JP2016056076A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor Download PDF

Info

Publication number
JP2016056076A
JP2016056076A JP2014186306A JP2014186306A JP2016056076A JP 2016056076 A JP2016056076 A JP 2016056076A JP 2014186306 A JP2014186306 A JP 2014186306A JP 2014186306 A JP2014186306 A JP 2014186306A JP 2016056076 A JP2016056076 A JP 2016056076A
Authority
JP
Japan
Prior art keywords
molar amount
ceramic capacitor
multilayer ceramic
dielectric
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014186306A
Other languages
Japanese (ja)
Other versions
JP6680457B2 (en
Inventor
剛之 矢尾
Takeyuki Yao
剛之 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2014186306A priority Critical patent/JP6680457B2/en
Publication of JP2016056076A publication Critical patent/JP2016056076A/en
Application granted granted Critical
Publication of JP6680457B2 publication Critical patent/JP6680457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor having higher high-temperature load reliability than that of conventional laminated ceramic capacitors.SOLUTION: In a laminated ceramic capacitor 50 comprising a ceramic laminate (capacitor body) 10 having a plurality of dielectric ceramic layers 11 formed of a dielectric ceramic and a plurality of internal electrodes 12 laminated to each other through the dielectric ceramic layer 11, the dielectric ceramic layers 11 are formed of a dielectric ceramic containing a perovskite-type compound including Ba and Ti, and Zr, Mn, and V, and having a ratio of the molar amount of Zr to the total molar amount of Mn and V in a range of 10-150%, the ratio of the molar amount of Zr to the total molar amount of Mn and V is 40-100%, and the average thickness of the internal electrode 12 is 0.5 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、積層セラミックコンデンサに関し、複数の誘電体セラミック層と、誘電体セラミック層を介して積層された複数の内部電極とを有するセラミック積層体(コンデンサ本体)を具備する積層セラミックコンデンサに関する。   The present invention relates to a multilayer ceramic capacitor, and more particularly, to a multilayer ceramic capacitor including a ceramic multilayer body (capacitor body) having a plurality of dielectric ceramic layers and a plurality of internal electrodes laminated via the dielectric ceramic layers.

近年、電子機器の小型・軽量化にともない、小型で、大容量を取得することが可能な積層セラミックコンデンサが広く用いられている。この積層セラミックコンデンサは、例えば、複数の誘電体層と、誘電体層間の複数の界面に配設された複数の内部電極とを有する積層体の外表面に、上記内部電極と導通するように外部電極が配設された構造を有するものが広く知られている。   In recent years, with the reduction in size and weight of electronic devices, multilayer ceramic capacitors that are small in size and capable of acquiring a large capacity are widely used. For example, the multilayer ceramic capacitor is externally connected to the outer surface of a multilayer body having a plurality of dielectric layers and a plurality of internal electrodes disposed at a plurality of interfaces between the dielectric layers so as to be electrically connected to the internal electrodes. Those having a structure in which electrodes are arranged are widely known.

そして、このような積層セラミックコンデンサとして、一般式ABO3(ただし、式中、Aは、Ba、Ca、SrおよびMgから選択される1種以上の元素であり、Bは、Ti、ZrおよびHfから選択される1種以上の元素であり、[A]/[B](モル比)が、0.990≦[A]/[B]<1.03である)で表されるペロブスカイト型結晶構造を有する化合物を含む主成分と、MgO等の第1副成分と、焼結助剤である第2副成分と、希土類Rの酸化物(ただし、RはY、Dy、Tb、GdおよびHoから選択される少なくとも一種)を含む第3副成分と、MnOを含む第4副成分と、Re(レニウム)の酸化物である第5副成分とを含み、前記主成分100モルに対し、各副成分の比率が、第1副成分:0.1〜3モル、第2副成分:0.1〜12モル、第3副成分:0.01〜10モル、第4副成分:0.05〜1.0モル、第5副成分:0.01〜1.0モルである誘電体磁器組成物を用いた誘電体層と、内部電極層とを有する積層セラミックコンデンサが提案されている。 As such a multilayer ceramic capacitor, a general formula ABO 3 (where A is one or more elements selected from Ba, Ca, Sr and Mg, and B is Ti, Zr and Hf). A perovskite-type crystal represented by [A] / [B] (molar ratio) of 0.990 ≦ [A] / [B] <1.03) A main component including a compound having a structure, a first subcomponent such as MgO, a second subcomponent which is a sintering aid, and an oxide of rare earth R (where R is Y, Dy, Tb, Gd and Ho) A third subcomponent including at least one selected from the group consisting of: a fourth subcomponent including MnO; and a fifth subcomponent that is an oxide of Re (rhenium). The ratio of subcomponents is as follows: first subcomponent: 0.1 to 3 mol, second subcomponent : Dielectric of 0.1 to 12 mol, third subcomponent: 0.01 to 10 mol, fourth subcomponent: 0.05 to 1.0 mol, fifth subcomponent: 0.01 to 1.0 mol A multilayer ceramic capacitor having a dielectric layer using a body ceramic composition and an internal electrode layer has been proposed.

そして、この積層セラミックコンデンサの場合、誘電体層の薄層化が可能であり、製品の小型化を図ることができるとされている。   In the case of this multilayer ceramic capacitor, it is said that the dielectric layer can be thinned and the product can be miniaturized.

しかし、近年、積層セラミックコンデンサは種々の厳しい条件や環境の下で使用されるにようになっており、上記特許文献1の積層セラミックコンデンサにあっても、例えば、高温負荷信頼性などに関し、必ずしも十分な特性が確保されているとはいえず、さらに信頼性の高い積層セラミックコンデンサが求められるに至っている。   However, in recent years, multilayer ceramic capacitors have come to be used under various severe conditions and environments. Even in the multilayer ceramic capacitor disclosed in Patent Document 1, for example, high temperature load reliability is not always necessary. It cannot be said that sufficient characteristics are secured, and a more reliable multilayer ceramic capacitor has been demanded.

特開2008−254934号公報JP 2008-254934 A

本発明は、上記課題を解決するものであり、従来の積層セラミックコンデンサに比べて高温負荷信頼性の高い積層セラミックコンデンサを提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a multilayer ceramic capacitor having higher high-temperature load reliability than a conventional multilayer ceramic capacitor.

上記課題を解決するため、本発明の積層セラミックコンデンサは、
複数の誘電体セラミック層と、前記誘電体セラミック層を介して積層された複数の内部電極とを備えるセラミック積層体と、前記内部電極と導通するように前記セラミック積層体に配設された外部電極とを備えた積層セラミックコンデンサであって、
前記誘電体セラミック層は、BaとTiとを含むペロブスカイト型化合物と、Zrと、Mnと、Vとを含有し、
下記の式(1)により求められる、Zrのモル量の、MnとVの合計モル量に対する割合が、10〜150%の範囲にあることを特徴としている。
Zrのモル量の、MnとVの合計モル量に対する割合(%)={Zrモル量/(Mnモル量+Vモル量)}×100 ……(1)
In order to solve the above problems, the multilayer ceramic capacitor of the present invention is
A ceramic laminate comprising a plurality of dielectric ceramic layers and a plurality of internal electrodes laminated via the dielectric ceramic layers, and an external electrode disposed in the ceramic laminate so as to be electrically connected to the internal electrodes A multilayer ceramic capacitor comprising:
The dielectric ceramic layer contains a perovskite type compound containing Ba and Ti, Zr, Mn, and V,
The ratio of the molar amount of Zr determined by the following formula (1) to the total molar amount of Mn and V is in the range of 10 to 150%.
Ratio of molar amount of Zr to total molar amount of Mn and V (%) = {Zr molar amount / (Mn molar amount + V molar amount)} × 100 (1)

また、本発明の積層セラミックコンデンサにおいては、前記式(1)により求められる、前記Zrのモル量の、MnとVの合計モル量に対する割合が、40〜100%であることが望ましい。   In the multilayer ceramic capacitor of the present invention, it is preferable that the ratio of the molar amount of Zr to the total molar amount of Mn and V obtained by the above formula (1) is 40 to 100%.

Zrのモル量の、MnとVの合計モル量に対する割合を上述の適正な割合(40〜100%)とすることにより、誘電体セラミック層の粒界やシェル部の絶縁性、信頼性が向上する。その結果、高温負荷信頼性の高い積層セラミックコンデンサを得ることが可能になる。   By setting the ratio of the molar amount of Zr to the total molar amount of Mn and V to be the above-mentioned appropriate ratio (40 to 100%), the insulating properties and reliability of the grain boundary and shell part of the dielectric ceramic layer are improved. To do. As a result, it is possible to obtain a multilayer ceramic capacitor with high temperature load reliability.

また、前記内部電極の平均厚みが、0.5μm以下であることが望ましい。   The average thickness of the internal electrodes is preferably 0.5 μm or less.

内部電極層の厚みを0.5μm以下に設定することで、さらに高温負荷信頼性が向上する。   By setting the thickness of the internal electrode layer to 0.5 μm or less, the high temperature load reliability is further improved.

例えば、内部電極がNiから形成されている場合、内部電極の厚みが厚くなると、Niの誘電体セラミック層中への拡散が多くなり、Zr、Mn、Vを適切な割合で存在させることにより得られる上述の効果が阻害され、高温負荷信頼性が低下することになる。   For example, when the internal electrode is made of Ni, when the thickness of the internal electrode is increased, the diffusion of Ni into the dielectric ceramic layer increases, and it is obtained by allowing Zr, Mn, and V to exist at appropriate ratios. The above-mentioned effect is hindered, and the high temperature load reliability is lowered.

これに対し、内部電極層の厚みを0.5μm以下にすることにより、Zr、Mn、Vを適切な割合で存在させることによる、誘電体セラミック層の粒界やシェル部の絶縁性、信頼性を向上させるという効果を損なわないようにすることが可能になり、信頼性の高い積層セラミックコンデンサを提供することができるようになる。   On the other hand, by making the thickness of the internal electrode layer 0.5 μm or less, Zr, Mn, and V are present at appropriate ratios, thereby insulating and reliability of the grain boundaries and shell portions of the dielectric ceramic layer. It becomes possible not to impair the effect of improving the resistance, and it becomes possible to provide a highly reliable multilayer ceramic capacitor.

本発明の積層セラミックコンデンサは、誘電体セラミック層が、BaとTiとを含むペロブスカイト型化合物と、Zrと、Mnと、Vとを含有し、かつ、下記の式(1):
Zrのモル量の、MnとVの合計モル量に対する割合(%)={Zrモル量/(Mnモル量+Vモル量)}×100 ……(1)
で求められる、Zrのモル量の、MnとVの合計モル量に対する割合が、10〜150%の範囲となるようにしているので、粒界やシェル部の絶縁性、信頼性を向上させることができる。
その結果、高温負荷信頼性の高い積層セラミックコンデンサを提供することができる。
In the multilayer ceramic capacitor of the present invention, the dielectric ceramic layer contains a perovskite type compound containing Ba and Ti, Zr, Mn, and V, and the following formula (1):
Ratio of molar amount of Zr to total molar amount of Mn and V (%) = {Zr molar amount / (Mn molar amount + V molar amount)} × 100 (1)
The ratio of the molar amount of Zr determined in step 1 to the total molar amount of Mn and V is in the range of 10 to 150%, so that the insulation and reliability of the grain boundaries and the shell part are improved. Can do.
As a result, it is possible to provide a multilayer ceramic capacitor with high temperature load reliability.

なお、本発明により、高温負荷信頼性が向上するメカニズムは必ずしも明確ではないが、以下のように推測される。   In addition, although the mechanism by which high temperature load reliability improves by this invention is not necessarily clear, it estimates as follows.

Mn、Vは絶縁抵抗を確保するために添加しているが、酸素空孔を増やす傾向があり、多すぎると信頼性が低下する。一方、Zrは酸素空孔を減らす傾向がある。
そこで、Zr/(Mn+V)値を制御する、例えば10%以上とすることで、酸素空孔の形成が適度な範囲に抑制される結果、高温負荷信頼性が向上するのではないかと考えられる。
また、Mn、Vは焼結性を促進するが、Zrは焼結性を低下させる。よって、Zr/(Mn+V)値が150%よりも大きくなると、焼結性が低下し、信頼性が低くなると考えられる。
Mn and V are added to ensure insulation resistance. However, there is a tendency to increase oxygen vacancies, and if too much, reliability is lowered. On the other hand, Zr tends to reduce oxygen vacancies.
Therefore, it is considered that by controlling the Zr / (Mn + V) value, for example, 10% or more, the formation of oxygen vacancies is suppressed to an appropriate range, so that the high temperature load reliability is improved.
Mn and V promote sinterability, but Zr reduces sinterability. Therefore, when the Zr / (Mn + V) value is larger than 150%, it is considered that the sinterability is lowered and the reliability is lowered.

したがって、本発明のように、Zr/(Mn+V)値を10%以上、150%以下とすることにより、高温負荷信頼性の高い積層セラミックコンデンサを得るとが可能になる。   Therefore, as in the present invention, by setting the Zr / (Mn + V) value to 10% or more and 150% or less, it becomes possible to obtain a multilayer ceramic capacitor having high high temperature load reliability.

本発明の実施形態にかかる積層セラミックコンデンサの構成を示す断面図である。It is sectional drawing which shows the structure of the multilayer ceramic capacitor concerning embodiment of this invention. 本発明の実施形態にかかる積層セラミックコンデンサの構成を示す斜視図である。1 is a perspective view showing a configuration of a multilayer ceramic capacitor according to an embodiment of the present invention. 本発明の積層セラミックコンデンサの内部電極の厚みを測定する方法を説明する図である。It is a figure explaining the method to measure the thickness of the internal electrode of the multilayer ceramic capacitor of this invention.

以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。   Embodiments of the present invention will be described below to describe the features of the present invention in more detail.

[実施形態1]
A)誘電体原料粉末の作製
まず、主成分であるBaTiO3の出発原料として、高純度のBaCO3、TiO2の各粉末を準備し、調合した。
次に、この調合粉末をボールミルで湿式混合し、均一に分散させた後、乾燥処理を施して調整粉末を得た。
次いで、得られた調整粉末を1000℃から1200℃の温度(この実施形態では1200℃)で仮焼し、平均粒径が0.10μmの主成分粉末を得た。
[Embodiment 1]
A) Production of Dielectric Material Powder First, high-purity BaCO 3 and TiO 2 powders were prepared and prepared as starting materials for BaTiO 3 as the main component.
Next, this blended powder was wet-mixed with a ball mill and uniformly dispersed, and then subjected to a drying treatment to obtain an adjusted powder.
Next, the obtained adjusted powder was calcined at a temperature of 1000 ° C. to 1200 ° C. (in this embodiment, 1200 ° C.) to obtain a main component powder having an average particle size of 0.10 μm.

他方、副成分として、Al23、SiO2、MgCO3、Dy23、MnO2、V25、ZrO2の各粉末を準備した。
次に、Al23、SiO2、MgCO3、Dy23、MnO2、V25、ZrO2の各粉末を、Tiに対するAl、Si、Mg、Dy、Mn、V、Zrの含有量が所定となるように秤量し、上記のようにして得た主成分粉末に添加することによって、混合粉末を得た。
On the other hand, powders of Al 2 O 3 , SiO 2 , MgCO 3 , Dy 2 O 3 , MnO 2 , V 2 O 5 and ZrO 2 were prepared as subcomponents.
Next, powders of Al 2 O 3 , SiO 2 , MgCO 3 , Dy 2 O 3 , MnO 2 , V 2 O 5 , ZrO 2 are mixed with Al, Si, Mg, Dy, Mn, V, and Zr with respect to Ti. The mixed powder was obtained by measuring so that content might become predetermined, and adding to the main ingredient powder obtained as mentioned above.

各添加成分の比率は、Ti=100モル%に対して、Dy=0.8モル%、Mg=1.1モル%、Al=0.5モル%、Si=1.3モル%となるようにした。   The ratio of each additive component is such that Dy = 0.8 mol%, Mg = 1.1 mol%, Al = 0.5 mol%, Si = 1.3 mol% with respect to Ti = 100 mol%. I made it.

また、Zr、Mn、V量は表1に示す比率で混合した。表1には、「{Zrモル量/(Mnモル量+Vモル量)}×100」の値を併せて示す。   Moreover, Zr, Mn, and V amount were mixed in the ratio shown in Table 1. Table 1 also shows the value of “{Zr molar amount / (Mn molar amount + V molar amount)} × 100”.

Figure 2016056076
Figure 2016056076

次に、この混合粉末をボールミルで湿式混合し、均一に分散させた後、乾燥処理を施して、これをセラミック原料とした。このセラミック原料をICP分析したところ、調合組成と一致していることが確認された。   Next, this mixed powder was wet-mixed with a ball mill and uniformly dispersed, and then subjected to a drying treatment to obtain a ceramic raw material. When this ceramic raw material was analyzed by ICP, it was confirmed that it was consistent with the blended composition.

B)積層セラミックコンデンサの作製
上記セラミック原料に、ポリビニルブチラール系バインダ、可塑剤および有機溶剤としてのエタノールを加え、これらをボールミルにより湿式混合し、セラミックスラリーを作製した。
B) Production of Multilayer Ceramic Capacitor A polyvinyl butyral binder, a plasticizer and ethanol as an organic solvent were added to the ceramic raw material, and these were wet mixed by a ball mill to produce a ceramic slurry.

次いで、このセラミックスラリーをリップ方式によりシート成形し、矩形のセラミックグリーンシートを得た。   Next, this ceramic slurry was formed into a sheet by a lip method to obtain a rectangular ceramic green sheet.

それから、上記セラミックグリーンシート上に、Niを含有する導電性ペーストをスクリーン印刷し、内部電極となるべき導電性ペースト膜(内部電極パターン)を形成した。   Then, a conductive paste containing Ni was screen-printed on the ceramic green sheet to form a conductive paste film (internal electrode pattern) to be an internal electrode.

次に、導電性ペースト膜が形成されたセラミックグリーンシートを、導電ペースト膜の引き出されている側が互い違いになるように複数枚積層し、コンデンサ本体となるべき未焼成の積層体を得た。   Next, a plurality of ceramic green sheets on which the conductive paste film was formed were stacked so that the side from which the conductive paste film was drawn was alternated, and an unfired stacked body to be a capacitor body was obtained.

次に、この積層体を、N2雰囲気中にて、300℃の温度で3時間加熱し、バインダを燃焼させた後、昇温速度100℃/min、酸素分圧10-9〜10-12MPa(この実施形態では10-9MPa)のH2−N2−H2Oガスからなる還元性雰囲気中において、1200℃で10min焼成し、コンデンサ本体である、焼結済みの積層体を得た。 Next, this laminate was heated in a N 2 atmosphere at a temperature of 300 ° C. for 3 hours to burn the binder, and then the temperature rising rate was 100 ° C./min and the oxygen partial pressure was 10 −9 to 10 −12. In a reducing atmosphere consisting of H 2 —N 2 —H 2 O gas of 10 MPa (10 −9 MPa in this embodiment), firing is performed at 1200 ° C. for 10 minutes to obtain a sintered laminate that is a capacitor body. It was.

次に、上記コンデンサ本体の両端面に、ガラスフリットを含有するCuペーストを塗布し、N2雰囲気中において、800℃の温度で焼き付け、内部電極と電気的に接続された外部電極を形成した。これにより、表1の試料番号1〜30の試料(積層セラミックコンデンサ)を得た。
この積層セラミックコンデンサの外部電極を除去した後の積層体を酸により溶解処理し、ICP発光分光分析を行った。その結果、内部電極成分のNiを除いては、調合組成と一致していることが確認された。
Next, a Cu paste containing glass frit was applied to both end faces of the capacitor body, and baked at a temperature of 800 ° C. in an N 2 atmosphere to form an external electrode electrically connected to the internal electrode. Thereby, samples (multilayer ceramic capacitors) of sample numbers 1 to 30 in Table 1 were obtained.
The laminated body after removing the external electrodes of the multilayer ceramic capacitor was dissolved with an acid and subjected to ICP emission spectroscopic analysis. As a result, it was confirmed that the composition was consistent with the composition except for Ni as an internal electrode component.

この積層セラミックコンデンサ50は、図1および図2に示すように、積層されている複数の誘電体セラミック層11と、誘電体セラミック層11間の複数の界面に配設されている複数の内部電極12とを有するセラミック積層体(コンデンサ本体)10と、セラミック積層体10の両端面に、交互に逆側の端面に引き出された内部電極12と導通するように配設された一対の外部電極13a,13bとを備えた構造を有している。なお、外部電極13a,13bには、Niめっき層、Snめっき層を備えた構成とすることも可能である。   As shown in FIGS. 1 and 2, the multilayer ceramic capacitor 50 includes a plurality of laminated dielectric ceramic layers 11 and a plurality of internal electrodes disposed at a plurality of interfaces between the dielectric ceramic layers 11. 12 and a pair of external electrodes 13a disposed on both end faces of the ceramic laminate 10 so as to be electrically connected to the internal electrodes 12 drawn alternately on the opposite end faces. , 13b. The external electrodes 13a and 13b may be configured to include a Ni plating layer and a Sn plating layer.

このようにして得た積層セラミックコンデンサの外形寸法は、図2のL方向の寸法を長さ、W方向の寸法を幅、T方向の寸法を厚さとした場合に、長さL=0.6mm、幅W=0.3mm、厚さT=0.3mmであった。   The external dimensions of the multilayer ceramic capacitor thus obtained are as follows: length L = 0.6 mm when the dimension in the L direction in FIG. 2 is the length, the dimension in the W direction is the width, and the dimension in the T direction is the thickness. The width W was 0.3 mm and the thickness T was 0.3 mm.

また、その他の条件は以下の通りであった。
1)誘電体セラミック層1層の厚み :0.8μm、
2)内部電極1層の厚み :0.7μm、
3)有効誘電体セラミック層の数 :160層、
4)1層の誘電体セラミック層あたりの対向電極面積 :0.15mm2
Other conditions were as follows.
1) Thickness of one dielectric ceramic layer: 0.8 μm,
2) Thickness of one layer of internal electrode: 0.7 μm,
3) Number of effective dielectric ceramic layers: 160 layers
4) Counter electrode area per dielectric ceramic layer: 0.15 mm 2

なお、内部電極層の厚みは以下の方法で測定した。
まず、表1の試料番号1〜30の各試料(積層セラミックコンデンサ)をそれぞれ3個準備し、試料の長さ方向(L方向)と厚み方向(T方向)により規定される面(LT面)が露出するような態様で、各試料の周囲を樹脂で固めた。
The thickness of the internal electrode layer was measured by the following method.
First, three samples (multilayer ceramic capacitors) of sample numbers 1 to 30 in Table 1 were prepared, and a surface (LT surface) defined by the length direction (L direction) and the thickness direction (T direction) of the sample. Each sample was hardened with a resin in such a manner that is exposed.

次に、研磨機により、試料のLT側面を研磨した。このとき、試料の幅方向(W方向)の1/2程度の深さまで研磨を行い、研磨面であるLT面(LT研磨端面)を露出させた。そして、研磨による内部電極のダレをなくすために、研磨終了後、イオンミリングにより研磨表面を加工した。   Next, the LT side surface of the sample was polished by a polishing machine. At this time, polishing was performed to a depth of about ½ of the width direction (W direction) of the sample to expose the LT surface (LT polished end surface) as a polished surface. In order to eliminate sagging of the internal electrode due to polishing, the polished surface was processed by ion milling after polishing.

研磨した試料について、内部電極の厚みを測定した。内部電極の厚みを測定するにあたっては、まず、図3に示すように、試料のLT研磨端面のL方向の1/2程度の位置において、内部電極12とほぼ直交する直線L1を引く(想定する)。
次に、試料の内部電極12が積層されている領域をT方向に3等分に分割し、上部領域、中間領域、下部領域の3つの領域に分割した。
For the polished sample, the thickness of the internal electrode was measured. In measuring the thickness of the internal electrode, first, as shown in FIG. 3, a straight line L1 substantially perpendicular to the internal electrode 12 is drawn at a position of about 1/2 of the L polished end surface of the sample in the L direction (assumed). ).
Next, the region where the internal electrode 12 of the sample was laminated was divided into three equal parts in the T direction, and was divided into three regions: an upper region, an intermediate region, and a lower region.

各領域の最外の内部電極を除き、各領域で、直線L1上の内部電極を無作為に15層ずつ選び、厚みを測定した。ただし、上記直線L1上で内部電極が欠損し、該内部電極を挟む誘電体セラミック層がつながっている等により測定が不可能なものは除いた。なお、内部電極層の厚みは、走査型電子顕微鏡を用いて測定した。
したがって、この実施形態1での内部電極の平均厚みは、試料数3個×3つの領域×15層=135箇所における内部電極の厚みの平均値である。
ただし、内部電極が欠落しているなどの理由で測定できない部分は測定対象から除いた。
Except for the outermost internal electrode in each region, 15 layers of internal electrodes on the straight line L1 were randomly selected in each region, and the thickness was measured. However, those incapable of measurement due to the lack of internal electrodes on the straight line L1 and the connection of dielectric ceramic layers sandwiching the internal electrodes were excluded. The thickness of the internal electrode layer was measured using a scanning electron microscope.
Therefore, the average thickness of the internal electrodes in Embodiment 1 is the average value of the thicknesses of the internal electrodes in the number of samples 3 × 3 regions × 15 layers = 135 locations.
However, parts that could not be measured due to a lack of internal electrodes were excluded from the measurement target.

C)特性評価
次に、表1の試料番号1〜30の各試料(積層セラミックコンデンサ)について、以下のような評価を行なった。
C) Characteristic evaluation Next, the following evaluation was performed for each sample (multilayer ceramic capacitor) of sample numbers 1 to 30 in Table 1.

(1)高温負荷信頼性試験
各試料についてそれぞれ72個のサンプル(被検試料である積層セラミックコンデンサ)を用意した。
(1) High-temperature load reliability test 72 samples (multilayer ceramic capacitors as test samples) were prepared for each sample.

そして、この高温負荷信頼性試験では、各積層セラミックコンデンサに対し、85℃において6.3Vの直流電圧を印加し、一定時間(1000hr、2000hr、3000hr、4000hr)後、室温での絶縁抵抗を確認した。
各積層セラミックコンデンサの絶縁抵抗値が1MΩ以下になった時点を故障とした。
In this high temperature load reliability test, a DC voltage of 6.3 V was applied to each multilayer ceramic capacitor at 85 ° C., and insulation resistance at room temperature was confirmed after a certain time (1000 hr, 2000 hr, 3000 hr, 4000 hr). did.
A failure was determined when the insulation resistance value of each multilayer ceramic capacitor was 1 MΩ or less.

表2に試験の結果を示す。
なお、表2における、1000hr、2000hr、3000hr、4000hrの欄は、各時間における、故障の発生した試料数と、試験に供した試料数の関係(故障の発生した試料数/試験に供した試料数)を示している。
Table 2 shows the test results.
In Table 2, the columns of 1000 hr, 2000 hr, 3000 hr, and 4000 hr indicate the relationship between the number of failed samples and the number of samples subjected to the test (number of failed samples / sample subjected to the test). Number).

Figure 2016056076
Figure 2016056076

なお、表1および表2において、試料番号に*を付した試料は、本発明の要件を備えていない試料である。   In Tables 1 and 2, the sample numbered with * is a sample that does not have the requirements of the present invention.

表1および表2より、本発明の要件を備えていない試料番号1〜5,9,10,21,26,27,28の各試料では、高温負荷信頼性試験における1000hrの時点で、故障の発生が認められた。   From Table 1 and Table 2, in each of the sample numbers 1 to 5, 9, 10, 21, 26, 27, and 28 that do not have the requirements of the present invention, the failure was detected at 1000 hr in the high temperature load reliability test. Occurrence was observed.

これに対し、本発明の要件を満たす試料の場合、高温負荷信頼性試験の1000hrの時点ではもちろん、2000hrの時点でも故障の発生は認められず、高温負荷信頼性が大幅に向上していることが確認された。   On the other hand, in the case of a sample satisfying the requirements of the present invention, the occurrence of a failure is not recognized at the time of 1000 hr of the high temperature load reliability test and at the time of 2000 hr, and the high temperature load reliability is greatly improved. Was confirmed.

また、本発明の要件を満たす試料の場合、高温負荷信頼性試験の3000hrおよび4000hrの時点でも、本発明の要件を備えていない試料に比べて故障の発生数が少ないことが確認された。   Further, in the case of a sample satisfying the requirements of the present invention, it was confirmed that the number of failures was small even at the time of 3000 hr and 4000 hr of the high temperature load reliability test as compared with the sample not having the requirements of the present invention.

この結果から、本発明の要件を備えること、すなわち、「{Zrモル量/(Mnモル量+Vモル量)}×100」の値を10〜150%の範囲とすることにより、高温負荷信頼性の高い積層セラミックコンデンサが得られることがわかる。   From this result, by providing the requirements of the present invention, that is, by setting the value of “{Zr mole amount / (Mn mole amount + V mole amount)} × 100” to a range of 10 to 150%, high temperature load reliability It can be seen that a monolithic ceramic capacitor having a high value can be obtained.

[実施形態2]
焼成後に得られるセラミック積層体(コンデンサ本体)の内部電極の平均厚みを表3に示す範囲、すなわち、0.28〜0.71μmの範囲で変化させたことを除いては、上述の実施形態1の場合と同様にして積層セラミックコンデンサ(表3の試料番号31〜37の試料)を作製した。
[Embodiment 2]
Embodiment 1 described above, except that the average thickness of the internal electrodes of the ceramic laminate (capacitor body) obtained after firing was changed in the range shown in Table 3, that is, in the range of 0.28 to 0.71 μm. In the same manner as described above, multilayer ceramic capacitors (samples of sample numbers 31 to 37 in Table 3) were produced.

表3に、誘電体セラミック層中のZr、Mn、V量を示す。表3には、さらに「{Zrモル量/(Mnモル量+Vモル量)}×100」の値、および、内部電極の厚みを併せて示す。   Table 3 shows the amounts of Zr, Mn, and V in the dielectric ceramic layer. Table 3 further shows the value of “{Zr molar amount / (Mn molar amount + V molar amount)} × 100” and the thickness of the internal electrode.

Figure 2016056076
Figure 2016056076

それから、作製した各試料について、実施形態1の場合と同じ方法、同じ条件で、高温負荷信頼性試験を行った。
その結果を表4に示す。
Then, a high-temperature load reliability test was performed on each manufactured sample under the same method and the same conditions as in the first embodiment.
The results are shown in Table 4.

Figure 2016056076
Figure 2016056076

なお、表4における、1000hr、2000hr、3000hr、4000hrの欄は、各時間における、故障の発生した試料数と、試験に供した試料数の関係(故障の発生した試料数/試験に供した試料数)を示している。   The columns of 1000 hr, 2000 hr, 3000 hr, and 4000 hr in Table 4 indicate the relationship between the number of failed samples and the number of samples subjected to the test (number of failed samples / sample subjected to the test). Number).

表4より、内部電極の厚みが0.5μm以下の試料(試料番号34,35,36,37の試料)の場合、高温負荷信頼性試験の4000時間の時点でも故障の発生は認められず、高温負荷信頼性に特に優れた積層セラミックコンデンサが得られることが確認された。   According to Table 4, in the case of a sample having an internal electrode thickness of 0.5 μm or less (sample Nos. 34, 35, 36, and 37), no failure was observed even at the time of 4000 hours of the high temperature load reliability test. It was confirmed that a multilayer ceramic capacitor with particularly excellent high temperature load reliability can be obtained.

したがって、本発明の積層セラミックコンデンサにおいて、さらに優れた高温負荷信頼性を望む場合には、内部電極の厚みを0.5μm以下とすることが望ましい。   Therefore, in the multilayer ceramic capacitor of the present invention, when further excellent high-temperature load reliability is desired, the thickness of the internal electrode is desirably 0.5 μm or less.

なお、本発明は上記実施形態に限定されるものではなく、発明の範囲内において種々の応用、変形を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various application and deformation | transformation are possible within the scope of the invention.

10 コンデンサ本体(セラミック積層体)
11 誘電体セラミック層
12 内部電極
13a,13b 外部電極
50 積層セラミックコンデンサ
L 積層セラミックコンデンサの長さ
T 積層セラミックコンデンサの高さ
W 積層セラミックコンデンサの幅
10 Capacitor body (ceramic laminate)
DESCRIPTION OF SYMBOLS 11 Dielectric ceramic layer 12 Internal electrode 13a, 13b External electrode 50 Multilayer ceramic capacitor L Length of multilayer ceramic capacitor T Height of multilayer ceramic capacitor W Width of multilayer ceramic capacitor

Claims (3)

複数の誘電体セラミック層と、前記誘電体セラミック層を介して積層された複数の内部電極とを備えるセラミック積層体と、前記内部電極と導通するように前記セラミック積層体に配設された外部電極とを備えた積層セラミックコンデンサであって、
前記誘電体セラミック層は、BaとTiとを含むペロブスカイト型化合物と、Zrと、Mnと、Vとを含有し、
下記の式(1)により求められる、Zrのモル量の、MnとVの合計モル量に対する割合が、10〜150%の範囲にあることを特徴とする積層セラミックコンデンサ。
Zrのモル量の、MnとVの合計モル量に対する割合(%)={Zrモル量/(Mnモル量+Vモル量)}×100……(1)
A ceramic laminate comprising a plurality of dielectric ceramic layers and a plurality of internal electrodes laminated via the dielectric ceramic layers, and an external electrode disposed in the ceramic laminate so as to be electrically connected to the internal electrodes A multilayer ceramic capacitor comprising:
The dielectric ceramic layer contains a perovskite type compound containing Ba and Ti, Zr, Mn, and V,
A monolithic ceramic capacitor characterized in that the ratio of the molar amount of Zr to the total molar amount of Mn and V determined by the following formula (1) is in the range of 10 to 150%.
Ratio of molar amount of Zr to total molar amount of Mn and V (%) = {Zr molar amount / (Mn molar amount + V molar amount)} × 100 (1)
前記式(1)により求められる、前記Zrのモル量の、MnとVの合計モル量に対する割合が、40〜100%であることを特徴とする請求項1記載の積層セラミックコンデンサ。   2. The multilayer ceramic capacitor according to claim 1, wherein a ratio of the molar amount of Zr to the total molar amount of Mn and V obtained by the formula (1) is 40 to 100%. 前記内部電極の平均厚みが0.5μm以下であることを特徴とする請求項1または2記載の積層セラミックコンデンサ。   3. The multilayer ceramic capacitor according to claim 1, wherein an average thickness of the internal electrodes is 0.5 μm or less.
JP2014186306A 2014-09-12 2014-09-12 Monolithic ceramic capacitors Active JP6680457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014186306A JP6680457B2 (en) 2014-09-12 2014-09-12 Monolithic ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014186306A JP6680457B2 (en) 2014-09-12 2014-09-12 Monolithic ceramic capacitors

Publications (2)

Publication Number Publication Date
JP2016056076A true JP2016056076A (en) 2016-04-21
JP6680457B2 JP6680457B2 (en) 2020-04-15

Family

ID=55757364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186306A Active JP6680457B2 (en) 2014-09-12 2014-09-12 Monolithic ceramic capacitors

Country Status (1)

Country Link
JP (1) JP6680457B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251173A (en) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd Laminated ceramic electronic component
WO2008066140A1 (en) * 2006-11-29 2008-06-05 Kyocera Corporation Multilayered ceramic capacitor
JP2011136896A (en) * 2009-12-31 2011-07-14 Samsung Electro-Mechanics Co Ltd Dielectric ceramic composition and multilayer ceramic capacitor containing the same
JP2011207630A (en) * 2010-03-29 2011-10-20 Murata Mfg Co Ltd Dielectric ceramic composition and monolithic ceramic capacitor
WO2013027500A1 (en) * 2011-08-23 2013-02-28 株式会社村田製作所 Laminated ceramic capacitor and method for producing laminated ceramic capacitor
JP2013136501A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Dielectric composition and ceramic electronic part including the same
JP2013229551A (en) * 2012-03-30 2013-11-07 Taiyo Yuden Co Ltd Multilayer ceramic capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251173A (en) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd Laminated ceramic electronic component
WO2008066140A1 (en) * 2006-11-29 2008-06-05 Kyocera Corporation Multilayered ceramic capacitor
JP2011136896A (en) * 2009-12-31 2011-07-14 Samsung Electro-Mechanics Co Ltd Dielectric ceramic composition and multilayer ceramic capacitor containing the same
JP2011207630A (en) * 2010-03-29 2011-10-20 Murata Mfg Co Ltd Dielectric ceramic composition and monolithic ceramic capacitor
WO2013027500A1 (en) * 2011-08-23 2013-02-28 株式会社村田製作所 Laminated ceramic capacitor and method for producing laminated ceramic capacitor
JP2013136501A (en) * 2011-12-27 2013-07-11 Samsung Electro-Mechanics Co Ltd Dielectric composition and ceramic electronic part including the same
JP2013229551A (en) * 2012-03-30 2013-11-07 Taiyo Yuden Co Ltd Multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP6680457B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP5564944B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5811103B2 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP6213337B2 (en) Dielectric porcelain composition and electronic component
JP5224147B2 (en) Dielectric ceramic and multilayer ceramic capacitor
KR101494851B1 (en) Laminated ceramic capacitor and method for producing laminated ceramic capacitor
KR20160065012A (en) Multilayer ceramic capacitor and method for producing multilayer ceramic capacitor
JP5370212B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP6624473B2 (en) Multilayer ceramic capacitors
JP5109872B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2014097678A1 (en) Laminated ceramic capacitor and method for producing same
JP5423682B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP6089770B2 (en) Dielectric porcelain composition and electronic component
JP5240199B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP5035028B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5655866B2 (en) Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP5939300B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPWO2006067958A1 (en) Dielectric ceramic and multilayer ceramic capacitors
WO2014167754A1 (en) Dielectric ceramic material, and laminated ceramic capacitor
JP2011071162A (en) Multilayer ceramic electronic component
JP2013211398A (en) Multilayer ceramic capacitor
JPWO2015005027A1 (en) Multilayer ceramic capacitor
JP2008081351A (en) Dielectric ceramic, multilayer ceramic capacitor, and method for manufacturing the same
JP2005187296A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2011042529A (en) Method for manufacturing dielectric ceramic composition
JP6680457B2 (en) Monolithic ceramic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200319

R150 Certificate of patent or registration of utility model

Ref document number: 6680457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150