JP2016061537A - Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger - Google Patents

Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger Download PDF

Info

Publication number
JP2016061537A
JP2016061537A JP2014192248A JP2014192248A JP2016061537A JP 2016061537 A JP2016061537 A JP 2016061537A JP 2014192248 A JP2014192248 A JP 2014192248A JP 2014192248 A JP2014192248 A JP 2014192248A JP 2016061537 A JP2016061537 A JP 2016061537A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
primary side
stage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014192248A
Other languages
Japanese (ja)
Inventor
紘晃 松下
Hiroaki Matsushita
紘晃 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mac KK
Original Assignee
Mac KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mac KK filed Critical Mac KK
Priority to JP2014192248A priority Critical patent/JP2016061537A/en
Publication of JP2016061537A publication Critical patent/JP2016061537A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger in which a refrigerating capability originally owned by refrigerant can be realized up to its maximum limit value even if there is provided a refrigeration cycle assembled with a thermal self-balanced heat exchanger and further a safe operation capable of preventing over-cooling or liquid-back phenomenon can be carried out.SOLUTION: A primary side in which refrigerant fed out of a condenser is fed through a one-stage decompression valve and a secondary side in which the refrigerant passed through the primary side is fed through the two stage decompression valve are integrally arranged, the primary side and the secondary side are partitioned by one heat transfer plate to have the same heat transferring area and volume, and the outer peripheral surface of the two-stage decompression type heat exchanger has an insulation structure.SELECTED DRAWING: Figure 1

Description

本発明は二段減圧式熱交換器及びそれを組み入れた冷凍サイクルに関し、特に、一般的な蒸気圧縮式冷凍サイクルにあって、冷媒の圧縮、凝縮、膨張、蒸発の繰り返される工程に二段減圧式熱交換器を組み入れ、冷凍機運転中の冷凍能力を向上させ、安全運転を可能とするための二段減圧式熱交換器及びそれを組み入れた冷凍サイクルに関する。   The present invention relates to a two-stage decompression heat exchanger and a refrigeration cycle incorporating the same, and more particularly to a general vapor compression refrigeration cycle, in which a two-stage decompression is performed in a process in which refrigerant compression, condensation, expansion, and evaporation are repeated. The present invention relates to a two-stage depressurization heat exchanger for incorporating a heat exchanger, improving the refrigeration capacity during operation of the refrigerator, and enabling safe operation, and a refrigeration cycle incorporating the heat exchanger.

従来、冷媒ガスを使用した冷凍サイクルにあって、その冷却あるいは暖房の効果を向上させる要素として、熱自己平衡熱交換器を組み込むことが特許文献1〜8に示すように知られている。これらの特許文献1〜8には、一次側と二次側とを一体とし、一次側へ導入させ、その一次側を通過した冷媒ガスを膨張弁を介して二次側へ送り込み、その一次側と二次側で伝熱プレートを介して相互の熱エネルギーが各々凝縮、蒸発の熱源とされ、その熱エネルギーは相乗効果で各々の機能を高め、経時変化で一次側と二次側は作用的に安定される熱交換器が記載されている。   Conventionally, it is known in Patent Documents 1 to 8 that a thermal self-equilibrium heat exchanger is incorporated as an element for improving the cooling or heating effect in a refrigeration cycle using refrigerant gas. In these Patent Documents 1 to 8, the primary side and the secondary side are integrated, introduced to the primary side, and the refrigerant gas that has passed through the primary side is sent to the secondary side via the expansion valve, and the primary side The heat energy is condensed and evaporated as a heat source through the heat transfer plate on the secondary side and the heat energy is synergistically enhanced to enhance the functions of the primary and secondary sides. A heat exchanger that is stable is described.

特許文献9には膨張弁の一種としてキャピラリーチューブを設けた熱交換機構が示されている。   Patent Document 9 discloses a heat exchange mechanism provided with a capillary tube as a kind of expansion valve.

しかしながら、従来、上記した熱交換器を組み込んだ冷凍サイクルにあっても、完全といえる状態の冷凍能力には限界があり、特にデフロストに過大な作業や費用がかけられている。   However, even in the refrigeration cycle incorporating the above-described heat exchanger, there is a limit to the refrigeration capacity that can be said to be complete, and excessive work and cost have been put on defrost.

特願2013−028699号出願書類Application documents for Japanese Patent Application No. 2013-028699 特開2003−214731号公報JP 2003-214731 A 特開2004−361033号公報Japanese Patent Laid-Open No. 2004-361033 特開2005−98817号公報JP 2005-98817 A 特開2005−114267号公報JP 2005-114267 A 特開2006−64331号公報JP 2006-64331 A 特開2009−156563号公報JP 2009-156563 A 特開2011−58652号公報JP 2011-58652 A 実開昭56−155277号のマイクロフィルムMicrofilm of Japanese Utility Model Sho 56-155277

本発明が解決しようとする問題点は、前記した熱自己平衡熱交換器を組み込んだ冷凍サイクルであっても、本来的に冷媒の有する冷凍能力を最大限まで発揮させることができ、しかも過冷却や液バックを防ぐことができる安全運転が可能となる二段減圧式熱交換器及びそれを組み入れた冷凍サイクルは知られていないという点である。   The problem to be solved by the present invention is that, even in a refrigeration cycle incorporating the above-described thermal self-equilibrium heat exchanger, the refrigeration capacity inherently possessed by the refrigerant can be maximized, and supercooling is achieved. In other words, a two-stage decompression heat exchanger capable of safe operation that can prevent liquid back and a refrigeration cycle incorporating the same is not known.

上記した問題点を解決するために、本発明に係る二段減圧式熱交換器は、凝縮器から送出された冷媒が一段減圧弁を通して導入される一次側と、その一次側を通過した冷媒が二段減圧弁を通して導入される二次側とを一体として備え、その一次側と二次側は一枚の伝熱プレートによって仕切られて同一の伝熱面積・容量を有することを特徴としている。   In order to solve the above-described problems, the two-stage decompression heat exchanger according to the present invention includes a primary side into which the refrigerant sent from the condenser is introduced through the first-stage decompression valve, and a refrigerant that has passed through the primary side. A secondary side introduced through a two-stage pressure reducing valve is integrally provided, and the primary side and the secondary side are partitioned by a single heat transfer plate and have the same heat transfer area and capacity.

また、本発明に係る二段減圧式熱交換器は、前記した二段減圧式熱交換器の外周面は断熱構造が施されていることを特徴としている。   Moreover, the two-stage pressure reduction type heat exchanger according to the present invention is characterized in that an outer peripheral surface of the above-described two-stage pressure reduction type heat exchanger is provided with a heat insulating structure.

さらに、本発明に係る二段減圧式熱交換器は、前記した二次側は一次側の持つ未凝縮冷媒の凝縮潜熱を蒸発熱源にして熱吸引し、蒸発(一次側の持つ蒸発熱源容量範囲)低温となり一次側の冷媒を冷却することを特徴とし、前記した一次側と二次側は相互に冷媒を冷却し合い、相乗効果によって冷媒を経時変化して冷却・低圧にされながら液冷媒状態を維持することとなり、同義的に蒸発潜熱を増加することを特徴とし、前記した一次側と二次側の存在によって高圧冷媒を中間圧状態を経由させて蒸発器の導入側に配された膨張弁を通過させることで蒸発気化させ、低圧の冷媒ガスとすることを特徴としている。   Furthermore, in the two-stage decompression heat exchanger according to the present invention, the secondary side described above performs heat suction using the latent heat of condensation of the uncondensed refrigerant on the primary side as an evaporation heat source, and evaporates (evaporation heat source capacity range on the primary side). ) It is characterized by cooling the primary side refrigerant at a low temperature, and the primary side and secondary side described above mutually cool the refrigerant, and the liquid refrigerant state while the refrigerant is changed over time by the synergistic effect and cooled to low pressure The expansion latent heat of vaporization is synonymously increased, and the expansion disposed on the introduction side of the evaporator through the intermediate pressure state due to the presence of the primary side and the secondary side as described above. It is characterized by evaporating and evaporating by passing through a valve to produce a low-pressure refrigerant gas.

そして、本発明に係る冷凍サイクルは、前記した二段減圧式熱交換器を凝縮器と蒸発器の導入側に配された膨張弁との間に組み入れてあることを特徴としている。   The refrigeration cycle according to the present invention is characterized in that the above-described two-stage depressurization heat exchanger is incorporated between a condenser and an expansion valve arranged on the introduction side of the evaporator.

本発明に係る二段減圧式熱交換器及びそれを組み入れた冷凍サイクルは上記のように構成されている。二段減圧式熱交換器一次側の冷媒導入前に一段減圧弁が設けられており、この一次側導入前に僅かに減圧蒸発・低温液とし、この一次側を通過した冷媒は二次側の導入前に二段減圧弁により、さらに、その一次側を通過した冷媒を減圧蒸発・低温液とすることができるので、熱交換器の効用がさらに向上することとなる。   The two-stage decompression heat exchanger according to the present invention and the refrigeration cycle incorporating the same are configured as described above. Before introducing the refrigerant on the primary side of the two-stage depressurizing heat exchanger, a first-stage pressure reducing valve is provided. Before this introduction on the primary side, the reduced-pressure evaporation / cold liquid is slightly used. The refrigerant that has passed through the primary side of the two-stage pressure reducing valve before the introduction can be made into a vacuum evaporation / low temperature liquid, so that the utility of the heat exchanger is further improved.

また、二段減圧式熱交換器の外周面は断熱構造としてあり、外部への放熱、外部からの吸熱は遮断されているため、完全に近く伝熱プレートを介して一次側と二次側との間におけるのみの熱交換が可能となり、この断熱作用で、外部との熱交換機能がなく、蒸発熱源が外部から無いため、冷媒が蒸発気化してしまうこともなくなる。冷凍能力は冷媒と外気熱との温度差、冷媒循環量、冷媒密度等が影響するが、本発明では二段減圧式熱交換器によって、従来利用されていないエネルギーを活用して凝縮液の増量ができることとなる。   In addition, the outer peripheral surface of the two-stage decompression heat exchanger has a heat insulating structure, and heat dissipation to the outside and heat absorption from the outside are blocked, so the primary side and the secondary side are completely close to each other via the heat transfer plate. The heat exchange only between the two is possible, and the heat insulation function does not provide a heat exchange function with the outside, and the evaporation heat source is not provided from the outside, so that the refrigerant does not evaporate. The refrigeration capacity is affected by the temperature difference between the refrigerant and outside air, the refrigerant circulation rate, the refrigerant density, etc. In the present invention, the amount of condensate can be increased by utilizing energy that has not been conventionally used by the two-stage decompression heat exchanger Will be able to.

本発明を実施した冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle which implemented this invention. P−h線図である。It is a Ph diagram.

図面として示し、実施例で説明したように構成したことで実現した。   This was realized by configuring as illustrated in the drawings and described in the examples.

次に、本発明の好ましい実施の一例を図面を参照して説明する。図中10は本発明に係る二段減圧式熱交換器を示している。この二段減圧式熱交換器10は伝熱プレート13を挟んで冷媒が導入される一次側11とその一次側11を通過した冷媒が導入される二次側12とを一体に有しており、その一次側11と二次側12は伝熱プレート13によって同一の伝熱面積と容量を有するものとなっている。   Next, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In the figure, reference numeral 10 denotes a two-stage decompression heat exchanger according to the present invention. This two-stage decompression type heat exchanger 10 integrally has a primary side 11 into which refrigerant is introduced across a heat transfer plate 13 and a secondary side 12 into which refrigerant that has passed through the primary side 11 is introduced. The primary side 11 and the secondary side 12 have the same heat transfer area and capacity by the heat transfer plate 13.

また、この二段減圧式熱交換器10は、その外周面は断熱材14で被包された断熱構造となっており、外部への放熱と、外部からの吸熱は遮断されている。そのため、液冷媒は冷凍サイクル系外部に蒸発をすることがなく、凝縮液増量を進め冷凍効率を高める。   The two-stage decompression heat exchanger 10 has a heat insulating structure in which the outer peripheral surface is encapsulated with a heat insulating material 14, and heat dissipation to the outside and heat absorption from the outside are blocked. Therefore, the liquid refrigerant does not evaporate outside the refrigeration cycle system, and increases the amount of condensate to increase the refrigeration efficiency.

一方、図中15は、前記した二段減圧式熱交換器10が組み入れられる冷凍サイクル(回路)の圧縮機である。この圧縮機15は冷媒ガスを圧縮して、高温高圧の液状冷媒を吐出し、この高温高圧の液状冷媒を凝縮器16へ送り込む。   On the other hand, reference numeral 15 in the figure denotes a compressor of a refrigeration cycle (circuit) in which the above-described two-stage decompression heat exchanger 10 is incorporated. The compressor 15 compresses the refrigerant gas, discharges a high-temperature / high-pressure liquid refrigerant, and sends the high-temperature / high-pressure liquid refrigerant to the condenser 16.

この凝縮器16を通過した冷媒は二段減圧式熱交換器10の一次側11に導入されるが、この導入口11aの手前には一段減圧弁17が設けられており、この一段減圧弁17によって、冷媒は僅かに減圧蒸発・低温度とされ、その減圧、低温化された状態で冷媒が導入口11aから一次側11に導入され、中間圧冷媒となる。ここに中間圧冷媒とは、一般的に膨張弁で蒸発気化され低圧冷媒に相変化する以前の冷却によって低圧となったものをいう。   The refrigerant that has passed through the condenser 16 is introduced to the primary side 11 of the two-stage decompression heat exchanger 10, and a first-stage decompression valve 17 is provided in front of the inlet 11a. Thus, the refrigerant is slightly reduced in pressure and evaporated to a low temperature, and the refrigerant is introduced into the primary side 11 from the inlet 11a in a state where the pressure is reduced and the temperature is reduced, and becomes an intermediate pressure refrigerant. Here, the intermediate-pressure refrigerant generally refers to a refrigerant that has become low pressure due to cooling before being vaporized and vaporized by an expansion valve and changing phase to low-pressure refrigerant.

この一次側11を通過した冷媒は吐出口11bから吐出され、二次側12に導入されるが、この二次側12の導入口12aの手前にも二段減圧弁18が設けられ、一次側11を通過してきた冷媒をさらに僅かに減圧蒸発・低温度の状態とされ一次側11の冷媒よりも低圧、低温の中間圧冷媒として二次側12に導入することとなる。   The refrigerant that has passed through the primary side 11 is discharged from the discharge port 11b and introduced into the secondary side 12. A two-stage pressure reducing valve 18 is provided in front of the introduction port 12a on the secondary side 12, and the primary side The refrigerant passing through the refrigerant 11 is further evaporated under a reduced pressure and at a low temperature, and introduced into the secondary side 12 as an intermediate pressure refrigerant having a lower pressure and lower temperature than the refrigerant on the primary side 11.

ここで、二段減圧式熱交換器10は断熱材14による断熱構造となっているので、外部への放熱と外部からの吸熱が遮断され、伝熱プレート13を介しての一次側11と二次側12の間のみで熱交換が可能となっている。   Here, since the two-stage decompression type heat exchanger 10 has a heat insulating structure by the heat insulating material 14, the heat radiation to the outside and the heat absorption from the outside are blocked, and the primary side 11 and the second side through the heat transfer plate 13 are blocked. Heat exchange is possible only between the secondary sides 12.

二次側12は一次側11を通過する未凝縮冷媒が有する凝縮潜熱を蒸発熱源として吸熱し、蒸発低温となり、一次側11を通過する冷媒を冷却する。二段減圧式熱交換器10は外部との熱交換機能はなく、蒸発熱源がないので、冷媒は蒸発気化することはなく、一次側11と二次側12は相互に冷却し合って相乗効果を発揮し、経時変化して、一次側11と二次側12の冷媒は冷却、低圧にされながら液冷媒状態を維持する。同義的に蒸発潜熱を増加することとなり、冷凍サイクル自体の効率を向上させる。   The secondary side 12 absorbs the condensation latent heat of the uncondensed refrigerant passing through the primary side 11 as an evaporation heat source, becomes a low evaporation temperature, and cools the refrigerant passing through the primary side 11. The two-stage decompression type heat exchanger 10 has no heat exchange function with the outside and has no evaporating heat source. Therefore, the refrigerant does not evaporate and the primary side 11 and the secondary side 12 cool each other and have a synergistic effect. The refrigerant on the primary side 11 and the secondary side 12 is maintained in a liquid refrigerant state while being cooled to a low pressure. Synonymously, it increases the latent heat of vaporization and improves the efficiency of the refrigeration cycle itself.

この二段減圧式熱交換器10と冷凍サイクルに組み入れることで、高圧高温の冷媒を直接低圧低温の冷媒に相変化させるのではなく、中間圧を経由して後述する膨張弁へ導入し、蒸発気化・低圧低温の冷媒ガスとさせる。   By incorporating this two-stage decompression type heat exchanger 10 and the refrigeration cycle, the high-pressure and high-temperature refrigerant is not directly changed into a low-pressure and low-temperature refrigerant, but is introduced into an expansion valve to be described later via an intermediate pressure and evaporated. Vaporized, low-pressure, low-temperature refrigerant gas.

冷凍サイクルにあっては、凝縮潜熱が増加すれば蒸発潜熱も増加するのであって、放熱凝縮潜熱が大きいと吸熱蒸発潜熱も大きくなる。この原理原則にのっとって本発明はいかに凝縮、蒸発潜熱を大きくするかという点に特徴があり、冷凍サイクル中に二段減圧式熱交換器10を組み入れて高圧冷媒液を増量させ、冷凍サイクルの効率を向上させる。凝縮、蒸発潜熱の増幅は凝縮熱源を下げて温度差を大きくとることになってなされる。   In the refrigeration cycle, if the latent heat of condensation increases, the latent heat of vaporization also increases. If the latent heat of condensation of heat dissipation increases, the latent heat of endothermic evaporation also increases. In accordance with this principle, the present invention is characterized by how to increase the latent heat of condensation and evaporation. A two-stage decompression heat exchanger 10 is incorporated in the refrigeration cycle to increase the amount of high-pressure refrigerant liquid, and Increase efficiency. Amplification of condensation and evaporation latent heat is done by lowering the condensation heat source and increasing the temperature difference.

二段減圧式熱交換器10の二次側12を通過して吐出口12bから吐出された冷媒は、膨張弁19を通過して低圧低温とされ蒸発器20を通過して、圧縮機15へと循環される。   The refrigerant discharged from the discharge port 12b through the secondary side 12 of the two-stage depressurizing heat exchanger 10 passes through the expansion valve 19 to be a low pressure and low temperature, passes through the evaporator 20, and passes to the compressor 15. And cycled.

次いで、この二段減圧式熱交換器10を組み入れた冷凍サイクルのP-h線の変化を図2を参照して説明する。この図2にあって1は圧縮機15による吸引前の冷媒ガス状態を示しており、2が圧縮機15から吐出された高温、高圧の冷媒ガスを示している。この2で示す冷媒ガスは凝縮器16を経由して二段減圧式熱交換器10へ導入されるが、3はその一次側導入口11aの手前に配された一段減圧弁17に導入される前の冷媒を示し、圧力としては2と同等となっている。   Next, a change in the Ph line of the refrigeration cycle incorporating this two-stage decompression heat exchanger 10 will be described with reference to FIG. In FIG. 2, 1 indicates a refrigerant gas state before suction by the compressor 15, and 2 indicates a high-temperature and high-pressure refrigerant gas discharged from the compressor 15. The refrigerant gas indicated by 2 is introduced into the two-stage pressure-reducing heat exchanger 10 via the condenser 16, while 3 is introduced into the first-stage pressure reducing valve 17 arranged in front of the primary side inlet 11a. The previous refrigerant is shown, and the pressure is equivalent to 2.

また、5が二段減圧弁18に導入前の中間圧とされた液冷媒を示し、6が膨張弁19に導入される前の中間圧の液冷媒を示し、4が膨張弁19を通過した後の蒸発冷媒ガスを示している。これによって一段減圧弁17に導入される前の液冷媒から、膨張弁19に導入される前の中間圧の液冷媒までは大きく圧力が低下されていることが解る。   Further, 5 indicates a liquid refrigerant having an intermediate pressure before being introduced into the two-stage pressure reducing valve 18, 6 indicates an intermediate pressure liquid refrigerant before being introduced into the expansion valve 19, and 4 has passed through the expansion valve 19. The latter evaporative refrigerant gas is shown. Thus, it can be seen that the pressure is greatly reduced from the liquid refrigerant before being introduced into the first-stage pressure reducing valve 17 to the intermediate-pressure liquid refrigerant before being introduced into the expansion valve 19.

さらに、エンタルピーhについては、Δh1は圧縮機15の仕事熱を示し、Δh2が蒸発潜熱を示しており、Δh1+Δh2が凝縮潜熱となる。そして、Δh3が二段減圧式熱交換器10を冷凍サイクルに組み入れたことによる蒸発潜熱の増加量を示しており、この蒸発潜熱が大きく増加するため、冷凍サイクルとしての効能が大きく向上していることが明確である。   Further, for enthalpy h, Δh1 represents the work heat of the compressor 15, Δh2 represents the latent heat of evaporation, and Δh1 + Δh2 represents the latent heat of condensation. Δh3 indicates an increase in the latent heat of vaporization due to the incorporation of the two-stage decompression heat exchanger 10 into the refrigeration cycle. Since this latent heat of vaporization greatly increases, the effectiveness as the refrigeration cycle is greatly improved. It is clear.

冷媒ガスが一段減圧弁17を通過して一次側11内にある時、その冷媒ガスは未蒸発湿り冷媒(未凝縮)となっている。この冷媒ガスは二段減圧弁18を通過して二次側12内でより低温の冷媒液となって、伝熱プレート13に接している一次側11内の中間圧冷媒を冷却して過冷却冷媒液とする。   When the refrigerant gas passes through the first-stage pressure reducing valve 17 and is in the primary side 11, the refrigerant gas is a non-evaporated wet refrigerant (non-condensed). This refrigerant gas passes through the two-stage pressure reducing valve 18 and becomes a lower-temperature refrigerant liquid in the secondary side 12, cooling the intermediate pressure refrigerant in the primary side 11 in contact with the heat transfer plate 13 and supercooling. Refrigerant liquid.

二段減圧式熱交換器10は前述したように、外部との熱交換がされないので、一次側11と二次側12は順次作用して、一次側11の冷媒が二次側12の冷媒で冷却され、この一次側11が冷却されて低温となった一次側11の冷媒は二次側に導入される冷媒の温度がより低温とされる相乗効果を発揮する。同一の伝熱プレート13の伝熱面の一次側11の冷媒温度をより低温とし、繰り返し二次側12の冷媒を冷却する。連成する二次側12の冷媒の経時変化で、一次側11内の中間圧冷媒は過冷却冷媒となり、より完全な低温冷媒液となり、冷媒の気体相変化による熱交換能力を発揮する状態を維持、増幅する。   As described above, since the two-stage decompression type heat exchanger 10 does not exchange heat with the outside, the primary side 11 and the secondary side 12 act sequentially, and the refrigerant on the primary side 11 is the refrigerant on the secondary side 12. The refrigerant on the primary side 11 that has been cooled and cooled to a low temperature on the primary side 11 exhibits a synergistic effect that the temperature of the refrigerant introduced to the secondary side is lowered. The refrigerant temperature on the primary side 11 of the heat transfer surface of the same heat transfer plate 13 is made lower, and the refrigerant on the secondary side 12 is repeatedly cooled. With the aging of the refrigerant on the secondary side 12 that is coupled, the intermediate pressure refrigerant in the primary side 11 becomes a supercooled refrigerant, becomes a more complete low-temperature refrigerant liquid, and exhibits a state of exhibiting heat exchange capability due to a change in the gas phase of the refrigerant. Maintain and amplify.

本実施例に係る二段減圧式熱交換器及びこれを組み入れた冷凍サイクルは上記のように構成されている。この冷凍サイクルは、冷凍・冷房は勿論の事暖房機能も有することとなるのは当然である。また、デフロスト作用としてもホットガスが利用可能となり、一般的な電気ヒーターの使用が無用ないしは節電でき、大きな省エネルギー効果を得ることができる。   The two-stage decompression heat exchanger according to the present embodiment and the refrigeration cycle incorporating the same are configured as described above. This refrigeration cycle naturally has a heating function as well as refrigeration and cooling. In addition, hot gas can be used as a defrosting action, and a general electric heater can be used or power can be saved, and a great energy saving effect can be obtained.

冷凍サイクルにおいて膨張弁では無駄なエネルギーの損失をしていると言われている。従来P−h線図上3に膨張弁が取り付けられていて、結果冷媒は4−1線に垂直に減圧(断熱膨張)する。故にエンタルピーΔh3は存在しなく無駄なエネルギーの損失となっていた。
断熱被膜した二段減圧式熱交換器により、外部との熱交換無く熱交換器の構成により一次側・二次側の僅かな熱を利用して冷媒を液化して蒸発・凝縮潜熱を増加させることができる。
In the refrigeration cycle, it is said that the expansion valve is losing useless energy. Conventionally, an expansion valve is attached to the top 3 of the Ph diagram, and as a result, the refrigerant is depressurized (adiabatic expansion) perpendicular to the line 4-1. Therefore, the enthalpy Δh3 does not exist, resulting in wasted energy loss.
The heat-reduced two-stage pressure-reduction heat exchanger increases the evaporation / condensation latent heat by liquefying the refrigerant by using the heat of the primary and secondary sides with the heat exchanger configuration without heat exchange with the outside. be able to.

初めに、凝縮器16を吐出して一段減圧弁17を通過して流入した冷媒は、熱交換器同一伝熱面を通して二次側12の冷媒液が冷却される。冷却された二次側12の冷媒はより低温になり一次側11の冷媒を冷却する。冷却された一次側11の冷媒はより低温になり二段減圧弁18に向かい通過後二段減圧弁導入口12aの冷媒温度(一元冷媒液温度)より低温になる。故に二次側12により一次側11が冷却され、冷却された一次側11の冷媒が二次側12に少量の蒸発可能冷媒を供給し続け次第に低温冷媒液を増量する。僅かに残る凝縮器16から送られる未凝縮熱源を利用して蒸発潜熱を増加することができる。   First, the refrigerant liquid discharged from the condenser 16 and passed through the first stage pressure reducing valve 17 is cooled by the refrigerant liquid on the secondary side 12 through the same heat transfer surface of the heat exchanger. The cooled refrigerant on the secondary side 12 becomes cooler and cools the refrigerant on the primary side 11. The cooled refrigerant on the primary side 11 becomes lower in temperature and passes through the two-stage pressure reducing valve 18 and then becomes lower than the refrigerant temperature (one-way refrigerant liquid temperature) at the two-stage pressure reducing valve inlet 12a. Therefore, the primary side 11 is cooled by the secondary side 12, and the cooled refrigerant on the primary side 11 continues to supply a small amount of evaporable refrigerant to the secondary side 12 and gradually increases the amount of the low-temperature refrigerant liquid. The latent heat of vaporization can be increased by utilizing the uncondensed heat source sent from the slightly remaining condenser 16.

1 圧縮機による吸引前の冷媒ガス
2 圧縮機から吐出された高温・高圧ガス
3 一段減圧弁導入前の高圧液冷媒
4 膨張弁通過後の蒸発冷媒ガス
5 二段減圧弁導入前の中間圧液冷媒
6 膨張弁導入前の中間圧液冷媒
10 二段減圧式熱交換器
11 一次側
11a 導入口
11b 吐出口
12 二次側
12a 導入口
12b 吐出口
13 伝熱プレート
14 断熱材
15 圧縮機
16 凝縮器
17 一段減圧弁
18 二段減圧弁
19 膨張弁
20 蒸発器
DESCRIPTION OF SYMBOLS 1 Refrigerant gas before suction by compressor 2 High temperature / high pressure gas discharged from compressor 3 High pressure liquid refrigerant before introduction of first stage pressure reducing valve 4 Evaporative refrigerant gas after passage of expansion valve 5 Intermediate pressure liquid before introduction of second stage pressure reduction valve Refrigerant 6 Intermediate pressure liquid refrigerant before introduction of expansion valve 10 Two-stage depressurization heat exchanger 11 Primary side 11a Inlet 11b Discharge port 12 Secondary side 12a Inlet 12b Discharge port 13 Heat transfer plate 14 Insulating material 15 Compressor 16 Condensation 17 One-stage pressure reducing valve 18 Two-stage pressure reducing valve 19 Expansion valve 20 Evaporator

Claims (6)

凝縮器から送出された冷媒が一段減圧弁を通して導入される一次側と、その一次側を通過した冷媒が二段減圧弁を通して導入される二次側とを一体として備え、その一次側と二次側は一枚の伝熱プレートによって仕切られて同一の伝熱面積・容量を有することを特徴とする二段減圧式熱交換器。   The primary side where the refrigerant sent from the condenser is introduced through the first-stage pressure reducing valve and the secondary side where the refrigerant that has passed through the primary side is introduced through the second-stage pressure reducing valve are integrally provided. A two-stage depressurization type heat exchanger characterized in that the side is partitioned by a single heat transfer plate and has the same heat transfer area and capacity. 前記した二段減圧式熱交換器の外周面は断熱構造が施されていることを特徴とする請求項1に記載の二段減圧式熱交換器。   2. The two-stage pressure-reducing heat exchanger according to claim 1, wherein an outer peripheral surface of the two-stage pressure-reduction heat exchanger is provided with a heat insulating structure. 前記した二次側は一次側の持つ未凝縮冷媒の凝縮潜熱を蒸発熱源にして熱吸引し、蒸発低温となり一次側の冷媒を冷却することを特徴とする請求項1または2に記載の二段減圧式熱交換器。   3. The two-stage according to claim 1, wherein the secondary side performs heat suction using the latent heat of condensation of the non-condensed refrigerant on the primary side as an evaporation heat source, cools the primary side refrigerant at a low evaporation temperature. Vacuum heat exchanger. 前記した一次側と二次側は相互に冷媒を冷却し合い、相乗効果によって冷媒を経時変化して冷却・低圧にされながら液冷媒状態を維持することとなり、同義的に蒸発潜熱を増加することを特徴とする請求項1から3のうち1項に記載の二段減圧式熱交換器。   The primary side and the secondary side described above mutually cool the refrigerant and synergistically change the refrigerant over time to maintain the liquid refrigerant state while being cooled and low-pressure, synonymously increasing the latent heat of vaporization. The two-stage pressure-reducing heat exchanger according to claim 1, wherein the two-stage pressure-reducing heat exchanger is characterized in that 前記した一次側と二次側の存在によって高圧冷媒を中間圧状態を経由させて蒸発器の導入側に配された膨張弁を通過させることで蒸発気化させ、低圧の冷媒ガスとすることを特徴とする請求項1から4のうち1項に記載の二段減圧式熱交換器。   Due to the presence of the primary side and the secondary side as described above, the high-pressure refrigerant passes through an expansion valve arranged on the introduction side of the evaporator through an intermediate pressure state, and is evaporated and vaporized to obtain a low-pressure refrigerant gas. The two-stage pressure-reducing heat exchanger according to claim 1, wherein: 前記した二段減圧式熱交換器を凝縮器と蒸発器の導入側に配された膨張弁との間に組み入れてあることを特徴とする冷凍サイクル。   A refrigeration cycle in which the above-described two-stage depressurization heat exchanger is incorporated between a condenser and an expansion valve arranged on the introduction side of the evaporator.
JP2014192248A 2014-09-22 2014-09-22 Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger Pending JP2016061537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014192248A JP2016061537A (en) 2014-09-22 2014-09-22 Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014192248A JP2016061537A (en) 2014-09-22 2014-09-22 Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger

Publications (1)

Publication Number Publication Date
JP2016061537A true JP2016061537A (en) 2016-04-25

Family

ID=55795885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192248A Pending JP2016061537A (en) 2014-09-22 2014-09-22 Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger

Country Status (1)

Country Link
JP (1) JP2016061537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508809A (en) * 2017-12-29 2021-03-11 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508809A (en) * 2017-12-29 2021-03-11 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system

Similar Documents

Publication Publication Date Title
JP3102651U (en) Refrigerator refrigerator with two evaporators
JP5261066B2 (en) Refrigerator and refrigerator
KR20110072687A (en) Refrigerator
KR101449899B1 (en) Economizer, Heat Pump and Cooling-heating System using thereof
JP2014062701A (en) Heat pump system and cooling system using the same
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP2008116100A (en) Commodity storage apparatus
JP5636871B2 (en) Refrigeration equipment
KR20190126476A (en) Refrigerator
GB2455579A (en) Heat pump comprising an inverter drive compressor
JP5974541B2 (en) Air conditioning system
JP2011117685A (en) Freezer-refrigerator
JP2001227840A (en) Hybrid type heat pump device
JP2016061537A (en) Two-stage decompression type heat exchanger and refrigerating cycle with this heat exchanger
WO2012128610A1 (en) Liquid line subcooler and method of subcooling working fluid entering metering device
JP5295441B1 (en) Vapor compression refrigeration system
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
KR101405759B1 (en) Vapor compression refrigeration system
CN104864629A (en) Cooling and heating device of beverage machine
KR102185416B1 (en) Cooling system
Varghese et al. Heat Recovery System in Domestic Refrigerator
JP2018063058A (en) Refrigerator and control method for the same
JP2015048983A (en) Over-cooler and steam compression type refrigeration cycle having the over-cooler incorporated
JP2010249444A (en) Freezer-refrigerator
KR20090095744A (en) Cooling cycle device