was regarded as quick drying. A smaller value indicates that there is no moisture remaining and it is dry. The average value of the number of measurements was 5 times, and the quick drying property (%) was obtained.
Residual water content (%) = water content after 20 minutes (g) / water content immediately after dropping (g) × 100

H.風合い評価
作製した筒編地(42threads/25.4mm)を熟練技術者(5人)の触感により官能評価を以下の基準で実施した。すなわち、官能評価において、膨らみ感がありふんわりとした柔らかさを十分感じられるものを「非常に優れる」とし、膨らみ感が無く固さやヘタリの感じられるものを「劣る」として、5:非常に優れる、4:優れる、3:どちらでもない、2:やや劣る、1:劣るの5段階の基準で風合い評価を行った。各技術者の評価した点数の平均値をとり、平均値が4〜5を◎、3〜4を○、2〜3を△、1〜2を×とした。
H. Texture Evaluation The sensory evaluation of the produced tubular knitted fabric (42 threads / 25.4 mm) was performed according to the following criteria based on the tactile sensation of skilled technicians (5 persons). That is, in sensory evaluation, those that have a feeling of swelling and feel soft and soft enough are defined as “very good”, and those that feel no firmness and firmness without feeling of swelling are considered “inferior”. The texture was evaluated on the basis of five levels: 4: excellent, 3: neither, 2: slightly inferior, 1: inferior. The average value of the scores evaluated by each engineer was taken, and the average value was 4-5, ◯, 3-4, ◯, 2-3, △, 1-2.

I.光沢感
作製した筒編地(42threads/25.4mm)を型板に入れて蛍光灯の光の下で、熟練技術者5名による目視により以下の基準で行った。すわなち、きめ細やかでやわらかく自然な光沢が感じ取れるものを「非常に優れる」とし、光沢感はあるがギラギラして人工的な光沢を感じるものを「やや劣る」、光沢感が感じ取れないものを「劣る」として、5:非常に優れる、4:優れる、3:どちらでもない、2:やや劣る、1:劣る、の5段階の基準で風合い評価を行った。各技術者の評価した点数の平均値をとり、平均値が4〜5を◎、3〜4を○、2〜3を△、1〜2を×とした。
I. Glossiness The produced cylindrical knitted fabric (42 threads / 25.4 mm) was put in a template and visually observed by five skilled engineers under the light of a fluorescent lamp according to the following criteria. In other words, those that are fine and soft that can feel natural gloss are `` very good '', those that are glossy but glare and feel artificial gloss `` somewhat inferior '', those that can not feel gloss As “inferior”, the texture evaluation was performed on the basis of five levels of 5: very excellent, 4: excellent, 3: none, 2: slightly inferior, 1: inferior. The average value of the scores evaluated by each engineer was taken, and the average value was 4-5, ◯, 3-4, ◯, 2-3, △, 1-2.

J.繊度
1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から繊度を算出した。尚、ナイロン6の公定水分率は、4.5%とした。
J. et al. Set the fiber sample on a measuring instrument with a fineness of 1.125m / round, rotate it 200 times, create a looped skein, dry it with a hot air dryer (105 ± 2 ° C x 60min), and then skein it with a balance The fineness was calculated from the value obtained by measuring the mass and multiplying by the official moisture content. The official moisture content of nylon 6 was 4.5%.

[実施例1]
相対粘度3.3のナイロン6を使用し、紡糸温度275℃で図2に示す口金吐出孔を34個有する紡糸口金から溶融吐出させた(吐出量:11.49g/min、単孔断面積:0.1277mm、吐出線速度:2.6m/min)。溶融吐出させた後、冷却し、給油、交絡した後に2800m/minのゴデローラーで引き取り、続いて1.4倍に延伸した後に155℃で熱固定し、巻取速度3500m/minで33detx34filのナイロン扁平八葉断面繊維を得た。
次に、得られたポリアミド繊維の断面写真から扁平度および異形度と単糸断面バラツキ(CV)%を算出した。また、得られたポリアミド繊維の原糸物性を測定した。
得られた扁平八葉断面糸は、繊維間の空隙が生じることにより吸水性に優れ、繊維の表面積が大きいために拡散性に優れ速乾性に優れていた。また、繊維概形を扁平形に保つことで高タフネスを兼ね備えていた。さらには、繊維概形が扁平形であり多数の葉部を有することから、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。また、扁平八葉断面形状の制御でき、均一な扁平八葉断面糸を得ることができた。
[Example 1]
Nylon 6 having a relative viscosity of 3.3 was used and melt-discharged from a spinneret having 34 nozzle discharge holes shown in FIG. 2 at a spinning temperature of 275 ° C. (discharge amount: 11.49 g / min, single-hole cross-sectional area: 0.1277 mm 2 , discharge linear velocity: 2.6 m / min). After being melted and discharged, cooled, lubricated, entangled, taken up with a 2800 m / min godet roller, subsequently stretched 1.4 times, heat-set at 155 ° C., 33 detx 34 fil flattened at a winding speed of 3500 m / min An eight-leaf fiber was obtained.
Next, from the cross-sectional photograph of the obtained polyamide fiber, flatness, irregularity, and single yarn cross-sectional variation (CV)% were calculated. Moreover, the raw yarn physical property of the obtained polyamide fiber was measured.
The resulting flat eight-leaf cross-sectional yarn was excellent in water absorption due to the formation of voids between the fibers, and was excellent in diffusibility and quick drying due to the large surface area of the fibers. Moreover, it has high toughness by keeping the rough shape of the fiber flat. Furthermore, since the general shape of the fiber is flat and has a large number of leaves, it has a swelling feeling and a soft feel, a fine and natural luster, and excellent texture and luster. Further, the cross-sectional shape of the flat eight-leaf was able to be controlled, and a uniform flat eight-leaf cross-sectional yarn could be obtained.

[実施例2]
実施例1と同様の紡糸条件において、口金吐出孔を26個有する紡糸口金から溶融吐出させ(吐出量:11.67g/min、単孔断面積:0.1989mm、吐出線速度:2.3m/min)、33detx26filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。
[Example 2]
Under the same spinning conditions as in Example 1, the melt was discharged from a spinneret having 26 nozzle discharge holes (discharge amount: 11.67 g / min, single hole cross-sectional area: 0.1989 mm 2 , discharge linear velocity: 2.3 m). / Min), 33 dtex 26 fil, nylon flat eight leaf section fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent.

[実施例3]
実施例2と同様の紡糸条件において、酸化チタンを2重量%添加された相対粘度3.2のナイロン6を使用し、33detx26filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。さらには、熱伝導率が高く、熱容量の低い酸化チタンを繊維に含有させることにより、サラッとした風合いが増した。
[Example 3]
Under the same spinning conditions as in Example 2, nylon 6 with a relative viscosity of 3.2 to which 2% by weight of titanium oxide was added was used to obtain a nylon flat eight-leaf section fiber of 33 detx26 fil. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent. Furthermore, a smooth texture increased by adding titanium oxide having high thermal conductivity and low heat capacity to the fiber.

[実施例4]
添加物を含まない相対粘度3.3のナイロン6とポリビニルピロリドンを20重量%添加した相対粘度3.0のナイロン6をブレンドした後、ポリビニルピロリドン添加率5重量%となるようにチップブレンドした。
上記チップブレンドを使用し、実施例2と同様の紡糸条件において、33detx26filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。さらには、吸湿剤を繊維に含有させることにより、サラッとした風合いが増した。
[Example 4]
After blending nylon 6 having a relative viscosity of 3.3 containing no additive and nylon 6 having a relative viscosity of 3.0 to which 20% by weight of polyvinylpyrrolidone was added, chip blending was performed so that the addition rate of polyvinylpyrrolidone was 5% by weight.
Using the above-mentioned chip blend, under the same spinning conditions as in Example 2, a 33 detx 26 fil nylon flat flat eight-leaf fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent. Furthermore, the smooth texture increased by including a hygroscopic agent in the fiber.

[実施例5]
添加物を含まない相対粘度3.3のナイロン6と酸化チタンを5重量%添加された相対粘度3.2のナイロン6とポリビニルピロリドンを20重量%添加した相対粘度3.0ナイロン6をブレンドした後、酸化チタンを1重量%、ポリビニルピロリドン添加率5重量%となるようにチップブレンドした。
上記チップブレンドを使用し、実施例2と同様の紡糸条件において、33detx26filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。さらには、熱伝導率が高く、熱容量の低い酸化チタンと吸湿剤を繊維に含有させることにより、サラッとした風合いがより増した。
[Example 5]
Nylon 6 having a relative viscosity of 3.3 containing no additives, nylon 6 having a relative viscosity of 3.2 to which 5% by weight of titanium oxide was added, and nylon 6 having a relative viscosity of 3.0 to which 20% by weight of polyvinylpyrrolidone was added were blended. Thereafter, chip blending was performed so that titanium oxide was 1 wt% and polyvinyl pyrrolidone addition rate was 5 wt%.
Using the above-mentioned chip blend, under the same spinning conditions as in Example 2, a 33 detx 26 fil nylon flat flat eight-leaf fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent. Furthermore, by adding titanium oxide and a hygroscopic agent having high thermal conductivity and low heat capacity to the fiber, the smooth texture further increased.

[実施例6]
添加物を含まない相対粘度3.3のナイロン6と硫酸バリウムを5重量%添加された相対粘度3.2のナイロン6とポリビニルピロリドンを20重量%添加した相対粘度3.0ナイロン6をブレンドした後、硫酸バリウムを1重量%、ポリビニルピロリドン添加率5重量%となるようにチップブレンドした。
上記チップブレンドを使用し、実施例2と同様の紡糸条件において、33detx26filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。さらには、熱伝導率が高く、熱容量の低い硫酸バリウムと吸湿剤を繊維に含有させることにより、サラッとした風合いがより増した。
[Example 6]
Nylon 6 having a relative viscosity of 3.3 containing no additives, nylon 6 having a relative viscosity of 3.2 to which 5% by weight of barium sulfate was added, and nylon 6 having a relative viscosity of 3.0 to which 20% by weight of polyvinylpyrrolidone was added were blended. Thereafter, chip blending was performed so that barium sulfate was 1 wt% and polyvinyl pyrrolidone addition rate was 5 wt%.
Using the above-mentioned chip blend, under the same spinning conditions as in Example 2, a 33 detx 26 fil nylon flat flat eight-leaf fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent. Furthermore, by adding barium sulfate and a hygroscopic agent having a high thermal conductivity and a low heat capacity to the fiber, the smooth texture further increased.

[実施例7]
実施例1と同様の紡糸条件において、口金吐出孔を24個有する紡糸口金から溶融吐出させ(吐出量:14.97g/min、単孔断面積:0.1989mm、吐出線速度:3.1m/min)、44detx24filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。
[Example 7]
Under the same spinning conditions as in Example 1, the melt was discharged from a spinneret having 24 nozzle discharge holes (discharge amount: 14.97 g / min, single hole cross-sectional area: 0.1989 mm 2 , discharge linear velocity: 3.1 m). / Min), 44 detx 24 fil of nylon flat eight leaf cross section fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent.

[実施例8]
相対粘度3.8のナイロン6を使用し、紡糸温度280℃において、口金吐出孔を24個有する紡糸口金から溶融吐出させ(吐出量:14.97g/min、単孔断面積:0.1989mm、吐出線速度:3.1m/min)、44detx24filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。
[Example 8]
Nylon 6 having a relative viscosity of 3.8 was used, and the melt was discharged from a spinneret having 24 nozzle discharge holes at a spinning temperature of 280 ° C. (discharge amount: 14.97 g / min, single hole cross-sectional area: 0.1989 mm 2 , Discharge linear velocity: 3.1 m / min), 44 dtex 24 fil, nylon flat eight leaf section fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent.

[実施例9]
実施例1と同様の紡糸を行い、単孔断面積の異なる紡糸口金(単孔断面積:0.1989mm)を使用し、吐出量を変更し(吐出量:19.85g/min、吐出線速度:2.9m/min)57dtex34filのナイロン扁平八葉断面繊維を得た。また、同様に得られたポリアミド繊維の断面写真から各値を算出した。
得られた扁平八葉断面糸は、吸水性に優れ、速乾性に優れ、高タフネスを兼ね備えていた。また、ふくらみ感と柔らかな感触があり、きめ細やかで自然な光沢が感じられ、風合い・光沢感においても優れていた。
[Example 9]
Spinning was performed in the same manner as in Example 1, and using a spinneret (single hole cross-sectional area: 0.1989 mm 2 ) having a different single hole cross-sectional area, the discharge amount was changed (discharge amount: 19.85 g / min, discharge line) (Speed: 2.9 m / min) A 57 dtex 34 file nylon flat eight-leaf section fiber was obtained. Moreover, each value was computed from the cross-sectional photograph of the polyamide fiber obtained similarly.
The obtained flat eight-leaf cross-sectional yarn was excellent in water absorption, excellent in quick drying, and had high toughness. In addition, there was a swell and soft feel, a fine and natural gloss was felt, and the texture and gloss were also excellent.

[比較例1]
相対粘度2.8のナイロン6を使用した以外は実施例2と同様に紡糸を行い、つづいて得られたポリアミド繊維を実施例1と同様に評価した。
得られた扁平八葉断面糸は、単糸断面の凹凸が小さく繊維間の空隙が狭くなるために吸水性に劣っていた。また、風合い、光沢感についても十分なものではなかった。
[Comparative Example 1]
Spinning was carried out in the same manner as in Example 2 except that nylon 6 having a relative viscosity of 2.8 was used, and the resulting polyamide fiber was evaluated in the same manner as in Example 1.
The obtained flat eight-leaf cross-sectional yarn was inferior in water absorption since the irregularities of the single yarn cross-section were small and the gaps between the fibers were narrowed. Also, the texture and glossiness were not sufficient.

[比較例2]
相対粘度2.8のナイロン6を使用し円形の口金吐出孔を24個有する紡糸口金から溶融吐出させた(吐出量:14.97g/min、単孔断面積:0.049mm、吐出線速度:12.7m/min)以外は実施例3と同様に紡糸を行い、つづいて得られたポリアミド繊維を実施例1と同様に評価した。
得られた丸断面糸は、単糸間の空隙が大きいあるため、空隙部分に水が保持され乾燥性に劣っていた。また、風合い、光沢についても十分なものではなかった。
[Comparative Example 2]
A nylon 6 having a relative viscosity of 2.8 was used and melt-discharged from a spinneret having 24 circular nozzle discharge holes (discharge amount: 14.97 g / min, single-hole cross-sectional area: 0.049 mm 2 , discharge linear velocity) : 12.7 m / min), spinning was carried out in the same manner as in Example 3, and the polyamide fiber obtained was evaluated in the same manner as in Example 1.
The obtained round cross section yarn had a large gap between the single yarns, so that water was retained in the gap portion and was inferior in drying property. Also, the texture and gloss were not sufficient.

[比較例3]
相対粘度3.3のナイロン6を使用しY形の口金吐出孔を24個有する紡糸口金から溶融吐出させた(吐出量:14.97g/min、単孔断面積:0.2273mm、吐出線速度:2.7m/min)以外は実施例3と同様に紡糸を行い、つづいて得られたポリアミド繊維を実施例1と同様に評価した。
得られたY字型断面糸は、ポリマーの異方性が高いために著しく強度低下が生じる。また、単糸間の空隙が大きいため、空隙部分に水が保持され乾燥性に劣っていた。風合いにおいては、非常にドライな風合いとなり柔らかさを全く感じることができなかった。また、光沢についてはギラツキのあるものであった。
[Comparative Example 3]
A nylon 6 having a relative viscosity of 3.3 was used and melted and discharged from a spinneret having 24 Y-shaped nozzle discharge holes (discharge amount: 14.97 g / min, single hole cross-sectional area: 0.2273 mm 2 , discharge wire) Spinning was carried out in the same manner as in Example 3 except for the speed: 2.7 m / min), and the polyamide fiber thus obtained was evaluated in the same manner as in Example 1.
The resulting Y-shaped cross-sectional yarn has a significant decrease in strength due to high polymer anisotropy. Moreover, since the space | gap between single yarn was large, water was hold | maintained at the space | gap part and it was inferior to drying property. In the texture, it was a very dry texture and the softness was not felt at all. Further, the gloss was glaring.

[比較例4]
極限粘度(IV)0.66(極限粘度はo−クロロフェノール中で25℃で測定)のポリエチレンテレフタレートを使用し、図2に示す口金吐出孔を36個有する紡糸口金を用いて溶融紡糸し(吐出量:14.67g/min、単孔断面積:0.1989mm、吐出線速度:2.0m/min)、紡糸速度2620m/minで引き取った後、1.72倍で延伸して得られた繊維を実施例1と同様に評価した。
得られた扁平八葉断面糸を有したポリエステル繊維は、タフネス、吸水性は不十分であり、風合いについても柔らかさに劣っていた。
[Comparative Example 4]
Using polyethylene terephthalate having an intrinsic viscosity (IV) of 0.66 (the intrinsic viscosity is measured in o-chlorophenol at 25 ° C.), melt spinning is performed using a spinneret having 36 die discharge holes shown in FIG. Discharge amount: 14.67 g / min, single hole cross-sectional area: 0.1989 mm 2 , discharge linear velocity: 2.0 m / min), drawn at a spinning speed of 2620 m / min, and then drawn by 1.72 times. The fibers were evaluated as in Example 1.
The obtained polyester fiber having a flat eight-leaf cross-sectional yarn was insufficient in toughness and water absorption, and inferior in softness.

Figure 2016065328
Figure 2016065328

Figure 2016065328
Figure 2016065328

本発明のポリアミド繊維は、吸水性と高強度を備え、ソフトでサラッとした風合い、優雅な光沢を有した編物を提供しうる扁平多葉断面ポリアミド繊維である。そのため、インナーやスポーツ素材などとして好適である。   The polyamide fiber of the present invention is a flat multileaf polyamide fiber having water absorption and high strength, which can provide a knitted fabric having a soft and smooth texture and an elegant luster. Therefore, it is suitable as an inner or a sports material.

Claims (6)

無機化合物の含有量が0〜3重量%(対ポリアミド組成物)、吸湿剤の含有量が0〜6重量%(対ポリアミド組成物)であって、単糸繊度が2.5dtex以下であり、単繊維の繊維断面形状が六〜十葉の扁平多葉形であり、該扁平多葉形の凸部頂点のうち任意の2点を結ぶ最長の線分Aの長さをa、該線分Aに平行な線分とそれに対し直角な線分Bをその辺に含む外接四角形(隣合う辺で構成される角の角度は90°)の線分B長さをb、該扁平多葉形のなす最も大きな凹凸において隣り合う凸部の頂点間を結ぶ線分Cの長さをc、該凸部に挟まれた凹部の底点から凸部の頂点間を結ぶ線分Cに下ろした垂線Dの長さをdとするとき、下記式を満足するようにした扁平多葉断面ポリアミド繊維。
扁平度(a/b)=1.5〜2.2
異形度(c/d)=1.0〜8.0
The content of the inorganic compound is 0 to 3% by weight (based on the polyamide composition), the content of the hygroscopic agent is 0 to 6% by weight (based on the polyamide composition), and the single yarn fineness is 2.5 dtex or less, The cross-sectional shape of the single fiber is a flat multilobal shape having 6 to 10 lobes, and the length of the longest line segment A connecting two arbitrary points of the convex vertices of the flat multilobal shape is a, the line segment A line B length of a circumscribed quadrangle including a line segment B parallel to A and a line segment B perpendicular thereto (the angle of an angle formed by adjacent sides is 90 °) is b, and the flat multileaf shape The length of the line segment C connecting the vertices of the adjacent convex portions in the largest unevenness formed by c is c, and the perpendicular line is lowered from the bottom point of the concave portion sandwiched between the convex portions to the line segment C connecting the vertexes of the convex portions. A flat multilobal polyamide fiber that satisfies the following formula when the length of D is d.
Flatness (a / b) = 1.5 to 2.2
Deformity (c / d) = 1.0-8.0
タフネスが30以上であることを特徴とする請求項1記載の扁平多葉断面ポリアミド繊維。   2. The flat multilobed cross-section polyamide fiber according to claim 1, wherein the toughness is 30 or more. ポリアミドの相対粘度が3.0以上であることを特徴とする請求項1または2記載の扁平多葉断面ポリアミド繊維。   3. The flat multilobed polyamide fiber according to claim 1 or 2, wherein the polyamide has a relative viscosity of 3.0 or more. 無機化合物が酸化チタン、かつ/または硫酸バリウムであることを特徴とする請求項1〜3のいずれかに記載の扁平多葉断面ポリアミド繊維。   The flat multilobal polyamide fiber according to any one of claims 1 to 3, wherein the inorganic compound is titanium oxide and / or barium sulfate. 前記吸湿剤がポリビニルピロリドンであることを特徴とする請求項1〜4のいずれかに記載の扁平多葉断面ポリアミド繊維。   The flat multilobal polyamide fiber according to any one of claims 1 to 4, wherein the hygroscopic agent is polyvinylpyrrolidone. 請求項1〜5のいずれかに記載の扁平多葉断面ポリアミド繊維を少なくとも一部に用いていることを特徴とする織編物。   A woven or knitted fabric comprising the flat multilobed cross-section polyamide fiber according to any one of claims 1 to 5 at least partially.
JP2014193549A 2014-09-24 2014-09-24 Flat multi-lobar cross section polyamide fiber Pending JP2016065328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014193549A JP2016065328A (en) 2014-09-24 2014-09-24 Flat multi-lobar cross section polyamide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014193549A JP2016065328A (en) 2014-09-24 2014-09-24 Flat multi-lobar cross section polyamide fiber

Publications (1)

Publication Number Publication Date
JP2016065328A true JP2016065328A (en) 2016-04-28

Family

ID=55803997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014193549A Pending JP2016065328A (en) 2014-09-24 2014-09-24 Flat multi-lobar cross section polyamide fiber

Country Status (1)

Country Link
JP (1) JP2016065328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099977A (en) * 2017-12-08 2019-06-24 東レ株式会社 Modified cross-section polyamide multifilament
CN113430668A (en) * 2021-06-28 2021-09-24 安踏(中国)有限公司 Ice-feeling quick-drying fiber and preparation method thereof, and ice-feeling quick-drying fabric and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099977A (en) * 2017-12-08 2019-06-24 東レ株式会社 Modified cross-section polyamide multifilament
CN113430668A (en) * 2021-06-28 2021-09-24 安踏(中国)有限公司 Ice-feeling quick-drying fiber and preparation method thereof, and ice-feeling quick-drying fabric and preparation method thereof

Similar Documents

Publication Publication Date Title
MXPA02009428A (en) Monofilament yarn and process for producing the same.
US10597803B2 (en) Cooling polyamide yarn
CN106661771B (en) Gloss pilling-resistant acrylic fiber, process for producing the same, and yarn and knitted fabric comprising the same
JP5397392B2 (en) Flat multilobal polyamide fiber
JP2016065328A (en) Flat multi-lobar cross section polyamide fiber
JP2019131920A (en) Crimped yarn
JPWO2020095861A1 (en) Manufacturing method of stretchable yarn, textile products, composite base and composite fiber
JP2017218698A (en) Extra fine flat false-twisted yarn
TWI532893B (en) Polyamide mixed fiber composite yarn for false twisting
JP2010216026A (en) Method for producing hollow crimped polyphenylene sulfide staple fiber
JP2018053405A (en) Flat cross section polyhexamethylene adipamide fiber and fiber product
JP7197326B2 (en) hollow deformed crimped filament
JP6409977B2 (en) Flat cross-section crimped yarn, method for producing the crimped yarn, and woven / knitted fabric containing the crimped yarn
JP2017226941A (en) Woven or knitted fabric and initial yarn for polyamide sheath-core type blended yarn
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
JP6596881B2 (en) Composite false twisted yarn
JP6948048B2 (en) Latent crimpable composite fiber
JP2006274473A (en) Combined filament conjugated fiber and woven or knitted fabric using the same fiber
JP7259200B2 (en) polyester false twisted yarn
JP7400348B2 (en) woven and knitted fabrics
JP7205161B2 (en) Polyester deformed cross-section partially fused false twisted yarn
JP2018095977A (en) Bulky yarn having solid crimpability
JP2016056486A (en) Knitted fabric for clothing material
JP4524337B1 (en) Polyamide-based multifilament with special single yarn cross section
JP4444369B1 (en) Polyamide-based multifilament with special single yarn cross section