JP2016053128A - Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor - Google Patents

Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor Download PDF

Info

Publication number
JP2016053128A
JP2016053128A JP2014179975A JP2014179975A JP2016053128A JP 2016053128 A JP2016053128 A JP 2016053128A JP 2014179975 A JP2014179975 A JP 2014179975A JP 2014179975 A JP2014179975 A JP 2014179975A JP 2016053128 A JP2016053128 A JP 2016053128A
Authority
JP
Japan
Prior art keywords
photocatalyst
biodegradable resin
titanium oxide
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014179975A
Other languages
Japanese (ja)
Inventor
安藤 仁
Hitoshi Ando
仁 安藤
敦好 中山
Atsuyoshi Nakayama
敦好 中山
山野 尚子
Naoko Yamano
尚子 山野
典起 川崎
Noriki Kawasaki
典起 川崎
浩一 上垣
Koichi Kamigaki
浩一 上垣
靖 黒田
Yasushi Kuroda
黒田  靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Resonac Holdings Corp
Original Assignee
Showa Denko KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical Showa Denko KK
Priority to JP2014179975A priority Critical patent/JP2016053128A/en
Publication of JP2016053128A publication Critical patent/JP2016053128A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique for a material comprising a biodegradable resin, by which the material maintains its strength in use and can be quickly degraded after its disposal.SOLUTION: The present invention relates to a resin composition with controlled biodegradability, comprising a biodegradable resin and a photocatalyst, with the content of the photocatalyst of 0.005-10 mass%.SELECTED DRAWING: None

Description

本発明は、生分解性樹脂の樹脂組成物、分解制御方法及び分解制御剤に関する。   The present invention relates to a resin composition of a biodegradable resin, a decomposition control method, and a decomposition control agent.

生分解性材料は随時、外部からの微生物等の作用により生分解が進行し、刻々と劣化してしまうため、既存の生分解性材料は一定期間、物性の信頼性が必要とされる分野で用いることができないという問題を抱え、普及が進んでいない。このように生分解の「メリハリ」がないと最終的な目的である「使用後は分解して消失する」という機能が発現されない。   Since biodegradable materials are subject to biodegradation due to the action of microorganisms from the outside at any time and deteriorate every moment, existing biodegradable materials are used in fields where reliability of physical properties is required for a certain period of time. There is a problem that it cannot be used, and the spread is not progressing. In this way, the function of “decomposes and disappears after use”, which is the final purpose, does not appear unless there is “sharpness” of biodegradation.

特許文献1は、ポリ乳酸系重合体と酸化チタンを含む組成物を開示しているが、その中では親水性であるアナターゼ型や、親水化させたルチル型酸化チタンを5重量部以上混合すると生分解が促進され、疎水性であるルチル型酸化チタンを5重量部以上混合すると生分解抑制され、酸化チタンの配合量が少ないと生分解性の変化がほとんど認められないことを開示する。また、特許文献2,3,4,5では紫外線で光触媒活性の高いアナターゼ型酸化チタンと生分解性樹脂を含む組成物が光分解性を持つことを開示する。特許文献6ではアナターゼ型もしくはルチル型酸化チタンを微分散させたポリエチレンブチレートがブラックライトによるUV照射と酵素を同時に作用させると生分解が促進されることを開示する。これらの特許文献は使用中の生分解性抑制を目的としていない。   Patent Document 1 discloses a composition containing a polylactic acid-based polymer and titanium oxide. Among them, a hydrophilic anatase type or a hydrolyzed rutile type titanium oxide is mixed with 5 parts by weight or more. It is disclosed that biodegradation is accelerated and biodegradation is suppressed when 5 parts by weight or more of rutile-type titanium oxide, which is hydrophobic, is mixed, and that there is almost no change in biodegradability when the amount of titanium oxide is small. Patent Documents 2, 3, 4, and 5 disclose that a composition containing anatase-type titanium oxide having high photocatalytic activity under ultraviolet light and a biodegradable resin has photodegradability. Patent Document 6 discloses that polyethylene butyrate finely dispersed in anatase-type or rutile-type titanium oxide promotes biodegradation when UV irradiation with black light and an enzyme act simultaneously. These patent documents do not aim at suppressing biodegradability during use.

特開2004-75727JP2004-75727 特開平8-1806JP 8-1806 特開平9-194692Japanese Patent Laid-Open No. 9-194922 特開2001-302891JP2001-302891 特開2004-99739JP2004-99739 特開2008-303300JP2008-303300

本発明は、生分解性樹脂を含む材料を使用時には強度を維持し、廃棄されると速やかに分解する技術を提供することを目的とする。   An object of the present invention is to provide a technique for maintaining strength when a material containing a biodegradable resin is used and for quickly decomposing it when discarded.

使用中は太陽光の当たる環境にあり、廃棄後は土壌に埋設され光の当たらなくなる状態になることを想定し、可視域にまで光触媒活性を有する改質酸化チタンなどの光触媒を生分解性樹脂に練りこむことにより、光照射下では光酸化作用による樹脂表面近傍での滅菌、生分解抑制が可能であると本発明者は考えた。本発明は、以下の生分解性樹脂の樹脂組成物、分解制御方法及び分解制御剤を提供するものである。
項1. 生分解性樹脂と光触媒を含み、光触媒の配合量が0.005〜10質量%である、生分解性が制御された樹脂組成物。
項2. 光触媒の吸収波長域が可視域から紫外域を含む、項1に記載の樹脂組成物。
項3. 生分解性樹脂が脂肪族ポリエステルである項1又は2に記載の樹脂組成物。
項4. 光触媒が酸化チタンを含む、項1〜3のいずれかに記載の樹脂組成物。
項5. 光触媒が気相法で製造された酸化チタンを含む、項4に記載の樹脂組成物。
項6. 生分解性樹脂に光触媒を全体の0.005〜10質量%の量で配合することにより明所で生分解性樹脂の分解を抑制し、暗所で生分解性樹脂の分解を進行させることを特徴とする生分解性樹脂の分解制御方法。
項7. 光触媒の吸収波長域が可視域から紫外域を含む、項6に記載の生分解性樹脂の分解制御方法。
項8. 光触媒が酸化チタンを含む、項6又は7に記載の生分解性樹脂の分解制御方法。
項9. 光触媒が気相法で製造された酸化チタンを含む、項8に記載の生分解性樹脂の分解制御方法。
項10. 光触媒からなる生分解性樹脂の分解制御剤。
項11. 光触媒の吸収波長域が可視域から紫外域を含む、項10に記載の生分解性樹脂の分解制御剤。
項12. 光触媒が酸化チタンである、項10又は11に記載の生分解性樹脂の分解制御剤。
項13. 光触媒が気相法で製造された酸化チタンを含む、項12に記載の生分解性樹脂の分解制御剤。
A biodegradable resin such as modified titanium oxide that has photocatalytic activity in the visible range, assuming that it is in an environment where it is exposed to sunlight during use and is buried in the soil after disposal and is no longer exposed to light. The inventors of the present invention thought that sterilization and biodegradation suppression in the vicinity of the resin surface by photooxidation can be performed under light irradiation. The present invention provides the following biodegradable resin composition, decomposition control method and decomposition control agent.
Item 1. A resin composition having controlled biodegradability, comprising a biodegradable resin and a photocatalyst, wherein the amount of the photocatalyst is 0.005 to 10% by mass.
Item 2. Item 2. The resin composition according to Item 1, wherein the absorption wavelength region of the photocatalyst includes the visible region to the ultraviolet region.
Item 3. Item 3. The resin composition according to Item 1 or 2, wherein the biodegradable resin is an aliphatic polyester.
Item 4. Item 4. The resin composition according to any one of Items 1 to 3, wherein the photocatalyst comprises titanium oxide.
Item 5. Item 5. The resin composition according to Item 4, wherein the photocatalyst comprises titanium oxide produced by a gas phase method.
Item 6. By mixing the photocatalyst with the biodegradable resin in an amount of 0.005 to 10% by mass of the whole, it is possible to suppress the decomposition of the biodegradable resin in a bright place and to proceed with the decomposition of the biodegradable resin in the dark place. A method for controlling the degradation of a biodegradable resin.
Item 7. Item 7. The biodegradable resin decomposition control method according to Item 6, wherein the absorption wavelength range of the photocatalyst includes a visible region to an ultraviolet region.
Item 8. Item 8. The biodegradable resin decomposition control method according to Item 6 or 7, wherein the photocatalyst contains titanium oxide.
Item 9. Item 9. The biodegradable resin decomposition control method according to Item 8, wherein the photocatalyst includes titanium oxide produced by a gas phase method.
Item 10. Biodegradable resin degradation control agent consisting of photocatalyst.
Item 11. Item 11. The biodegradable resin degradation control agent according to Item 10, wherein the absorption wavelength region of the photocatalyst includes the visible region to the ultraviolet region.
Item 12. Item 12. The biodegradable resin degradation control agent according to Item 10 or 11, wherein the photocatalyst is titanium oxide.
Item 13. Item 13. The biodegradable resin degradation control agent according to Item 12, wherein the photocatalyst comprises titanium oxide produced by a gas phase method.

本発明により、生分解性樹脂に関し、使用時(光照射下)では光酸化作用による樹脂表面近傍での滅菌作用により樹脂表面への微生物の付着が抑制され、その結果、生分解反応が抑制されて必要な強度を維持し、廃棄時(暗所)では光酸化作用は起こらず、本来の生分解が速やかに進行する。   The present invention relates to a biodegradable resin, and in use (under light irradiation), sterilization in the vicinity of the resin surface due to photooxidation action suppresses the adhesion of microorganisms to the resin surface, and as a result, the biodegradation reaction is suppressed. The required strength is maintained, and when it is discarded (in the dark), photooxidation does not occur and the original biodegradation proceeds rapidly.

光照射時及び暗所での抗菌活性を示す。Antibacterial activity during light irradiation and in the dark. 土壌表面にフィルムを2枚置いたときの図Illustration when two films are placed on the soil surface 太陽光照射及び暗所での光触媒の濃度と28日後の生分解率の関係を示すグラフ。The graph which shows the relationship between the density | concentration of the photocatalyst in sunlight irradiation and a dark place, and the biodegradation rate after 28 days. 酸化チタン含有フィルムを土壌表面においた場合(明所、暗所)及び埋め込んだ場合の写真を示す。The photograph is shown when the titanium oxide-containing film is placed on the soil surface (light or dark) and embedded. 光照射時及び暗所での酵素溶液中の生分解性を示す。Biodegradability in enzyme solution during light irradiation and in the dark. 酵素を用いた生分解性評価。37℃、12h毎に光照射/暗所を切替Biodegradability evaluation using enzymes. Switch between light irradiation and dark place every 12 hours at 37 ° C

生分解性樹脂としては、ポリ乳酸、ポリグリコール酸、ポリヒドロキシブチレート、ポリヒドロキシアルカノエート、ポリブチレンサクシネート、ポリビニルアルコール、酢酸セルロース、有機酸で修飾された糖鎖ポリマー、ポリエチレンサクシネート、ポリカプロラクトン、ポリブチレンサクシネートアジペート、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートカーボネート、ポリアミド4およびこれらの共重合体、例えば、乳酸−グリコール酸共重合体、ポリアミド4・カプロラクトン共重合体などの少なくとも一つが挙げられる。これらは混合物として用いても良い。中でも脂肪族ポリエステルが好ましい。具体的にはポリ乳酸、ポリカプロラクトン、ポリブチルサクシネート、ポリブチレンサクシネートアジペートやこれらの混合物が好ましい。生分解性樹脂の数平均分子量は3000〜2000000程度,好ましくは5000〜1000000程度,より好ましくは10000〜500000程度である。数平均分子量は、高速GPCシステム(東ソー社製、(HLC-8220GPCシステム))により、ポリスチレンを標準物質として用いて測定することができる。   Biodegradable resins include polylactic acid, polyglycolic acid, polyhydroxybutyrate, polyhydroxyalkanoate, polybutylene succinate, polyvinyl alcohol, cellulose acetate, sugar chain polymer modified with organic acid, polyethylene succinate, poly At least one of caprolactone, polybutylene succinate adipate, polybutylene adipate terephthalate, polybutylene succinate carbonate, polyamide 4 and copolymers thereof, such as lactic acid-glycolic acid copolymer, polyamide 4 / caprolactone copolymer, etc. Can be mentioned. These may be used as a mixture. Of these, aliphatic polyesters are preferred. Specifically, polylactic acid, polycaprolactone, polybutyl succinate, polybutylene succinate adipate and mixtures thereof are preferable. The number average molecular weight of the biodegradable resin is about 3000 to 2,000,000, preferably about 5,000 to 1,000,000, and more preferably about 10,000 to 500,000. The number average molecular weight can be measured with a high-speed GPC system (manufactured by Tosoh Corporation, (HLC-8220GPC system)) using polystyrene as a standard substance.

光触媒とは、光を吸収することで電荷分離が起こり、酸化還元反応を生じせしめる物質のことであり、そのような作用が報告されている物質であれば、特に制限はない。光触媒となりうる金属酸化物として、酸化チタン、酸化亜鉛、酸化錫、三酸化ビスマス、酸化タングステン、酸化第二鉄、チタン酸ストロンチウムなどが例示できる。また、これらの光触媒活性を向上させるために、別の金属をドープさせたものや、表面に金属を含む化合物を担持させたものなども使用できる。汎用性などから、金属酸化物基材としては、酸化チタンまたは酸化タングステンが好ましい。より好ましくは、酸化チタンであり、さらに好ましくは、気相法で得られた酸化チタンである。特に好ましくは、気相法で得られたルチル型酸化チタンである。ここで言う「気相法」とは、四塩化チタンを気化させ、500℃以上の高温の下、酸素、または酸化性ガスと接触させることにより、酸化チタンを製造させる技術を意味する。気相法で得られた酸化チタンは、結晶性が高く、粒子が微細であることが知られており、光触媒としては好適である。また、近年、ルチル型酸化チタンを基材とした金属修飾酸化チタンが、可視光応答性に優れることが報告されており、本発明ではこれを用いることが好ましい。   The photocatalyst is a substance that causes charge separation by absorbing light and causes a redox reaction, and is not particularly limited as long as it has been reported to have such an action. Examples of the metal oxide that can serve as a photocatalyst include titanium oxide, zinc oxide, tin oxide, bismuth trioxide, tungsten oxide, ferric oxide, and strontium titanate. Moreover, in order to improve these photocatalytic activities, what doped another metal, what carried the compound containing a metal on the surface, etc. can be used. In view of versatility, the metal oxide substrate is preferably titanium oxide or tungsten oxide. Titanium oxide is more preferable, and titanium oxide obtained by a vapor phase method is more preferable. Particularly preferred is rutile titanium oxide obtained by a vapor phase method. The “gas phase method” here means a technique for producing titanium oxide by vaporizing titanium tetrachloride and bringing it into contact with oxygen or an oxidizing gas at a high temperature of 500 ° C. or higher. Titanium oxide obtained by a vapor phase method is known to have high crystallinity and fine particles, and is suitable as a photocatalyst. In recent years, it has been reported that metal-modified titanium oxide based on rutile-type titanium oxide is excellent in visible light responsiveness, and this is preferably used in the present invention.

表面に修飾する金属成分としては、白金、パラジウム、銀、銅、鉄の金属、またはこれらを含む化合物が例示できる。価格面から、銀、銅、鉄、から選ばれた少なくとも1種類を含む化合物が好ましい。   Examples of the metal component to be modified on the surface include platinum, palladium, silver, copper, and iron metals, or compounds containing these. In view of price, a compound containing at least one selected from silver, copper, and iron is preferable.

よって、本発明で好ましい光触媒は、銅系化合物修飾酸化チタン、鉄系化合物修飾酸化チタン、銅系化合物修飾酸化タングステンが挙げられる。さらに好ましくは、銅系化合物修飾酸化チタンで、その中でも特に好ましいのは、基材となる酸化チタンとして気相法により得られたルチル型酸化チタンを使用した物である。   Therefore, preferable photocatalysts in the present invention include copper-based compound modified titanium oxide, iron-based compound modified titanium oxide, and copper-based compound modified tungsten oxide. More preferably, it is a copper compound-modified titanium oxide, and particularly preferred is a product using rutile titanium oxide obtained by a vapor phase method as titanium oxide to be a base material.

光触媒の光の吸収帯は、吸収波長域が可視域から紫外域が好ましいが、紫外域のみであってもよい。光触媒にとって有効な可視域とは400nm〜600nm程度であり、紫外域は200〜400nm程度である。可視域として、400nm〜500nmでもよい。さらには、400〜450nmであってもよい。光触媒の光の吸収帯は、上記の可視域及び/又は可視域の一部であってもよく、例えば200〜600nm程度、好ましくは200〜500nmである。酸化チタンは通常400nm以下の紫外域の吸収帯を持つが、Cu、Ni、Sb、Wなどを単独で又は組み合わせて酸化チタンにドープすることで、吸収波長域が紫外域から可視域の酸化チタンを得ることができる。また、表面に金属化合物を修飾することで、400〜500nm付近の吸収を持つようになる。このように、ドープしたり表面修飾したりした酸化チタンを使用することができる。また、酸化タングステンは、紫外域から500nm以下の可視域にわたる広い吸収を有しており、これを使用することもできる。また、銅などの金属化合物を修飾した酸化タングステンを用いることもできる。本発明の好ましい光触媒は、このような吸収波長域が可視域から紫外域の酸化チタンであり、より好ましくは、吸収波長域が可視域から紫外域の銅系化合物修飾酸化タングステン、銅系化合物修飾ルチル型酸化チタン、鉄系化合物修飾ルチル型酸化チタンである。   The light absorption band of the photocatalyst is preferably in the visible wavelength region to the ultraviolet region, but may be only in the ultraviolet region. The visible range effective for the photocatalyst is about 400 nm to 600 nm, and the ultraviolet range is about 200 to 400 nm. The visible region may be 400 nm to 500 nm. Furthermore, it may be 400 to 450 nm. The light absorption band of the photocatalyst may be the visible region and / or part of the visible region, for example, about 200 to 600 nm, preferably 200 to 500 nm. Titanium oxide usually has an absorption band in the ultraviolet range of 400 nm or less, but by doping titanium oxide with Cu, Ni, Sb, W, etc. alone or in combination, the absorption wavelength range is titanium oxide with an ultraviolet to visible range. Can be obtained. In addition, by modifying the surface with a metal compound, it has absorption in the vicinity of 400 to 500 nm. Thus, doped or surface-modified titanium oxide can be used. Tungsten oxide has a wide absorption ranging from the ultraviolet region to the visible region of 500 nm or less, and this can also be used. Alternatively, tungsten oxide obtained by modifying a metal compound such as copper can be used. A preferred photocatalyst of the present invention is titanium oxide having such an absorption wavelength range from the visible range to the ultraviolet range, and more preferably, a copper compound modified tungsten oxide having a absorption wavelength range from the visible range to the ultraviolet range, and a copper compound modification. Rutile type titanium oxide and iron-based compound modified rutile type titanium oxide.

本発明の樹脂組成物において、光触媒の配合量は0.005〜10質量%程度、好ましくは0.01〜8質量%程度、より好ましくは、0.03〜7質量%程度、さらに好ましくは、0.05〜6質量%程度、特に好ましくは0.1〜5質量%程度である。光触媒を多量に配合すると光照射下で樹脂の光分解が起こったり、光触媒として用いる化合物そのものの持つ抗菌性が作用し生分解制御がうまく働かなくなることがあるので過剰の配合は好ましくない。   In the resin composition of the present invention, the amount of the photocatalyst is about 0.005 to 10% by mass, preferably about 0.01 to 8% by mass, more preferably about 0.03 to 7% by mass, and still more preferably, It is about 0.05-6 mass%, Most preferably, it is about 0.1-5 mass%. When a large amount of the photocatalyst is blended, the resin is photodegraded under light irradiation, or the antibacterial property of the compound itself used as the photocatalyst may act and the biodegradation control may not work well.

本発明の樹脂組成物は、光触媒により生分解性樹脂の分解制御と抗菌作用の両方を発現する。   The resin composition of the present invention exhibits both degradation control and antibacterial action of a biodegradable resin by a photocatalyst.

本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、可塑剤、滑剤、離型剤、難燃剤、帯電防止剤、酸化防止剤、顔料、充填剤等を添加することができる。   To the resin composition of the present invention, a plasticizer, a lubricant, a mold release agent, a flame retardant, an antistatic agent, an antioxidant, a pigment, a filler and the like can be added as long as the effects of the present invention are not impaired. .

本発明における生分解性樹脂と光触媒の混練は、2軸熱ロール、バンバリーミキサー、二軸押出機等で常法に従い行うことができる。混練時の温度は120〜250℃程度であり、時間は1分〜30分程度が好ましい。   In the present invention, the biodegradable resin and the photocatalyst can be kneaded according to a conventional method using a biaxial heat roll, a Banbury mixer, a twin screw extruder, or the like. The temperature at the time of kneading is about 120 to 250 ° C., and the time is preferably about 1 to 30 minutes.

本発明の樹脂組成物は、優れた耐久性や耐候性、抗菌性を有する塗膜を形成できることから、例えば、衣類、手袋、シーツ、布団カバーなどの寝具、内装材やその周辺部材に用いられる各種の建材、家具、携帯電話、家電製品、OA機器、自動車内装材等の表面被覆用コーティング剤として好適に使用することができる。   Since the resin composition of the present invention can form a coating film having excellent durability, weather resistance, and antibacterial properties, it is used, for example, in bedding such as clothing, gloves, sheets, and futon covers, interior materials, and peripheral members thereof. It can be suitably used as a coating agent for surface coating of various building materials, furniture, mobile phones, home appliances, OA equipment, automobile interior materials and the like.

前記したような種々の基材上に、前記コーティング剤を塗装して塗装物を得ることができる。その際に、(1)前記コーティング剤を基材に直接塗装する、(2)予め基材上に下塗り塗料を塗装してから、前記コーティング剤を上塗り塗料として塗装する、(3)基材に下塗り塗料として前記コーティング剤を塗装し、次いで別の上塗り塗料を塗装し塗膜を形成させる等の塗装方法により塗装物を得ることができる。   On the various base materials as described above, the coating agent can be applied to obtain a coated product. At that time, (1) the coating agent is directly applied to the substrate, (2) the primer coating is applied on the substrate in advance, and then the coating agent is applied as the top coating. (3) the substrate A coated product can be obtained by a coating method such as applying the coating agent as a base coat and then applying another top coat to form a coating film.

本発明の樹脂組成物を塗装する方法としては、例えば、刷毛塗り、ローラー塗装、スプレー塗装、浸漬塗装、フロー・コーター塗装、ロール・コーター塗装、電着塗装等が挙げられる。   Examples of the method for coating the resin composition of the present invention include brush coating, roller coating, spray coating, dip coating, flow coater coating, roll coater coating, and electrodeposition coating.

本発明の樹脂組成物は、押出成形、真空及び/または圧空成形、射出成形、ブロー成形等の方法によって、成形体を得ることができる。たとえば、農業用や食品包装用のフィルムまたはシート、各種カードや鉄道の切符、園芸用ポット、カップやトレー等の食品用容器、ブリスターパック容器、各種流動体用容器、各種射出成形体、繊維、不織布、およびラミネート加工品等の複合材料を得ることができる。   The resin composition of this invention can obtain a molded object by methods, such as extrusion molding, vacuum and / or pressure molding, injection molding, blow molding. For example, films and sheets for agriculture and food packaging, various cards and railroad tickets, horticultural pots, food containers such as cups and trays, blister pack containers, various fluid containers, various injection molded articles, fibers, Composite materials such as nonwoven fabrics and laminated products can be obtained.

以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples.

実施例1
(1)光触媒の入った生分解性樹脂の調製方法
生分解性樹脂はカプロラクトン/乳酸コポリマー(組成比:カプロラクトン90-80mol%、乳酸10-20mol%)を用い、クロロホルム溶液(42.4w/v%溶液)とした。光触媒は昭和電工のルミレッシュCT-2(Cu/TiO2、気相法で製造されたルチル型酸化チタンを含む)を用いた。粉末状の光触媒はクロロホルムに入れ(1.27 w/v%)、スターラーでよく撹拌した後、ポリマー溶液と光触媒溶液を各種比率にて混合し、超音波洗浄機を使って(28 kHz, 30分)、均一な分散液とした。分散液をシャーレに移し、ゆっくりと溶剤を蒸発させて、光触媒入りのポリマーフィルムを得た。
Example 1
(1) Preparation method of biodegradable resin containing photocatalyst The biodegradable resin is caprolactone / lactic acid copolymer (composition ratio: caprolactone 90-80 mol%, lactic acid 10-20 mol%) and chloroform solution (42.4w / v% Solution). As the photocatalyst, Lumiresh CT-2 (Cu / TiO 2 including rutile titanium oxide produced by a vapor phase method) from Showa Denko was used. The powdered photocatalyst is placed in chloroform (1.27 w / v%), stirred well with a stirrer, and then mixed with the polymer solution and photocatalyst solution at various ratios, using an ultrasonic cleaner (28 kHz, 30 minutes) A uniform dispersion was obtained. The dispersion was transferred to a petri dish and the solvent was slowly evaporated to obtain a polymer film containing a photocatalyst.

(2)光触媒の入った生分解性樹脂の抗菌活性
ポリマーフィルムのEscherichia coliに対する光照射下(4000 lx、4 h)での抗菌活性をJIS R1702に準じたフィルム密着法にて評価した。0.05〜5.0 wt%光触媒を含むフィルムの抗菌活性を評価した結果、光触媒濃度が0.3 wt%以上になると、光照射(4000 lx、4 h)によってEscherichia coliに対して抗菌活性を発現した。しかし、酸化チタン濃度が0.7 wt%以上では暗所下(0.2 lx)でも抗菌活性を示した。酸化チタン濃度が0.3〜0.5 wt%で光照射によって抗菌活性の発現の有無が制御できた(図1)。
(2) Antibacterial activity of biodegradable resin containing photocatalyst The antibacterial activity of the polymer film against Escherichia coli under light irradiation (4000 lx, 4 h) was evaluated by a film adhesion method according to JIS R1702. As a result of evaluating the antibacterial activity of the film containing 0.05 to 5.0 wt% photocatalyst, when the photocatalyst concentration became 0.3 wt% or more, the antibacterial activity was expressed against Escherichia coli by light irradiation (4000 lx, 4 h). However, when the titanium oxide concentration was 0.7 wt% or more, antibacterial activity was exhibited even in the dark (0.2 lx). The presence or absence of antibacterial activity could be controlled by light irradiation at a titanium oxide concentration of 0.3 to 0.5 wt% (FIG. 1).

(3)土壌表面での生分解性
尼崎市内の畑から採取した土壌を用いてフィルムの生分解性試験を行った。植木ポットに土壌200 g(水分率24%、微生物数3.11×107 cfu/g)を入れ、土壌表面に各種濃度の光触媒入りフィルム(15×15 mm)を2枚ずつ設置した(図2A)。光照射条件では、実験室内の太陽光の当たる場所に設置し、暗所条件は、同じ場所で蓋をして遮光した。両者で土壌水分率に差が生じないようポット全体の重量を毎日計量し、減量分の水分を補充した。28日後にフィルムを回収し、重量減少から分解率を算出した。
(3) Biodegradability on the soil surface Film biodegradability was tested using soil collected from fields in Amagasaki City. 200 g soil (water content 24%, microbial count 3.11 × 10 7 cfu / g) was put in the plant pot, and two films of photocatalysts (15 × 15 mm) with various concentrations were installed on the soil surface (Fig. 2A) . In the light irradiation condition, it was installed in a place exposed to sunlight in the laboratory, and in the dark place, the light was covered with a lid in the same place. The weight of the whole pot was weighed every day so that there was no difference in soil moisture content between the two, and the reduced amount of water was replenished. The film was collected after 28 days, and the decomposition rate was calculated from the weight reduction.

28日後では、太陽光の当たる場所では、光触媒を含まないフィルムの分解率は53%となった。光触媒濃度が高くなるにつれて生分解が抑制され、濃度が5 wt%のとき、分解率が34%に低下した。光触媒をコンポジットすることで生分解が抑制された(図2B)。
一方、暗所では、光触媒を含まないフィルムの分解率は48%となった。しかし、濃度5 wt%では、分解率が71%まで高くなり、光触媒をコンポジット化することで生分解が促進された(図2B)。
After 28 days, the decomposition rate of the film not containing the photocatalyst was 53% in the place exposed to sunlight. Biodegradation was suppressed as the photocatalyst concentration increased, and the degradation rate decreased to 34% when the concentration was 5 wt%. Biodegradation was suppressed by compositing the photocatalyst (FIG. 2B).
On the other hand, in the dark, the decomposition rate of the film not containing the photocatalyst was 48%. However, at a concentration of 5 wt%, the degradation rate increased to 71%, and biodegradation was promoted by compositing the photocatalyst (Fig. 2B).

図2Cに示すように、土壌表面においた樹脂フィルムを7日ごとに取り出したところ、暗所では酸化チタンの含有の有無に関わらず、生分解が進行していくのに対して、明所では酸化チタン含有量の多いものほど生分解が抑制されることがわかる。また、土壌に埋め込んだ場合、酸化チタンを含有する樹脂フィルムでも生分解は進行し、酸化チタンを含有しない樹脂フィルムと同程度の分解速度を示した。   As shown in Fig. 2C, when the resin film placed on the soil surface was taken out every 7 days, biodegradation progressed in the dark regardless of the presence or absence of titanium oxide, whereas in the light place It can be seen that the higher the titanium oxide content, the more biodegradation is suppressed. Moreover, when embedded in soil, biodegradation progressed even with resin films containing titanium oxide, and showed a decomposition rate comparable to that of resin films not containing titanium oxide.

(4)酵素水溶液中での生分解性
酵素を用いた加水分解試験は、光触媒入りフィルム(20 mg)とリパーゼAKアマノ(10 μg/mL)をリン酸バッファー(pH 7.0、40 mL)中で37℃、4日間、光照射下と暗所下で行った。ポリマーの加水分解によって生じた試験液中の水溶性有機物量をTOC濃度(Total Organic Carbon Concentration)として測定し、フィルムの生分解性を評価した。光照射(蛍光灯8000〜10000 lx)による酵素加水分解性の抑制効果は、図3Aのように光触媒濃度が0.5 wt%以上で発現することを確認した。
(4) Biodegradability in enzyme aqueous solution In the hydrolysis test using an enzyme, a film containing photocatalyst (20 mg) and lipase AK Amano (10 μg / mL) were added in phosphate buffer (pH 7.0, 40 mL). The test was performed at 37 ° C. for 4 days under light irradiation and in the dark. The amount of water-soluble organic substances in the test solution generated by polymer hydrolysis was measured as the TOC concentration (Total Organic Carbon Concentration) to evaluate the biodegradability of the film. It was confirmed that the inhibitory effect on enzyme hydrolyzability by light irradiation (fluorescent lamps 800 to 10,000 lx) was expressed at a photocatalyst concentration of 0.5 wt% or more as shown in FIG. 3A.

次に、光照射と暗所を12 h毎に切り替えて、経時的な分解率を評価した。光触媒を含まないフィルムでは、試験開始31daysまで分解率が高くなり、最終的な分解率は68 %となった。酸化チタン 0.5 wt%以上では、10 days 以降分解率は増加しなかった(図3B)。   Next, the light irradiation and the dark place were switched every 12 h, and the degradation rate over time was evaluated. The film containing no photocatalyst had a high decomposition rate until 31 days from the start of the test, and the final decomposition rate was 68%. When titanium oxide was 0.5 wt% or more, the decomposition rate did not increase after 10 days (FIG. 3B).

Claims (13)

生分解性樹脂と光触媒を含み、光触媒の配合量が0.005〜10質量%である、生分解性が制御された樹脂組成物。 A resin composition having controlled biodegradability, comprising a biodegradable resin and a photocatalyst, wherein the amount of the photocatalyst is 0.005 to 10% by mass. 光触媒の吸収波長域が可視域から紫外域を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the absorption wavelength region of the photocatalyst includes a visible region to an ultraviolet region. 生分解性樹脂が脂肪族ポリエステルである請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the biodegradable resin is an aliphatic polyester. 光触媒が酸化チタンを含む、請求項1〜3のいずれかに記載の樹脂組成物。 The resin composition in any one of Claims 1-3 in which a photocatalyst contains a titanium oxide. 光触媒が気相法で製造された酸化チタンを含む、請求項4に記載の樹脂組成物。 The resin composition of Claim 4 in which a photocatalyst contains the titanium oxide manufactured by the gaseous-phase method. 生分解性樹脂に光触媒を全体の0.005〜10質量%の量で配合することにより明所で生分解性樹脂の分解を抑制し、暗所で生分解性樹脂の分解を進行させることを特徴とする生分解性樹脂の分解制御方法。 By mixing the photocatalyst with the biodegradable resin in an amount of 0.005 to 10% by mass of the whole, it is possible to suppress the decomposition of the biodegradable resin in a bright place and to proceed the decomposition of the biodegradable resin in the dark place. A method for controlling the degradation of a biodegradable resin. 光触媒の吸収波長域が可視域から紫外域を含む、請求項6に記載の生分解性樹脂の分解制御方法。 The biodegradable resin degradation control method according to claim 6, wherein the absorption wavelength range of the photocatalyst includes a visible range to an ultraviolet range. 光触媒が酸化チタンを含む、請求項6又は7に記載の生分解性樹脂の分解制御方法。 The biodegradable resin decomposition control method according to claim 6 or 7, wherein the photocatalyst contains titanium oxide. 光触媒が気相法で製造された酸化チタンを含む、請求項8に記載の生分解性樹脂の分解制御方法。 The biodegradable resin decomposition control method according to claim 8, wherein the photocatalyst includes titanium oxide produced by a gas phase method. 光触媒からなる生分解性樹脂の分解制御剤。 Biodegradable resin degradation control agent consisting of photocatalyst. 光触媒の吸収波長域が可視域から紫外域を含む、請求項10に記載の生分解性樹脂の分解制御剤。 The biodegradable resin degradation control agent according to claim 10, wherein the absorption wavelength range of the photocatalyst includes a visible range to an ultraviolet range. 光触媒が酸化チタンである、請求項10又は11に記載の生分解性樹脂の分解制御剤。 The biodegradable resin degradation control agent according to claim 10 or 11, wherein the photocatalyst is titanium oxide. 光触媒が気相法で製造された酸化チタンを含む、請求項12に記載の生分解性樹脂の分解制御剤。 The biodegradable resin degradation control agent according to claim 12, wherein the photocatalyst comprises titanium oxide produced by a gas phase method.
JP2014179975A 2014-09-04 2014-09-04 Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor Pending JP2016053128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179975A JP2016053128A (en) 2014-09-04 2014-09-04 Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179975A JP2016053128A (en) 2014-09-04 2014-09-04 Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor

Publications (1)

Publication Number Publication Date
JP2016053128A true JP2016053128A (en) 2016-04-14

Family

ID=55744842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179975A Pending JP2016053128A (en) 2014-09-04 2014-09-04 Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor

Country Status (1)

Country Link
JP (1) JP2016053128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138935A1 (en) * 2020-12-25 2022-06-30 凸版印刷株式会社 Biodegradable resin composition and molded body
CN115005497A (en) * 2022-07-20 2022-09-06 湖北中烟工业有限责任公司 Degradable cigarette filter rod master batch and degradable cigarette filter rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138935A1 (en) * 2020-12-25 2022-06-30 凸版印刷株式会社 Biodegradable resin composition and molded body
CN115005497A (en) * 2022-07-20 2022-09-06 湖北中烟工业有限责任公司 Degradable cigarette filter rod master batch and degradable cigarette filter rod

Similar Documents

Publication Publication Date Title
Zhong et al. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review
Zare et al. Smart fortified PHBV-CS biopolymer with ZnO–Ag nanocomposites for enhanced shelf life of food packaging
Abdeen et al. Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: Preparation, characterization, swelling and antimicrobial evaluation
Pantani et al. PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics
TWI343938B (en) Anti-microbial coated polymeric film
Díez-Pascual et al. Antimicrobial and sustainable food packaging based on poly (butylene adipate-co-terephthalate) and electrospun chitosan nanofibers
CA2933286C (en) Anti-microbial surface coatings comprising titanium
JP5599470B2 (en) Antifungal material
EP3082415B1 (en) Antimicrobial composite material and process for the preparation thereof
WO2010006036A1 (en) Antimicrobial coatings
Pittol et al. Antimicrobial performance of thermoplastic elastomers containing zinc pyrithione and silver nanoparticles
KR20180071601A (en) Packaging film coated with zinc oxide nanoparticles and preparation method thereof
EP3907078A1 (en) Biodegradable container, method for obtaining same and use thereof for contact, transport and/or storage of perishable products
Gaballah et al. Thiazole derivatives‐functionalized polyvinyl chloride nanocomposites with photostability and antimicrobial properties
JP2016053128A (en) Resin composition comprising biodegradable resin, and degradation control method and degradation control agent therefor
JP6488473B2 (en) Antifungal and coating agents
Nichols Biocides in plastics
Pérez‐Álvarez et al. Hydrolysis of poly (L‐lactide)/ZnO nanocomposites with antimicrobial activity
JP2012095699A (en) Antibacterial and deodorization treating agent, and antibacterial and deodorization treating article
JP2006306937A (en) Antibacterial resin composition, resin molding and tubular resin molding using the composition
Zhou et al. A facile preparation process of polyhexamethylene biguanide/cellulose/polylactic acid fiber composite antibacterial paper
KR101116668B1 (en) An aliphatic polyester coating sheet and its manufacturing process
WO2022204532A1 (en) Functional metal-containing articles
JP2009221336A (en) Resin composition, and molded article and film comprising the resin composition
JP4058683B2 (en) Biodegradable resin composition