JP2016062931A - Condensation type solar battery module and condensation type photovoltaic power generation system - Google Patents

Condensation type solar battery module and condensation type photovoltaic power generation system Download PDF

Info

Publication number
JP2016062931A
JP2016062931A JP2014187152A JP2014187152A JP2016062931A JP 2016062931 A JP2016062931 A JP 2016062931A JP 2014187152 A JP2014187152 A JP 2014187152A JP 2014187152 A JP2014187152 A JP 2014187152A JP 2016062931 A JP2016062931 A JP 2016062931A
Authority
JP
Japan
Prior art keywords
solar cell
solar
cell
light receiving
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014187152A
Other languages
Japanese (ja)
Inventor
山田 昇
Noboru Yamada
昇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2014187152A priority Critical patent/JP2016062931A/en
Publication of JP2016062931A publication Critical patent/JP2016062931A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-magnification condensation type solar battery module and a condensation type photovoltaic power generation system which enable the enhancement of transparency to scattered light incident thereon and the multipurpose utilization of scattered light having passed therethrough.SOLUTION: A module 10 (10a) comprises: a condenser 11; a highly-transmissive plate 12; solar battery cells 13 which receive solar light collected by the condenser 11 and generate electric power; and a circuit provided on a part of a surface of the highly-transmissive plate 12, which can be electrically connected to the cells 13. Each cell 13 of the solar battery cells 13 is disposed on the surface of the highly-transmissive plate 12 dispersively. The cells 13 and the circuit are encapsulated between the condenser 11 and the highly-transmissive plate 12. The total light-receiving area of the solar battery cells 13 is 10% of the total incident area of solar light or less. The light-receiving area of the highly-transmissive plate 12 is 80% of the total incident area of solar light or more, which is superior in transmission of scattered light L2.SELECTED DRAWING: Figure 1

Description

本発明は、太陽電池モジュールに関し、より具体的には、太陽光を集光器により集光して発電する集光型太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more specifically to a concentrating solar cell module that collects sunlight with a condenser to generate electric power.

(1)太陽光発電の普及
近年、再生可能エネルギーの固定価格買取制度による太陽光発電の普及が急ピッチで進んでいる。今後、地球温暖化問題の深刻化に伴いCO2排出規制が厳しくなると、さらなる普及拡大が必要となることが予想される。
(1) Popularization of solar power generation In recent years, the popularization of solar power generation through a feed-in tariff system for renewable energy has been proceeding at a rapid pace. In the future, if CO 2 emission regulations become stricter as the global warming problem becomes more serious, further spread is expected.

(2)集光型太陽電池モジュール
太陽電池(photovoltaic:PV)モジュールは、大きく集光型と非集光型とに大別される。集光型PVモジュールとして、レンズやミラー等の集光器を利用した技術が既に存在する(例えば、特許文献1〜4参照)。
(2) Concentrating solar cell module Solar cell (photovoltaic: PV) modules are roughly classified into a condensing type and a non-condensing type. As a condensing type PV module, a technique using a condenser such as a lens or a mirror already exists (for example, see Patent Documents 1 to 4).

(3)従来の太陽電池モジュールの問題点1
しかしながら、特許文献1〜4に開示の集光型PVモジュールでは「直達光」のみがPVセルに集光され、「散乱光」はPVセル周辺のモジュール筐体に入射されるため、全く有効に活用されないばかりか、「散乱光」の大半が通常金属製の不透明なモジュール筐体に吸収されてしまい、熱となって太陽電池セルの温度を上昇させるため、変換効率や長期信頼性の低下要因となることが危惧される。
(3) Problem 1 of conventional solar cell module
However, in the concentrating PV modules disclosed in Patent Documents 1 to 4, only “direct light” is condensed on the PV cell, and “scattered light” is incident on the module casing around the PV cell, which is quite effective. Not only is it not used, but the majority of “scattered light” is usually absorbed by an opaque module housing made of metal and becomes heat, which increases the temperature of the solar cell, causing a decrease in conversion efficiency and long-term reliability. It is feared that it becomes.

(4)従来の太陽電池モジュールの問題点2
また、太陽光発電の大量普及時代に突入すると、太陽光発電の設置スペースの確保が徐々に難しくなり、農業や園芸をはじめとする他の太陽光を必要とする用途(つまり、発電以外の他の用途)との設置スペースの競合が生じる可能性が高い。従って、今後は限られたスペースで最大限に太陽光発電をしつつ、同時に他の用途と共存可能な技術へのニーズが増えることも予想される。
(4) Problem 2 of conventional solar cell module
In addition, as we enter the era of massive solar power generation, it becomes increasingly difficult to secure installation space for solar power generation, and other uses that require sunlight, such as agriculture and horticulture (that is, other than power generation) There is a high possibility that competition for installation space will occur. Therefore, in the future, it is expected that there will be an increase in the need for technologies that can generate solar power to the maximum in a limited space while simultaneously coexisting with other applications.

例えば、建物等の屋上面で太陽光発電と屋上菜園との利用を両立したい場合などがある。特許文献1〜4に開示した従来の太陽電池モジュールでは、植物への日射を確保するためにはモジュール筐体の面積(ひいてはPVセルの面積)を減らす必要があり、その分だけ発電量が低下してしまう。このため、共存が困難であり、太陽光が有効に活用できないという問題点がある。   For example, there is a case where it is desired to achieve both solar power generation and rooftop garden use on the top surface of a building or the like. In the conventional solar cell module disclosed in Patent Documents 1 to 4, it is necessary to reduce the area of the module housing (and consequently the area of the PV cell) in order to ensure solar radiation to the plant, and the amount of power generation decreases accordingly. Resulting in. For this reason, coexistence is difficult and there exists a problem that sunlight cannot be used effectively.

また、植物への日射に限らず、居住空間への採光も太陽光発電と競合する用途の1つであり、上述した同じ問題点が発生し得る。特に、建物が林立する都市部においては日照権に拘わる問題にも発展する可能性があり、建物屋上に遮光物を容易には設置できない。   Moreover, the daylight to the living space as well as the solar radiation to the plant is one of the uses competing with the solar power generation, and the same problem described above may occur. In particular, in urban areas where buildings are forested, there is a possibility that problems related to the right of sunshine may develop, and it is not easy to install a shade on the roof of the building.

(5)上記問題解決へのアプローチ
上記の問題点は、従来のPVモジュールの筐体が太陽光に対して不透明になっており、日射の透過量を増やそうとすると、その分だけPVセルの面積を減らす必要があることに起因する。そこで、本発明者は、発電量を大きく犠牲にすることなく従来以上に太陽光を高透過するPVモジュールを提供することができれば、この問題を軽減できることを着想した。
(5) Approach to solving the above problem The above problem is that the case of the conventional PV module is opaque to sunlight, and if you try to increase the amount of solar radiation transmitted, the PV cell area will be increased accordingly. Due to the need to reduce. Therefore, the present inventor has conceived that this problem can be reduced if a PV module that transmits sunlight more than before can be provided without greatly sacrificing the amount of power generation.

例えば、集光型PVモジュールにおいて、従来製品は不透明であったモジュール筐体の全面もしくは一部を太陽光の透過性が高い材料に置き換えることによって、発電に利用されない散乱光の透過性を大幅に向上しつつ、この散乱光を発電以外の他の用途へ利用できるのである。   For example, in a concentrating PV module, the transparency of scattered light that is not used for power generation is greatly increased by replacing the entire surface or part of the module housing, which has been opaque in conventional products, with a material with high sunlight transmittance. While improving, this scattered light can be used for applications other than power generation.

このような着想は、特許文献5の明細書段落〔0025〕にも開示がある。また、該文献5の明細書段落〔0045〕〜〔0046〕の記載(特に、「この光学シートの太陽光総入射面積に対し、太陽電池への総入射面積は2.7対1.0であることを確認した。本発明の実施においては、受光面の太陽に向けての追尾システムは必須とはしない。本発明の簡便な繰り返しの線状構造形状を有するリニアな光学シート1枚で、2.7倍集光を実現することができた。」との記載)から、特許文献5の太陽電池モジュールは、太陽電池より下側に配置されかつ太陽電池の投影面積と重ならない筐体透明部分の面積比は2.7対1.7となる。言い換えれば、太陽電池の投影面積が約37%となり、それ以外の透明部分の面積は約63%となる。   Such an idea is also disclosed in paragraph [0025] of the specification of Patent Document 5. Further, the description in the paragraphs [0045] to [0046] of the document 5 (particularly, “the total incident area to the solar cell is 2.7 to 1.0 with respect to the total sunlight incident area of this optical sheet. In the implementation of the present invention, a tracking system toward the sun on the light receiving surface is not essential, and one linear optical sheet having a simple linear structure of the present invention, 2.7 times condensing was able to be realized ”), the solar cell module of Patent Document 5 is disposed below the solar cell and is transparent in the casing that does not overlap with the projected area of the solar cell. The area ratio of the portion is 2.7 to 1.7. In other words, the projected area of the solar cell is about 37%, and the area of the other transparent portion is about 63%.

つまり、特許文献5に記載の従来技術は、当該文献の〔図2〕を紙面に垂直な方向に延ばした構造(2次元集光)であり、つまり、太陽追尾機構が不要の固定設置方式で、集光倍率(集光度)が2〜3倍程度(実施例では2.7倍)の低倍率集光タイプの太陽電池モジュールであるといえよう。   That is, the prior art described in Patent Document 5 is a structure (two-dimensional condensing) in which [FIG. 2] of the document is extended in a direction perpendicular to the paper surface, that is, a fixed installation method that does not require a sun tracking mechanism. It can be said that this is a low magnification condensing type solar cell module having a condensing magnification (concentration) of about 2 to 3 times (2.7 times in the embodiment).

ただし、昨今、太陽の集光倍率が100倍以上の極めて高くかつ太陽追尾機構が必須となる3次元集光タイプの太陽電池モジュールへの需要が高まっている。集光倍率が100倍以上になると化合物多接合型太陽電池とよばれる超高効率太陽電池を極めて小面積で使用できるためモジュール変換効率とコストパフォーマンスを高められるためである。この需要を満たすために、特許文献5の構成をそのまま採用しようとすると下記の技術的課題が発生する恐れがあり、そのための対策を取る必要がある。   However, recently, there is an increasing demand for a three-dimensional concentrating solar cell module in which the solar condensing magnification is extremely high, 100 times or more, and a solar tracking mechanism is essential. This is because when the condensing magnification is 100 times or more, an ultrahigh-efficiency solar cell called a compound multi-junction solar cell can be used in an extremely small area, so that module conversion efficiency and cost performance can be improved. In order to satisfy this demand, if the configuration of Patent Document 5 is to be adopted as it is, the following technical problem may occur, and measures for that need to be taken.

(対策1:焦点の位置ズレ対策)
超高倍率になればなるほど、追尾機構による僅かな追尾誤差でもモジュールの焦点がずれやすくなる。このため、超高倍率集光型太陽電池モジュールでは、焦点が多少ずれても太陽電池セルへの集光を確保・維持できるような構造を設けておくことが望まれる。
(Countermeasure 1: Focus position misalignment countermeasure)
The higher the magnification, the more easily the focus of the module is shifted even with a slight tracking error by the tracking mechanism. For this reason, it is desired that the ultrahigh-magnification concentrating solar cell module is provided with a structure that can secure and maintain condensing on the solar cells even when the focus is slightly deviated.

(対策2:放熱対策)
本発明の目的とする太陽電池モジュールは、特許文献5の装置に比べ、その集光倍率が高いため、放熱性能をより強化・向上させる必要がある。
(Countermeasure 2: Heat dissipation measure)
Since the solar cell module which is the object of the present invention has a higher light collection magnification than the device of Patent Document 5, it is necessary to enhance and improve the heat dissipation performance.

特開2014−010251号公報JP 2014-010251 A 特開2013−012626号公報JP2013-012626A 特開2013−080760号公報JP2013-080760A 特開2013−149721号公報JP 2013-149721 A 特開2013−016784号公報JP 2013-016784 A

本発明は、上述の課題を解決し、入射された散乱光に対する透過性を増大するとともに透過した散乱光の多目的利用が可能な高倍率集光型太陽電池モジュール及び集光型太陽光発電システムを提供することを目的とする。   The present invention provides a high-magnification concentrating solar cell module and a concentrating solar power generation system that solves the above-described problems, increases the transparency to incident scattered light, and enables multipurpose use of the transmitted scattered light. The purpose is to provide.

また、本発明のもう一つの目的は、散乱光を利用可能としつつ、直達光を高倍率に集光可能な高倍率集光型太陽電池モジュール及び集光型太陽光発電システムを提供することである。   Another object of the present invention is to provide a high-magnification concentrating solar cell module and a concentrating solar power generation system capable of concentrating direct light at a high magnification while making it possible to use scattered light. is there.

また、本発明のもう一つの目的は、焦点の位置ズレがあった場合でも集光率の低下を極力抑制しつつ高い放熱特性を有する高倍率集光型太陽電池モジュール及び集光型太陽光発電システムを提供することである。   Another object of the present invention is to provide a high-magnification concentrating solar cell module and concentrating solar power generation having high heat dissipation characteristics while suppressing a decrease in condensing rate as much as possible even when the focal point is misaligned. Is to provide a system.

本発明者は、鋭意検討の末、上記課題の主要因であった集光型太陽電池モジュールの受光面とは反対の面を構成する部分に太陽光透過率の高い板材を用いて、その板材上に微小な太陽電池セルを局所的かつ分散的に配置する特有の構造を採用すれば、セル温度の上昇を抑えつつ高透過性を有した集光型太陽電池モジュールを構成できることを見出し、本発明を完成するに至った。   The present inventor, after earnest study, uses a plate material having a high solar transmittance in a portion constituting the surface opposite to the light receiving surface of the concentrating solar cell module, which was the main cause of the above problem, and the plate material. It has been found that by adopting a unique structure in which minute solar cells are locally and dispersed on the top, it is possible to construct a concentrating solar cell module having high permeability while suppressing an increase in cell temperature. The invention has been completed.

すなわち、本発明の集光型太陽電池モジュールは、少なくとも次の特徴・構成を有する。
(態様1)
太陽光を集光する集光器と、
前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
前記高透過板の表面の一部に設けられ、かつ、前記セルに電気的に接続可能な回路と、
を備えた集光型太陽電池モジュールであって、かつ、
前記太陽電池セルの各セルは、前記高透過板の表面上に分散的に配置され、
前記セルと前記回路とは、前記集光器と前記高透過板との間に封止され、
前記太陽電池セルの全受光面積は太陽光総入射面積の10%以下であり、
前記高透過板の受光面積は太陽光総入射面積の80%以上であることを特徴とする集光型太陽電池モジュール。
(態様2)
前記太陽電池セルの各セルの受光面が1mm×1mm以下の寸法であることを特徴とする態様1に記載の集光型太陽電池モジュール。
(態様3)
前記回路が金属膜と金属ワイヤとを含み、
前記金属膜が、前記太陽電池セルを担持しながら前記高透過板の表面に分散的にかつ前記高透過板とは電気的に絶縁であるように密着して設置され、
前記金属ワイヤは、前記金属膜と前記太陽電池セルとの間を電気的に接続し、直列又は並列の電気回路を構成することを特徴とする態様1又は2に記載の集光型太陽電池モジュール。
(態様4)
前記回路が金属膜と金属ワイヤと透明導電膜とを含み、
前記金属膜が、前記太陽電池セルを担持しながら前記高透過板の表面に分散的にかつ前記高透過板とは電気的に絶縁であるように密着して設置され、
前記金属ワイヤ及び前記透明導電膜は、前記金属膜と前記太陽電池セルとの間を電気的に接続し、直列又は並列の電気回路を構成することを特徴とする態様1又は2に記載の集光型太陽電池モジュール。
(態様5)
前記高透過板の受光面とは反対側の面の下方に第2の太陽電池を設置したことを特徴とする態様1〜4のいずれかに記載の集光型太陽電池モジュール。
(態様6)
前記集光器によって集光された太陽光を反射させて前記太陽電池セルの受光面へ案内する反射面を備えた受光ガイドをさらに備え、かつ、
前記受光ガイドと前記太陽電池セルとを予め一体化してセルパッケージが複数構成され、該セルパッケージが前記高透過板の表面上に分散的に配置されることを特徴とする態様1〜5のいずれかに記載の集光型太陽電池モジュール。
(態様7)
前記受光ガイドに放熱用フィンが設けられていることを特徴とする態様1〜6のいずれかに記載の集光型太陽電池モジュール。
(態様8)
前記高透過板の受光面とは反対側の面の下方に放熱用ハニカム構造体を設置したことを特徴とする態様1〜7のいずれかに記載の集光型太陽電池モジュール。
(態様9)
太陽光を集光する集光器と、
前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
前記集光器によって集光された太陽光を受光して発電する複数の太陽電池セルと、
前記高透過板の表面の一部に設けられ、かつ、前記セルに電気的に接続可能な回路と、
を備えた集光型太陽電池モジュールであって、かつ、
前記太陽電池セルの各セルは前記高透過板の受光面とは反対側の面に分散的に配置され、
前記太陽電池セルの全受光面積は太陽光総入射面積の10%以下であり、
前記高透過板の受光面積は太陽光総入射面積の80%以上であり、
前記集光器によって集光されかつ前記高透過板を透過した太陽光を反射させて前記太陽電池セルの受光面へ案内する反射面を備えた受光ガイドをさらに備え、
前記受光ガイドと前記太陽電池セルとを予め一体化してセルパッケージが複数構成され、封止材によって該セルパッケージが前記高透過板の前記反対側の面上に分散的に封止されることを特徴とする集光型太陽電池モジュール。
(態様10)
前記集光器は、表面がドーム状を成す受光面を有することを特徴とする態様1〜9のいずれかに記載の集光型太陽電池モジュール。
(態様11)
前記集光器は、前記高透過板の上方に空気層を挟んで設置されたレンズであることを特徴とする態様1〜10のいずれかに記載の集光型太陽電池モジュール。
(態様12)
態様1〜4,6〜11のいずれかに記載の集光型太陽電池モジュールと、該モジュールを搭載する1軸太陽追尾架台及び2軸太陽追尾架台の少なくとも一方の架台とを備えた集光型太陽光発電システムであって、かつ、該システムが、太陽光を利用する発電以外の他用途に使用されている場所に適当な間隔で設置可能であることを特徴とする集光型太陽光発電システム。
That is, the concentrating solar cell module of the present invention has at least the following features and configurations.
(Aspect 1)
A concentrator that collects sunlight;
A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the cell;
A concentrating solar cell module comprising:
Each cell of the solar cell is dispersedly disposed on the surface of the high transmission plate,
The cell and the circuit are sealed between the collector and the high transmission plate,
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The light-receiving area of the highly transmissive plate is 80% or more of the total sunlight incident area.
(Aspect 2)
The light-receiving surface of each cell of the said photovoltaic cell is a dimension of 1 mm x 1 mm or less, The concentrating solar cell module of aspect 1 characterized by the above-mentioned.
(Aspect 3)
The circuit includes a metal film and a metal wire;
The metal film is placed in close contact with the surface of the highly transmissive plate while carrying the solar cells so as to be electrically insulated from the highly transmissive plate,
The concentrating solar cell module according to aspect 1 or 2, wherein the metal wire electrically connects the metal film and the solar battery cell to form a series or parallel electric circuit. .
(Aspect 4)
The circuit includes a metal film, a metal wire, and a transparent conductive film,
The metal film is placed in close contact with the surface of the highly transmissive plate while carrying the solar cells so as to be electrically insulated from the highly transmissive plate,
The said metal wire and the said transparent conductive film electrically connect between the said metal film and the said photovoltaic cell, and comprise the electrical circuit of a series or parallel, The collection of aspect 1 or 2 characterized by the above-mentioned. Optical solar cell module.
(Aspect 5)
5. The concentrating solar cell module according to any one of aspects 1 to 4, wherein a second solar cell is installed below a surface opposite to the light receiving surface of the high transmission plate.
(Aspect 6)
A light receiving guide provided with a reflecting surface that reflects the sunlight collected by the light collector and guides it to the light receiving surface of the solar cell; and
Any one of the aspects 1 to 5, wherein the light receiving guide and the solar battery cell are integrated in advance to form a plurality of cell packages, and the cell packages are distributed on the surface of the high transmission plate. A concentrating solar cell module according to claim 1.
(Aspect 7)
The concentrating solar cell module according to any one of aspects 1 to 6, wherein the light receiving guide is provided with a heat radiation fin.
(Aspect 8)
8. The concentrating solar cell module according to any one of aspects 1 to 7, wherein a heat radiating honeycomb structure is disposed below a surface opposite to the light receiving surface of the high transmission plate.
(Aspect 9)
A concentrator that collects sunlight;
A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
A plurality of solar cells that receive sunlight generated by the condenser and generate power; and
A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the cell;
A concentrating solar cell module comprising:
Each cell of the solar battery cell is dispersedly arranged on the surface opposite to the light receiving surface of the highly transmissive plate,
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The light receiving area of the high transmission plate is 80% or more of the total sunlight incident area,
A light receiving guide provided with a reflecting surface for reflecting the sunlight collected by the collector and transmitted through the highly transmissive plate and guiding it to the light receiving surface of the solar cell;
The light receiving guide and the solar battery cells are integrated in advance to form a plurality of cell packages, and the cell packages are sealed in a distributed manner on the opposite surface of the high transmission plate by a sealing material. A concentrating solar cell module.
(Aspect 10)
The concentrator solar cell module according to any one of aspects 1 to 9, wherein the concentrator has a light-receiving surface whose surface forms a dome shape.
(Aspect 11)
The concentrator solar cell module according to any one of aspects 1 to 10, wherein the concentrator is a lens that is installed above the highly transmissive plate with an air layer interposed therebetween.
(Aspect 12)
A concentrating solar cell module according to any one of aspects 1 to 4 and 6 to 11, and a concentrating solar cell module including at least one of a uniaxial solar tracking gantry and a biaxial solar tracking gantry on which the module is mounted. A concentrating solar power generation system that is a solar power generation system and that can be installed at an appropriate interval in a place where the system is used for other purposes than power generation using sunlight system.

本発明の集光型太陽電池モジュールによれば、従来の集光型太陽電池では温度上昇による変換効率低下等の要因となっていた散乱光を高透過させることができる。   According to the concentrating solar cell module of the present invention, the conventional concentrating solar cell can highly transmit scattered light that has been a factor of a decrease in conversion efficiency due to a temperature rise.

また、本発明の集光型太陽電池モジュールによれば、通常の非集光型太陽電池又は低倍率集光型太陽電池では不可能であった、入射光のうち、散乱光を発電以外の他用途に利用可能としつつ直達光を高倍率に集光して発電することができる。   In addition, according to the concentrating solar cell module of the present invention, the scattered light other than the power generation is not included in the incident light, which is impossible with a normal non-condensing solar cell or a low magnification concentrating solar cell. It is possible to generate electric power by concentrating direct light at a high magnification while making it available for use.

また、本発明によれば、焦点の位置ズレがあった場合でも集光率の低下を極力抑制しつつ高い放熱特性を有した集光型太陽電池モジュールを提供することができる。   In addition, according to the present invention, it is possible to provide a concentrating solar cell module having high heat dissipation characteristics while suppressing a decrease in condensing rate as much as possible even when the focal point is misaligned.

また、本発明の集光型太陽電池の下面側に低コストの太陽電池を設置すれば、散乱光からも発電が可能となり、発電量をさらに増加することができる。   Moreover, if a low-cost solar cell is installed on the lower surface side of the concentrating solar cell of the present invention, it is possible to generate power from scattered light, and the power generation amount can be further increased.

本発明の実施例1に係る集光型太陽電池モジュールの構成(平面図及び断面図)を示した図である。It is the figure which showed the structure (a top view and sectional drawing) of the concentrating solar cell module which concerns on Example 1 of this invention. 本発明の実施例1に係る熱解析シミュレーション結果を示した図である。It is the figure which showed the thermal analysis simulation result which concerns on Example 1 of this invention. 本発明の実施例2に係る集光型太陽電池モジュールの構成(平面図及び断面図)を示した図である。It is the figure which showed the structure (a top view and sectional drawing) of the concentrating solar cell module which concerns on Example 2 of this invention. 本発明の実施例3に係る集光型太陽電池モジュールの構成(平面図及び断面図)を示した図である。It is the figure which showed the structure (a top view and sectional drawing) of the concentrating solar cell module which concerns on Example 3 of this invention. 本発明の実施例4,5に係る集光型太陽光発電システムの構成を示した図である。It is the figure which showed the structure of the concentrating solar power generation system which concerns on Example 4, 5 of this invention. 本発明の実施例6に係る集光型太陽電池モジュールの構成(断面図)を示した図である。It is the figure which showed the structure (sectional drawing) of the concentrating solar cell module which concerns on Example 6 of this invention. 本発明の実施例7,8に係る集光型太陽電池モジュール及びセルパッケージの構成(断面図)を示した図である。It is the figure which showed the structure (sectional drawing) of the concentrating solar cell module and cell package which concern on Example 7, 8 of this invention. 本発明の実施例9に係る集光型太陽電池モジュールの構成(断面図及び底面図)を示した図である。It is the figure which showed the structure (sectional drawing and bottom view) of the concentrating solar cell module which concerns on Example 9 of this invention. 本発明の実施例10に係る集光型太陽電池モジュール及びセルパッケージの構成(断面図)を示した図である。It is the figure which showed the structure (sectional drawing) of the concentrating solar cell module and cell package which concerns on Example 10 of this invention.

本発明の集光型太陽電池モジュールは、少なくとも、
(1)太陽光を集光する集光器と、
(2)集光器によって集光された太陽光を受光して太陽光の少なくとも散乱光成分を透過する高透過板と、
(3)集光器によって集光された太陽光を受光して発電する複数の太陽電池セルと、
(4)高透過板の表面の一部に設けられ、かつ、太陽電池セルに電気的に接続可能な回路と、を備える。
The concentrating solar cell module of the present invention is at least:
(1) a collector for collecting sunlight;
(2) a highly transmissive plate that receives sunlight collected by the condenser and transmits at least a scattered light component of sunlight;
(3) a plurality of solar cells that receive sunlight generated by the condenser and generate power;
(4) A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the solar battery cell.

ここで、太陽電池セルの各セルは、前記高透過板の表面上に分散的に配置される。太陽電池セルの全受光面積は太陽光総入射面積の10%以下であり、高透過板の受光面積は太陽光総入射面積の80%以上であることを特徴とする。なお、高透過板上に配置されて太陽電池セルと接続して電気回路を構成する各部材の総受光面積(太陽電池セル以外に高透過板への散乱光の入射を遮る総面積)は太陽光総入射面積の10%未満に設定されていることが望ましい。セルの全受光面積が太陽光総入射面積の10%を超えると、本発明の目的とする超高倍率の集光型太陽電池モジュールの作製が困難となる一方、高透過板の受光面積が太陽光総入射面積の80%未満になると、発電以外の他用途への散乱光の利用が不十分になるだけでなく、透過せずモジュール内に残存した散乱光が余分な熱となってモジュール内の機器に悪影響を及ぼす危険が増加するからである。   Here, each cell of the photovoltaic cell is dispersively arranged on the surface of the highly transmissive plate. The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area, and the light receiving area of the high transmittance plate is 80% or more of the total sunlight incident area. In addition, the total light receiving area (total area that blocks the incident of scattered light to the high transmission plate in addition to the solar cells) of each member that is arranged on the high transmission plate and is connected to the solar cell to constitute the electric circuit is the sun It is desirable to set it to less than 10% of the total light incident area. If the total light receiving area of the cell exceeds 10% of the total sunlight incident area, it becomes difficult to produce a concentrating solar cell module with an ultrahigh magnification that is the object of the present invention, while the light receiving area of the high transmission plate is the sun. If it is less than 80% of the total light incident area, not only will the scattered light be used for other purposes other than power generation, but also the scattered light that does not transmit and remains in the module will become extra heat and become inside the module. This is because the risk of adversely affecting the equipment is increased.

以下、本発明を図面に示す実施例に基づき具体的に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. In addition, this invention is not limited to these Examples at all.

図1(a)は、本発明の実施例1に係る集光型太陽電池モジュール10の平面図を示す。図1(b)は、図1(a)のA−A’線で破断した実施例1に係る集光型太陽電池モジュール10aの断面図を示す。   Fig.1 (a) shows the top view of the concentrating solar cell module 10 which concerns on Example 1 of this invention. FIG.1 (b) shows sectional drawing of the concentrating solar cell module 10a based on Example 1 fractured | ruptured by the A-A 'line of Fig.1 (a).

(実施例1のモジュール構造の概要)
この集光型太陽電池モジュール10a(以下、単に「モジュール」とも呼ぶ。)は、図1(a)及び(b)に示すように、太陽光を集光するセル封止型集光器11と、高透過板12と、太陽電池セル13と、金属膜14と、太陽電池セル13,13同士を電気的に接続する金属ワイヤ15と、太陽電池セル13の一群の発電電力を外部に取り出すリード線16と、から構成されている。
(Outline of module structure of Example 1)
As shown in FIGS. 1A and 1B, the concentrating solar cell module 10a (hereinafter also simply referred to as “module”) includes a cell-sealed concentrator 11 that condenses sunlight. , High transmission plate 12, solar cell 13, metal film 14, metal wire 15 that electrically connects solar cells 13, 13, and leads for taking out a group of generated power from solar cell 13 to the outside Line 16.

高透過板12は太陽光透過率が80%以上のものが望ましく、ガラス板のほか、アクリル、ポリカーボネート等の樹脂からなる板材を用いることができる。   The highly transmissive plate 12 preferably has a sunlight transmittance of 80% or more. In addition to a glass plate, a plate material made of a resin such as acrylic or polycarbonate can be used.

また、金属膜14は電気伝導率が高いものが望ましく、銅やアルミニウムや金等を用いることができる。また、金属膜に限らず電気伝導率が高い材料であれば用いることができる。なお、実施例1では、金属膜14は高透過板12の集光器11側の表面に密着して形成されており、1つの太陽電池セル13(以下、単に「セル」とも呼ぶ。)に対して2つの金属膜14a,14bを島状に形成し、一方の金属膜14aの集光器11側の表面には太陽電池セル13の裏面電極(ここでは+極)が密着して形成されている。また、この太陽電池セル13の表面電極(ここでは−極)から、他方の金属膜14bの表面に金属ワイヤ15がボンディングされている。なお、本実施例では生産性を向上するために上述の回路接続構成を採用したが、必ずしもこれに限定されず、金属膜14を上述のように分割せずに1つの太陽電池セル13に対して1つの金属膜14を設置する構成を採用してもよい。   The metal film 14 preferably has high electrical conductivity, and copper, aluminum, gold, or the like can be used. Further, not only the metal film but also any material having high electrical conductivity can be used. In Example 1, the metal film 14 is formed in close contact with the surface of the high transmission plate 12 on the collector 11 side, and is formed on one solar cell 13 (hereinafter also simply referred to as “cell”). On the other hand, two metal films 14a and 14b are formed in an island shape, and the back electrode (in this case, the positive electrode) of the solar battery cell 13 is formed in close contact with the surface of the one metal film 14a on the collector 11 side. ing. Further, a metal wire 15 is bonded to the surface of the other metal film 14b from the surface electrode (here, the negative electrode) of the solar battery cell 13. In the present embodiment, the above-described circuit connection configuration is adopted in order to improve productivity. However, the present invention is not necessarily limited to this, and the metal film 14 is not divided as described above, but one solar cell 13 is divided. Alternatively, a configuration in which one metal film 14 is installed may be employed.

金属ワイヤ15には電気伝導率の高い金属(例えば、銅やアルミニウムや金等)を用いることができる。実施例1では、太陽電池セル13が4直列及び4並列(4×4配列)に電気的に接続され、両端の細長い金属膜14t,14tに取り付けられた正負極のリード線16,16から外部に発電電力を取り出すことができる。金属ワイヤ15として、ワイヤーボンディングで使用される直径数十ミクロンの細線状のもの以外にも、薄い帯状の金属板なども用いることができる。直列及び並列の接続パターンは取り出したい電流および電圧のレベルに応じて任意に設定できる。   A metal having high electrical conductivity (for example, copper, aluminum, gold, etc.) can be used for the metal wire 15. In the first embodiment, the solar cells 13 are electrically connected in 4 series and 4 parallel (4 × 4 arrangement), and are connected to the negative and positive lead wires 16 and 16 attached to the elongated metal films 14t and 14t at both ends. The generated power can be taken out. As the metal wire 15, in addition to a thin wire having a diameter of several tens of microns used for wire bonding, a thin strip-shaped metal plate or the like can also be used. The series and parallel connection patterns can be arbitrarily set according to the current and voltage levels to be extracted.

この高透過板12の集光器11側の太陽電池セル13と、金属膜14と、金属ワイヤ15との全ての構成部材を集光器11材料で封止するように集光器11を形成する。実施例1では集光器11の受光側表面はドーム状のレンズアレイとなっている。実施例1の集光器11の材料には透明アクリル、透明シリコーン、ガラスなどが適している。この集光器11では、入射光線は屈折率が低い空気側と屈折率が高いレンズアレイの境界面において1回しか屈折しないため、約300倍未満の集光倍率に適している。なお、集光器11を予め射出成形等で製作しておき、集光器11の材料と屈折率とがほぼ等しい別の接着作用のある透明材料を用いて、他の構成部材と接合しても同様の効果が得られる。   The concentrator 11 is formed so that all the constituent members of the solar cell 13 on the concentrator 11 side, the metal film 14, and the metal wire 15 of the high transmission plate 12 are sealed with the concentrator 11 material. To do. In Example 1, the light receiving side surface of the condenser 11 is a dome-shaped lens array. Transparent acrylic, transparent silicone, glass or the like is suitable for the material of the concentrator 11 of the first embodiment. In this concentrator 11, the incident light beam is refracted only once at the boundary surface between the air side having a low refractive index and the lens array having a high refractive index, and thus is suitable for a condensing magnification of less than about 300 times. In addition, the concentrator 11 is manufactured in advance by injection molding or the like, and is joined to other constituent members by using another transparent material having an adhesive action whose refractive index is substantially equal to the material of the concentrator 11. The same effect can be obtained.

このように構成した集光型太陽電池モジュール10aを、適切な太陽追尾機構を備えた太陽追尾架台22a,22b(後述の図5(a)及び(b)を参照)に搭載すると、図1(b)に示すように直達光L1は集光器11によって太陽電池セル13に集光され、電気に変換される。一方、全方位から入射する散乱光L2は太陽電池セル13には集光されず、その大半が高透過板12を通過(透過)する。   When the concentrating solar cell module 10a configured in this manner is mounted on solar tracking platforms 22a and 22b (see FIGS. 5A and 5B described later) having an appropriate solar tracking mechanism, FIG. As shown in b), the direct light L1 is condensed on the solar cell 13 by the condenser 11 and converted into electricity. On the other hand, the scattered light L2 incident from all directions is not condensed on the solar battery cell 13, and most of the light passes through (transmits) the high transmission plate 12.

このとき、集光器11の受光面面積(総入射面積)に対して、前述の特許文献5の場合とは異なり、受光面の内側に配置(封止)された不透明な金属膜14と金属ワイヤ15とが占める総投影面積(つまり回路面積)の割合を10%未満にするのが望ましい。これにより、太陽電池セルの全受光面積を太陽光総入射面積の10%以下の超高倍率集光に設定した場合に、高透過板12の受光面積を太陽光総入射面積の80%以上にすることができる。また、太陽電池セル13には化合物型多接合太陽電池などの集光時のセル変換効率が35%以上であるものが望ましい。   At this time, unlike the case of Patent Document 5 described above, the opaque metal film 14 and the metal disposed (sealed) inside the light receiving surface with respect to the light receiving surface area (total incident area) of the condenser 11 It is desirable that the ratio of the total projected area (that is, the circuit area) occupied by the wire 15 is less than 10%. Thereby, when the total light receiving area of the solar battery cell is set to ultrahigh magnification condensing of 10% or less of the total sunlight incident area, the light receiving area of the high transmission plate 12 is set to 80% or more of the total sunlight incident area. can do. Moreover, as for the photovoltaic cell 13, what has the cell conversion efficiency at the time of condensing, such as a compound type multijunction solar cell, is 35% or more.

太陽電池セル13は、出来るだけ小面積のものが望ましい。太陽電池セル13の受光面サイズが小さくなると、図1(b)に示す焦点距離FLが短くなり、集光器11の全高を低く抑えられ、集光器11内部での光吸収量が減少し、透過性が向上する。さらに、太陽電池セル13のサイズが小さくなると、熱源が分散される効果により、後述の熱解析シミュレーション結果にも示すように太陽電池セル13の到達温度が低下するため、変換効率と長期信頼性が向上する。この観点から好ましくは1mm×1mm以下(さらに好ましくは0.5mm×0.5mm以下)の太陽電池セル13を用いる。このサイズはLEDチップと同程度であり、LEDの実装技術を適用(応用)できるメリットもある。   The solar battery cell 13 is desirably as small as possible. When the light receiving surface size of the solar battery cell 13 is reduced, the focal length FL shown in FIG. 1B is shortened, the overall height of the condenser 11 can be kept low, and the amount of light absorption inside the condenser 11 is reduced. , The permeability is improved. Further, when the size of the solar battery cell 13 is reduced, the effect of dispersing the heat source lowers the temperature reached by the solar battery cell 13 as shown in the thermal analysis simulation result described later, so that the conversion efficiency and long-term reliability are improved. improves. From this viewpoint, the solar battery cell 13 of preferably 1 mm × 1 mm or less (more preferably 0.5 mm × 0.5 mm or less) is used. This size is similar to that of an LED chip, and there is an advantage that an LED mounting technology can be applied (applied).

直並列の組み合わせによって発電電圧が高くなる場合には、金属膜14と高透過板12との間に電気絶縁性の高い材料を挿入しても良い。また、金属ワイヤ15に電気絶縁性の高い材料をコーティングする場合がある。金属膜14と高透過板12との密着には高導電性接着剤を用いる他、めっき法、ろう付け法、固相接合法、溶接法、溶湯接合法など各種の接合を用いることができる。   When the generated voltage is increased by the series-parallel combination, a material having high electrical insulation may be inserted between the metal film 14 and the highly transmissive plate 12. Further, the metal wire 15 may be coated with a material having high electrical insulation. For the adhesion between the metal film 14 and the high-permeability plate 12, various bondings such as a plating method, a brazing method, a solid phase bonding method, a welding method, and a molten metal bonding method can be used in addition to using a highly conductive adhesive.

地上に降り注ぐ太陽光は主に直達光L1と散乱光L2とに分類できる。直達光L1は太陽の光球とその近傍から直接入射するほぼ平行な太陽光線(視野角±0.256°〜±5°)であり、散乱光L2は大気中の微粒子やガスによって散乱され、天空の全体から入射する太陽光線である。直達光L1はレンズやミラーで高倍率集光することが可能だが、散乱光L2は熱力学的制限により弱い集光しかできないという特性がある。   Sunlight falling on the ground can be classified mainly into direct light L1 and scattered light L2. The direct light L1 is a substantially parallel sunlight ray (viewing angle ± 0.256 ° to ± 5 °) directly incident from the solar photosphere and the vicinity thereof, and the scattered light L2 is scattered by fine particles or gas in the atmosphere, It is sunlight that enters from the whole sky. The direct light L1 can be condensed at a high magnification by a lens or a mirror, but the scattered light L2 has a characteristic that it can only be weakly condensed due to thermodynamic limitations.

日本においては、年間日射量の約6割を直達光L1が占め、約4割を散乱光L2が占める。本実施例では、年間日射量の約6割を占める直達光L1をセル変換効率が約40%(将来的に50%超)の超高効率PVセルに集光して発電する一方、年間日射量の約4割を占める散乱光L2の大半を透過する。従来PVモジュールとは異なり、散乱光L2はPVセルに当たらず透過してしまうが、太陽電池セル13の変換効率が高い上に、太陽追尾機構を設ければより直達光の受光量が増えるため、直達光L1だけからでも従来PVモジュール以上の発電量が得られる。しかも、散乱光L2の大半が高透過板12を透過するので、設置スペースは太陽光を必要とする他用途にも使える。つまり、本発明は、貴重な太陽光を発電と他の用途にムダ無く振り分ける新たな集光型太陽電池モジュールであると言える。   In Japan, direct light L1 occupies about 60% of the annual solar radiation, and scattered light L2 occupies about 40%. In this embodiment, direct light L1, which accounts for about 60% of the amount of solar radiation, is concentrated on an ultra-high-efficiency PV cell with a cell conversion efficiency of about 40% (more than 50% in the future) while generating solar radiation. Most of the scattered light L2 occupying about 40% of the amount is transmitted. Unlike the conventional PV module, the scattered light L2 does not hit the PV cell and is transmitted. However, the conversion efficiency of the solar battery cell 13 is high, and if the solar tracking mechanism is provided, the amount of received direct light increases. Even from the direct light L1, a power generation amount that is higher than that of the conventional PV module can be obtained. In addition, since most of the scattered light L2 passes through the highly transmissive plate 12, the installation space can be used for other purposes that require sunlight. That is, the present invention can be said to be a new concentrating solar cell module that distributes valuable sunlight to power generation and other uses without waste.

図2に本実施例の太陽電池セル13の温度を熱解析シミュレーションによって予測した結果を示す。図2中の散乱光透過率70%が本実施例であり、比較のため散乱光透過率が0%の場合も図示してある。なお、本解析の解析条件として、直達光が600W/m、散乱光が400W/m、外気温25℃、無風時(すなわち、対流熱伝達率h=5.7W/mK)、幾何学的集光倍率が300倍に設定した。なお、セルサイズが1mm×1mmの場合には、受光面サイズが17.32mm×17.32mmであり、受光面面積をセル面積で除した幾何学的集光倍率は300倍となる。従って、高透過板12の受光面積(回路面積も含む)は太陽光総入射面積の90%以上となる。但し、金属膜回路14は通常不透明であるのでこの分を考慮し、80%以上が透過に有効な高透過板12の受光(透過)面積とした。この面積割合(80%)に高透過板12材料の太陽光透過率90%を乗じると散乱光透過率は約70%となる。 The result of having predicted the temperature of the photovoltaic cell 13 of a present Example by the thermal analysis simulation in FIG. 2 is shown. The scattered light transmittance of 70% in FIG. 2 is the present embodiment, and the case where the scattered light transmittance is 0% is also shown for comparison. In addition, as analysis conditions of this analysis, direct light is 600 W / m 2 , scattered light is 400 W / m 2 , outside air temperature is 25 ° C., no wind (that is, convective heat transfer coefficient h = 5.7 W / m 2 K), The geometric concentration factor was set to 300 times. When the cell size is 1 mm × 1 mm, the light receiving surface size is 17.32 mm × 17.32 mm, and the geometrical light collection magnification obtained by dividing the light receiving surface area by the cell area is 300 times. Therefore, the light receiving area (including the circuit area) of the highly transmissive plate 12 is 90% or more of the total sunlight incident area. However, since the metal film circuit 14 is usually opaque, 80% or more is set as the light receiving (transmitting) area of the high transmission plate 12 effective for transmission. When this area ratio (80%) is multiplied by the sunlight transmittance 90% of the highly transmissive plate 12 material, the scattered light transmittance is about 70%.

図2に示すように、本発明のセルサイズが1mm×1mmの場合ではセル温度が約100℃となり、化合物多接合型PVセル等の温度使用条件を満たす。なお、本発明及び従来技術においてもそのセルサイズ(例えば、0.5mm×0.5mm)を小さくしていくと、さらに温度が低下することが分かる。これは、セルサイズを小さくして分散配置することにより、セル面積に対するセル周囲長(放熱面)が増えること、レンズ焦点距離が短くなることによる熱抵抗が低減されること等により、放熱が促進されることによるものである。   As shown in FIG. 2, when the cell size of the present invention is 1 mm × 1 mm, the cell temperature is about 100 ° C., which satisfies the temperature use condition of a compound multi-junction PV cell or the like. In the present invention and the prior art, it can be seen that the temperature further decreases as the cell size (for example, 0.5 mm × 0.5 mm) is reduced. This is because dispersive arrangement with a small cell size increases cell perimeter (heat dissipating surface) with respect to the cell area, and reduces heat resistance due to shortened lens focal length, etc. Is due to being done.

次に、実施例2について図3を用いて説明する。   Next, Example 2 will be described with reference to FIG.

図3(a)は、本発明の実施例2に係る集光型太陽電池モジュール10bの平面図を示す。図3(b)は、図3(a)のB−B’線で破断した実施例2に係る集光型太陽電池モジュール10bの断面図を示す。   Fig.3 (a) shows the top view of the concentrating solar cell module 10b which concerns on Example 2 of this invention. FIG. 3B shows a cross-sectional view of the concentrating solar cell module 10b according to Example 2 broken along the line B-B ′ of FIG.

(実施例2のモジュール構造の概要)
この集光型太陽電池モジュール10bは、前記の実施例1の集光型太陽電池モジュール10aと同じ部材から構成されるが、太陽電池セル13,13同士の電気的接続において金属ワイヤ15の長さを短くし、その代わりに金属膜14を長くしたものである。この実施例2では実施例1よりも不透明な部分の面積は若干増えるが、接続回路の直列抵抗を減らすことが容易であり、高電流の場合において変換効率を維持することができる。
(Outline of Module Structure of Example 2)
The concentrating solar cell module 10b is composed of the same members as the concentrating solar cell module 10a of the first embodiment, but the length of the metal wire 15 in the electrical connection between the solar cells 13 and 13 is as follows. Is shortened, and the metal film 14 is lengthened instead. In the second embodiment, the area of the opaque portion is slightly increased as compared with the first embodiment, but it is easy to reduce the series resistance of the connection circuit, and the conversion efficiency can be maintained in the case of a high current.

次に、実施例3について図4を用いて説明する。   Next, Example 3 will be described with reference to FIG.

図4(a)は、本発明の実施例3に係る集光型太陽電池モジュール10cの平面図を示す。図4(b)は、図4(a)のC−C’線で破断した実施例2に係る集光型太陽電池モジュール13の断面図を示す。   Fig.4 (a) shows the top view of the concentrating solar cell module 10c which concerns on Example 3 of this invention. FIG. 4B shows a cross-sectional view of the concentrating solar cell module 13 according to Example 2 cut along the line C-C ′ in FIG.

(実施例3のモジュール構造の概要)
この集光型太陽電池10cは、前述の実施例1および実施例2とでは、集光器11のタイプと、太陽電池セル13,13同士の電気的接続方法が異なる。まず、集光器11に関して解説する。実施例1および実施例2とは異なり、本実施例では、図4(b)に示すように、集光器11と太陽電池セル13を実装した面との間には空気層17がある。この空気層17があることで、入射光線は、集光器11から射出する際に、屈折率の高いレンズ材料と屈折率の低い空気との境界面で屈折し、方向を曲げられるため、集光倍率が約300倍以上と高い場合に適する。このセパレート型集光器11にはフレネルレンズなどの薄型の集光器が適している。
(Outline of Module Structure of Example 3)
In the concentrating solar cell 10c, the type of the concentrator 11 and the electrical connection method between the solar cells 13 and 13 are different from those in the first and second embodiments. First, the condenser 11 will be described. Unlike Example 1 and Example 2, in the present Example, as shown in FIG.4 (b), there exists the air layer 17 between the surface which mounted the collector 11 and the photovoltaic cell 13. As shown in FIG. Due to the presence of the air layer 17, the incident light beam is refracted at the boundary surface between the lens material having a high refractive index and the air having a low refractive index when being emitted from the condenser 11, and the direction is bent. Suitable when the light magnification is as high as about 300 times or more. A thin collector such as a Fresnel lens is suitable for the separate collector 11.

次いで、実施例3の太陽電池セル13,13同士の電気接続方法について解説する。実施例1及び実施例2とは異なり、本実施例では電気接続の大部分を透明電極膜(例えば、ITO膜)18が担う構成となっている。実施例1と同様に、1つの太陽電池セル13に対して、2つの金属膜14a,14bが島状に形成されているが、金属膜14a,14bと高透過板12との間には透明電極膜18がスパッタリング等によってパターニングされており、実施例1のワイヤの代わりに太陽電池セル13,13同士を電気的に接続している。   Next, a method for electrically connecting the solar cells 13 and 13 of Example 3 will be described. Unlike the first and second embodiments, the present embodiment has a configuration in which the transparent electrode film (for example, ITO film) 18 bears most of the electrical connection. As in Example 1, two metal films 14a and 14b are formed in an island shape with respect to one solar battery cell 13, but transparent between the metal films 14a and 14b and the high transmission plate 12. The electrode film 18 is patterned by sputtering or the like, and the solar cells 13 and 13 are electrically connected instead of the wire of the first embodiment.

この方式ではパターニングによって複雑な直並列接続回路を比較的容易に形成することが可能であり、また他の実施例よりも透過率を向上することができる。なお、金属膜14a,14bは無く、セル13が直接透明導電膜18上に設置されていても良い。なお、透明電極膜18と金属膜14、又は透明電極膜18とセル13との接合を容易にするために、両部材の間に他の材料で構成された層を挿入しても良い。   In this method, a complicated series-parallel connection circuit can be formed relatively easily by patterning, and the transmittance can be improved as compared with other embodiments. Note that the metal films 14 a and 14 b are not provided, and the cell 13 may be provided directly on the transparent conductive film 18. In order to facilitate the joining of the transparent electrode film 18 and the metal film 14 or between the transparent electrode film 18 and the cell 13, a layer made of another material may be inserted between both members.

以上の実施例1〜3で述べた、集光器11と電気接続方法との組み合わせは自由であり、例えば一例として、実施例1の電気接続方法に実施例3のセパレート型集光器11を用いても良い。   The combination of the concentrator 11 and the electric connection method described in the first to third embodiments is free. For example, the separate concentrator 11 of the third embodiment is added to the electric connection method of the first embodiment. It may be used.

次に、実施例4について図5(a)を用いて説明する。   Next, Example 4 will be described with reference to FIG.

(集光型太陽光発電システムの例示)
図5(a)は、本発明の集光型太陽光発電システム20aの構成の一例(実施例4)を示す。太陽光を利用する発電以外の他の用途面(例えば、農地、屋上緑化面、採光面)21に対して、前述の実施例1〜3で述べた高透過性の集光型太陽電池モジュール10を農地21の必要面積分だけ複数用意し、これらの各モジュール10を、2軸太陽追尾機構を有した架台22a(以下、単に「太陽追尾架台」とも呼ぶ。)に搭載して設置することで、集光型太陽光発電システム20aが実現される。
(Example of concentrating solar power generation system)
Fig.5 (a) shows an example (Example 4) of the structure of the concentrating solar power generation system 20a of this invention. Highly transmissive concentrating solar cell module 10 described in Examples 1 to 3 described above for other application surfaces (for example, farmland, rooftop greening surface, daylighting surface) 21 other than power generation using sunlight. Are prepared for the required area of the farmland 21, and each of these modules 10 is mounted and installed on a gantry 22a having a biaxial solar tracking mechanism (hereinafter also simply referred to as "sun tracking gantry"). Thus, the concentrating solar power generation system 20a is realized.

前述の実施例4のように構成すると、直達光L1のみが太陽電池セル13に集光されて電気に変換され、散乱光L2は集光型太陽電池モジュール10を透過して、他用途面21に入射する。   When configured as in Example 4 described above, only the direct light L1 is condensed on the solar cells 13 and converted into electricity, and the scattered light L2 is transmitted through the concentrating solar cell module 10 to be used for other purposes 21. Is incident on.

なお、本発明者は実施例4の構成を基に東京の日射条件を用いた年間シミュレーションを行った。その結果、直達光L1基準のモジュール変換効率(=(セル変換効率)×(直達光L1がセル13に集光する際の光学的効率))が28%以上、且つ、散乱光L2に対する透過率が70%以上あれば、設置スペースへの日射透過量が等しい条件において、従来の固定設置太陽電池(モジュール変換効率17%を仮定)の約2倍の発電量が得られると試算された。これらの入力値は現時点の技術レベルで実現可能な値であり、十分な優位性が得られることが示された。   In addition, this inventor performed the annual simulation using the solar radiation conditions of Tokyo based on the structure of Example 4. FIG. As a result, the module conversion efficiency based on the direct light L1 (= (cell conversion efficiency) × (optical efficiency when the direct light L1 is collected on the cell 13)) is 28% or more and the transmittance with respect to the scattered light L2 Is 70% or more, it is estimated that a power generation amount approximately twice that of a conventional fixed installation solar cell (assuming a module conversion efficiency of 17%) can be obtained under the condition that the amount of solar radiation transmitted to the installation space is equal. These input values are realizable at the current technical level, and it was shown that sufficient advantages can be obtained.

また、この実施例4では、太陽追尾架台22aをアクティブ(能動的)に制御することによって、他用途面21への日射量を逐次調整できる。また、集光型太陽電池モジュール10が太陽追尾架台22aによって他用途面21の上方に保持されつつその配向や姿勢が変更制御されることにより、本モジュール10が雨よけや雪よけの役目をも果たすため、他用途面21に到達する雪、風、雨等の量をある程度調整できる。さらに、他用途面21から集光型太陽電池モジュール10の裏面を見た際に、ほぼ透明であるため作業者の圧迫感を軽減するという副次的なメリットもある。   Moreover, in Example 4, the solar radiation amount to the other application surface 21 can be adjusted sequentially by controlling the solar tracking base 22a to be active. In addition, the concentrating solar cell module 10 is held above the other application surface 21 by the solar tracking platform 22a, and its orientation and posture are changed and controlled, so that the module 10 has a role of preventing rain and snow. Therefore, the amount of snow, wind, rain, etc. reaching the other application surface 21 can be adjusted to some extent. Furthermore, when the back surface of the concentrating solar cell module 10 is viewed from the other application surface 21, there is also a secondary merit of reducing the operator's feeling of pressure because it is almost transparent.

次に、実施例5について図5(b)を用いて説明する。   Next, Example 5 will be described with reference to FIG.

(集光型太陽光発電システムのもう一つの例示)
図5(b)は、本発明の集光型太陽光発電システム20bの構成のもう一つの例(実施例5)を示す。前述の実施例4では2軸太陽追尾架台22aに集光型太陽電池モジュール10を搭載したが、実施例5では1軸太陽追尾架台22bに搭載している。この形態は集光倍率が約100倍以下の場合に適する。
(Another example of a concentrating solar power generation system)
FIG.5 (b) shows another example (Example 5) of the structure of the concentrating solar power generation system 20b of this invention. In the above-described fourth embodiment, the concentrating solar cell module 10 is mounted on the biaxial solar tracking gantry 22a, but in the fifth embodiment, it is mounted on the uniaxial solar tracking gantry 22b. This form is suitable when the condensing magnification is about 100 times or less.

次に、実施例6について図6を用いて説明する。   Next, Example 6 will be described with reference to FIG.

図6は、本発明の実施例6に係る集光型太陽電池モジュール10dの設置構成例を示す。この実施例6では、前述の実施例2の集光型太陽電池モジュール10bの高透過板12の下面側に低コストな非集光型太陽電池23を設置することにより、本モジュール10dの高透過板12を透過した散乱光L2を電気に変換することができる。つまり、前述の実施例4,5の場合とは異なり、実施例6では、透過した散乱光L2を他用途面21に入射させるのではなく、太陽光発電システム20の総発電量をさらに向上するために利用することができる。   FIG. 6 shows an installation configuration example of a concentrating solar cell module 10d according to Example 6 of the present invention. In the sixth embodiment, a low-cost non-condensing solar cell 23 is installed on the lower surface side of the high-transmitting plate 12 of the concentrating solar cell module 10b of the second embodiment described above. The scattered light L2 transmitted through the plate 12 can be converted into electricity. That is, unlike the above-described fourth and fifth embodiments, in the sixth embodiment, the transmitted scattered light L2 is not incident on the other application surface 21, but the total power generation amount of the solar power generation system 20 is further improved. Can be used for.

次に、実施例7のモジュール10eについて図7を用いて説明する。実施例7では、前述した「太陽電池セル13への集光太陽光の焦点の位置ズレ」の技術的課題を解消するための一例である。   Next, the module 10e according to the seventh embodiment will be described with reference to FIG. The seventh embodiment is an example for solving the technical problem of “the positional deviation of the focal point of the concentrated sunlight on the solar battery cell 13” described above.

太陽電池セル13を金属膜回路に実装する方法として、図7(a)及び(b)のようにセル13を、受光ガイド31、導電性のセル取付部材(ダイアタッチ部材)32、絶縁体33、導電製のブリッジ34等の部材とを予め(別工程で)一体化したセルパッケージ30を複数用意し、パッケージ下面(本実施例では、ブリッジ34の下面)に正負の電極平面が接続される構造としておく。受光ガイド31と導電性ブリッジ34との間も絶縁体によって絶縁されてある。このセルパッケージ30を、予め接続箇所にハンダ35を塗布しておいた金属膜14上にマウントし、リフロー炉等で加熱することによって接着が完了する。前述の実装方式を採用すると、多数のセルパッケージ30の実装をロボット等で高速に行えるため大量生産に適する。   As a method of mounting the solar battery cell 13 on a metal film circuit, the cell 13 is replaced with a light receiving guide 31, a conductive cell mounting member (die attach member) 32, and an insulator 33 as shown in FIGS. A plurality of cell packages 30 in which members such as a conductive bridge 34 are integrated in advance (in a separate process) are prepared, and positive and negative electrode planes are connected to the lower surface of the package (in this embodiment, the lower surface of the bridge 34). Leave as structure. The light receiving guide 31 and the conductive bridge 34 are also insulated by an insulator. Adhesion is completed by mounting the cell package 30 on the metal film 14 in which the solder 35 has been applied in advance to the connection locations and heating in a reflow furnace or the like. Employing the above-described mounting method is suitable for mass production because a large number of cell packages 30 can be mounted at high speed by a robot or the like.

また、セルパッケージ30内の受光ガイド31は、集光器11によって集光された太陽光を反射させて太陽電池セル13の受光面へ案内する反射面31aをさらに備える。図示の反射面31aは、太陽電池セル13に向かって狭まりながら傾斜した傾斜面である。この傾斜面の形状はセル13の形状が四角形の場合は四角錐形状、円形の場合は円錐形状が好ましい。また回転複合放物面形状などでも良い。また反射面31aはアルミニウムや銀等の蒸着や高反射率のめっきなどの処理によって鏡面反射率を80%以上にすることが望ましい。これにより、集光器11によって集められた太陽光の焦点がセル13の発電有効面よりも若干ずれた場合でも受光ガイド31の反射面31aでの反射作用によって一定割合の光を捕捉してセル13に入射させることが可能となる。   The light receiving guide 31 in the cell package 30 further includes a reflecting surface 31 a that reflects the sunlight collected by the condenser 11 and guides it to the light receiving surface of the solar battery cell 13. The illustrated reflecting surface 31 a is an inclined surface that is inclined while narrowing toward the solar battery cell 13. The shape of the inclined surface is preferably a quadrangular pyramid when the shape of the cell 13 is a quadrangle, and a conical shape when it is a circle. Further, a rotating composite parabolic shape or the like may be used. Further, it is desirable that the reflective surface 31a has a specular reflectivity of 80% or more by processing such as vapor deposition of aluminum or silver or plating with high reflectivity. Thereby, even when the focus of the sunlight collected by the collector 11 is slightly deviated from the power generation effective surface of the cell 13, a certain percentage of light is captured by the reflection action on the reflection surface 31a of the light receiving guide 31, and the cell is captured. 13 can be made incident.

次に、実施例8について図7(c)を用いて説明する。実施例8では、前述した「太陽光の焦点の位置ズレ」の課題だけでなく、前述した「放熱性能の促進・向上」の課題を解決するための一例である。   Next, Example 8 will be described with reference to FIG. The eighth embodiment is an example for solving the above-described problem of “promotion / enhancement of heat dissipation performance” as well as the above-described problem of “shift in the focal point of sunlight”.

実施例8に係るセルパッケージ30は、実施例7と略同様の構成を採用するが、図7(c)に示すように、セル温度の低減のために受光ガイド31(好ましくは、アルミニウム製)の一部を突起させた放熱フィン36を設けていることを特徴とする。なお、透過率を維持しつつ放熱性能を向上するために、セルパッケージ30を真上から見たときの放熱フィン36の投影面が、金属膜14上にほぼ重なるになるように配置することが望ましい。   The cell package 30 according to the eighth embodiment employs substantially the same configuration as that of the seventh embodiment. However, as shown in FIG. 7C, the light receiving guide 31 (preferably made of aluminum) is used to reduce the cell temperature. It is characterized in that a heat dissipating fin 36 having a part of which is projected is provided. In order to improve the heat dissipation performance while maintaining the transmittance, the projection surface of the heat dissipation fin 36 when the cell package 30 is viewed from directly above may be disposed so as to substantially overlap the metal film 14. desirable.

次に、実施例9について図8を用いて説明する。前述の実施例8と同様に更なるセル温度の低減を目的とするが、実施例9のモジュール10fでは、高透過板12の厚さを薄くして熱抵抗を低減し、その剛性を維持するためにハニカム構造材37を高透過板12の下面に貼り付ける。なお、ハニカム構造材37の材料にはアルミニウム等の金属の他、透明樹脂を用いても良い。金属の場合は不透明となるのでハニカム構造材37の高さ(厚さ)を抑える必要がある。また、ハニカム構造材37の設置によって放熱面積も増加できる。   Next, Example 9 will be described with reference to FIG. The purpose is to further reduce the cell temperature in the same manner as in Example 8 described above, but in the module 10f of Example 9, the thickness of the high transmission plate 12 is reduced to reduce thermal resistance and maintain its rigidity. Therefore, the honeycomb structure material 37 is attached to the lower surface of the high transmission plate 12. The material of the honeycomb structure material 37 may be a transparent resin in addition to a metal such as aluminum. In the case of metal, since it becomes opaque, it is necessary to suppress the height (thickness) of the honeycomb structure material 37. In addition, the heat radiation area can be increased by installing the honeycomb structure material 37.

次に、実施例10について図9を用いて説明する。実施例10も、実施例8,9と同様様の作用効果(放熱性能の向上)を得ることを目的に創作されたものである。   Next, Example 10 will be described with reference to FIG. Example 10 was also created for the purpose of obtaining the same effect (improving heat dissipation performance) as in Examples 8 and 9.

ガラス板等の高透過板12の板厚は、モジュール10の剛性を確保するためには3〜5mmが必要であり、高透過板12の上側に太陽電池セル13を配置すると、太陽電池セル13と高透過板12と外気との間の熱抵抗が高いため、セル13が高温になりやすい。   The plate thickness of the highly transmissive plate 12 such as a glass plate needs to be 3 to 5 mm in order to ensure the rigidity of the module 10. When the solar cell 13 is disposed on the upper side of the highly transmissive plate 12, the solar cell 13 Since the thermal resistance between the high transmission plate 12 and the outside air is high, the cell 13 is likely to become high temperature.

そこで実施例10のように、太陽電池セル13と高透過板12と外気との間の熱抵抗を格段に軽減するために、高透過板12の下側に金属膜14と太陽電池セル13とを配置する構成を創作した。つまり、実施例10では、受光ガイド31等の部材と太陽電池セル13とを予め一体化したセルパッケージ30が複数構成され、封止材38によって該セルパッケージ30が高透過板12の受光面とは反対側の面上に分散的に封止される。なお、符号34bは、導電性ブリッジ34と金属膜14との間を接続する導電体である。   Therefore, as in Example 10, in order to remarkably reduce the thermal resistance between the solar cells 13, the high transmission plate 12 and the outside air, the metal film 14, the solar cells 13, Created a configuration to arrange. That is, in Example 10, a plurality of cell packages 30 in which members such as the light receiving guide 31 and the solar cells 13 are integrated in advance are configured, and the cell package 30 is formed on the light receiving surface of the high transmission plate 12 by the sealing material 38. Are dispersively sealed on the opposite surface. Reference numeral 34 b denotes a conductor that connects the conductive bridge 34 and the metal film 14.

この実施例10の構成によると、モジュール剛性を気にせずに封止材38の厚さを任意に調整することができるため、図9(b)のようにセル13位置から外気までの距離LAを、高透過板12の上側に太陽電池セル13を配置した場合の距離LB(図7(b)参照)よりも、格段に短くできる。これにより放熱量を増大させることができ、セル温度が低減する。   According to the configuration of the tenth embodiment, since the thickness of the sealing material 38 can be arbitrarily adjusted without worrying about module rigidity, the distance LA from the cell 13 position to the outside air as shown in FIG. 9B. Can be made much shorter than the distance LB (see FIG. 7B) when the solar battery cell 13 is arranged on the upper side of the high transmission plate 12. As a result, the heat radiation amount can be increased, and the cell temperature is reduced.

また、セルパッケージ30の近傍に図示しない放熱フィンやヒートスプレッダー等を付与することも可能である。ヒートスプレッダーにはグラフェンシートなど面方向の熱伝導率が高い薄膜等を使用するのが好ましい。封止材38の外気側表面には防汚コーティングや傷に強いハードコート等の処理も行える。   Further, it is possible to provide a heat dissipating fin, a heat spreader or the like (not shown) in the vicinity of the cell package 30. As the heat spreader, it is preferable to use a thin film having a high thermal conductivity in the plane direction, such as a graphene sheet. The surface of the sealing material 38 on the outside air side can be treated with an antifouling coating or a hard coat resistant to scratches.

本発明は、限られた土地面積において太陽光発電と農地などの他の太陽光利用を両立する手段として有望である。散乱光は透過しながらも、直達光を集光して高効率に電気に変換でき、従来PVモジュールと比較して、日射透過量に対する発電量の比率が高いため、産業上の利用価値及び産業上利用できる可能性が非常に高い。   The present invention is promising as means for achieving both solar power generation and other use of sunlight such as farmland in a limited land area. Although scattered light can be transmitted, direct light can be collected and converted into electricity with high efficiency. Compared with conventional PV modules, the ratio of power generation to solar radiation transmission is high, so industrial utility value and industry Very likely to be available.

10(10a〜10g) 集光型太陽電池モジュール
11 集光器
12 高透過板
13 太陽電池セル
14 金属膜
15 金属ワイヤ
17 空気層
18 透明導電膜
20(20a,20b) 集光型太陽光発電システム
22a 2軸太陽追尾架台
22b 1軸太陽追尾架台
23 第2の太陽電池
30 セルパッケージ
31 受光ガイド
31a 受光ガイドの反射面
36 放熱用フィン
37 放熱用ハニカム構造体
10 (10a to 10g) Concentrating solar cell module 11 Concentrator 12 High transmission plate 13 Solar cell 14 Metal film 15 Metal wire 17 Air layer 18 Transparent conductive film 20 (20a, 20b) Concentrating solar power generation system 22a 2 axis solar tracking frame 22b 1 axis solar tracking frame 23 second solar cell 30 cell package 31 light receiving guide 31a reflecting surface of light receiving guide 36 heat radiating fin 37 heat radiating honeycomb structure

Claims (12)

太陽光を集光する集光器と、
前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
前記集光器によって集光された前記太陽光を受光して発電する複数の太陽電池セルと、
前記高透過板の表面の一部に設けられ、かつ、前記セルに電気的に接続可能な回路と、
を備えた集光型太陽電池モジュールであって、かつ、
前記太陽電池セルの各セルは、前記高透過板の表面上に分散的に配置され、
前記セルと前記回路とは、前記集光器と前記高透過板との間に封止され、
前記太陽電池セルの全受光面積は太陽光総入射面積の10%以下であり、
前記高透過板の受光面積は太陽光総入射面積の80%以上であることを特徴とする集光型太陽電池モジュール。
A concentrator that collects sunlight;
A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
A plurality of solar cells that receive the sunlight collected by the condenser and generate power; and
A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the cell;
A concentrating solar cell module comprising:
Each cell of the solar cell is dispersedly disposed on the surface of the high transmission plate,
The cell and the circuit are sealed between the collector and the high transmission plate,
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The light-receiving area of the highly transmissive plate is 80% or more of the total sunlight incident area.
前記太陽電池セルの各セルの受光面が1mm×1mm以下の寸法であることを特徴とする請求項1に記載の集光型太陽電池モジュール。   2. The concentrating solar cell module according to claim 1, wherein a light receiving surface of each of the solar cells has a size of 1 mm × 1 mm or less. 前記回路が金属膜と金属ワイヤとを含み、
前記金属膜が、前記太陽電池セルを担持しながら前記高透過板の表面に分散的にかつ前記高透過板とは電気的に絶縁であるように密着して設置され、
前記金属ワイヤは、前記金属膜と前記太陽電池セルとの間を電気的に接続し、直列又は並列の電気回路を構成することを特徴とする請求項1又は2に記載の集光型太陽電池モジュール。
The circuit includes a metal film and a metal wire;
The metal film is placed in close contact with the surface of the highly transmissive plate while carrying the solar cells so as to be electrically insulated from the highly transmissive plate,
3. The concentrating solar cell according to claim 1, wherein the metal wire electrically connects the metal film and the solar battery cell to form a series or parallel electric circuit. module.
前記回路が金属膜と金属ワイヤと透明導電膜とを含み、
前記金属膜が、前記太陽電池セルを担持しながら前記高透過板の表面に分散的にかつ前記高透過板とは電気的に絶縁であるように密着して設置され、
前記金属ワイヤ及び前記透明導電膜は、前記金属膜と前記太陽電池セルとの間を電気的に接続し、直列又は並列の電気回路を構成することを特徴とする請求項1又は2に記載の集光型太陽電池モジュール。
The circuit includes a metal film, a metal wire, and a transparent conductive film,
The metal film is placed in close contact with the surface of the highly transmissive plate while carrying the solar cells so as to be electrically insulated from the highly transmissive plate,
The said metal wire and the said transparent conductive film electrically connect between the said metal film and the said photovoltaic cell, and comprise the electric circuit of a series or parallel, The Claim 1 or 2 characterized by the above-mentioned. Concentrating solar cell module.
前記高透過板の受光面とは反対側の面の下方に第2の太陽電池を設置したことを特徴とする請求項1〜4のいずれかに記載の集光型太陽電池モジュール。   The concentrating solar cell module according to any one of claims 1 to 4, wherein a second solar cell is installed below a surface opposite to the light receiving surface of the high transmission plate. 前記集光器によって集光された太陽光を反射させて前記太陽電池セルの受光面へ案内する反射面を備えた受光ガイドをさらに備え、かつ、
前記受光ガイドと前記太陽電池セルとを予め一体化してセルパッケージが複数構成され、該セルパッケージが前記高透過板の表面上に分散的に配置されることを特徴とする請求項1〜5のいずれかに記載の集光型太陽電池モジュール。
A light receiving guide provided with a reflecting surface that reflects the sunlight collected by the light collector and guides it to the light receiving surface of the solar cell; and
The light receiving guide and the solar battery cells are integrated in advance to form a plurality of cell packages, and the cell packages are arranged in a distributed manner on the surface of the high transmission plate. The concentrating solar cell module according to any one of the above.
前記受光ガイドに放熱用フィンが設けられていることを特徴とする請求項1〜6のいずれかに記載の集光型太陽電池モジュール。   The concentrating solar cell module according to claim 1, wherein the light receiving guide is provided with a heat radiation fin. 前記高透過板の受光面とは反対側の面の下方に放熱用ハニカム構造体を設置したことを特徴とする請求項1〜7のいずれかに記載の集光型太陽電池モジュール。   The concentrating solar cell module according to any one of claims 1 to 7, wherein a heat radiating honeycomb structure is disposed below a surface opposite to the light receiving surface of the high transmission plate. 太陽光を集光する集光器と、
前記集光器によって集光された前記太陽光を受光して該太陽光の少なくとも散乱光成分を透過する高透過板と、
前記集光器によって集光された太陽光を受光して発電する複数の太陽電池セルと、
前記高透過板の表面の一部に設けられ、かつ、前記セルに電気的に接続可能な回路と、
を備えた集光型太陽電池モジュールであって、かつ、
前記太陽電池セルの各セルは前記高透過板の受光面とは反対側の面に分散的に配置され、
前記太陽電池セルの全受光面積は太陽光総入射面積の10%以下であり、
前記高透過板の受光面積は太陽光総入射面積の80%以上であり、
前記集光器によって集光されかつ前記高透過板を透過した太陽光を反射させて前記太陽電池セルの受光面へ案内する反射面を備えた受光ガイドをさらに備え、
前記受光ガイドと前記太陽電池セルとを予め一体化してセルパッケージが複数構成され、封止材によって該セルパッケージが前記高透過板の前記反対側の面上に分散的に封止されることを特徴とする集光型太陽電池モジュール。
A concentrator that collects sunlight;
A highly transmissive plate that receives the sunlight collected by the condenser and transmits at least a scattered light component of the sunlight;
A plurality of solar cells that receive sunlight generated by the condenser and generate power; and
A circuit provided on a part of the surface of the highly transmissive plate and electrically connectable to the cell;
A concentrating solar cell module comprising:
Each cell of the solar battery cell is dispersedly arranged on the surface opposite to the light receiving surface of the highly transmissive plate,
The total light receiving area of the solar battery cell is 10% or less of the total sunlight incident area,
The light receiving area of the high transmission plate is 80% or more of the total sunlight incident area,
A light receiving guide provided with a reflecting surface for reflecting the sunlight collected by the collector and transmitted through the highly transmissive plate and guiding it to the light receiving surface of the solar cell;
The light receiving guide and the solar battery cells are integrated in advance to form a plurality of cell packages, and the cell packages are sealed in a distributed manner on the opposite surface of the high transmission plate by a sealing material. A concentrating solar cell module.
前記集光器は、表面がドーム状を成す受光面を有することを特徴とする請求項1〜9のいずれかに記載の集光型太陽電池モジュール。   The concentrator solar cell module according to claim 1, wherein the concentrator has a light-receiving surface whose surface forms a dome shape. 前記集光器は、前記高透過板の上方に空気層を挟んで設置されたレンズであることを特徴とする請求項1〜10のいずれかに記載の集光型太陽電池モジュール。   The concentrator solar cell module according to any one of claims 1 to 10, wherein the concentrator is a lens installed above the high transmission plate with an air layer interposed therebetween. 請求項1〜4,6〜11のいずれかに記載の集光型太陽電池モジュールと、該モジュールを搭載する1軸太陽追尾架台及び2軸太陽追尾架台の少なくとも一方の架台とを備えた集光型太陽光発電システムであって、かつ、該システムが、太陽光を利用する発電以外の他用途に使用されている場所に適当な間隔で設置可能であることを特徴とする集光型太陽光発電システム。   A concentrating solar cell module according to any one of claims 1 to 4 and 6 to 11, and a condensing unit comprising at least one of a uniaxial solar tracking gantry and a biaxial solar tracking gantry on which the module is mounted. Concentrated solar light, characterized in that it can be installed at an appropriate interval in a place where the system is used for purposes other than power generation using sunlight Power generation system.
JP2014187152A 2014-09-15 2014-09-15 Condensation type solar battery module and condensation type photovoltaic power generation system Pending JP2016062931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014187152A JP2016062931A (en) 2014-09-15 2014-09-15 Condensation type solar battery module and condensation type photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014187152A JP2016062931A (en) 2014-09-15 2014-09-15 Condensation type solar battery module and condensation type photovoltaic power generation system

Publications (1)

Publication Number Publication Date
JP2016062931A true JP2016062931A (en) 2016-04-25

Family

ID=55798073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014187152A Pending JP2016062931A (en) 2014-09-15 2014-09-15 Condensation type solar battery module and condensation type photovoltaic power generation system

Country Status (1)

Country Link
JP (1) JP2016062931A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204513A (en) * 2016-05-10 2017-11-16 信越化学工業株式会社 Condensing photoelectric conversion element array module and method for manufacturing the same
WO2018079677A1 (en) * 2016-10-26 2018-05-03 株式会社サンマリオン Concentrated solar power generation device
CN108566156A (en) * 2018-06-27 2018-09-21 深圳市润海源通科技有限公司 Miniature compound photovoltaic cell high power concentrator power generation module group and photovoltaic power generation equipment
JP6415769B1 (en) * 2018-03-06 2018-10-31 祐次 廣田 AI renewable energy generator assist system
JP2021506213A (en) * 2017-12-07 2021-02-18 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Manufacture of condensing submodules with heat dissipation material
US11004995B2 (en) 2016-10-14 2021-05-11 Kaneka Corporation Photovoltaic device
JP2022062642A (en) * 2020-10-08 2022-04-20 トヨタ自動車株式会社 Photoelectric conversion device for photovoltaic power generation

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111053U (en) * 1983-01-14 1984-07-26 京セラ株式会社 Structure of solar panel
JPS6245080A (en) * 1985-08-22 1987-02-27 Agency Of Ind Science & Technol Solar cell module
JP2000200921A (en) * 1999-01-06 2000-07-18 Takashi Saito Device for increasing solar power generation
JP2002231326A (en) * 2001-02-06 2002-08-16 Nec Corp Photoelectric conversion element and manufacturing method therefor
JP2005285480A (en) * 2004-03-29 2005-10-13 Shin Etsu Polymer Co Ltd Electrode component of solar battery
WO2008004304A1 (en) * 2006-07-07 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
WO2008059593A1 (en) * 2006-11-17 2008-05-22 Kyosemi Corporation Stacked solar cell device
WO2009075195A1 (en) * 2007-12-10 2009-06-18 Toyota Jidosha Kabushiki Kaisha Solar cell module
WO2009125722A1 (en) * 2008-04-08 2009-10-15 シャープ株式会社 Optical member for light concentration and concentrator photovoltaic module
JP2009246041A (en) * 2008-03-28 2009-10-22 Mitsubishi Electric Corp Solar battery and manufacturing method thereof
JP2013016784A (en) * 2011-06-06 2013-01-24 Shin Etsu Chem Co Ltd Solar cell module and method for manufacturing the same
JP2013080760A (en) * 2011-10-03 2013-05-02 Sumitomo Electric Ind Ltd Concentrated solar power generation module, concentrated solar power generation panel, and flexible printed wiring board for concentrated solar power generation module
JP2013084985A (en) * 2013-01-10 2013-05-09 Sharp Corp Solar cell and concentrating photovoltaic power generation module
JP2013172104A (en) * 2012-02-22 2013-09-02 Sharp Corp Light condensing type photovoltaic power generation module and manufacturing method of the same
US20140090687A1 (en) * 2010-04-26 2014-04-03 Guardian Industries Corp. Multifunctional static or semi-static photovoltaic skylight and/or methods of making the same
JP2014096439A (en) * 2012-11-08 2014-05-22 Ito Denshi Kogyo Kk Electrode lead-out structure of organic device
JP2014107531A (en) * 2012-11-26 2014-06-09 Core Corp Double-sided integrated photovoltaic power generation panel generating power on both front and back surfaces

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111053U (en) * 1983-01-14 1984-07-26 京セラ株式会社 Structure of solar panel
JPS6245080A (en) * 1985-08-22 1987-02-27 Agency Of Ind Science & Technol Solar cell module
JP2000200921A (en) * 1999-01-06 2000-07-18 Takashi Saito Device for increasing solar power generation
JP2002231326A (en) * 2001-02-06 2002-08-16 Nec Corp Photoelectric conversion element and manufacturing method therefor
JP2005285480A (en) * 2004-03-29 2005-10-13 Shin Etsu Polymer Co Ltd Electrode component of solar battery
WO2008004304A1 (en) * 2006-07-07 2008-01-10 Kyosemi Corporation Panel-shaped semiconductor module
WO2008059593A1 (en) * 2006-11-17 2008-05-22 Kyosemi Corporation Stacked solar cell device
WO2009075195A1 (en) * 2007-12-10 2009-06-18 Toyota Jidosha Kabushiki Kaisha Solar cell module
JP2009246041A (en) * 2008-03-28 2009-10-22 Mitsubishi Electric Corp Solar battery and manufacturing method thereof
WO2009125722A1 (en) * 2008-04-08 2009-10-15 シャープ株式会社 Optical member for light concentration and concentrator photovoltaic module
US20140090687A1 (en) * 2010-04-26 2014-04-03 Guardian Industries Corp. Multifunctional static or semi-static photovoltaic skylight and/or methods of making the same
JP2013016784A (en) * 2011-06-06 2013-01-24 Shin Etsu Chem Co Ltd Solar cell module and method for manufacturing the same
JP2013080760A (en) * 2011-10-03 2013-05-02 Sumitomo Electric Ind Ltd Concentrated solar power generation module, concentrated solar power generation panel, and flexible printed wiring board for concentrated solar power generation module
JP2013172104A (en) * 2012-02-22 2013-09-02 Sharp Corp Light condensing type photovoltaic power generation module and manufacturing method of the same
JP2014096439A (en) * 2012-11-08 2014-05-22 Ito Denshi Kogyo Kk Electrode lead-out structure of organic device
JP2014107531A (en) * 2012-11-26 2014-06-09 Core Corp Double-sided integrated photovoltaic power generation panel generating power on both front and back surfaces
JP2013084985A (en) * 2013-01-10 2013-05-09 Sharp Corp Solar cell and concentrating photovoltaic power generation module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204513A (en) * 2016-05-10 2017-11-16 信越化学工業株式会社 Condensing photoelectric conversion element array module and method for manufacturing the same
US11004995B2 (en) 2016-10-14 2021-05-11 Kaneka Corporation Photovoltaic device
WO2018079677A1 (en) * 2016-10-26 2018-05-03 株式会社サンマリオン Concentrated solar power generation device
JP2018074157A (en) * 2016-10-26 2018-05-10 株式会社サンマリオン Condensing photovoltaic power generation device
JP2021506213A (en) * 2017-12-07 2021-02-18 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Manufacture of condensing submodules with heat dissipation material
US11552592B2 (en) 2017-12-07 2023-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Manufacturing a concentrating sub-module comprising a heat-dissipating material
JP6415769B1 (en) * 2018-03-06 2018-10-31 祐次 廣田 AI renewable energy generator assist system
JP2019154188A (en) * 2018-03-06 2019-09-12 祐次 廣田 AI renewable energy generator assist system
CN108566156A (en) * 2018-06-27 2018-09-21 深圳市润海源通科技有限公司 Miniature compound photovoltaic cell high power concentrator power generation module group and photovoltaic power generation equipment
JP2022062642A (en) * 2020-10-08 2022-04-20 トヨタ自動車株式会社 Photoelectric conversion device for photovoltaic power generation
JP7306359B2 (en) 2020-10-08 2023-07-11 トヨタ自動車株式会社 Photoelectric conversion device for photovoltaic power generation

Similar Documents

Publication Publication Date Title
JP2016062931A (en) Condensation type solar battery module and condensation type photovoltaic power generation system
US9464783B2 (en) Concentrated photovoltaic panel
US20120167942A1 (en) Low-concentration flat profile photovoltaic modules
JPWO2007055253A1 (en) Photoelectric conversion device
JP2009543376A (en) A micro-concentrator connected to a spherical solar cell in a telescopic manner
US9905718B2 (en) Low-cost thin-film concentrator solar cells
CN101983434B (en) Solar cell device with high heat dissipation efficiency
Haney et al. Hybrid micro-scale CPV/PV architecture
JP2006343435A (en) Condenser lens, condenser lens structure, condensed type photovoltaic system, and method of manufacturing condenser lens structure
KR101118443B1 (en) Concentrated solar cell module
US20100212741A1 (en) Solar cell
CN201893362U (en) Secondary light-focusing battery encapsulation module for light-focusing photovoltaic system
CN102347389B (en) Solar package structure and method for fabricating the same
CN103137762A (en) Solar condenser photovoltaic power generation components
US20090308432A1 (en) Reflective light concentrator
RU2395136C1 (en) Photovoltaic module
US20180294370A1 (en) Hybrid solar module
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
WO2014176881A1 (en) Tubular concentrating photovoltaic cell assembly
KR101566854B1 (en) Light Converging Photovoltaic Module and Module Assembly Utilizing the Reflected Light of Slope
CN102270690A (en) Solar energy utilization device
WO2018079677A1 (en) Concentrated solar power generation device
CN209013497U (en) A kind of reception device
JP6693828B2 (en) Solar cells and solar cell modules
US20170125623A1 (en) Device for harvesting direct light and diffuse light from a light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190107