JP2016064812A - Hull fluid resistance reduction device - Google Patents

Hull fluid resistance reduction device Download PDF

Info

Publication number
JP2016064812A
JP2016064812A JP2015139778A JP2015139778A JP2016064812A JP 2016064812 A JP2016064812 A JP 2016064812A JP 2015139778 A JP2015139778 A JP 2015139778A JP 2015139778 A JP2015139778 A JP 2015139778A JP 2016064812 A JP2016064812 A JP 2016064812A
Authority
JP
Japan
Prior art keywords
hull
pump
nozzle
flow
bow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139778A
Other languages
Japanese (ja)
Other versions
JP5975363B2 (en
Inventor
雅 田篭
Masa Tagome
雅 田篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PCT/JP2015/004638 priority Critical patent/WO2016042746A1/en
Publication of JP2016064812A publication Critical patent/JP2016064812A/en
Application granted granted Critical
Publication of JP5975363B2 publication Critical patent/JP5975363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hull fluid resistance reduction device of high energy-conserving effect that simultaneously reduces both the frictional resistance in a hull surface received during voyage and the wave drag at a bow part.SOLUTION: A hull fluid resistance reduction device consists of a plurality of types of device configurations made up of: the installation of a microbubble generation through-flow pump 50, equipped with a flat plate wing 55, or a flat port nozzle, at a hull side face outside plate part under water level at the bow part; and the installation of a microbubble generation through-flow pump 50b or a flat port nozzle at a hull bottom face part of a hollow pit at the bow part. Properly using them enables both a reduction in friction resistance of the side face and the bottom face of the hull due to microbubbles and a reduction in wave resistance generated at the bow part, so that a fluid resistance generated over the whole hull during voyage is reduced integrally.SELECTED DRAWING: Figure 15

Description

本発明は、船首部の水面下において大量のマイクロバブル(船関連では、微細気泡を、いわゆるマイクロバブルと呼ぶ)を発生させ、水面下の船体外板表面をマイクロバブルで覆うことによって、航行時の船体の摩擦抵抗を低減するとともに船首部近傍に発生する水面波による造波抵抗も低減し、高い省エネ効果を得る装置に関する。 The present invention generates a large amount of microbubbles under the water surface of the bow (referred to as microbubbles in the case of ships, so-called microbubbles), and covers the surface of the hull outer plate under the water surface with microbubbles during navigation. The present invention relates to a device that reduces the frictional resistance of the hull and reduces the wave-making resistance due to water surface waves generated in the vicinity of the bow, thereby obtaining a high energy-saving effect.

航行時の船が受ける流体抵抗を低減する主な方法としては、船体表面に生じる摩擦による抵抗と船首部近傍に生じる造波抵抗を低減させる方法がある。従来は、摩擦抵抗を低減させるための手段としては、船首側の船の外板に設けた細いスリットや多数の噴出口から、ブロワによる加圧空気を吹き出させる方法などがある。例えば、噴出口がスリット形状では特許文献1、細長形状の多数の吹き出し口形状では特許文献2、複数の気体噴出口形状では特許文献3が開示されている。特許文献4では、気水混相流体をノズルにより吹き出す方法が開示されている。また、特許文献5にはマイクロバブル発生貫流ポンプを船の外板に直接設置して、マイクロバブルを船体表面に沿って放出する方法もある。
造波抵抗を低減させるための手段としては、船首部の船体底部の形状をバルバスバウ(球状船首)にすることによって、造波抵抗を低減する方法がある。例えば、満載時や軽荷時での造波抵抗を低減する手段が特許文献6に、また喫水の変化や海流条件に対応した船首バルブにフインを装備した形状が特許文献7に開示されている。
As a main method of reducing the fluid resistance received by the ship at the time of navigation, there is a method of reducing the resistance due to friction generated on the surface of the hull and the wave-making resistance generated near the bow. Conventionally, as means for reducing the frictional resistance, there are a method of blowing pressurized air by a blower from narrow slits provided in the outer plate of the ship on the bow side or a number of jets. For example, Patent Document 1 is disclosed in the case of a slit having a slit shape, Patent Document 2 in the case of a number of elongated outlet shapes, and Patent Document 3 in the case of a plurality of gas nozzle shapes. In patent document 4, the method of blowing off an air-water mixed phase fluid with a nozzle is disclosed. Patent Document 5 also discloses a method in which a microbubble generating once-through pump is directly installed on the outer plate of a ship and the microbubbles are discharged along the hull surface.
As a means for reducing the wave-making resistance, there is a method of reducing the wave-making resistance by making the shape of the bottom of the hull of the bow part into a Barbasse bow (spherical bow). For example, Patent Document 6 discloses a means for reducing wave resistance at full load and light load, and Patent Document 7 discloses a shape in which a bow valve is equipped with fins corresponding to draft changes and ocean current conditions. .

しかし、船体外板に設けた多数の噴出口やノズルなどからブロワにより気泡を船体表面に向けて吹き出す方法は、噴出流による流れの乱れが大きく、拡散しやすく、気泡も船体表面から離れやすくなるため、船体表面を効率よくマイクロバブルで覆うことはできない。特許文献5のマイクロバブル発生貫流ポンプを使用する方法は、水面下の船体外板への前記貫流ポンプの取り付け方法やメンテナンス等に問題がある。
いずれにしても、従来の船体の流体抵抗低減装置は、摩擦抵抗と造波抵抗の両方に有効な流体抵抗低減装置ではないことから、抵抗低減効果も限界があり、顕著な流体抵抗の低減効果は期待できない。
However, the method of blowing bubbles toward the hull surface with a blower from a large number of nozzles and nozzles provided on the hull outer plate has a large turbulence in the flow due to the jet flow, and it is easy to diffuse, and the bubbles are also easily separated from the hull surface. Therefore, the hull surface cannot be efficiently covered with microbubbles. The method of using the microbubble generating once-through pump of Patent Document 5 has a problem in the attaching method and maintenance of the once-through pump to the hull outer plate under the water surface.
In any case, since the conventional hull fluid resistance reduction device is not a fluid resistance reduction device effective for both frictional resistance and wave-making resistance, there is a limit to the resistance reduction effect, and a remarkable fluid resistance reduction effect. Cannot be expected.

特開平9−156576号公報JP-A-9-156576 特開平9−207873号公報Japanese Patent Laid-Open No. 9-207873 特開平11−49080号公報Japanese Patent Laid-Open No. 11-49080 特開2008−18781号公報JP 2008-18781 A 特開2012−106542号公報JP 2012-106542 A 特開2010−188953号公報JP 2010-188953 A 特開2010−137833号公報JP 2010-137833 A

航行中に受ける流体抵抗は、主に摩擦抵抗と造波抵抗があるが、従来の流体抵抗低減手段は、摩擦抵抗の低減と造波抵抗の低減を、それぞれに別物として捉える手法が取られているため、流体抵抗の低減効果には限界がある。顕著な流体抵抗の低減効果を得るためには、摩擦抵抗と造波抵抗の両方を同時に低減する手法が求められる。
従来技術の船体外板に設けた多数の噴出口やノズルなどにより気泡を船体表面に向けて吹き出す方法は、噴出流による流れの乱れが大きく、船体表面を効率よくマイクロバブルで覆うことはできない。このため、本発明では、流れが一様で幅広な吐出し流れを有するマイクロバブル発生貫流ポンプを利用した流体抵抗低減装置を主体に提供する。また、別の方法として船体表面近くの流れの中にノズルを設置する簡易的な流体抵抗低減装置についても提供する。
The fluid resistance received during navigation is mainly frictional resistance and wave-making resistance, but the conventional fluid resistance reduction means have taken a method of considering the reduction of frictional resistance and the reduction of wave-making resistance as separate objects. Therefore, the effect of reducing fluid resistance is limited. In order to obtain a remarkable effect of reducing fluid resistance, a technique for simultaneously reducing both frictional resistance and wave resistance is required.
The method of blowing bubbles toward the hull surface with a large number of jets and nozzles provided on the hull outer plate of the prior art has a large flow disturbance due to the jet flow, and the hull surface cannot be efficiently covered with microbubbles. For this reason, the present invention mainly provides a fluid resistance reduction device using a microbubble generating once-through pump having a uniform flow and a wide discharge flow. In addition, as another method, a simple fluid resistance reducing device in which a nozzle is installed in a flow near the hull surface is also provided.

本発明は、従来技術の問題点を解決するために、マイクロバブル発生貫流ポンプを利用した請求項1及至請求項3に記載の船体流体抵抗低減装置の提供、並びに平口ノズルを船体表面近くの流れの中に設置した構成の請求項4及至請求項6に記載の船体流体抵抗低減装置を提供するものである。
請求項1に記載の発明は、船体側面における摩擦抵抗の低減と船首部に発生する造波抵抗低減のための流体抵抗低減装置で、羽根車中心部に微細気泡発生機構を有するマイクロバブル発生貫流ポンプを、船首部の水面下の船体側面外板に設置し、その貫流ポンプの上方すぐ上に、前記貫流ポンプ全体を覆う平板翼を船体側面に略平行に設置した構成からなる。これにより航行時に船首部に向かう水流が直接船首部に当たらず、平板翼を備えた前記貫流ポンプの吸込み口に吸込まれ、船首部近傍の流れが制御されるため、造波抵抗が低減される。同時に、前記貫流ポンプからのマイクロバブルの船体側面に沿う吐出し流れが側面を覆うことにより、船体側面の摩擦抵抗も低減される。
請求項2に記載の発明は、前記平板翼を前記貫流ポンプの吸込みケーシングの上面に直接取り付けて一体化した流体抵抗低減装置である。
In order to solve the problems of the prior art, the present invention provides a hull fluid resistance reducing device according to claims 1 to 3 that uses a microbubble generating once-through pump, and a flat mouth nozzle with a flow near the hull surface. The hull fluid resistance reducing device according to claims 4 to 6 having a configuration installed in the ship is provided.
The invention according to claim 1 is a fluid resistance reducing device for reducing frictional resistance on the side of the hull and for reducing wave-making resistance generated at the bow, and a microbubble generating throughflow having a microbubble generating mechanism at the impeller central portion. The pump is installed on the hull side skin below the water surface of the bow, and the flat blades covering the entire once-through pump are installed substantially parallel to the side of the hull just above the through-flow pump. As a result, the water flow toward the bow at the time of navigation does not directly hit the bow, but is sucked into the suction port of the once-through pump provided with flat wings, and the flow in the vicinity of the bow is controlled. . At the same time, the discharge flow along the hull side surface of the microbubbles from the once-through pump covers the side surface, thereby reducing the frictional resistance on the hull side surface.
The invention according to claim 2 is a fluid resistance reducing device in which the flat plate blade is directly attached to and integrated with the upper surface of the suction casing of the once-through pump.

請求項3に記載の発明は、船体底面の摩擦抵抗を低減する流体抵抗低減装置で、船首部先端の尖った形状におけるポンプ据付け上の構造的問題を解決するために、船首部の左舷と右舷の間の部分を上甲板の方向から水面に向かって中空にした立抗にし、その中空立抗後部の略垂直壁面上の船底近傍にマイクロバブル発生貫流ポンプを平坦な船底面に合わせて横置きにして設置した構成である。これにより、船体底面に沿うマイクロバブルの吐出し流れが船体底面を覆うことにより、船体底面の摩擦抵抗が低減される。 The invention according to claim 3 is a fluid resistance reducing device for reducing the frictional resistance of the bottom of the hull. In order to solve the structural problem in the installation of the pump in the sharp shape at the tip of the bow, The part between the two is made to stand against the water surface from the direction of the upper deck, and the microbubble generating once-through pump is placed horizontally on the flat bottom of the ship near the ship bottom on the substantially vertical wall at the rear of the hollow support. It is the structure installed as follows. Thereby, the frictional resistance of the hull bottom is reduced by the discharge flow of the microbubbles along the hull bottom covering the hull bottom.

請求項4及び請求項5に記載の発明の平口ノズルによる流体抵抗低減装置は、船体の底面と側面の表面近傍の流れの中に、くし型タイプの平口ノズルを設置し、流れと同方向に微細気泡流を吹き出すことにより、シート状のマイクロバブルの噴流が船体表面に沿って流れるようにして、船体表面の摩擦抵抗を低減するものである。
請求項6に記載の発明は、上記くし型タイプの平口ノズルの上方すぐ上に、当該ノズル装置全体を覆う平板翼を船体表面に略平行に設置した構成からなり、これにより船体表面に沿うノズルの噴出流を安定させるものである。
上記数種の流体抵抗低減装置のそれぞれを使用条件に合わせて船体に装備すれば、船体の側面と底面の摩擦抵抗、および船首部に発生する造波抵抗を同時に低減できるという高度の省エネ技術を提供できることになる。
In the fluid resistance reducing device using the flat-mouth nozzle according to the fourth and fifth aspects of the present invention, a comb-type flat-mouth nozzle is installed in the flow in the vicinity of the bottom and side surfaces of the hull, and in the same direction as the flow. By blowing out a fine bubble flow, a jet of sheet-like microbubbles flows along the surface of the hull to reduce the frictional resistance on the surface of the hull.
The invention according to claim 6 comprises a structure in which a flat plate wing covering the entire nozzle device is disposed substantially parallel to the hull surface immediately above the comb-type flat-mouth nozzle, whereby the nozzle along the hull surface. This stabilizes the jet flow.
By installing the above-mentioned several types of fluid resistance reduction devices on the hull according to the conditions of use, advanced energy-saving technology that can simultaneously reduce the frictional resistance of the side and bottom of the hull and the wave-making resistance generated at the bow. It can be provided.

従来は、ブロワによる加圧空気を噴出口から吹き出させて、マイクロバブルを発生させている例が多いが、気体のみの噴出では、気泡同士が結合しやすいことから、気泡を十分に微細化し難い。気泡の微細化には微小気泡含有気液混合液を加圧してノズルに供給する必要がある。また、微細気泡で船体表面を効率よく覆うためには、気泡径をできるだけ小さくして浮力の影響を小さくする必要がある。特に船体側面における流れに対しては、気泡の浮力の影響が大きい。   Conventionally, there are many examples in which microbubbles are generated by blowing pressurized air from a blower from a jet outlet. However, in the case of jetting only gas, it is difficult to sufficiently miniaturize the bubbles because bubbles are easy to combine with each other. . In order to refine the bubbles, it is necessary to pressurize the gas-liquid mixture containing fine bubbles and supply it to the nozzle. In order to efficiently cover the hull surface with fine bubbles, it is necessary to reduce the bubble diameter as much as possible to reduce the influence of buoyancy. In particular, the influence of bubble buoyancy is great on the flow on the side of the hull.

請求項7に記載の発明は、ポンプのメンテナンスや据付け位置の調整に関するもので、マイクロバブル発生貫流ポンプを船首部の船体側面や中空立抗部の略垂直壁面上に設置したリニアレール走行するスライドプレート又はパイプやポールをガイドにしてスライドして走行するスライドプレートに取り付けた構成にし、前記貫流ポンプを上下に走行可能とし、またポンプを水面上に引き上げることによって容易となることを特徴とする。 The invention according to claim 7 relates to maintenance of the pump and adjustment of the installation position, and a slide that travels on a linear rail in which a micro-bubble generating once-through pump is installed on the hull side surface of the bow portion or on the substantially vertical wall surface of the hollow standing portion. The structure is such that the plate or pipe or pole is attached to a slide plate that slides and travels so that the cross-flow pump can be run up and down, and it is facilitated by lifting the pump above the water surface.

本発明の流体抵抗低減装置は、従来とは異なり、船体の側面と底面の摩擦抵抗および船首部の造波抵抗を同時に低減することが出来るため、航行時における高い省エネ効果が得られる。また、船首部の水流が制御され、造波抵抗が低減されるため、水を切る船首部形状を鋭くする必要もない。また、造波抵抗低減のためには、船首部の水面下の船体構造をバルバスバウ(球状船首)にする必要もない。 Unlike the prior art, the fluid resistance reduction device of the present invention can simultaneously reduce the frictional resistance between the side and bottom of the hull and the wave-forming resistance at the bow, so that a high energy-saving effect can be obtained during navigation. Further, since the water flow at the bow is controlled and the wave resistance is reduced, it is not necessary to sharpen the bow shape for cutting water. Further, in order to reduce the wave resistance, it is not necessary to make the hull structure under the water surface of the bow part a barbasse bow (spherical bow).

図1は本発明の流体抵抗低減装置80を船首部の船体側面外板に設置した場合の全体構成を示す斜視図である。(実施例1)FIG. 1 is a perspective view showing the overall configuration when the fluid resistance reducing device 80 of the present invention is installed on the hull side skin of the bow. Example 1 図2は図1の平板翼55の一部を破断した主要部の斜視図である。FIG. 2 is a perspective view of a main part in which a part of the flat plate blade 55 of FIG. 1 is broken. 図3は図1の流体抵抗低減装置80を船首部水面下の船体側板に設置したときの断面図で、船体側面に沿うマイクロバブルの吐出し流れの状態を示す。FIG. 3 is a cross-sectional view when the fluid resistance reducing device 80 of FIG. 1 is installed on the hull side plate below the water surface of the bow, and shows the state of discharge flow of microbubbles along the hull side surface. 図4は図3の流体抵抗低減装置80の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the fluid resistance reducing device 80 of FIG. 図5はマイクロバブル発生貫流ポンプ50と気液混合加圧液供給装置45の関係を示す概念図である。FIG. 5 is a conceptual diagram showing the relationship between the microbubble generating once-through pump 50 and the gas-liquid mixed pressurized liquid supply device 45. 図6は、流体抵抗低減装置81の装置構成を示す斜視図である(実施例2)。FIG. 6 is a perspective view showing a device configuration of the fluid resistance reducing device 81 (Example 2). 図7は、流体抵抗低減装置81を船首部水面下の船体側面外板に設置したときの断面図で、船体側面に沿うマイクロバブルの吐出し流れの状態を示す。FIG. 7 is a cross-sectional view when the fluid resistance reducing device 81 is installed on the hull side skin below the water surface of the bow, and shows the state of discharge flow of microbubbles along the hull side. 図8はマイクロバブル発生貫流ポンプ50bを船首部の中空立抗の垂直壁面の船底部に設置した場合の全体構成を示す概略の断面図である。(実施例3)FIG. 8 is a schematic cross-sectional view showing the entire configuration when the microbubble generating once-through pump 50b is installed on the bottom of the vertical wall surface of the hollow wall of the bow. Example 3 図9はマイクロバブル発生貫流ポンプ50bの据付け状態を示す拡大断面図である。FIG. 9 is an enlarged cross-sectional view showing an installed state of the microbubble generating once-through pump 50b. 図10は図8の装置の全体構成を示す概略の平面図である。FIG. 10 is a schematic plan view showing the overall configuration of the apparatus of FIG. 図11は、船首部の中空立抗の垂直壁面の船底部近傍の流れの中に平口ノズル4を設置した状態と、マイクロバブルの噴出流の状態を示す断面図である。(実施例4)FIG. 11 is a cross-sectional view showing a state in which the flat nozzle 4 is installed in the flow in the vicinity of the bottom of the vertical wall of the hollow wall at the bow and the state of the microbubble jet flow. Example 4 図12は、船首部の中空立抗の底面部近傍に設置した平口ノズル4からの噴出流の状態を船体の底面側から見た平面図で、対称図面の片側半分を示す。FIG. 12 is a plan view of the state of the jet flow from the flat nozzle 4 installed in the vicinity of the bottom surface of the hollow stand at the bow, as seen from the bottom side of the hull, and shows one half of the symmetrical drawing. 図13は、船首部水面下の船体側面外板近傍の流れの中にノズルの先端口が平口のくし形ノズル18bを据付けた場合の全体構成を示す斜視図である。(実施例5)FIG. 13 is a perspective view showing the overall configuration when a comb-shaped nozzle 18b having a flat front end is installed in the flow in the vicinity of the hull side skin under the water surface of the bow. (Example 5) 図14は、平板翼57を備えた、くし形ノズル18bを船首部水面下の船体側面近傍の流れの中に設置した状態を示す断面図である。FIG. 14 is a cross-sectional view showing a state in which the comb nozzle 18b provided with the flat blades 57 is installed in the flow in the vicinity of the side of the hull below the water surface of the bow. 図15は、マイクロバブル発生貫流ポンプ50bと流体抵抗低減装置80を船首部の底面と側面に設置した場合の装置構成と船体表面に沿うマイクロバブルの流れの状態を示す斜視図である。FIG. 15 is a perspective view showing the configuration of the microbubble generation once-through pump 50b and the fluid resistance reduction device 80 on the bottom and side surfaces of the bow and the state of the flow of microbubbles along the hull surface. 図16は羽根車内部に挿入した散気孔タイプのノズル3および筒型タイプのノズル10の装置構成と気液混合加圧液供給装置45の関係を示す断面図である。FIG. 16 is a cross-sectional view showing the relationship between the device configuration of the air diffuser type nozzle 3 and the cylindrical type nozzle 10 inserted into the impeller and the gas-liquid mixed pressurized liquid supply device 45. 図17は、散気孔タイプのノズル3bを専用のサブモータ20で駆動する羽根車部の装置構成と気液混合加圧液供給装置45の関係を示す断面図である。FIG. 17 is a cross-sectional view showing the relationship between the device configuration of the impeller unit that drives the air diffuser type nozzle 3 b by the dedicated sub motor 20 and the gas-liquid mixed pressurized liquid supply device 45. 図18は、気液混合チャンバー40の構成を示す断面図である。FIG. 18 is a cross-sectional view showing the configuration of the gas-liquid mixing chamber 40. 図19は流体抵抗低減装置80を船首部水面下の船体側面に設置の有無(b)、(a)での航行時における船体まわりの流れの状況を比較して示す概略の断面図である。FIG. 19 is a schematic cross-sectional view showing a comparison of the flow conditions around the hull during navigation in (b) and (a) with or without the fluid resistance reduction device 80 installed on the side of the hull below the water surface of the bow. 図20は、平板翼55を備えていない場合のマイクロバブル発生貫流ポンプ50のポンプ背後における後流渦Kの発生状況を示す断面図である。FIG. 20 is a cross-sectional view showing a state of generation of the wake vortex K behind the microbubble generating once-through pump 50 when the flat blade 55 is not provided.

以下に本発明の実施の形態を図1及至図15を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、請求項1に記載の発明に関する第1実施例で、流体抵抗低減装置80を船首部水面下の船体側面に設置した場合の全体構成を示す斜視図である。図2は図1の平板翼55の一部を破断し、マイクロバブル発生貫流ポンプ50の形状を明確にした主要部の斜視図である。
本実施例の装置構成は、まず、羽根車中心部に微細気泡発生機構を有するマイクロバブル発生貫流ポンプ50を船首部の船の側面外板に設置したリニアレール30の上を走行するスライドプレート31に取り付けた構成にする。本例は水面下の適正な位置に調整しながらポンプ2台をセットできるようにしたもので、貫流ポンプの吸込み口と吐出し口の方向は水流と同方向で、吐出し流れが船体表面に沿うように、ケーシング形状をアレンジしている。次に前記マイクロバブル発生貫流ポンプ50の上方すぐ上に貫流ポンプ全体を覆う平板翼55を船体側面に略平行に設置した構成にする。これにより、船首部へ向かう水流は図3の断面図に示すように、平板翼55の内側と外側に分かれて流れるようになる。ポンプ入口部には、ゴミ除けのためにスクリーン60を取り付けている。
FIG. 1 is a perspective view showing an overall configuration when a fluid resistance reducing device 80 is installed on a side surface of a hull below a water surface of a bow portion in a first embodiment relating to the invention of claim 1. FIG. 2 is a perspective view of a main part in which a part of the flat plate blade 55 of FIG. 1 is broken and the shape of the microbubble generating once-through pump 50 is clarified.
The apparatus configuration of the present embodiment is as follows. First, a slide plate 31 that travels on a linear rail 30 in which a microbubble generating once-through pump 50 having a fine bubble generating mechanism in the center of an impeller is installed on a side plate of a ship at the bow portion. The configuration attached to. In this example, two pumps can be set while adjusting to an appropriate position below the water surface. The direction of the inlet and outlet of the once-through pump is the same as the water flow, and the discharge flow is on the hull surface. The casing shape is arranged to follow. Next, a configuration is adopted in which a flat plate blade 55 covering the entire cross-flow pump is installed substantially parallel to the side of the hull just above the micro-bubble generating cross-flow pump 50. As a result, the water flow toward the bow is divided into the inside and the outside of the flat plate blade 55 as shown in the cross-sectional view of FIG. A screen 60 is attached to the pump inlet for dust removal.

円筒状で多翼の羽根車7を有する貫流ポンプ(図16参照)の構造は単純に二次元的で、流れが羽根車に接線方向に吐出されることから、吐出し流れは、幅広のシート状で乱れも少なく、拡散せずに遠くまで達することができる。また、単純に羽根車の長さを変えたり羽根車を連結することによって、船体表面をマイクロバブルで覆う範囲を調整できる。なお、ポンプからのマイクロバブルを含む吐出し流れは、船の推進にも寄与するので無駄がない。
また、水中モータ12を含めて全体が矩形にコンパクトにまとまるので、図2に示すようにリニアレール30の上を走行するスライドプレート31に都合よく容易に取り付けられる。スライドプレート31を自走型にすれば、作業効率は良くなる。
図5は、本発明に係るマイクロバブル発生貫流ポンプ50と気液混合加圧液供給装置45の関係を示す概念図である。マイクロバブルの発生機構は、気液混合チャンバー40で気体と液体を合流させて生成された気泡を含む気液混合液を加圧ポンプ42に取り込んで、加圧した微細気泡含有気液混合液を貫流ポンプの羽根車7内に挿入したノズルに供給する構成である(詳細は後述)。
The structure of the cross-flow pump (see FIG. 16) having a cylindrical and multi-blade impeller 7 is simply two-dimensional, and the flow is discharged tangentially to the impeller, so that the discharge flow is a wide sheet. It is in the form of little disturbance and can reach far without diffusing. Moreover, the range which covers the hull surface with microbubbles can be adjusted by simply changing the length of the impeller or connecting the impeller. In addition, since the discharge flow including the microbubbles from the pump contributes to the propulsion of the ship, there is no waste.
Moreover, since the whole including the underwater motor 12 is compactly packed into a rectangular shape, it can be conveniently and easily attached to the slide plate 31 running on the linear rail 30 as shown in FIG. If the slide plate 31 is self-propelled, the working efficiency is improved.
FIG. 5 is a conceptual diagram showing the relationship between the microbubble generating once-through pump 50 and the gas-liquid mixed pressurized liquid supply device 45 according to the present invention. The microbubble generation mechanism is such that a gas-liquid mixed liquid containing bubbles generated by merging gas and liquid in the gas-liquid mixing chamber 40 is taken into the pressure pump 42 and the pressurized fine bubble-containing gas-liquid mixed liquid is taken up. It is the structure which supplies to the nozzle inserted in the impeller 7 of a once-through pump (it mentions later for details).

この実施の形態によれば、航行中に船首部に向かう水流は、従来は船首部に当たり、淀みを生じて水面波を生じるが、本発明では、図3に示すように前記水流は船首部に当たらず、船首部側面近傍を通って貫流ポンプの吸込み口へ支障なくスムーズに向かうため、衝突による水面波は生じない。従って造波抵抗を顕著に低減できる。
一方、貫流ポンプの吐出し流れの特性は、前述のように幅広のシート状で乱れも少なく、拡散せずに遠くまで達することができること、またコアンダ効果(流れが物体表面に沿って流れる効果)により、図3の断面図および図4の拡大図に示すように貫流ポンプ50から吐出されたマイクロバブルの流れが曲率のある船の側面外板70bに沿って流れるので、船体表面を薄い層のマイクロバブルで効率よく覆うことができる。従って摩擦抵抗を効率よく低減させることができる。
このように、本発明では、従来と異なり、造波抵抗と摩擦抵抗の両方を同時に低減することができるという優れた特徴を持っている。
According to this embodiment, the water flow toward the bow during navigation conventionally hits the bow and causes stagnation and water surface waves, but in the present invention, as shown in FIG. Since it does not hit and passes smoothly through the vicinity of the side of the bow to the suction port of the once-through pump without hindrance, water waves due to collision do not occur. Accordingly, the wave resistance can be significantly reduced.
On the other hand, the characteristic of the discharge flow of the once-through pump is that, as mentioned above, it is a wide sheet with little turbulence and can reach far without spreading, and the Coanda effect (the effect of the flow flowing along the object surface) As shown in FIG. 3 and the enlarged view of FIG. 4, the flow of microbubbles discharged from the once-through pump 50 flows along the curved side skin 70b of the ship with a curvature. Can be efficiently covered with microbubbles. Accordingly, the frictional resistance can be efficiently reduced.
As described above, the present invention has an excellent feature that, unlike the prior art, both the wave-making resistance and the frictional resistance can be reduced at the same time.

なお、コアンダ効果を有効にするためには、ポンプのマイクロバブル吐出し流れの流速Dを外流F(船体近傍を通り過ぎる流れ)の流速よりも速くする必要がある。吐出し流速はポンプの回転数を変えることによって調整する。
羽根車を高速回転すると、羽根にキャビテーションが発生しやすくなる。キャビテーションはポンプの性能低下の原因になるが、適度のキャビテーションの発生は、微細気泡の発生源となり、その吐出し気泡流は船体表面の摩擦抵抗を低減するため、本実施例ではプラス効果となる。
In order to make the Coanda effect effective, it is necessary to make the flow velocity D of the microbubble discharge flow of the pump faster than the flow velocity of the external flow F (flow passing through the vicinity of the hull). The discharge flow rate is adjusted by changing the rotation speed of the pump.
When the impeller rotates at high speed, cavitation tends to occur in the blade. Although cavitation causes a reduction in pump performance, the occurrence of moderate cavitation becomes a source of fine bubbles, and the discharged bubble flow reduces the frictional resistance of the hull surface, so this embodiment has a positive effect. .

また、平板翼55を備えた装置構成は、上述の船首部の流れの制御による造波抵抗を低減するだけでなく、図20に示すようなポンプ背後に発生する後流渦Kの発生も防止できる。後流渦Kは同図に示すようにマイクロバブルの吐出し流れDを乱すため、平板翼55を備えることは、ポンプからの吐出し流れDを安定させることにも寄与している。
ポンプのメンテナンスは、ポンプがリニアレール30上を上下に走行できるので容易である。リニアレール30の替わりにH型鋼タイプを使用してもよい。又は、後述の実施例3に示すようにパイプやポールをガイドにしてスライドして走行するスライドプレート34に、マイクロバブル発生貫流ポンプ50取り付けた構成にしてもよい。(請求項7に関連)
ゴミ除けスクリーン60にゴミが附着した場合は、羽根車を逆回転してポンプの吐出し口から吸込み口へ逆流させれば、取り除くことができる。
In addition, the apparatus configuration including the flat blades 55 not only reduces the wave-making resistance due to the above-described control of the bow portion flow, but also prevents the generation of the wake vortex K generated behind the pump as shown in FIG. it can. Since the wake vortex K disturbs the discharge flow D of the microbubbles as shown in the figure, the provision of the flat blades 55 also contributes to stabilizing the discharge flow D from the pump.
Maintenance of the pump is easy because the pump can run up and down on the linear rail 30. Instead of the linear rail 30, an H-shaped steel type may be used. Or you may make it the structure which attached the microbubble generation | occurrence | production cross-flow pump 50 to the slide plate 34 which slides and runs using a pipe or a pole as a guide as shown in Example 3 described later. (Related to claim 7)
If dust adheres to the dust screen 60, it can be removed by rotating the impeller reversely to flow backward from the pump discharge port to the suction port.

図6は、請求項2に記載の発明に関する第2実施例で、流体抵抗低減装置81を船首部水面下の船体側面に設置した場合の全体構成とマイクロバブルの流れを示す斜視図である。
本実施例では、図1に示す流体抵抗低減装置80とは異なり、平板翼56をマイクロバブル発生貫流ポンプ50の吸込みケーシング21(図4参照)の上面に直接取り付けて、前記平板翼56で貫流ポンプ全体を覆い、前記貫流ポンプと平板翼を一体化した構成である。
図7に流体抵抗低減装置81を船首部の船体側面に取り付けた場合の断面図およびマイクロバブル流れの状態を示す。第2実施例におけるマイクロバブル発生に関する基本的な装置構成や船体まわりの流れの状況は第1実施例と同様である。
FIG. 6 is a perspective view showing the overall configuration and the flow of microbubbles when a fluid resistance reducing device 81 is installed on the side of a hull below the water surface of the bow portion in the second embodiment relating to the invention of claim 2.
In the present embodiment, unlike the fluid resistance reduction device 80 shown in FIG. 1, the flat plate blade 56 is directly attached to the upper surface of the suction casing 21 (see FIG. 4) of the microbubble generating through-flow pump 50. The entire pump is covered and the once-through pump and the flat blade are integrated.
FIG. 7 shows a sectional view and a state of microbubble flow when the fluid resistance reducing device 81 is attached to the side of the hull of the bow. The basic apparatus configuration and the flow situation around the hull relating to the generation of microbubbles in the second embodiment are the same as in the first embodiment.

図8は、請求項3に記載の発明に関する第3実施例で、船首部先端の尖った形状におけるポンプ据付け上の構造的問題を解決するために、船首部の左舷と右舷の間の部分を上甲板の方向から水面に向かって中空にした立抗構造にし、中空立抗75の後部の略垂直壁面76の船底近傍にマイクロバブル発生貫流ポンプ50bを設置した場合の全体構成を示す断面図である。図9はマイクロバブル発生貫流ポンプ50bの据付部の拡大断面図、図10は図8を上方から見た平面図である。
本実施例では、図8に示すようにマイクロバブル発生貫流ポンプ50bを船首部の中空立抗75の垂直壁面76に設置したリニアパイプ32をガイドにして走行するスライドプレート34に取付けた構成にし、ポンプの吐出し流れが船の平坦な底面に沿って、船首部から船尾に向かって流れるように該貫流ポンプを横置きにして水面下の船底近くに設置したものである。マイクロバブル発生に関する基本的な装置構成は、実施例1と同様である。
中空立抗75は、立抗上面が水面より上にあればよく、上甲板を突き抜けなくてもよい。中空立抗75の中を満たす海水は、水流が船首部に当たる衝突圧を緩和するダンパーの役割をし、船の縦揺れや横揺れの揺動を安定化させる働きもある。
FIG. 8 is a third embodiment relating to the invention described in claim 3, and in order to solve the structural problem in the installation of the pump in the pointed shape of the bow tip, the portion of the bow portion between the port side and the starboard side is arranged. It is sectional drawing which shows the whole structure at the time of making the standing structure hollow from the direction of the upper deck toward the water surface, and installing the microbubble generation | occurrence | production flow pump 50b in the ship bottom vicinity of the substantially vertical wall surface 76 of the rear part of the hollow standing resistance 75. is there. FIG. 9 is an enlarged cross-sectional view of the installation part of the microbubble generating once-through pump 50b, and FIG. 10 is a plan view of FIG. 8 viewed from above.
In this embodiment, as shown in FIG. 8, the microbubble generating once-through pump 50 b is attached to the slide plate 34 that runs with the linear pipe 32 installed on the vertical wall surface 76 of the hollow stand 75 of the bow as a guide, The once-through pump is installed horizontally and near the bottom of the ship under the surface of the water so that the discharge flow of the pump flows along the flat bottom surface of the ship from the bow to the stern. The basic device configuration related to the generation of microbubbles is the same as that of the first embodiment.
The hollow stand 75 only needs to have a stand-up upper surface above the water surface, and does not need to penetrate the upper deck. The seawater that fills the hollow support 75 serves as a damper that reduces the collision pressure of the water hitting the bow, and also has the function of stabilizing the pitching and rolling of the ship.

この実施の形態によれば、航行中に船底部に向かう水流は、マイクロバブル発生貫流ポンプ50bの吸込み口へスムーズに向かい、マイクロバブルの吐出し流れは、図8の断面図および図9の拡大図に示すように船底面の外板表面に沿って流れる。前述のように貫流ポンプの吐出し流れは、幅広のシート状で乱れも少なく、拡散せずに遠くまで達することができること、またコアンダ効果により、図8、図9に示すように吐出し流れが曲率のある船体底面に沿ってスムーズに後方船尾に向かって流れるため、従来と異なり、船体底面全体を薄い層のマイクロバブルで効率よく覆うことができる。摩擦抵抗低減のためには、船体表面が水と接する薄い境界層を気泡で覆えばよく、厚い層で覆う必要はないことから、貫流ポンプの吐出し流れの特性は、船体の摩擦抵抗低減には都合がよい。 According to this embodiment, the water flow toward the ship bottom during navigation is smoothly directed to the suction port of the microbubble generating once-through pump 50b, and the discharge flow of the microbubble is the cross-sectional view of FIG. 8 and the enlarged view of FIG. As shown in the figure, it flows along the outer plate surface on the bottom of the ship. As described above, the discharge flow of the once-through pump is a wide sheet with little turbulence and can reach far without being diffused. Also, due to the Coanda effect, the discharge flow is as shown in FIGS. Since it flows smoothly toward the rear stern along the curved bottom of the hull, unlike the conventional case, the entire bottom of the hull can be efficiently covered with a thin layer of microbubbles. In order to reduce the frictional resistance, the thin boundary layer where the hull surface is in contact with water needs to be covered with air bubbles, and it is not necessary to cover it with a thick layer. Is convenient.

実施例1〜3においては、気液混合加圧液供給装置45で生成された微細気泡含有気液混合加圧液を羽根車内のノズルに供給したが、気体のみを貫流ポンプの羽根車内のノズルに供給する手段もある。図17(c)に示すように、ブロワ43により加圧した気体をノズル3bに供給し、ノズル回転専用のサブモータ20により、ノズル3bを高速回転させて噴出孔5より、高速回転を伴いながら噴出させれば十分に微細化した気泡(マイクロバブル)が得られ、摩擦抵抗低減に有効な手段となる。この手法によれば、浮力の影響が大きい実施例1および実施例2の船体側面に対しても使用可能である。 In Examples 1 to 3, the fine bubble-containing gas-liquid mixed pressurized liquid generated by the gas-liquid mixed pressurized liquid supply device 45 was supplied to the nozzle in the impeller, but only the gas was supplied to the nozzle in the impeller of the once-through pump. There is also a means to supply to. As shown in FIG. 17C, the gas pressurized by the blower 43 is supplied to the nozzle 3 b, and the nozzle 3 b is rotated at a high speed by the sub motor 20 dedicated to the nozzle rotation, and is ejected from the ejection hole 5 while being rotated at a high speed. By doing so, sufficiently fine bubbles can be obtained, which is an effective means for reducing frictional resistance. According to this method, it can be used for the side surfaces of the hulls of the first and second embodiments where the influence of buoyancy is large.

図11は、請求項4に記載の発明に関する第4実施例で、中空立抗75の略垂直壁面76の船底近傍の流れの中に、くし型ノズル18の平口ノズル4を取り付けて、船体底面の摩擦抵抗を低減させる場合の全体構成を示す概略の断面図である。図12は船体の底面側から見た平口ノズル4の据付け状態で、対称図面の片側半分を示す。この場合は平口ノズルを3個設置し、幅広ノズルの噴出流が船体底面に沿うようにしている。ノズルの先端口は円形でもよいが、平口にした方が、噴流を船体表面に沿って流すことができ、噴流が表面を覆う面積も広くなるため、ノズルの個数も少なくてすむ。ノズルの個数は船体の大きさによって調整する。平口ノズル4には、実施例1と同様に、気液混合加圧液供給装置45により生成された微細気泡含有気液混合加圧液が供給される構成である。 FIG. 11 shows a fourth embodiment relating to the invention as set forth in claim 4, wherein the flat nozzle 4 of the comb nozzle 18 is attached in the flow in the vicinity of the bottom of the substantially vertical wall 76 of the hollow stand 75, and the bottom of the hull. It is a schematic sectional drawing which shows the whole structure in the case of reducing the frictional resistance. FIG. 12 shows one half of the symmetric drawing in the installed state of the flat mouth nozzle 4 as seen from the bottom side of the hull. In this case, three flat mouth nozzles are installed so that the jet flow of the wide nozzle is along the bottom of the hull. The tip of the nozzle may be circular, but if the nozzle is flat, the jet can flow along the surface of the hull, and the area of the jet covering the surface increases, so the number of nozzles can be reduced. The number of nozzles is adjusted according to the size of the hull. Similarly to the first embodiment, the flat-mouth nozzle 4 is configured to be supplied with the gas-liquid mixed pressurized liquid containing fine bubbles generated by the gas-liquid mixed pressurized liquid supply device 45.

この実施の形態によれば、図12に示すように平口ノズル4の先端からの噴出流が減圧と流体との摩擦によりマイクロバブル化した流れとなって、船体底面を覆うため、摩擦抵抗が低減される。
本発明のように、平口ノズル4を船底面近傍の流れの中に据付けて、ノズルの噴流が流れと同方向になるように設定することにより、平口ノズルからの噴出流が船体に沿う外流と同方向の流れの中に安定した流れとなって、またコアンダ効果によるマイクロバブルの流れが曲率のある船体表面を覆うことにより、摩擦抵抗が顕著に低減される。
According to this embodiment, as shown in FIG. 12, the jet flow from the tip of the flat-mouth nozzle 4 becomes a microbubble flow due to the friction between the reduced pressure and the fluid, and covers the bottom of the hull, thereby reducing the frictional resistance. Is done.
As in the present invention, the flat mouth nozzle 4 is installed in the flow near the bottom of the ship, and the jet flow of the nozzle is set in the same direction as the flow. Friction resistance is remarkably reduced by a stable flow in the flow in the same direction and the microbubble flow by the Coanda effect covering the curved hull surface.

実施例3と実施例4では、マイクロバブルの流れを得るために、実施例1と同様に気液混合加圧液供給装置45で生成された微細気泡含有気液混合加圧液を使用したが、船体底面では、船体側面に比べると気泡の浮力の影響は小さいので、従来のようにブロワによる加圧空気を羽根車内のノズルや平口ノズルに供給することにより、マイクロバブルの発生を得てもよい。しかし、気泡の微細化は十分でなく、摩擦抵抗の低減効果は劣る。 In Example 3 and Example 4, in order to obtain the flow of microbubbles, the gas-liquid mixed pressurized liquid containing fine bubbles generated by the gas-liquid mixed pressurized liquid supply device 45 was used as in Example 1. In the bottom of the hull, the influence of the buoyancy of bubbles is small compared to the side of the hull, so it is possible to obtain the generation of microbubbles by supplying pressurized air from the blower to the nozzle in the impeller and the flat mouth nozzle as in the past. Good. However, the bubbles are not sufficiently refined, and the effect of reducing the frictional resistance is inferior.

図13は、請求項5に記載の発明に関する第5実施例で、船首部水面下の船体側面近傍の水流の中に、くし型ノズル18bを設置した場合の全体構成を示す斜視図である。図14にくし型ノズル18bを船首部の船体側面近傍の水流の中に取り付けた場合の断面図およびマイクロバブル流れの状態を示す。
この実施例では、分岐管11bは、剥離渦が生じないように外形を翼型にし、平口ノズル4bからの噴流が船体側面に沿うように調整している。また、本図では、ノズルからの噴出流を安定させるために、くし型ノズル18bの上方すぐ上に、当該くし型ノズル全体を覆う平板翼57を船体側面に略平行に設置した構成を示す。同様に前記実施例4におけるくし型ノズル18においても、平板翼を備えた方がノズルからの噴出流は安定する。(請求項6に関連)
船体側面の摩擦抵抗低減のためには、特に気泡径を十分に小さくして浮力の影響を小さくする必要があることから、平口ノズル4bには、気体のみの供給でなく、実施例1と同様に、気液混合加圧液供給装置45により生成された微細気泡含有気液混合加圧液を供給した方がよい。
FIG. 13 is a perspective view showing an overall configuration in the case where the comb nozzle 18b is installed in the water flow in the vicinity of the side surface of the hull below the water surface of the bow portion in the fifth embodiment relating to the invention described in claim 5. FIG. 14 shows a cross-sectional view and a state of microbubble flow when the comb nozzle 18b is mounted in the water flow in the vicinity of the hull side surface of the bow.
In this embodiment, the branch pipe 11b is shaped like a wing so that no separation vortex is generated, and is adjusted so that the jet flow from the flat nozzle 4b is along the side of the hull. Further, in this figure, in order to stabilize the jet flow from the nozzle, a configuration is shown in which a flat plate blade 57 covering the entire comb nozzle is disposed substantially parallel to the side of the hull just above the comb nozzle 18b. Similarly, in the comb nozzle 18 in the fourth embodiment, the jet flow from the nozzle is more stable when the flat blade is provided. (Related to claim 6)
In order to reduce the frictional resistance on the side of the hull, it is necessary to reduce the influence of buoyancy particularly by making the bubble diameter sufficiently small. Therefore, not only the gas is supplied to the flat-mouth nozzle 4b, but the same as in the first embodiment. It is better to supply the gas-liquid mixed pressurized liquid containing fine bubbles generated by the gas-liquid mixed pressurized liquid supply device 45.

この実施の形態によれば、図13、図14に示すように平口ノズル4bの先端からの噴出流が減圧と流体との摩擦によりマイクロバブル化した流れとなって、船体側面を覆うため、摩擦抵抗が低減される。
従来技術では、前述のように船体外板に設けた多数の噴出口やノズルからマイクロバブルを船体表面に向けて吹き出すため、噴出流の乱れが大きく拡散しやすく、気泡も船体表面から離れやすくなるため、船体表面を効率よくマイクロバブルで覆うことができない。本発明のように、平口ノズル4bを実施例4と同様に船体表面近傍の流れの中に据付けて、ノズルの噴出流が流れと同方向になるように設定して噴流を安定させることにより、また、コアンダ効果により、平口ノズルからの噴出流が曲率のある船体表面をマイクロバブルで覆うことができる。従って、摩擦抵抗が顕著に低減される。
According to this embodiment, as shown in FIGS. 13 and 14, the jet flow from the tip of the flat mouth nozzle 4b becomes a microbubbled flow due to friction between the reduced pressure and the fluid, and covers the hull side surface. Resistance is reduced.
In the prior art, since the microbubbles are blown out toward the hull surface from the numerous jets and nozzles provided on the hull outer plate as described above, the turbulence of the jet flow is easily diffused and the bubbles are also easily separated from the hull surface. Therefore, the hull surface cannot be efficiently covered with microbubbles. Like the present invention, the flat mouth nozzle 4b is installed in the flow near the hull surface in the same manner as in Example 4, and the jet flow of the nozzle is set in the same direction as the flow to stabilize the jet flow. Further, due to the Coanda effect, the surface of the hull with the curvature of the jet flow from the flat nozzle can be covered with microbubbles. Accordingly, the frictional resistance is significantly reduced.

実施例4、実施例5のくし型ノズル18,18bを、実施例1や実施例3のようにリニアレール30、やリニアパイプ32を走行するスライドプレート32、34のような類の移動可能な装置に取り付ければ、メンテナンスは容易となる。 The comb nozzles 18 and 18b of the fourth and fifth embodiments can be moved in the same manner as the slide plates 32 and 34 that run on the linear rail 30 and the linear pipe 32 as in the first and third embodiments. If it is attached to the device, maintenance becomes easy.

図15は第6実施例で、船体の流体抵抗を総合的に低減する装置の全体構成とマイクロバブルが船体表面に沿って流れる状態を船の前方下方向から見た斜視図である。本実施例は、第1実施例と第3実施例で使用した流体抵抗低減装置を船体に設置した構成である。
船体側面の摩擦抵抗の低減と船首部の造波抵抗の低減には、実施例1と同様の縦置きのマイクロバブル発生貫流ポンプ50と平板翼55を組み合わせた流体抵抗低減装置80を船首部の船体側面に設置した構成にし、船体底面における摩擦抵抗の低減には、実施例3と同様の横置きのマイクロバブル発生貫流ポンプ50bを中空立抗75の船底部に設置した構成である。
FIG. 15 is a perspective view of a sixth embodiment of the overall configuration of the apparatus for comprehensively reducing the fluid resistance of the hull and the state in which microbubbles flow along the hull surface as viewed from the front lower side of the ship. In this embodiment, the fluid resistance reducing device used in the first and third embodiments is installed on the hull.
In order to reduce the frictional resistance on the side of the hull and the wave-making resistance at the bow, a fluid resistance reducing device 80, which is a combination of the longitudinal microbubble generating once-through pump 50 and the flat blades 55 similar to that of the first embodiment, is installed at the bow. In order to reduce the frictional resistance at the bottom of the hull, the horizontal microbubble generating once-through pump 50b similar to that of the third embodiment is installed at the bottom of the hollow stand 75 in order to reduce the frictional resistance at the bottom of the hull.

この実施の形態によれば、中空立抗船底部に設置したマイクロバブル発生貫流ポンプ50bと船体側面に設置したマイクロバブル発生貫流ポンプ50の吐出し流れが、貫流ポンプ特有の幅広で乱れのない流れにより、また、コアンダ効果により、曲率のある船体表面に沿ってスムーズに後方船尾に向かって流れるため、水面下の船体の底面と側面の両方の船体表面をマイクロバブルで効率よく覆うことができる。このため、船体表面全体の摩擦抵抗を効率よく低減できる。
また、船首部側面外板に設置した平板翼55を備えた流体抵抗低減装置80により、前述のように船首部近傍の水流が制御され、水面波を抑制するため、造波抵抗は顕著に低減される。従って、実施例6では、航行時における船体の底面と側面の摩擦抵抗、および船首部における造波抵抗も低減されるため、従来と異なり、航行時の船全体における流体抵抗を総合的に低減することが出来るという優れた省エネ効果を有する。
According to this embodiment, the discharge flow of the microbubble generating once-through pump 50b installed at the bottom of the hollow vertical vessel and the microbubble generating once-through pump 50 installed at the side of the hull is a wide and undisturbed flow peculiar to the once-through pump. Due to the Coanda effect, the hull surface smoothly flows toward the rear stern along the curved hull surface, so that both the bottom and side surfaces of the hull below the water surface can be efficiently covered with microbubbles. For this reason, the frictional resistance of the entire hull surface can be efficiently reduced.
In addition, as described above, the water flow near the bow is controlled by the fluid resistance reducing device 80 provided with the flat wings 55 installed on the side plate of the bow part, and the water wave resistance is significantly reduced because the water surface wave is suppressed. Is done. Therefore, in the sixth embodiment, the frictional resistance between the bottom and side surfaces of the hull during navigation and the wave-forming resistance at the bow are also reduced, so that the overall fluid resistance of the entire ship during navigation is reduced unlike the conventional case. It has an excellent energy saving effect.

第6実施例では、船体底面における摩擦抵抗の低減には実施例3と同様にマイクロバブル発生貫流ポンプ50bを船底部に設置した構成にしたが、前記貫流ポンプ50bの替わりに実施例4の平口ノズル4を船底部に設置した構成にしても同様な効果が得られる。また、船体側面に流体抵抗低減装置80の替わりに第5実施例のくし型ノズル18bを設置した構成も考えられる。ただし、この場合の流体抵抗低減装置は、船体側面の摩擦抵抗低減のためで、造波抵抗の低減効果はほとんどない。 In the sixth embodiment, in order to reduce the frictional resistance at the bottom of the hull, the microbubble generating once-through pump 50b is installed at the bottom of the ship as in the third embodiment, but the flat mouth of the fourth embodiment is used instead of the once-through pump 50b. The same effect can be obtained even if the nozzle 4 is installed at the bottom of the ship. Further, a configuration in which the comb nozzle 18b of the fifth embodiment is installed on the side surface of the hull instead of the fluid resistance reducing device 80 is also conceivable. However, the fluid resistance reducing device in this case is for reducing the frictional resistance on the side of the hull, and has almost no effect of reducing the wave resistance.

上記実施例1〜実施例6で描いたマイクロバブル発生貫流ポンプ50、50bや船体流体抵抗低減装置80およびくし型ノズル18、18bの大きさは、分かりやすく説明するために実際とは異なり船体に対して大きな比率で描いている。実際の貫流ポンプの羽根車径は、200〜500mm程度と考えられる。ポンプの大きさやポンプの台数および平口ノズルの本数などは船の大きさによって異なる。
また、上記実施例では、マイクロバブル発生貫流ポンプ50、50bは、メンテナンスの利便性を考慮して、リニアレール30やリニアパイプ32の上を走行するスライドプレート32、34に設置したが、船首部の船体底面と船体側面外板に直接設置してもよい。
The sizes of the microbubble generating through-flow pumps 50 and 50b, the hull fluid resistance reducing device 80 and the comb nozzles 18 and 18b drawn in the first to sixth embodiments are different from the actual size for easy understanding. On the other hand, it is drawn at a large ratio. The impeller diameter of an actual once-through pump is considered to be about 200 to 500 mm. The size of the pump, the number of pumps and the number of flat nozzles vary depending on the size of the ship.
In the above embodiment, the microbubble generating once-through pumps 50 and 50b are installed on the slide plates 32 and 34 that run on the linear rail 30 and the linear pipe 32 in consideration of the convenience of maintenance. It may be installed directly on the hull bottom and hull side skin.

図16と図17は、本発明に係る船体摩擦抵抗低減に関するマイクロバブルの羽根車部での発生機構を示す断面図と気液混合加圧液供給装置45の関係を示す。図16は、散気孔タイプのノズル3、筒型タイプのノズル10が羽根車と一体になって回転するタイプ、図17は、図16とは異なり散気孔タイプのノズル3bが、専用のサブモ−タ20駆動により、羽根車の回転に関係なく自在に回転可能にしたタイプである。
図16(a)と図17(a)は、散気孔タイプのノズル3、3bのノズル先端が羽根車内に突き出した状態、図16(b)と図17(b)は、ノズルの先端を駆動側の羽根車ボス部に差し込んで、ノズルの振れ止め防止と散気孔部が羽根車全体に渡っている状態を示す。図17の専用モータ駆動によるノズル3bのタイプでは、ノズル3bを羽根車の回転に関係なく、自在に高速回転できることから、図17のノズル3bの方が図16のノズル3のタイプより細かな気泡が得られる。これら数種のノズルタイプは、使用状況に応じて、使い分けられる。
FIG. 16 and FIG. 17 show the relationship between the cross-sectional view showing the generation mechanism of the microbubble impeller part for reducing the hull frictional resistance according to the present invention and the gas-liquid mixed pressurized liquid supply device 45. FIG. 16 shows a type in which an air diffuser type nozzle 3 and a cylindrical type nozzle 10 rotate together with an impeller, and FIG. 17 differs from FIG. 16 in that an air diffuser type nozzle 3b has a dedicated sub mode. This is a type that can freely rotate regardless of the rotation of the impeller.
FIGS. 16 (a) and 17 (a) show a state in which the nozzle tip of the air diffuser type nozzles 3 and 3b protrudes into the impeller, and FIGS. 16 (b) and 17 (b) show driving of the nozzle tip. It shows a state where the nozzle is prevented from shaking and the air diffuser hole is inserted over the entire impeller by being inserted into the side impeller boss. In the type of nozzle 3b driven by a dedicated motor in FIG. 17, the nozzle 3b can be freely rotated at high speed regardless of the rotation of the impeller, so that the nozzle 3b in FIG. 17 has finer bubbles than the type of nozzle 3 in FIG. Is obtained. These several types of nozzles are selectively used according to the usage situation.

マイクロバブルの発生機構は、気液混合加圧液供給装置45において、気液混合チャンバー40で気体と液体を合流させて生成された微小気泡含有気液混合液を加圧ポンプ42に取り込んで、加圧ポンプの羽根により回転撹拌しながら気泡を微細化するとともに加圧した微細気泡含有気液混合液を供給ホース13により、羽根車内に挿入したノズルに供給する。供給された微細気泡含有気液混合加圧液は散気孔タイプのノズル3、3b、又は筒型タイプのノズル10の噴出口よりジェット状の噴流J、又はJ2となって回転する羽根車7内に噴出、減圧され、羽根車内の流れとも混合することにより、マイクロバブル化した気泡となって、流れとともにポンプ吐出口から船体表面に沿って流出する。
加圧ポンプとしては比速度の小さい遠心ポンプや渦流ポンプ(ウエスコポンプ)などの高揚程のポンプが適している。あるいは容積式の偏芯ロ−タを持つベーン形のポンプでも良い。気液混合液を加圧するのは、気液混合液中の微小気泡に圧力をかけて微細化してノズルに供給し、散気孔やノズルからの噴出後の減圧が気泡のマイクロバブル化に非常に有効であることによる。
従来は、主にブロワにより気体を噴出口より吹き出す手法がとられているが、気体のみの噴出では気泡同士が結合しやすいことから、気泡の微細化は十分ではない。気体のみをノズルより噴出させて十分な微細気泡を得るためには、図17(c)に示すように、散気孔タイプのノズル3bをサブモータ20により高速回転させて気体を噴出する必要がある。
The microbubble generation mechanism takes in the microbubble-containing gas-liquid mixture generated by the gas-liquid mixing chamber 40 and the gas-liquid mixture in the gas-liquid mixing pressurized liquid supply device 45 into the pressure pump 42, While rotating and agitating with the blades of the pressure pump, the bubbles are refined and the pressurized gas-liquid mixture containing fine bubbles is supplied to the nozzle inserted into the impeller by the supply hose 13. The supplied gas-liquid mixed pressurized liquid containing fine bubbles is supplied to the inside of the impeller 7 which rotates as a jet-like jet J or J2 from the nozzle 3, 3b of the diffused hole type or the nozzle 10 of the cylindrical type. Are blown out, depressurized, and mixed with the flow in the impeller to form microbubbles that flow out of the pump discharge port along the surface of the hull along with the flow.
A high-lift pump such as a centrifugal pump or a vortex pump (Wesco pump) with a low specific speed is suitable as the pressurizing pump. Alternatively, a vane pump having a positive displacement eccentric rotor may be used. The gas-liquid mixture is pressurized by applying pressure to the microbubbles in the gas-liquid mixture and supplying them to the nozzle. By being effective.
Conventionally, a method has been used in which a gas is mainly blown out from a jet outlet by a blower. However, when only a gas is blown out, bubbles are easily combined with each other, so that the bubbles are not sufficiently refined. In order to obtain sufficient fine bubbles by ejecting only gas from the nozzle, it is necessary to cause the gas to be ejected by rotating the air diffuser type nozzle 3b at high speed by the sub motor 20, as shown in FIG.

図16中に示す気液混合チャンバー40の構造は種々考えられるが、図18は本実施例で考案した二重管構造タイプの気液混合チャンバーである。本装置は、外管38の内部に供給された気体が内管37の多数の小孔39を通して内管37内の高速の流体中に吹き出され、微小気泡含有気液混合液となって、加圧ポンプ42に取り込まれ、羽根車内のノズルに供給される構成である。 Although various structures of the gas-liquid mixing chamber 40 shown in FIG. 16 can be considered, FIG. 18 shows the gas-liquid mixing chamber of the double tube structure type devised in this embodiment. In this apparatus, the gas supplied to the inside of the outer tube 38 is blown out into the high-speed fluid in the inner tube 37 through a large number of small holes 39 in the inner tube 37 to form a gas-liquid mixture containing microbubbles. It is the structure taken in by the pressure pump 42 and supplied to the nozzle in the impeller.

本発明の船体流体抵抗低減装置は、航行時の船体表面の摩擦抵抗と船首部に発生する造波抵抗の両方を同時に低減できることから、高い省エネ効果が得られる。また、船首部において水流が制御されることから、水を切る船首部形状を鋭くする必要がないこと、および造波抵抗の低減に対しては、船首部の水面下の船体構造をバルバスバウ(球状船首)にする必要がないことなど高度の技術を有することから、本装置が利用される可能性は大きい。 The hull fluid resistance reducing device of the present invention can reduce both the frictional resistance of the hull surface during navigation and the wave-making resistance generated at the bow at the same time, so that a high energy saving effect can be obtained. In addition, since the water flow is controlled at the bow, it is not necessary to sharpen the bow shape that cuts off the water, and the hull structure under the water surface of the bow is reduced to the Barbus bow (spherical shape) to reduce wave resistance. It is highly probable that this device will be used because it has advanced technology such as no need for bow.

3、3b 散気孔タイプのノズル
4、4b 平口ノズル
5 噴出口(散気孔タイプのノズルの小孔)
6 羽根(貫流ポンプ)
7 貫流ポンプ羽根車
8 ケ−シング舌部
10 筒型タイプのノズル
11、11b 分岐管(くし型ノズル)
12 水中モ−タ
13 供給ホース
14 水面
16、16b 羽根車中空回転軸
18、18b くし型ノズル
20 サブモ−タ(中空回転軸)
21 ポンプ吸込みケーシング
22 ポンプ吐出しケーシング
25、25b 羽根車中空回転軸用軸受
29 散気孔パイプ軸受
30 リニアレール
31、34 スライドプレート
32 リニアパイプ
33 スライドリング
36 二重管ユニット
37 二重管ユニット内管
38 二重管ユニット外管
39 小孔(気体吹込み孔)
40 気液混合チャンバー
42 加圧ポンプ
43 ブロワ
45 気液混合加圧液供給装置
49 段差修正ブロック
50、50b マイクロバブル発生貫流ポンプ
55、56、57 平板翼
60 スクリーン
70 船
70b 船の側面外板
75 船首部中空立抗
76 中空立抗垂直壁面
80、81 流体抵抗低減装置
B 微細気泡(マイクロバブル)
D ポンプの吐出し流れ(船体表面に沿うマイクロバブルの流れ)
F 外流(船の速度や海流に関係する船体近傍を通り過ぎる流れ)
J、J2 ノズルより羽根車内に噴出する微細気泡流
K 後流渦
S 剥離渦
R 水面波
3, 3b Aeration hole type nozzle 4, 4b Flat mouth nozzle 5 Spout (small hole of aeration hole type nozzle)
6 blades (through-flow pump)
7 Cross-flow pump impeller 8 Casing tongue 10 Tubular type nozzle 11, 11b Branch pipe (comb nozzle)
12 Submersible motor 13 Supply hose 14 Water surface 16, 16b Impeller hollow rotary shaft 18, 18b Comb nozzle 20 Sub motor (hollow rotary shaft)
21 Pump suction casing 22 Pump discharge casing 25, 25b Bearing for impeller hollow rotary shaft 29 Air diffuser pipe bearing 30 Linear rail 31, 34 Slide plate 32 Linear pipe 33 Slide ring 36 Double pipe unit 37 Double pipe unit inner pipe 38 Double pipe unit outer pipe 39 Small hole (gas blowing hole)
40 Gas-Liquid Mixing Chamber 42 Pressurizing Pump 43 Blower 45 Gas-Liquid Mixing Pressurized Liquid Supply Device 49 Step Correction Block 50, 50b Micro Bubble Generation Throughflow Pump
55, 56, 57 Flat blade 60 Screen 70 Ship 70b Ship side shell 75 Bow hollow
76 Hollow vertical wall 80, 81 Fluid resistance reduction device B Micro bubbles
D Discharge flow of pump (flow of microbubbles along the hull surface)
F Outer current (flow past the hull near the ship's speed and current)
J, J2 Fine bubble flow ejected from nozzle into impeller K Wake vortex S Separation vortex R Water wave

本発明は、船首部の水面下において大量のマイクロバブル(船関連では、微細気泡を、いわゆるマイクロバブルと呼ぶ)を発生させ、水面下の船体外板表面をマイクロバブルで覆うことによって、航行時の船体の摩擦抵抗を低減するとともに船首部近傍に発生する水面波による造波抵抗も低減し、高い省エネ効果を得る装置に関する。 The present invention generates a large amount of microbubbles under the water surface of the bow (referred to as microbubbles in the case of ships, so-called microbubbles), and covers the surface of the hull outer plate under the water surface with microbubbles during navigation. The present invention relates to a device that reduces the frictional resistance of the hull and reduces the wave-making resistance due to water surface waves generated in the vicinity of the bow, thereby obtaining a high energy-saving effect.

航行時の船が受ける流体抵抗を低減する主な方法としては、船体表面に生じる摩擦による抵抗と船首部近傍に生じる造波抵抗を低減させる方法がある。従来は、摩擦抵抗を低減させるための手段としては、船首側の船の外板に設けた細いスリットや多数の噴出口から、ブロワによる加圧空気を吹き出させる方法などがある。例えば、噴出口がスリット形状では特許文献1、細長形状の多数の吹き出し口形状では特許文献2、複数の気体噴出口形状では特許文献3が開示されている。特許文献4では、気水混相流体をノズルにより吹き出す方法が開示されている。また、特許文献5にはマイクロバブル発生貫流ポンプを船の外板に直接設置して、マイクロバブルを船体表面に沿って放出する方法もある。
造波抵抗を低減させるための手段としては、船首部の船体底部の形状をバルバスバウ(球状船首)にすることによって、造波抵抗を低減する方法がある。例えば、満載時や軽荷時での造波抵抗を低減する手段が特許文献6に、また喫水の変化や海流条件に対応した船首バルブにフインを装備した形状が特許文献7に開示されている。
As a main method of reducing the fluid resistance received by the ship at the time of navigation, there is a method of reducing the resistance due to friction generated on the surface of the hull and the wave-making resistance generated near the bow. Conventionally, as means for reducing the frictional resistance, there are a method of blowing pressurized air by a blower from narrow slits provided in the outer plate of the ship on the bow side or a number of jets. For example, Patent Document 1 is disclosed in the case of a slit having a slit shape, Patent Document 2 in the case of a number of elongated outlet shapes, and Patent Document 3 in the case of a plurality of gas nozzle shapes. In patent document 4, the method of blowing off an air-water mixed phase fluid with a nozzle is disclosed. Patent Document 5 also discloses a method in which a microbubble generating once-through pump is directly installed on the outer plate of a ship and the microbubbles are discharged along the hull surface.
As a means for reducing the wave-making resistance, there is a method of reducing the wave-making resistance by making the shape of the bottom of the hull of the bow part into a Barbasse bow (spherical bow). For example, Patent Document 6 discloses a means for reducing wave resistance at full load and light load, and Patent Document 7 discloses a shape in which a bow valve is equipped with fins corresponding to draft changes and ocean current conditions. .

しかし、船体外板に設けた多数の噴出口やノズルなどからブロワにより気泡を船体表面に向けて吹き出す方法は、噴出流による流れの乱れが大きく、拡散しやすく、気泡も船体表面から離れやすくなるため、船体表面を効率よくマイクロバブルで覆うことはできない。特許文献5のマイクロバブル発生貫流ポンプを使用する方法は、水面下の船体外板への前記貫流ポンプの取り付け方法やメンテナンス等に問題がある。
いずれにしても、従来の船体の流体抵抗低減装置は、摩擦抵抗と造波抵抗の両方に有効な流体抵抗低減装置ではないことから、抵抗低減効果も限界があり、顕著な流体抵抗の低減効果は期待できない。
However, the method of blowing bubbles toward the hull surface with a blower from a large number of nozzles and nozzles provided on the hull outer plate has a large turbulence in the flow due to the jet flow, and is easy to diffuse, and the bubbles are also easily separated from the hull surface. Therefore, the hull surface cannot be efficiently covered with microbubbles. The method of using the microbubble generating once-through pump of Patent Document 5 has a problem in the attaching method and maintenance of the once-through pump to the hull outer plate under the water surface.
In any case, since the conventional hull fluid resistance reduction device is not a fluid resistance reduction device effective for both frictional resistance and wave-making resistance, there is a limit to the resistance reduction effect, and a remarkable fluid resistance reduction effect. Cannot be expected.

特開平9−156576号公報JP-A-9-156576 特開平9−207873号公報Japanese Patent Laid-Open No. 9-207873 特開平11−49080号公報Japanese Patent Laid-Open No. 11-49080 特開2008−18781号公報JP 2008-18781 A 特開2012−106542号公報JP 2012-106542 A 特開2010−188953号公報JP 2010-188953 A 特開2010−137833号公報JP 2010-137833 A

航行中に受ける流体抵抗は、主に摩擦抵抗と造波抵抗があるが、従来の流体抵抗低減手段は、摩擦抵抗の低減と造波抵抗の低減を、それぞれに別物として捉える手法が取られているため、流体抵抗の低減効果には限界がある。顕著な流体抵抗の低減効果を得るためには、摩擦抵抗と造波抵抗の両方を同時に低減する手法が求められる。
従来技術の船体外板に設けた多数の噴出口やノズルなどにより気泡を船体表面に向けて吹き出す方法は、噴出流による流れの乱れが大きく、船体表面を効率よくマイクロバブルで覆うことはできない。このため、本発明では、流れが一様で幅広な吐出し流れを有するマイクロバブル発生貫流ポンプを利用した流体抵抗低減装置を主体に提供する。また、別の方法として船体表面近くの流れの中にノズルを設置する簡易的な流体抵抗低減装置についても提供する。
The fluid resistance received during navigation is mainly frictional resistance and wave-making resistance, but the conventional fluid resistance reduction means have taken a method of considering the reduction of frictional resistance and the reduction of wave-making resistance as separate objects. Therefore, the effect of reducing fluid resistance is limited. In order to obtain a remarkable effect of reducing fluid resistance, a technique for simultaneously reducing both frictional resistance and wave resistance is required.
The method of blowing bubbles toward the hull surface with a large number of jets and nozzles provided on the hull outer plate of the prior art has a large flow disturbance due to the jet flow, and the hull surface cannot be efficiently covered with microbubbles. For this reason, the present invention mainly provides a fluid resistance reduction device using a microbubble generating once-through pump having a uniform flow and a wide discharge flow. In addition, as another method, a simple fluid resistance reducing device in which a nozzle is installed in a flow near the hull surface is also provided.

本発明は、従来技術の問題点を解決するために、マイクロバブル発生貫流ポンプを利用した請求項1及至請求項3に記載の船体流体抵抗低減装置の提供、並びに平口ノズルを船体表面近くの流れの中に設置した構成の請求項4及至請求項6に記載の船体流体抵抗低減装置を提供するものである。
請求項1に記載の発明は、船体側面における摩擦抵抗の低減と船首部に発生する造波抵抗低減のための流体抵抗低減装置で、羽根車中心部に微細気泡発生機構を有するマイクロバブル発生貫流ポンプを、船首部の水面下の船体側面外板に設置し、その貫流ポンプ本体の上方すぐ上に、前記貫流ポンプ全体を覆う平板翼を船体側面外板に略平行に設置した構成からなる。これにより航行時に船首部に向かう水流が直接船首部に当たらず、平板翼を備えた前記貫流ポンプの吸込み口に吸込まれ、船首部近傍の流れが制御されるため、造波抵抗が低減される。同時に、前記貫流ポンプからのマイクロバブルの船体側面に沿う吐出し流れが側面を覆うことにより、船体側面の摩擦抵抗も低減される。
請求項2に記載の発明は、前記平板翼を前記貫流ポンプの吸込みケーシングの上面に直接取り付けて一体化した流体抵抗低減装置である。
In order to solve the problems of the prior art, the present invention provides a hull fluid resistance reducing device according to claims 1 to 3 that uses a microbubble generating once-through pump, and a flat mouth nozzle with a flow near the hull surface. The hull fluid resistance reducing device according to claims 4 to 6 having a configuration installed in the ship is provided.
The invention according to claim 1 is a fluid resistance reducing device for reducing frictional resistance on the side of the hull and for reducing wave-making resistance generated at the bow, and a microbubble generating throughflow having a microbubble generating mechanism at the impeller central portion. The pump is installed on a hull side skin below the water surface of the bow, and a flat blade that covers the entire once-through pump is installed substantially parallel to the hull side skin just above the cross-flow pump body . As a result, the water flow toward the bow at the time of navigation does not directly hit the bow, but is sucked into the suction port of the once-through pump provided with flat wings, and the flow in the vicinity of the bow is controlled. . At the same time, the discharge flow along the hull side surface of the microbubbles from the once-through pump covers the side surface, thereby reducing the frictional resistance on the hull side surface.
The invention according to claim 2 is a fluid resistance reducing device in which the flat plate blade is directly attached to and integrated with the upper surface of the suction casing of the once-through pump.

請求項3に記載の発明は、船体底面の摩擦抵抗を低減する流体抵抗低減装置で、船首部先端の尖った形状におけるポンプ据付け上の構造的問題を解決するために、船首部の左舷と右舷の間の部分を上甲板の方向から水面に向かって中空にした立抗にし、その中空立抗後部の略垂直壁面上の船底近傍にマイクロバブル発生貫流ポンプを平坦な船底面に合わせて横置きにして設置した構成である。これにより、船体底面に沿うマイクロバブルの吐出し流れが船体底面を覆うことにより、船体底面の摩擦抵抗が低減される。 The invention according to claim 3 is a fluid resistance reducing device for reducing the frictional resistance of the bottom of the hull. In order to solve the structural problem in the installation of the pump in the sharp shape at the tip of the bow, The part between the two is made to stand against the water surface from the direction of the upper deck, and the microbubble generating once-through pump is placed horizontally on the flat bottom of the ship near the ship bottom on the substantially vertical wall at the rear of the hollow support. It is the structure installed as follows. Thereby, the frictional resistance of the hull bottom is reduced by the discharge flow of the microbubbles along the hull bottom covering the hull bottom.

請求項4及び請求項5に記載の発明の平口ノズルによる流体抵抗低減装置は、船体の底面と側面の表面近傍の流れの中に、くし型タイプの平口ノズルを設置し、流れと同方向に微細気泡流を吹き出すことにより、シート状のマイクロバブルの噴流が船体表面に沿って流れるようにして、船体表面の摩擦抵抗を低減するものである。
請求項6に記載の発明は、上記くし型タイプの平口ノズルの上方すぐ上に、当該ノズル装置全体を覆う平板翼を船体表面に略平行に設置した構成からなり、これにより船体表面に沿うノズルの噴出流を安定させるものである。
上記数種の流体抵抗低減装置のそれぞれを使用条件に合わせて船体に装備すれば、船体の側面と底面の摩擦抵抗、および船首部に発生する造波抵抗を同時に低減できるという高度の省エネ技術を提供できることになる。
In the fluid resistance reducing device using the flat-mouth nozzle according to the fourth and fifth aspects of the present invention, a comb-type flat-mouth nozzle is installed in the flow in the vicinity of the bottom and side surfaces of the hull, and in the same direction as the flow. By blowing out a fine bubble flow, a jet of sheet-like microbubbles flows along the surface of the hull to reduce the frictional resistance on the surface of the hull.
The invention according to claim 6 comprises a structure in which a flat plate wing covering the entire nozzle device is disposed substantially parallel to the hull surface immediately above the comb-type flat-mouth nozzle, whereby the nozzle along the hull surface. This stabilizes the jet flow.
By installing the above-mentioned several types of fluid resistance reduction devices on the hull according to the conditions of use, advanced energy-saving technology that can simultaneously reduce the frictional resistance of the side and bottom of the hull and the wave-making resistance generated at the bow. It can be provided.

従来は、ブロワによる加圧空気を噴出口から吹き出させて、マイクロバブルを発生させている例が多いが、気体のみの噴出では、気泡同士が結合しやすいことから、気泡を十分に微細化し難い。気泡の微細化には微小気泡含有気液混合液を加圧してノズルに供給する必要がある。また、微細気泡で船体表面を効率よく覆うためには、気泡径をできるだけ小さくして浮力の影響を小さくする必要がある。特に船体側面における流れに対しては、気泡の浮力の影響が大きい。   Conventionally, there are many examples in which microbubbles are generated by blowing pressurized air from a blower from a jet outlet. However, in the case of jetting only gas, it is difficult to sufficiently miniaturize the bubbles because bubbles are easy to combine with each other. . In order to refine the bubbles, it is necessary to pressurize the gas-liquid mixture containing fine bubbles and supply it to the nozzle. In order to efficiently cover the hull surface with fine bubbles, it is necessary to reduce the bubble diameter as much as possible to reduce the influence of buoyancy. In particular, the influence of bubble buoyancy is great on the flow on the side of the hull.

請求項7に記載の発明は、ポンプのメンテナンスや据付け位置の調整に関するもので、マイクロバブル発生貫流ポンプを船首部の船体側面や中空立抗部の略垂直壁面上に設置したリニアレール走行するスライドプレート又はパイプやポールをガイドにしてスライドして走行するスライドプレートに取り付けた構成にし、前記貫流ポンプを上下に走行可能とし、またポンプを水面上に引き上げることも出来ることを特徴とする。 The invention according to claim 7 relates to maintenance of the pump and adjustment of the installation position, and travels on a linear rail in which the microbubble generating once-through pump is installed on the side surface of the hull of the bow portion and on the substantially vertical wall surface of the hollow standing portion. The slide plate or a pipe or pole is used as a guide and is attached to a slide plate that travels. The cross-flow pump can be moved up and down, and the pump can be raised above the water surface.

本発明の流体抵抗低減装置は、従来とは異なり、船体の側面と底面の摩擦抵抗および船首部の造波抵抗を同時に低減することが出来るため、航行時における高い省エネ効果が得られる。また、船首部の水流が制御され、造波抵抗が低減されるため、水を切る船首部形状を鋭くする必要もない。また、造波抵抗低減のためには、船首部の水面下の船体構造をバルバスバウ(球状船首)にする必要もない。 Unlike the prior art, the fluid resistance reduction device of the present invention can simultaneously reduce the frictional resistance between the side and bottom of the hull and the wave-forming resistance at the bow, so that a high energy-saving effect can be obtained during navigation. Further, since the water flow at the bow is controlled and the wave resistance is reduced, it is not necessary to sharpen the bow shape for cutting water. Further, in order to reduce the wave resistance, it is not necessary to make the hull structure under the water surface of the bow part a barbasse bow (spherical bow).

図1は本発明の流体抵抗低減装置80を船首部の船体側面外板に設置した場合の全体構成を示す斜視図である(実施例1) FIG. 1 is a perspective view showing the overall configuration when the fluid resistance reducing device 80 of the present invention is installed on the hull side skin of the bow (Example 1) . 図2は図1の平板翼55の一部を破断した主要部の斜視図である。FIG. 2 is a perspective view of a main part in which a part of the flat plate blade 55 of FIG. 1 is broken. 図3は図1の流体抵抗低減装置80を船首部水面下の船体側板に設置したときの断面図で、船体側面に沿うマイクロバブルの吐出し流れの状態を示す。FIG. 3 is a cross-sectional view when the fluid resistance reducing device 80 of FIG. 1 is installed on the hull side plate below the water surface of the bow, and shows the state of discharge flow of microbubbles along the hull side surface. 図4は図3の流体抵抗低減装置80の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the fluid resistance reducing device 80 of FIG. 図5はマイクロバブル発生貫流ポンプ50と気液混合加圧液供給装置45の関係を示す概念図である。FIG. 5 is a conceptual diagram showing the relationship between the microbubble generating once-through pump 50 and the gas-liquid mixed pressurized liquid supply device 45. 図6は、流体抵抗低減装置81の装置構成を示す斜視図である(実施例2)。FIG. 6 is a perspective view showing a device configuration of the fluid resistance reducing device 81 (Example 2). 図7は、流体抵抗低減装置81を船首部水面下の船体側面外板に設置したときの断面図で、船体側面に沿うマイクロバブルの吐出し流れの状態を示す。FIG. 7 is a cross-sectional view when the fluid resistance reducing device 81 is installed on the hull side skin below the water surface of the bow, and shows the state of discharge flow of microbubbles along the hull side. 図8はマイクロバブル発生貫流ポンプ50bを船首部の中空立抗の垂直壁面の船底部に設置した場合の全体構成を示す概略の断面図である(実施例3) FIG. 8 is a schematic cross-sectional view showing the overall configuration when the microbubble generating once-through pump 50b is installed on the bottom of the vertical wall surface of the hollow wall of the bow (Example 3) . 図9はマイクロバブル発生貫流ポンプ50bの据付け状態を示す拡大断面図である。FIG. 9 is an enlarged cross-sectional view showing an installed state of the microbubble generating once-through pump 50b. 図10は図8の装置の全体構成を示す概略の平面図である。FIG. 10 is a schematic plan view showing the overall configuration of the apparatus of FIG. 図11は、船首部の中空立抗の垂直壁面の船底部近傍の流れの中に平口ノズル4を設置した状態と、マイクロバブルの噴出流の状態を示す断面図である(実施例4) FIG. 11 is a cross-sectional view showing a state in which the flat nozzle 4 is installed in the flow in the vicinity of the bottom of the vertical wall of the hollow wall at the bow and the state of the jet flow of microbubbles (Example 4) . 図12は、船首部の中空立抗の底面部近傍に設置した平口ノズル4からの噴出流の状態を船体の底面側から見た平面図で、対称図面の片側半分を示す。FIG. 12 is a plan view of the state of the jet flow from the flat nozzle 4 installed in the vicinity of the bottom surface of the hollow stand at the bow, as seen from the bottom side of the hull, and shows one half of the symmetrical drawing. 図13は、船首部水面下の船体側面外板近傍の流れの中にノズルの先端口が平口のくし形ノズル18bを据付けた場合の全体構成を示す斜視図である(実施例5) FIG. 13 is a perspective view showing an overall configuration when a comb-shaped nozzle 18b having a flat front end is installed in a flow in the vicinity of a hull side face plate below the water surface of the bow (Example 5) . 図14は、平板翼57を備えた、くし形ノズル18bを船首部水面下の船体側面近傍の流れの中に設置した状態を示す断面図である。FIG. 14 is a cross-sectional view showing a state in which the comb nozzle 18b provided with the flat blades 57 is installed in the flow in the vicinity of the side of the hull below the water surface of the bow. 図15は、マイクロバブル発生貫流ポンプ50bと流体抵抗低減装置80を船首部の底面と側面に設置した場合の装置構成と船体表面に沿うマイクロバブルの流れの状態を示す斜視図である。FIG. 15 is a perspective view showing the configuration of the microbubble generation once-through pump 50b and the fluid resistance reduction device 80 on the bottom and side surfaces of the bow and the state of the flow of microbubbles along the hull surface. 図16は羽根車内部に挿入した散気孔タイプのノズル3および筒型タイプのノズル10の装置構成と気液混合加圧液供給装置45の関係を示す断面図である。FIG. 16 is a cross-sectional view showing the relationship between the device configuration of the air diffuser type nozzle 3 and the cylindrical type nozzle 10 inserted into the impeller and the gas-liquid mixed pressurized liquid supply device 45. 図17は、散気孔タイプのノズル3bを専用のサブモータ20で駆動する羽根車部の装置構成と気液混合加圧液供給装置45の関係を示す断面図である。FIG. 17 is a cross-sectional view showing the relationship between the device configuration of the impeller unit that drives the air diffuser type nozzle 3 b by the dedicated sub motor 20 and the gas-liquid mixed pressurized liquid supply device 45. 図18は、気液混合チャンバー40の構成を示す断面図である。FIG. 18 is a cross-sectional view showing the configuration of the gas-liquid mixing chamber 40. 図19は流体抵抗低減装置80を船首部水面下の船体側面に設置の有無(b)、(a)での航行時における船体まわりの流れの状況を比較して示す概略の断面図である。FIG. 19 is a schematic cross-sectional view showing a comparison of the flow conditions around the hull during navigation in (b) and (a) with or without the fluid resistance reduction device 80 installed on the side of the hull below the water surface of the bow. 図20は、平板翼55を備えていない場合のマイクロバブル発生貫流ポンプ50のポンプ背後における後流渦Kの発生状況を示す断面図である。FIG. 20 is a cross-sectional view showing a state of generation of the wake vortex K behind the microbubble generating once-through pump 50 when the flat blade 55 is not provided.

以下に本発明の実施の形態を図1及至図15を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、請求項1に記載の発明に関する第1実施例で、流体抵抗低減装置80を船首部水面下の船体側面に設置した場合の全体構成を示す斜視図である。図2は図1の平板翼55の一部を破断し、マイクロバブル発生貫流ポンプ50の形状を明確にした主要部の斜視図である。
本実施例の装置構成は、まず、羽根車中心部に微細気泡発生機構を有するマイクロバブル発生貫流ポンプ50を船首部の船の側面外板に設置したリニアレール30の上を走行するスライドプレート31に取り付けた構成にする。本例は水面下の適正な位置に調整しながらポンプ2台をセットできるようにしたもので、貫流ポンプの吸込み口と吐出し口の方向は水流と同方向で、吐出し流れが船体表面に沿うように、ケーシング形状をアレンジしている。次に前記マイクロバブル発生貫流ポンプ50本体の上方すぐ上に貫流ポンプ全体を覆う平板翼55を船体側面外板に略平行に設置した構成にする。これにより、船首部へ向かう水流は図3の断面図に示すように、平板翼55の内側と外側に分かれて流れるようになる。ポンプ入口部には、ゴミ除けのためにスクリーン60を取り付けている。
FIG. 1 is a perspective view showing an overall configuration when a fluid resistance reducing device 80 is installed on a side surface of a hull below a water surface of a bow portion in a first embodiment relating to the invention of claim 1. FIG. 2 is a perspective view of a main part in which a part of the flat plate blade 55 of FIG. 1 is broken and the shape of the microbubble generating once-through pump 50 is clarified.
The apparatus configuration of the present embodiment is as follows. First, a slide plate 31 that travels on a linear rail 30 in which a microbubble generating once-through pump 50 having a fine bubble generating mechanism in the center of an impeller is installed on a side plate of a ship at the bow portion. The configuration attached to. In this example, two pumps can be set while adjusting to an appropriate position below the water surface. The direction of the inlet and outlet of the once-through pump is the same as the water flow, and the discharge flow is on the hull surface. The casing shape is arranged to follow. Next, a configuration is adopted in which a flat plate blade 55 covering the entire cross-flow pump is installed substantially parallel to the hull side skin directly above the main body of the micro-bubble generating cross-flow pump 50. As a result, the water flow toward the bow is divided into the inside and the outside of the flat plate blade 55 as shown in the cross-sectional view of FIG. A screen 60 is attached to the pump inlet for dust removal.

円筒状で多翼の羽根車7を有する貫流ポンプ(図16参照)の構造は単純に二次元的で、流れが羽根車に接線方向に吐出されることから、吐出し流れは、幅広のシート状で乱れも少なく、拡散せずに遠くまで達することができる。また、単純に羽根車の長さを変えたり羽根車を連結することによって、船体表面をマイクロバブルで覆う範囲を調整できる。なお、ポンプからのマイクロバブルを含む吐出し流れは、船の推進にも寄与するので無駄がない。
また、水中モータ12を含めて全体が矩形にコンパクトにまとまるので、図2に示すようにリニアレール30の上を走行するスライドプレート31に都合よく容易に取り付けられる。スライドプレート31を自走型にすれば、作業効率は良くなる。
図5は、本発明に係るマイクロバブル発生貫流ポンプ50と気液混合加圧液供給装置45の関係を示す概念図である。マイクロバブルの発生機構は、気液混合チャンバー40で気体と液体を合流させて生成された気泡を含む気液混合液を加圧ポンプ42に取り込んで、加圧した微細気泡含有気液混合加圧液を貫流ポンプの羽根車7内に挿入したノズルに供給する構成である(詳細は後述)。
The structure of the cross-flow pump (see FIG. 16) having a cylindrical and multi-blade impeller 7 is simply two-dimensional, and the flow is discharged tangentially to the impeller, so that the discharge flow is a wide sheet. It is in the form of little disturbance and can reach far without diffusing. Moreover, the range which covers the hull surface with microbubbles can be adjusted by simply changing the length of the impeller or connecting the impeller. In addition, since the discharge flow including the microbubbles from the pump contributes to the propulsion of the ship, there is no waste.
Moreover, since the whole including the underwater motor 12 is compactly packed into a rectangular shape, it can be conveniently and easily attached to the slide plate 31 running on the linear rail 30 as shown in FIG. If the slide plate 31 is self-propelled, the working efficiency is improved.
FIG. 5 is a conceptual diagram showing the relationship between the microbubble generating once-through pump 50 and the gas-liquid mixed pressurized liquid supply device 45 according to the present invention. The microbubble generation mechanism is such that a gas-liquid mixed liquid containing bubbles generated by merging gas and liquid in the gas-liquid mixing chamber 40 is taken into a pressure pump 42 and pressurized, and the gas-liquid mixing pressurization containing fine bubbles is performed. It is the structure which supplies a liquid to the nozzle inserted in the impeller 7 of a once-through pump (it mentions later for details).

この実施の形態によれば、航行中に船首部に向かう水流は、従来は船首部に当たり、淀みを生じて水面波を生じるが、本発明では、図3に示すように前記水流は船首部に当たらず、船首部側面近傍を通って貫流ポンプの吸込み口へ支障なくスムーズに向かうため、衝突による水面波は生じない。従って造波抵抗を顕著に低減できる。
一方、貫流ポンプの吐出し流れの特性は、前述のように幅広のシート状で乱れも少なく、拡散せずに遠くまで達することができること、またコアンダ効果(流れが物体表面に沿って流れる効果)により、図3の断面図および図4の拡大図に示すように貫流ポンプ50から吐出されたマイクロバブルの流れが曲率のある船の側面外板70bに沿って流れるので、船体表面を薄い層のマイクロバブルで効率よく覆うことができる。従って摩擦抵抗を効率よく低減させることができる。
このように、本発明では、従来と異なり、造波抵抗と摩擦抵抗の両方を同時に低減することができるという優れた特徴を持っている。
According to this embodiment, the water flow toward the bow during navigation conventionally hits the bow and causes stagnation and water surface waves, but in the present invention, as shown in FIG. Since it does not hit and passes smoothly through the vicinity of the side of the bow to the suction port of the once-through pump without hindrance, water waves due to collision do not occur. Accordingly, the wave resistance can be significantly reduced.
On the other hand, the characteristic of the discharge flow of the once-through pump is that, as mentioned above, it is a wide sheet with little turbulence and can reach far without spreading, and the Coanda effect (the effect of the flow flowing along the object surface) As shown in FIG. 3 and the enlarged view of FIG. 4, the flow of microbubbles discharged from the once-through pump 50 flows along the curved side skin 70b of the ship with a curvature. Can be efficiently covered with microbubbles. Accordingly, the frictional resistance can be efficiently reduced.
As described above, the present invention has an excellent feature that, unlike the prior art, both the wave-making resistance and the frictional resistance can be reduced at the same time.

なお、コアンダ効果を有効にするためには、ポンプのマイクロバブル吐出し流れの流速Dを外流F(船体近傍を通り過ぎる流れ)の流速よりも速くする必要がある。吐出し流速はポンプの回転数を変えることによって調整する。
羽根車を高速回転すると、羽根にキャビテーションが発生しやすくなる。キャビテーションはポンプの性能低下の原因になるが、適度のキャビテーションの発生は、微細気泡の発生源となり、その吐出し気泡流は船体表面の摩擦抵抗を低減するため、本実施例ではプラス効果となる。
In order to make the Coanda effect effective, it is necessary to make the flow velocity D of the microbubble discharge flow of the pump faster than the flow velocity of the external flow F (flow passing through the vicinity of the hull). The discharge flow rate is adjusted by changing the rotation speed of the pump.
When the impeller rotates at high speed, cavitation tends to occur in the blade. Although cavitation causes a reduction in pump performance, the occurrence of moderate cavitation becomes a source of fine bubbles, and the discharged bubble flow reduces the frictional resistance of the hull surface, so this embodiment has a positive effect. .

また、平板翼55を備えた装置構成は、上述の船首部の流れの制御による造波抵抗を低減するだけでなく、図20に示すようなポンプ背後に発生する後流渦Kの発生も防止できる。後流渦Kは同図に示すようにマイクロバブルの吐出し流れDを乱すため、平板翼55を備えることは、ポンプからの吐出し流れDを安定させることにも寄与している。
ポンプのメンテナンスは、ポンプがリニアレール30上を上下に走行できるので容易である。リニアレール30の替わりにH型鋼タイプを使用してもよい。又は、後述の実施例3に示すようにパイプやポールをガイドにしてスライドして走行するスライドプレート34に、マイクロバブル発生貫流ポンプ50取り付けた構成にしてもよい(請求項7に関連)
ゴミ除けスクリーン60にゴミが附着した場合は、羽根車を逆回転してポンプの吐出し口から吸込み口へ逆流させれば、取り除くことができる。
In addition, the apparatus configuration including the flat blades 55 not only reduces the wave-making resistance due to the above-described control of the bow portion flow, but also prevents the generation of the wake vortex K generated behind the pump as shown in FIG. it can. Since the wake vortex K disturbs the discharge flow D of the microbubbles as shown in the figure, the provision of the flat blades 55 also contributes to stabilizing the discharge flow D from the pump.
Maintenance of the pump is easy because the pump can run up and down on the linear rail 30. An H-shaped steel type may be used instead of the linear rail 30. Alternatively, as shown in Example 3 to be described later, a microbubble generating once-through pump 50 may be attached to a slide plate 34 that slides and travels with a pipe or pole as a guide (related to claim 7) .
If dust adheres to the dust screen 60, it can be removed by rotating the impeller reversely to flow backward from the pump discharge port to the suction port.

図6は、請求項2に記載の発明に関する第2実施例で、流体抵抗低減装置81を船首部水面下の船体側面に設置した場合の全体構成とマイクロバブルの流れを示す斜視図である。
本実施例では、図1に示す流体抵抗低減装置80とは異なり、平板翼56をマイクロバブル発生貫流ポンプ50の吸込みケーシング21(図4参照)の上面に直接取り付けて、前記平板翼56で貫流ポンプ全体を覆い、前記貫流ポンプと平板翼を一体化した構成である。
図7に流体抵抗低減装置81を船首部の船体側面に取り付けた場合の断面図およびマイクロバブル流れの状態を示す。第2実施例におけるマイクロバブル発生に関する基本的な装置構成や船体まわりの流れの状況は第1実施例と同様である。
FIG. 6 is a perspective view showing the overall configuration and the flow of microbubbles when a fluid resistance reducing device 81 is installed on the side of a hull below the water surface of the bow portion in the second embodiment relating to the invention of claim 2.
In the present embodiment, unlike the fluid resistance reduction device 80 shown in FIG. 1, the flat plate blade 56 is directly attached to the upper surface of the suction casing 21 (see FIG. 4) of the microbubble generating through-flow pump 50. The entire pump is covered and the once-through pump and the flat blade are integrated.
FIG. 7 shows a sectional view and a state of microbubble flow when the fluid resistance reducing device 81 is attached to the side of the hull of the bow. The basic apparatus configuration and the flow situation around the hull relating to the generation of microbubbles in the second embodiment are the same as in the first embodiment.

図8は、請求項3に記載の発明に関する第3実施例で、船首部先端の尖った形状におけるポンプ据付け上の構造的問題を解決するために、船首部の左舷と右舷の間の部分を上甲板の方向から水面に向かって中空にした立抗構造にし、中空立抗75の後部の略垂直壁面76の船底近傍にマイクロバブル発生貫流ポンプ50bを設置した場合の全体構成を示す断面図である。図9はマイクロバブル発生貫流ポンプ50bの据付部の拡大断面図、図10は図8を上方から見た平面図である。
本実施例では、図8に示すようにマイクロバブル発生貫流ポンプ50bを船首部の中空立抗75の垂直壁面76に設置したリニアパイプ32をガイドにしてスライドリング33により走行するスライドプレート34に取付けた構成にし、ポンプの吐出し流れが船の平坦な底面に沿って、船首部から船尾に向かって流れるように該貫流ポンプを横置きにして水面下の船底近くに設置した構成である。マイクロバブル発生に関する基本的な装置構成は、実施例1と同様である。
中空立抗75は、立抗上面が水面より上にあればよく、上甲板を突き抜けなくてもよい。中空立抗75の中を満たす海水は、水流が船首部に当たる衝突圧を緩和するダンパーの役割をし、船の縦揺れや横揺れの揺動を安定化させる働きもある。
FIG. 8 is a third embodiment relating to the invention described in claim 3, and in order to solve the structural problem in the installation of the pump in the pointed shape of the bow tip, the portion of the bow portion between the port side and the starboard side is arranged. It is sectional drawing which shows the whole structure at the time of making the standing structure hollow from the direction of the upper deck toward the water surface, and installing the microbubble generation | occurrence | production flow pump 50b in the ship bottom vicinity of the substantially vertical wall surface 76 of the rear part of the hollow standing resistance 75. is there. FIG. 9 is an enlarged cross-sectional view of the installation part of the microbubble generating once-through pump 50b, and FIG. 10 is a plan view of FIG. 8 viewed from above.
In this embodiment, as shown in FIG. 8, a microbubble generating once-through pump 50b is attached to a slide plate 34 that travels by a slide ring 33 with a linear pipe 32 installed on a vertical wall surface 76 of a hollow stand 75 at the bow as a guide. and the configuration, the discharge and flow of the pump along the flat bottom of the ship, a structure installed in the ship's bottom near underwater and transversely to the through-flow pumps to flow from the bow toward the stern. The basic device configuration related to the generation of microbubbles is the same as that of the first embodiment.
The hollow stand 75 only needs to have a stand-up upper surface above the water surface, and does not need to penetrate the upper deck. The seawater that fills the hollow support 75 serves as a damper that reduces the collision pressure of the water hitting the bow, and also has the function of stabilizing the pitching and rolling of the ship.

この実施の形態によれば、航行中に船底部に向かう水流は、マイクロバブル発生貫流ポンプ50bの吸込み口へスムーズに向かい、マイクロバブルの吐出し流れは、図8の断面図および図9の拡大図に示すように船底面の外板表面に沿って流れる。前述のように貫流ポンプの吐出し流れは、幅広のシート状で乱れも少なく、拡散せずに遠くまで達することができること、またコアンダ効果により、図8、図9に示すように吐出し流れが曲率のある船体底面に沿ってスムーズに後方船尾に向かって流れるため、従来と異なり、船体底面全体を薄い層のマイクロバブルで効率よく覆うことができる。摩擦抵抗低減のためには、船体表面が水と接する薄い境界層を気泡で覆えばよく、厚い層で覆う必要はないことから、貫流ポンプの吐出し流れの特性は、船体の摩擦抵抗低減には都合がよい。 According to this embodiment, the water flow toward the ship bottom during navigation is smoothly directed to the suction port of the microbubble generating once-through pump 50b, and the discharge flow of the microbubble is the cross-sectional view of FIG. 8 and the enlarged view of FIG. As shown in the figure, it flows along the outer plate surface on the bottom of the ship. As described above, the discharge flow of the once-through pump is a wide sheet with little turbulence and can reach far without being diffused. Also, due to the Coanda effect, the discharge flow is as shown in FIGS. Since it flows smoothly toward the rear stern along the curved bottom of the hull, unlike the conventional case, the entire bottom of the hull can be efficiently covered with a thin layer of microbubbles. In order to reduce the frictional resistance, the thin boundary layer where the hull surface is in contact with water needs to be covered with air bubbles, and it is not necessary to cover it with a thick layer. Is convenient.

実施例1〜3においては、気液混合加圧液供給装置45で生成された微細気泡含有気液混合加圧液を羽根車内のノズルに供給したが、気体のみを貫流ポンプの羽根車内のノズルに供給する手段もある。図17(c)に示すように、ブロワ43により加圧した気体をノズル3bに供給し、ノズル回転専用のサブモータ20により、ノズル3bを高速回転させて噴出孔5より、高速回転を伴いながら噴出させれば十分に微細化した気泡(マイクロバブル)が得られ、摩擦抵抗低減に有効な手段となる。この手法によれば、浮力の影響が大きい実施例1および実施例2の船体側面に対しても使用可能である。 In Examples 1 to 3, the fine bubble-containing gas-liquid mixed pressurized liquid generated by the gas-liquid mixed pressurized liquid supply device 45 was supplied to the nozzle in the impeller, but only the gas was supplied to the nozzle in the impeller of the once-through pump. There is also a means to supply to. As shown in FIG. 17C, the gas pressurized by the blower 43 is supplied to the nozzle 3 b, and the nozzle 3 b is rotated at a high speed by the sub motor 20 dedicated to the nozzle rotation, and is ejected from the ejection hole 5 while being rotated at a high speed. By doing so, sufficiently fine bubbles can be obtained, which is an effective means for reducing frictional resistance. According to this method, it can be used for the side surfaces of the hulls of the first and second embodiments where the influence of buoyancy is large.

図11は、請求項4に記載の発明に関する第4実施例で、中空立抗75の略垂直壁面76の船底近傍の流れの中に、くし型ノズル18の平口ノズル4を取り付けて、船体底面の摩擦抵抗を低減させる場合の全体構成を示す概略の断面図である。図12は船体の底面側から見た平口ノズル4の据付け状態で、対称図面の片側半分を示す。この場合は平口ノズルを3個設置し、幅広ノズルの噴出流が船体底面に沿うようにしている。ノズルの先端口は円形でもよいが、平口にした方が、噴流を船体表面に沿って流すことができ、噴流が表面を覆う面積も広くなるため、ノズルの個数も少なくてすむ。ノズルの個数は船体の大きさによって調整する。平口ノズル4には、実施例1と同様に、気液混合加圧液供給装置45により生成された微細気泡含有気液混合加圧液が供給される構成である。 FIG. 11 shows a fourth embodiment relating to the invention as set forth in claim 4, wherein the flat nozzle 4 of the comb nozzle 18 is attached in the flow in the vicinity of the bottom of the substantially vertical wall 76 of the hollow stand 75, and the bottom of the hull. It is a schematic sectional drawing which shows the whole structure in the case of reducing the frictional resistance. FIG. 12 shows one half of the symmetric drawing in the installed state of the flat mouth nozzle 4 as seen from the bottom side of the hull. In this case, three flat mouth nozzles are installed so that the jet flow of the wide nozzle is along the bottom of the hull. The tip of the nozzle may be circular, but if the nozzle is flat, the jet can flow along the surface of the hull, and the area of the jet covering the surface increases, so the number of nozzles can be reduced. The number of nozzles is adjusted according to the size of the hull. Similarly to the first embodiment, the flat-mouth nozzle 4 is configured to be supplied with the gas-liquid mixed pressurized liquid containing fine bubbles generated by the gas-liquid mixed pressurized liquid supply device 45.

この実施の形態によれば、図12に示すように平口ノズル4の先端からの噴出流が減圧と流体との摩擦によりマイクロバブル化した流れとなって、船体底面を覆うため、摩擦抵抗が低減される。
本発明のように、平口ノズル4を船底面近傍の流れの中に据付けて、ノズルの噴流が流れと同方向になるように設定することにより、平口ノズルからの噴出流が船体に沿う外流と同方向の流れの中に安定した流れとなって、またコアンダ効果によるマイクロバブルの流れが曲率のある船体表面を覆うことにより、摩擦抵抗が顕著に低減される。
According to this embodiment, as shown in FIG. 12, the jet flow from the tip of the flat-mouth nozzle 4 becomes a microbubble flow due to the friction between the reduced pressure and the fluid, and covers the bottom of the hull, thereby reducing the frictional resistance. Is done.
As in the present invention, the flat mouth nozzle 4 is installed in the flow near the bottom of the ship, and the jet flow of the nozzle is set in the same direction as the flow. Friction resistance is remarkably reduced by a stable flow in the flow in the same direction and the microbubble flow by the Coanda effect covering the curved hull surface.

実施例3と実施例4では、マイクロバブルの流れを得るために、実施例1と同様に気液混合加圧液供給装置45で生成された微細気泡含有気液混合加圧液を使用したが、船体底面では、船体側面に比べると気泡の浮力の影響は小さいので、従来のようにブロワによる加圧空気を羽根車内のノズルや平口ノズルに供給することにより、マイクロバブルの発生を得てもよい。しかし、気泡の微細化は十分でなく、摩擦抵抗の低減効果は劣る。 In Example 3 and Example 4, in order to obtain the flow of microbubbles, the gas-liquid mixed pressurized liquid containing fine bubbles generated by the gas-liquid mixed pressurized liquid supply device 45 was used as in Example 1. In the bottom of the hull, the influence of the buoyancy of bubbles is small compared to the side of the hull, so it is possible to obtain the generation of microbubbles by supplying pressurized air from the blower to the nozzle in the impeller and the flat mouth nozzle as in the past. Good. However, the bubbles are not sufficiently refined, and the effect of reducing the frictional resistance is inferior.

図13は、請求項5に記載の発明に関する第5実施例で、船首部水面下の船体側面近傍の水流の中に、くし型ノズル18bを設置した場合の全体構成を示す斜視図である。図14にくし型ノズル18bを船首部の船体側面近傍の水流の中に取り付けた場合の断面図およびマイクロバブル流れの状態を示す。
この実施例では、分岐管11bは、剥離渦が生じないように外形を翼型にし、平口ノズル4bからの噴流が船体側面に沿うように調整している。また、図14では、ノズルからの噴出流を安定させるために、くし型ノズル18bの上方すぐ上に、当該くし型ノズル全体を覆う平板翼57を船体側面に略平行に設置した構成を示す。同様に前記実施例4におけるくし型ノズル18においても、平板翼を備えた方がノズルからの噴出流は安定する(請求項6に関連)
船体側面の摩擦抵抗低減のためには、特に気泡径を十分に小さくして浮力の影響を小さくする必要があることから、平口ノズル4bには、気体のみの供給でなく、実施例1と同様に、気液混合加圧液供給装置45により生成された微細気泡含有気液混合加圧液を供給した方がよい。
FIG. 13 is a perspective view showing an overall configuration in the case where the comb nozzle 18b is installed in the water flow in the vicinity of the side surface of the hull below the water surface of the bow portion in the fifth embodiment relating to the invention described in claim 5. FIG. 14 shows a cross-sectional view and a state of microbubble flow when the comb nozzle 18b is mounted in the water flow in the vicinity of the hull side surface of the bow.
In this embodiment, the branch pipe 11b is shaped like a wing so that no separation vortex is generated, and is adjusted so that the jet flow from the flat nozzle 4b is along the side of the hull. Further, FIG. 14 shows a configuration in which a flat plate blade 57 covering the entire comb nozzle is disposed substantially parallel to the side of the hull just above the comb nozzle 18b in order to stabilize the jet flow from the nozzle. Similarly, in the comb nozzle 18 in the fourth embodiment, the jet flow from the nozzle is more stable when the flat blade is provided (related to claim 6) .
In order to reduce the frictional resistance on the side of the hull, it is necessary to reduce the influence of buoyancy particularly by making the bubble diameter sufficiently small. Therefore, not only the gas is supplied to the flat-mouth nozzle 4b, but the same as in the first embodiment. It is better to supply the gas-liquid mixed pressurized liquid containing fine bubbles generated by the gas-liquid mixed pressurized liquid supply device 45.

この実施の形態によれば、図13、図14に示すように平口ノズル4bの先端からの噴出流が減圧と流体との摩擦によりマイクロバブル化した流れとなって、船体側面を覆うため、摩擦抵抗が低減される。
従来技術では、前述のように船体外板に設けた多数の噴出口やノズルからマイクロバブルを船体表面に向けて吹き出すため、噴出流の乱れが大きく拡散しやすく、気泡も船体表面から離れやすくなるため、船体表面を効率よくマイクロバブルで覆うことができない。本発明のように、平口ノズル4bを実施例4と同様に船体表面近傍の流れの中に据付けて、ノズルの噴出流が流れと同方向になるように設定して噴流を安定させることにより、また、コアンダ効果により、平口ノズルからの噴出流が曲率のある船体表面をマイクロバブルで覆うことができる。従って、摩擦抵抗が顕著に低減される。
According to this embodiment, as shown in FIGS. 13 and 14, the jet flow from the tip of the flat mouth nozzle 4b becomes a microbubbled flow due to friction between the reduced pressure and the fluid, and covers the hull side surface. Resistance is reduced.
In the prior art, since the microbubbles are blown out toward the hull surface from the numerous jets and nozzles provided on the hull outer plate as described above, the turbulence of the jet flow is easily diffused and the bubbles are also easily separated from the hull surface. Therefore, the hull surface cannot be efficiently covered with microbubbles. Like the present invention, the flat mouth nozzle 4b is installed in the flow near the hull surface in the same manner as in Example 4, and the jet flow of the nozzle is set in the same direction as the flow to stabilize the jet flow. Further, due to the Coanda effect, the surface of the hull with the curvature of the jet flow from the flat nozzle can be covered with microbubbles. Accordingly, the frictional resistance is significantly reduced.

実施例4、実施例5のくし型ノズル18,18bを、実施例1や実施例3のようにリニアレール30やリニアパイプ32を走行するスライドプレート32、34のような類の移動可能な装置に取り付ければ、メンテナンスは容易となる。 The comb nozzles 18 and 18b of the fourth and fifth embodiments are movable like the slide rails 32 and 34 that run on the linear rail 30 and the linear pipe 32 as in the first and third embodiments. If it is attached to the device, maintenance becomes easy.

図15は第6実施例で、船体の流体抵抗を総合的に低減する装置の全体構成とマイクロバブルが船体表面に沿って流れる状態を船の前方下方向から見た斜視図である。本実施例は、第1実施例と第3実施例で使用した流体抵抗低減装置を船体に設置した構成である。
船体側面の摩擦抵抗の低減と船首部の造波抵抗の低減には、実施例1と同様の縦置きのマイクロバブル発生貫流ポンプ50と平板翼55を組み合わせた流体抵抗低減装置80を船首部の船体側面に設置した構成にし、船体底面における摩擦抵抗の低減には、実施例3と同様の横置きのマイクロバブル発生貫流ポンプ50bを中空立抗75の船底部に設置した構成である。
FIG. 15 is a perspective view of a sixth embodiment of the overall configuration of the apparatus for comprehensively reducing the fluid resistance of the hull and the state in which microbubbles flow along the hull surface as viewed from the front lower side of the ship. In this embodiment, the fluid resistance reducing device used in the first and third embodiments is installed on the hull.
In order to reduce the frictional resistance on the side of the hull and the wave-making resistance at the bow, a fluid resistance reducing device 80, which is a combination of the longitudinal microbubble generating once-through pump 50 and the flat blades 55 similar to that of the first embodiment, is installed at the bow. In order to reduce the frictional resistance at the bottom of the hull, the horizontal microbubble generating once-through pump 50b similar to that of the third embodiment is installed at the bottom of the hollow stand 75 in order to reduce the frictional resistance at the bottom of the hull.

この実施の形態によれば、中空立抗船底部に設置したマイクロバブル発生貫流ポンプ50bと船体側面に設置したマイクロバブル発生貫流ポンプ50の吐出し流れが、貫流ポンプ特有の幅広で乱れのない流れにより、また、コアンダ効果により、曲率のある船体表面に沿ってスムーズに後方船尾に向かって流れるため、水面下の船体の底面と側面の両方の船体表面をマイクロバブルで効率よく覆うことができる。このため、船体表面全体の摩擦抵抗を効率よく低減できる。
また、船首部側面外板に設置した平板翼55を備えた流体抵抗低減装置80により、前述のように船首部近傍の水流が制御され、水面波を抑制するため、造波抵抗は顕著に低減される。従って、実施例6では、航行時における船体の底面と側面の摩擦抵抗、および船首部における造波抵抗も低減されるため、従来と異なり、航行時の船全体における流体抵抗を総合的に低減することが出来るという優れた省エネ効果を有する。
According to this embodiment, the discharge flow of the microbubble generating once-through pump 50b installed at the bottom of the hollow vertical vessel and the microbubble generating once-through pump 50 installed at the side of the hull is a wide and undisturbed flow peculiar to the once-through pump. Due to the Coanda effect, the hull surface smoothly flows toward the rear stern along the curved hull surface, so that both the bottom and side surfaces of the hull below the water surface can be efficiently covered with microbubbles. For this reason, the frictional resistance of the entire hull surface can be efficiently reduced.
In addition, as described above, the water flow near the bow is controlled by the fluid resistance reducing device 80 provided with the flat wings 55 installed on the side plate of the bow part, and the water wave resistance is significantly reduced because the water surface wave is suppressed. Is done. Therefore, in the sixth embodiment, the frictional resistance between the bottom and side surfaces of the hull during navigation and the wave-forming resistance at the bow are also reduced, so that the overall fluid resistance of the entire ship during navigation is reduced unlike the conventional case. It has an excellent energy saving effect.

第6実施例では、船体底面における摩擦抵抗の低減には実施例3と同様にマイクロバブル発生貫流ポンプ50bを船底部に設置した構成にしたが、前記貫流ポンプ50bの替わりに実施例4の平口ノズル4を船底部に設置した構成にしても同様な効果が得られる。また、船体側面に流体抵抗低減装置80の替わりに第5実施例のくし型ノズル18bを設置した構成も考えられる。ただし、この場合の流体抵抗低減装置は、船体側面の摩擦抵抗低減のためで、造波抵抗の低減効果はほとんどない。 In the sixth embodiment, in order to reduce the frictional resistance at the bottom of the hull, the microbubble generating once-through pump 50b is installed at the bottom of the ship as in the third embodiment, but the flat mouth of the fourth embodiment is used instead of the once-through pump 50b. The same effect can be obtained even if the nozzle 4 is installed at the bottom of the ship. Further, a configuration in which the comb nozzle 18b of the fifth embodiment is installed on the side surface of the hull instead of the fluid resistance reducing device 80 is also conceivable. However, the fluid resistance reducing device in this case is for reducing the frictional resistance on the side of the hull, and has almost no effect of reducing the wave resistance.

上記実施例1〜実施例6で描いたマイクロバブル発生貫流ポンプ50、50bや船体流体抵抗低減装置80およびくし型ノズル18、18bの大きさは、分かりやすく説明するために実際とは異なり船体に対して大きな比率で描いている。実際の貫流ポンプの羽根車径は、200〜500mm程度と考えられる。ポンプの大きさやポンプの台数および平口ノズルの本数などは船の大きさによって異なる。
また、上記実施例では、マイクロバブル発生貫流ポンプ50、50bは、メンテナンスの利便性を考慮して、リニアレール30やリニアパイプ32の上を走行するスライドプレート32、34に設置したが、船首部の船体底面と船体側面外板に直接設置してもよい。
The sizes of the microbubble generating through-flow pumps 50 and 50b, the hull fluid resistance reducing device 80 and the comb nozzles 18 and 18b drawn in the first to sixth embodiments are different from the actual size for easy understanding. On the other hand, it is drawn at a large ratio. The impeller diameter of an actual once-through pump is considered to be about 200 to 500 mm. The size of the pump, the number of pumps and the number of flat nozzles vary depending on the size of the ship.
In the above embodiment, the microbubble generating once-through pumps 50 and 50b are installed on the slide plates 32 and 34 that run on the linear rail 30 and the linear pipe 32 in consideration of the convenience of maintenance. It may be installed directly on the hull bottom and hull side skin.

図16と図17は、本発明に係る船体摩擦抵抗低減に関するマイクロバブルの羽根車部での発生機構を示す断面図と気液混合加圧液供給装置45の関係を示す。図16は、散気孔タイプのノズル3、筒型タイプのノズル10が羽根車と一体になって回転するタイプ、図17は、図16とは異なり散気孔タイプのノズル3bが、専用のサブモ−タ20駆動により、羽根車の回転に関係なく自在に回転可能にしたタイプである。
図16(a)と図17(a)は、散気孔タイプのノズル3、3bのノズル先端が羽根車内に突き出した状態、図16(b)と図17(b)は、ノズルの先端を駆動側の羽根車ボス部に差し込んで、ノズルの振れ止め防止と散気孔部が羽根車全体に渡っている状態を示す。図17の専用モータ駆動によるノズル3bのタイプでは、ノズル3bを羽根車の回転に関係なく、自在に高速回転できることから、図17のノズル3bの方が図16のノズル3のタイプより細かな気泡が得られる。これら数種のノズルタイプは、使用状況に応じて、使い分けられる。
FIG. 16 and FIG. 17 show the relationship between the cross-sectional view showing the generation mechanism of the microbubble impeller part for reducing the hull frictional resistance according to the present invention and the gas-liquid mixed pressurized liquid supply device 45. FIG. 16 shows a type in which an air diffuser type nozzle 3 and a cylindrical type nozzle 10 rotate together with an impeller, and FIG. 17 differs from FIG. 16 in that an air diffuser type nozzle 3b has a dedicated sub mode. This is a type that can freely rotate regardless of the rotation of the impeller.
FIGS. 16 (a) and 17 (a) show a state in which the nozzle tip of the air diffuser type nozzles 3 and 3b protrudes into the impeller, and FIGS. 16 (b) and 17 (b) show driving of the nozzle tip. It shows a state where the nozzle is prevented from shaking and the air diffuser hole is inserted over the entire impeller by being inserted into the side impeller boss. In the type of nozzle 3b driven by a dedicated motor in FIG. 17, the nozzle 3b can be freely rotated at high speed regardless of the rotation of the impeller, so that the nozzle 3b in FIG. 17 has finer bubbles than the type of nozzle 3 in FIG. Is obtained. These several types of nozzles are selectively used according to the usage situation.

マイクロバブルの発生機構は、気液混合加圧液供給装置45において、気液混合チャンバー40で気体と液体を合流させて生成された微小気泡含有気液混合液を加圧ポンプ42に取り込んで、加圧ポンプの羽根により回転撹拌しながら気泡を微細化するとともに加圧した微細気泡含有気液混合加圧液を供給ホース13により、羽根車内に挿入したノズルに供給する。供給された微細気泡含有気液混合加圧液は散気孔タイプのノズル3、3b、又は筒型タイプのノズル10の噴出口よりジェット状の噴流J、又はJ2となって回転する羽根車7内に噴出、減圧され、羽根車内の流れとも混合することにより、マイクロバブル化した気泡となって、流れとともにポンプ吐出口から船体表面に沿って流出する。
加圧ポンプとしては比速度の小さい遠心ポンプや渦流ポンプ(ウエスコポンプ)などの高揚程のポンプが適している。あるいは容積式の偏芯ロ−タを持つベーン形のポンプでも良い。気液混合液を加圧するのは、気液混合液中の微小気泡に圧力をかけて微細化してノズルに供給し、散気孔やノズルからの噴出後の減圧が気泡のマイクロバブル化に非常に有効であることによる。
従来は、主にブロワにより気体を噴出口より吹き出す手法がとられているが、気体のみの噴出では気泡同士が結合しやすいことから、気泡の微細化は十分ではない。気体のみをノズルより噴出させて十分な微細気泡を得るためには、図17(c)に示すように、散気孔タイプのノズル3bをサブモータ20により高速回転させて気体を噴出する必要がある。
The microbubble generation mechanism takes in the microbubble-containing gas-liquid mixture generated by the gas-liquid mixing chamber 40 and the gas-liquid mixture in the gas-liquid mixing pressurized liquid supply device 45 into the pressure pump 42, the supply hose 13 with pressurized fine-bubble-containing liquid mixture pressurized liquid to fine bubbles while rotating agitated by the blades of the pressure pump is supplied to the nozzle is inserted into the impeller. The supplied fine bubble-containing gas-liquid mixed pressurized liquid is a jet-like jet J or J2 in the impeller 7 that rotates from the outlet of the air diffuser type nozzle 3, 3b or the cylindrical type nozzle 10. Are blown out, depressurized, and mixed with the flow in the impeller to form microbubbles that flow out of the pump discharge port along the surface of the hull along with the flow.
A high-lift pump such as a centrifugal pump or a vortex pump (Wesco pump) with a low specific speed is suitable as the pressurizing pump. Alternatively, a vane pump having a positive displacement eccentric rotor may be used. The gas-liquid mixture is pressurized by applying pressure to the microbubbles in the gas-liquid mixture and supplying them to the nozzle. By being effective.
Conventionally, a method has been used in which a gas is mainly blown out from a jet outlet by a blower. However, when only a gas is blown out, bubbles are easily combined with each other, so that the bubbles are not sufficiently refined. In order to obtain sufficient fine bubbles by ejecting only gas from the nozzle, it is necessary to cause the gas to be ejected by rotating the air diffuser type nozzle 3b at high speed by the sub motor 20, as shown in FIG.

図16中に示す気液混合チャンバー40の構造は種々考えられるが、図18は本実施例で考案した二重管構造タイプの気液混合チャンバーである。本装置は、外管38の内部に供給された気体が内管37の多数の小孔39を通して内管37内の高速の流体中に吹き出され、微小気泡含有気液混合液となって、加圧ポンプ42に取り込まれ、羽根車内のノズルに供給される構成である。 Although various structures of the gas-liquid mixing chamber 40 shown in FIG. 16 can be considered, FIG. 18 shows the gas-liquid mixing chamber of the double tube structure type devised in this embodiment. In this apparatus, the gas supplied to the inside of the outer tube 38 is blown out into the high-speed fluid in the inner tube 37 through a large number of small holes 39 in the inner tube 37 to form a gas-liquid mixture containing microbubbles. It is the structure taken in by the pressure pump 42 and supplied to the nozzle in the impeller.

図19は、船体の船首部の側壁面に船体流体抵抗低減装置80を取り付けた場合(b)と取り付けない場合(a)の航行時における船体近傍の流れの状況を示す。前記低減装置80がない場合は、図(a)に示すように、航行時に水流が直接船首部に当たり、淀みが生じ、水面波Rが発生するため、造波抵抗が生じる。また、船首部後半の曲がり部において、剥離渦Sによる造渦抵抗も発生するなど、船体の流体抵抗に大きな影響を及ぼす。一方、前記低減装置80を取り付けた場合は、航行時に水流が船首部に直接当たることなく、低減装置80のポンプ吸込み口に向かうため、船首部の流れは、図(a)とは異なり、図(b)に示すように船首部近傍を支障なくスムーズに流れ、水面波は生じないため、造波抵抗は抑制される。FIG. 19 shows the state of the flow in the vicinity of the hull during navigation when the hull fluid resistance reducing device 80 is attached to the side wall surface of the bow of the hull (b) and when it is not attached (a). In the absence of the reduction device 80, as shown in FIG. 5A, the water flow directly hits the bow during navigation, stagnation occurs, and a water surface wave R is generated, so that wave-making resistance is generated. In addition, vortex-making resistance due to the separation vortex S is also generated at the bent portion in the latter half of the bow, which greatly affects the fluid resistance of the hull. On the other hand, when the reduction device 80 is attached, the water flow does not directly hit the bow portion during navigation, and is directed to the pump suction port of the reduction device 80. Therefore, the flow of the bow portion is different from FIG. As shown in (b), since the water flows smoothly in the vicinity of the bow and no water surface wave is generated, the wave-making resistance is suppressed.

本発明の船体流体抵抗低減装置は、航行時の船体表面の摩擦抵抗と船首部に発生する造波抵抗の両方を同時に低減できることから、高い省エネ効果が得られる。また、船首部において水流が制御されることから、水を切る船首部形状を鋭くする必要がないこと、および造波抵抗の低減に対しては、船首部の水面下の船体構造をバルバスバウ(球状船首)にする必要がないことなど高度の技術を有することから、本装置が利用される可能性は大きい。 The hull fluid resistance reducing device of the present invention can reduce both the frictional resistance of the hull surface during navigation and the wave-making resistance generated at the bow at the same time, so that a high energy saving effect can be obtained. In addition, since the water flow is controlled at the bow, it is not necessary to sharpen the bow shape that cuts off the water, and the hull structure under the water surface of the bow is reduced to the Barbus bow (spherical shape) to reduce wave resistance. It is highly probable that this device will be used because it has advanced technology such as no need for bow.

3b 散気孔タイプのノズル
4b 平口ノズル
5 噴出口(散気孔タイプのノズルの小孔)
6 羽根(貫流ポンプ)
7 貫流ポンプ羽根車
8 ケ−シング舌部
10 筒型タイプのノズル
1111b 分岐管(くし型ノズル)
12 水中モ−タ
13 供給ホース
14 水面
1616b 羽根車中空回転軸
1818b くし型ノズル
20 サブモ−タ(中空回転軸)
21 ポンプ吸込みケーシング
22 ポンプ吐出しケーシング
2525b 羽根車中空回転軸用軸受
29 散気孔パイプ軸受
30 リニアレール
3134 スライドプレート
32 リニアパイプ
33 スライドリング
36 二重管ユニット
37 二重管ユニット内管
38 二重管ユニット外管
39 小孔(気体吹込み孔)
40 気液混合チャンバー
42 加圧ポンプ
43 ブロワ
45 気液混合加圧液供給装置
49 段差修正ブロック
5050b マイクロバブル発生貫流ポンプ
5556,57 平板翼
60 スクリーン
70 船
70b 船の側面外板
75 船首部中空立抗
76 中空立抗垂直壁面
8081 流体抵抗低減装置
B 微細気泡(マイクロバブル)
D ポンプの吐出し流れ(船体表面に沿うマイクロバブルの流れ)
F 外流(船の速度や海流に関係する船体近傍を通り過ぎる流れ)
J2 ノズルより羽根車内に噴出する微細気泡流
K 後流渦
S 剥離渦
R 水面波
3 , 3b Aeration hole type nozzle 4 , 4b Flat mouth nozzle 5 Spout (small hole of aeration hole type nozzle)
6 blades (through-flow pump)
7 Cross-flow pump impeller 8 Casing tongue 10 Tubular type nozzles 11 and 11b Branch pipe (comb nozzle)
12 Submersible motor 13 Supply hose 14 Water surface 16 , 16b Impeller hollow rotary shaft 18 , 18b Comb nozzle 20 Sub motor (hollow rotary shaft)
21 Pump suction casing 22 Pump discharge casing 25 , 25 b Bearing for impeller hollow rotary shaft 29 Air diffuser pipe bearing 30 Linear rail 31 , 34 Slide plate 32 Linear pipe 33 Slide ring 36 Double pipe unit 37 Double pipe unit inner pipe 38 Double pipe unit outer pipe 39 Small hole (gas blowing hole)
40 Gas-Liquid Mixing Chamber 42 Pressurizing Pump 43 Blower 45 Gas-Liquid Mixing Pressurized Liquid Supply Device 49 Step Correction Blocks 50 , 50 b Micro Bubble Generation Throughflow Pump
55 , 56 , 57 Flat wing 60 Screen 70 Ship 70b Side skin 75 of ship
76 Hollow vertical wall 80 , 81 Fluid resistance reduction device B Micro bubbles
D Discharge flow of pump (flow of microbubbles along the hull surface)
F Outer current (flow past the hull near the ship's speed and current)
J , J2 Fine bubble flow ejected from the nozzle into the impeller K Back vortex S Separation vortex R Water surface wave

Claims (7)

円筒状で多翼の羽根車を有し、羽根車中心部に微細気泡発生機構を有するマイクロバブル発生貫流ポンプを、船首部水面下の船体側面外板に、ポンプの吸込み口と吐出し口の方向が水流と同方向になるように設置し、前記マイクロバブル発生貫流ポンプの上方すぐ上に、貫流ポンプ全体を覆う平板翼を船体側面に略平行に設置した構成にすることによって、航行時の船首部近傍の水流を制御し、造波抵抗を低減するとともに前記貫流ポンプからのマイクロバブル(微細気泡)の船体側面に沿う吐出し流れによって、航行時の船体側面の摩擦抵抗も低減することを特徴とする船体流体抵抗低減装置。 A micro-bubble generating once-through pump with a cylindrical, multi-blade impeller and a fine bubble generating mechanism at the center of the impeller is connected to the outer side plate of the hull under the water surface of the bow. Installed so that the direction of the water flow is the same as that of the water flow, a flat blade that covers the whole of the once-through pump is installed just above the micro-bubble generating once-through pump. Control the water flow near the bow, reduce wave resistance, and reduce the frictional resistance on the side of the hull during navigation by the discharge flow along the hull side of the microbubbles from the cross-flow pump. Hull fluid resistance reduction device characterized. 請求項1に記載の平板翼を前記マイクロバブル発生貫流ポンプのポンプ吸込み側ケーシング上面に直接取り付けて、前記貫流ポンプ全体を覆うようにし、該マイクロバブル発生貫流ポンプと該平板翼が一体化した装置にすることを特徴とする船体流体抵抗低減装置。 An apparatus in which the flat plate blade according to claim 1 is directly attached to the upper surface of the pump suction side casing of the microbubble generating throughflow pump so as to cover the entire throughflow pump, and the microbubble generating throughflow pump and the flat plate blade are integrated. A hull fluid resistance reduction device characterized by comprising: 船首部の左舷と右舷の間の部分を上甲板方向から水面に向かって中空にした立抗にし、その中空立抗後部の略垂直壁面の船底近傍に前記マイクロバブル発生貫流ポンプを横置きにして設置し、該貫流ポンプからのマイクロバブル(微細気泡)の船体底面に沿う吐出し流れによって、航行時の船体底面の摩擦抵抗を低減することを特徴とする船体流体抵抗低減装置 The part between the port side of the bow and the starboard side is made to stand against the water surface from the upper deck direction, and the microbubble generating once-through pump is placed horizontally in the vicinity of the bottom of the substantially vertical wall surface of the rear part of the hollow stand. A hull fluid resistance reduction device that is installed and reduces the frictional resistance of the bottom of the hull during navigation by discharging the microbubbles from the once-through pump along the bottom of the hull. 請求項3に記載の中空立抗の略垂直壁面の船底面近傍の流れの中に、ノズルの先端口を平口形、又は円形にした、くし型ノズルを設置し、ノズルからの船底面に沿うマイクロバブルの噴出流により、船体底面表面をマイクロバブル(微細気泡)で覆うことによって、航行時の船体底面の摩擦抵抗を低減することを特徴とする船体流体抵抗低減装置 A comb-shaped nozzle having a flat-mouthed or circular nozzle at the tip of the nozzle is installed in the flow in the vicinity of the bottom of the substantially vertical wall surface of the hollow support according to claim 3, and is along the bottom of the ship from the nozzle. A hull fluid resistance reducing device that reduces the frictional resistance of the hull bottom surface during navigation by covering the bottom surface of the hull with micro bubbles (micro bubbles) by the jet flow of micro bubbles. 船首部水面下の船体側面外板近傍の流れの中に、ノズルの先端口を平口形にした、くし型ノズルを設置し、ノズルからの船体側面に沿うマイクロバブルの噴出流により、船体側面表面をマイクロバブル(微細気泡)で覆うことによって、航行時の船体側面の摩擦抵抗を低減することを特徴とする船体流体抵抗低減装置 In the flow near the hull side skin under the water surface of the bow, a comb type nozzle with a flat nozzle at the tip of the nozzle is installed, and the surface of the hull side surface is generated by the jet of microbubbles along the hull side from the nozzle. A hull fluid resistance reducing device that reduces frictional resistance on the side of the hull during navigation by covering the surface with microbubbles 請求項4及び請求項5に記載の船体の底面及び側面外板近傍の流れの中に設置した、それぞれのくし型ノズルの上方すぐ上に、前記くし型ノズル全体を覆う平板翼を、くし型ノズル据付け位置における船体表面の底面及び側面に略平行に設置した構成にすることによって、ノズルからの噴出流が、船体の底面及び側面に沿って安定して流れるようにして、航行時の船体の底面及び側面の摩擦抵抗を低減することを特徴とする船体流体抵抗低減装置 A flat blade that covers the entire comb nozzle is disposed immediately above each of the comb nozzles installed in the flow in the vicinity of the bottom and side skins of the hull according to claim 4 and claim 5. By adopting a configuration that is installed almost parallel to the bottom and side surfaces of the hull surface at the nozzle installation position, the jet flow from the nozzle flows stably along the bottom and side surfaces of the hull, Hull fluid resistance reduction device characterized by reducing friction resistance of bottom and side surfaces 請求項1及び請求項2に記載の船首部船体側面外板上、又は請求項3に記載の中空立抗の略垂直壁面上、に垂直方向に設置したパイプやポールをガイドにしてスライドして走行するスライドプレートに前記マイクロバブル発生貫流ポンプを取り付けた構成にし、マイクロバブル発生貫流ポンプを上下に走行可能として、ポンプの据付け調整やメンテナンスを容易にしたことを特徴とする船体流体抵抗低減装置。 The pipe or pole installed in the vertical direction on the bow side hull of the bow part of claim 1 or claim 2 or on the substantially vertical wall surface of the hollow stand of claim 3 is slid by using as a guide. A hull fluid resistance reducing device characterized in that the microbubble generating once-through pump is attached to a traveling slide plate, and the microbubble generating once-through pump can be moved up and down to facilitate adjustment and maintenance of the pump.
JP2015139778A 2014-09-16 2015-07-13 Hull fluid resistance reduction device Active JP5975363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/004638 WO2016042746A1 (en) 2014-09-16 2015-09-11 Hull fluid resistance reduction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014187178 2014-09-16
JP2014187178 2014-09-16

Publications (2)

Publication Number Publication Date
JP2016064812A true JP2016064812A (en) 2016-04-28
JP5975363B2 JP5975363B2 (en) 2016-08-23

Family

ID=55804855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139778A Active JP5975363B2 (en) 2014-09-16 2015-07-13 Hull fluid resistance reduction device

Country Status (1)

Country Link
JP (1) JP5975363B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161957A (en) * 2017-03-24 2018-10-18 日東精工株式会社 Energy saving device using air bubbles and vessel provided with the same device
CN110758633A (en) * 2019-10-30 2020-02-07 西安交通大学 Venturi system for reducing resistance of hull bubbles
JP2022547488A (en) * 2019-12-28 2022-11-14 天津市華諾通信工程有限公司 Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378822A (en) * 1945-06-19 Draft reducing air distributor for
JPS54144693A (en) * 1978-05-04 1979-11-12 Masao Takanashi Thrust reinforcing device of shipping
US20120042820A1 (en) * 2010-02-22 2012-02-23 Kristian Brekke Stepped boat hull
JP2012201338A (en) * 2011-03-28 2012-10-22 K & I Inc Frictional resistance reduced ship and method for operating the same
JP2013022477A (en) * 2011-07-15 2013-02-04 Masa Tagome Microbubble generation flowing pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378822A (en) * 1945-06-19 Draft reducing air distributor for
JPS54144693A (en) * 1978-05-04 1979-11-12 Masao Takanashi Thrust reinforcing device of shipping
US20120042820A1 (en) * 2010-02-22 2012-02-23 Kristian Brekke Stepped boat hull
JP2012201338A (en) * 2011-03-28 2012-10-22 K & I Inc Frictional resistance reduced ship and method for operating the same
JP2013022477A (en) * 2011-07-15 2013-02-04 Masa Tagome Microbubble generation flowing pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161957A (en) * 2017-03-24 2018-10-18 日東精工株式会社 Energy saving device using air bubbles and vessel provided with the same device
CN110758633A (en) * 2019-10-30 2020-02-07 西安交通大学 Venturi system for reducing resistance of hull bubbles
JP2022547488A (en) * 2019-12-28 2022-11-14 天津市華諾通信工程有限公司 Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship

Also Published As

Publication number Publication date
JP5975363B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP6103517B2 (en) Cross-flow pump ultrafine bubble flow supply device
KR20230014823A (en) Air lubrication system and vessel comprising such a system
JP2014097449A5 (en)
JP5975363B2 (en) Hull fluid resistance reduction device
JP2012510406A (en) Positive pressure microbubble generator
KR20200059846A (en) Rudder including duct having coanda effect
JP5311541B2 (en) Ship bubble holding device
US11319026B2 (en) Hull surface air lubrication structure for marine vehicles
JP6493826B2 (en) Fluid machinery and propulsion device, water jet propulsion machine for fluid machinery.
WO2016042746A1 (en) Hull fluid resistance reduction device
JP5651829B2 (en) Friction reduction ship and micro bubble generation pump
JP2013146702A (en) Microbubble generator using through-flow pump
JP6873459B2 (en) Ship
RU2015143082A (en) SHIP TUNNEL SCREW WATER JET ENGINE SYSTEM
KR100889975B1 (en) Waterjet driving method and propulsion
TW544427B (en) Semi-submerged hydrofoil
JP4070385B2 (en) Friction resistance reduction ship
JP5799982B2 (en) Ship bubble holding device
RU2299152C1 (en) Two-mode water scoop of hovercraft water-jet propeller
JP6011802B2 (en) Microbubble generating once-through pump device for friction reduction ship
JPH10216794A (en) Water area purifying device
JPH10175587A (en) Frictional resistance reducing device for ship
JP2024043622A (en) Energy-saving ship with reduced fluid resistance
JP2001328584A (en) Frictional resistance-reduced ship
KR101220510B1 (en) Air jet propulsion apparatus

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160325

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160707

R150 Certificate of patent or registration of utility model

Ref document number: 5975363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250