JP2016052704A - Magnetic polishing method with use of magnet tool and magnetic polishing device - Google Patents

Magnetic polishing method with use of magnet tool and magnetic polishing device Download PDF

Info

Publication number
JP2016052704A
JP2016052704A JP2014180012A JP2014180012A JP2016052704A JP 2016052704 A JP2016052704 A JP 2016052704A JP 2014180012 A JP2014180012 A JP 2014180012A JP 2014180012 A JP2014180012 A JP 2014180012A JP 2016052704 A JP2016052704 A JP 2016052704A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
tube
polishing
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014180012A
Other languages
Japanese (ja)
Other versions
JP6371645B2 (en
Inventor
艶華 鄒
Yanhua Zou
艶華 鄒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2014180012A priority Critical patent/JP6371645B2/en
Publication of JP2016052704A publication Critical patent/JP2016052704A/en
Application granted granted Critical
Publication of JP6371645B2 publication Critical patent/JP6371645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic polishing method which can precisely polish an inner surface of a pipe with use of a magnet tool, and a magnetic polishing device.SOLUTION: Provided is a magnetic polishing method in which a magnet tool 3 is located in a pipe 1, an external magnet 12, which sucks the magnet tool 3 by magnetic force, is located outside the pipe 1, the magnet tool 3 and the pipe 1 are relatively rotated by rotation of the external magnet 12, and an inner surface of the pipe 1 is polished by the magnet tool 3. The magnet tool 3 is so configured that the magnet tool has two arm members 4b equipped with a magnet 5b at each tip thereof, and a connection part for rotatably connecting said two arm members 4b to each other, magnetic abrasive grains 2 are magnetized onto the magnet 5b of the magnet tool 3, and the magnetic abrasive grains 2 polish the inner surface of the pipe 1. The magnet tool 3 follows an inner surface shape of the pipe 1, and performs polishing in the state that angles of two arm members 4b connected by the connection part are changeable. Preferably, the pipe 1 comprises a large diameter bent pipe or a thickened bent pipe.SELECTED DRAWING: Figure 1

Description

本発明は、磁石工具を用いた磁気研磨方法及び磁気研磨装置に関し、更に詳しくは、磁石工具を用いて管の内面を精密に研磨することができる磁気研磨方法及び磁気研磨装置に関する。   The present invention relates to a magnetic polishing method and a magnetic polishing apparatus using a magnet tool, and more particularly to a magnetic polishing method and a magnetic polishing apparatus that can accurately polish the inner surface of a pipe using a magnet tool.

半導体関連産業や航空宇宙関連産業等の分野では、高精度の精密部品が要求されている。精密部品の一例として、高純度ガスや高純度流体を輸送するクリーンパイプがある。このクリーンパイプは、その内面が鏡面仕上げされていることが要求されており、仮に配管内面に微小な凹凸が存在した場合、応力集中による破壊やキャビテーションの発生、汚染物付着による腐食破壊等の問題が発生するおそれがある。そうした要求に応えるため、磁性砥粒を利用した管内面磁気研磨法が提案されている(例えば、特許文献1,2を参照)。   High precision precision parts are required in fields such as semiconductor related industries and aerospace related industries. An example of precision parts is a clean pipe that transports high-purity gas or high-purity fluid. This clean pipe is required to have a mirror-finished inner surface, and if there are minute irregularities on the inner surface of the pipe, problems such as fracture due to stress concentration, cavitation, corrosion destruction due to contaminant adhesion, etc. May occur. In order to meet such a demand, a pipe inner surface magnetic polishing method using magnetic abrasive grains has been proposed (see, for example, Patent Documents 1 and 2).

特許文献1には、粒径4mmの鋼球を磁性砥粒として管内に入れ、管と、管の外周側に配置した2つの磁石とを相対運動させることにより、その磁性砥粒で管内面を研磨する磁気研磨方法が提案されている。また、特許文献2には、磁気研磨装置を動作させて被研磨管の内面を研磨スラリーで精密に研磨する磁気研磨方法が提案されている。このときの研磨スラリーは、球状の磁性粒子と、その磁性粒子の平均粒径の1/4〜1/1000の範囲の平均粒径からなる研磨粒子と、その磁性粒子と研磨粒子をスラリー状にする媒体とで構成されている。   In Patent Document 1, a steel ball having a particle diameter of 4 mm is put in a pipe as magnetic abrasive grains, and the pipe and the two magnets arranged on the outer peripheral side of the pipe are moved relative to each other so that the inner surface of the pipe is covered with the magnetic abrasive grains. A magnetic polishing method for polishing has been proposed. Patent Document 2 proposes a magnetic polishing method in which a magnetic polishing apparatus is operated to precisely polish the inner surface of a pipe to be polished with a polishing slurry. The polishing slurry at this time is a spherical magnetic particle, an abrasive particle having an average particle size in the range of 1/4 to 1/1000 of the average particle size of the magnetic particle, and the magnetic particle and the abrasive particle in a slurry state. Media.

特開2002−210648号公報JP 2002-210648 A 特開2010−52123号公報JP 2010-52123 A

上記特許文献1,2では、管の内面加工法として、磁性粒子を用いた磁気研磨方法について提案されている。この技術では、管の外側に配置した外部磁石を固定し、管を回転させているが、大径曲がり管や厚肉曲がり管等の曲がり管では管を回転させることが難しい。そのため、管の外側に配置した外部磁石を回転させ、その回転によって磁性砥粒と管とを相対運動させて管内面を研磨する必要がある。   Patent Documents 1 and 2 propose a magnetic polishing method using magnetic particles as a method for processing the inner surface of a tube. In this technique, an external magnet disposed outside the tube is fixed and the tube is rotated, but it is difficult to rotate the tube with a bent tube such as a large-diameter bent tube or a thick-walled bent tube. Therefore, it is necessary to rotate the external magnet arranged outside the tube and to polish the inner surface of the tube by rotating the magnetic abrasive grains and the tube relative to each other.

しかしながら、例えば図10に示すように、曲がり管1に対して外部磁石12(12a,12b)を回転させて磁気研磨を行った場合、十分な内面加工ができないことがあった。また、そうした曲がり管1は、管の製造時点で曲がり部位内面の表面粗さに差が生じているため、磁気研磨を行うことにより、曲がり部位内面の表面粗さの差が小さくなることが要求されている。これらの解決のため、外部磁石12(12a,12b)による磁気吸引力を強力にすることも考えられるが、装置が大型となり、研磨時間もかかるという難点もある。   However, for example, as shown in FIG. 10, when the magnetic polishing is performed by rotating the external magnet 12 (12 a, 12 b) with respect to the bent tube 1, sufficient inner surface processing may not be performed. Further, since such a bent tube 1 has a difference in the surface roughness of the inner surface of the bent portion at the time of manufacturing the tube, the difference in the surface roughness of the inner surface of the bent portion is required to be reduced by magnetic polishing. Has been. In order to solve these problems, it is conceivable to increase the magnetic attractive force by the external magnets 12 (12a, 12b), but there is a problem that the apparatus becomes large and takes a long time for polishing.

本発明は、上記課題を解決するためになされたものであって、その目的は、磁石工具を用いて管の内面を精密に研磨することができる磁気研磨方法及び磁気研磨装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a magnetic polishing method and a magnetic polishing apparatus capable of precisely polishing the inner surface of a tube using a magnet tool. is there.

(1)上記課題を解決するための本発明に係る磁気研磨方法は、磁石工具を管内に配置し、前記磁石工具を磁力で吸引する外部磁石を管外に配置し、前記外部磁石の回転により前記磁石工具と前記管とを相対運動させて前記磁石工具で前記管の内面を研磨する磁気研磨方法であって、前記磁石工具が、先端に磁石を備えた2つのアーム部材と、前記2つのアーム部材を回動可能に接続する接続部とを有し、前記磁石工具の前記磁石には磁性砥粒が着磁し、該磁性砥粒が前記管の内面を研磨する、ことを特徴とする。   (1) In the magnetic polishing method according to the present invention for solving the above-described problems, a magnet tool is disposed in a tube, an external magnet that attracts the magnet tool with a magnetic force is disposed outside the tube, and rotation of the external magnet A magnetic polishing method for polishing the inner surface of the tube with the magnet tool by relatively moving the magnet tool and the tube, wherein the magnet tool includes two arm members each having a magnet at a tip, and the two A connecting portion for rotatably connecting an arm member, and magnetic abrasive grains are magnetized on the magnet of the magnet tool, and the magnetic abrasive grains polish the inner surface of the tube. .

この発明によれば、磁石工具が、先端に磁石を備えた2つのアーム部材とその2つのアーム部材を回動可能に接続する接続部とを有するので、磁石工具は、管の内面形状に追従し、接続部で接続された2つのアーム部材の角度が変化可能な状態で研磨する。その結果、2つのアーム部材の動作自由度が高いので、2つのアーム部材の先端の磁石に着磁した磁性砥粒が、管の内面を高い加工力で研磨することができるとともに、曲がり部位の内面の表面粗さの場所による差を製造時よりも大幅に低減することができる。   According to this invention, since the magnet tool has two arm members each having a magnet at the tip and a connecting portion that rotatably connects the two arm members, the magnet tool follows the inner shape of the pipe. And it grind | polishes in the state which can change the angle of the two arm members connected by the connection part. As a result, since the two arm members have a high degree of freedom of operation, the magnetic abrasive grains magnetized at the magnets at the tips of the two arm members can polish the inner surface of the tube with a high processing force, and at the bending portion. The difference depending on the location of the surface roughness of the inner surface can be greatly reduced as compared with the production.

本発明に係る磁気研磨方法において、前記管が、曲がり管であることが好ましい。   In the magnetic polishing method according to the present invention, the tube is preferably a bent tube.

この発明によれば、大径曲がり管又は厚肉曲がり管等の曲がり管に特に好ましく適用できる。   According to the present invention, it can be particularly preferably applied to a bent pipe such as a large-diameter bent pipe or a thick-walled bent pipe.

本発明に係る磁気研磨方法において、前記磁性砥粒は、磁性粒子と研磨粒子とを有し、前記磁性粒子が電解鉄粉であり、前記研磨粒子がWA砥粒又はGC砥粒であるように構成できる。   In the magnetic polishing method according to the present invention, the magnetic abrasive grains include magnetic particles and abrasive particles, the magnetic particles are electrolytic iron powder, and the abrasive particles are WA abrasive grains or GC abrasive grains. Can be configured.

この発明によれば、磁性粒子と研磨粒子とを有する磁性砥粒を用いるので、管の内面を効果的に精密研磨することができる。   According to the present invention, since the magnetic abrasive grains having magnetic particles and abrasive particles are used, the inner surface of the tube can be effectively polished precisely.

(2)上記課題を解決するための本発明に係る磁気研磨装置は、管の内部に配置するための磁石工具と、前記磁石工具を前記管の外側から磁力で吸引する外部磁石と、前記外部磁石を回転させて前記管と前記磁石工具とを相対運動させる回転機構とを有し、前記磁石工具が、磁性砥粒を着磁可能な磁石を先端に備えた2つのアーム部材と、前記2つのアーム部材を回動可能に接続する接続部とを有する、ことを特徴とする。   (2) A magnetic polishing apparatus according to the present invention for solving the above problems includes a magnet tool for disposing inside a tube, an external magnet for attracting the magnet tool from the outside of the tube with a magnetic force, and the external A rotating mechanism that rotates the magnet to move the tube and the magnet tool relative to each other, the magnet tool having two arm members each having a magnet capable of magnetizing magnetic abrasive grains at the tip; It has a connection part which connects one arm member so that rotation is possible, It is characterized by the above-mentioned.

本発明に係る磁気研磨装置において、前記磁石工具は、前記管の内面形状に追従し、前記接続部で接続された前記2つのアーム部材の角度が変化可能な状態で研磨するように構成できる。   In the magnetic polishing apparatus according to the present invention, the magnet tool can be configured to follow the shape of the inner surface of the tube and perform polishing in a state where the angle of the two arm members connected by the connecting portion can be changed.

本発明に係る磁気研磨装置において、前記管が、曲がり管であることが好ましい。   In the magnetic polishing apparatus according to the present invention, the tube is preferably a bent tube.

本発明に係る磁気研磨方法及び磁気研磨装置によれば、磁石工具を用いて管の内面を精密に研磨することができる。詳しくは、先端に磁石を備えた2つのアーム部材が回動可能に構成された動作自由度の高い磁石工具を備えるので、管の内面形状に応じて2つのアーム部材が回動する。その結果、2つのアーム部材の先端の磁石に着磁した磁性砥粒が、管の内面を高い加工力で研磨することができるとともに、曲がり部位の内面の表面粗さの場所による差を製造時よりも大幅に低減することができる。特に、曲がり管の内面の精密仕上げ加工に好ましい。   According to the magnetic polishing method and the magnetic polishing apparatus according to the present invention, it is possible to precisely polish the inner surface of the pipe using a magnet tool. Specifically, since the two arm members each having a magnet at the tip thereof are provided with a magnet tool having a high degree of freedom in operation, the two arm members are rotated according to the inner surface shape of the tube. As a result, the magnetic abrasive grains magnetized on the magnets at the tips of the two arm members can polish the inner surface of the tube with a high processing force, and the difference in the surface roughness of the inner surface of the bent portion is different during manufacturing. Can be greatly reduced. In particular, it is preferable for precision finishing of the inner surface of a bent pipe.

本発明に係る磁気研磨方法の加工原理を示す模式図であり、(A)は全体構成図であり、(B)は磁石工具と管内面の構成図である。It is a schematic diagram which shows the processing principle of the magnetic polishing method which concerns on this invention, (A) is a whole block diagram, (B) is a block diagram of a magnet tool and a pipe inner surface. 実験に用いた本発明に係る磁気研磨装置であり、(A)は全体写真であり、(B)は磁石工具を内部に備えた管の拡大写真である。It is the magnetic polishing apparatus based on this invention used for experiment, (A) is a whole photograph, (B) is an enlarged photograph of the pipe | tube which equipped the magnet tool inside. 磁石工具の写真である。It is a photograph of a magnet tool. 管内での磁石工具の動作自由度を説明する模式図であり、(A)は磁石工具を構成する2つのアーム部材の角度が90°以下の形態例であり、(B)は磁石工具を構成する2つのアーム部材の角度が90°以上の形態例である。It is a schematic diagram explaining the operation | movement freedom degree of the magnet tool in a pipe | tube, (A) is an example with the angle of two arm members which comprise a magnet tool being 90 degrees or less, (B) comprises a magnet tool This is an example in which the angle of the two arm members is 90 ° or more. 実施例1の磁気研磨方法で得られた管内面の表面粗さと研磨量とを処理時間に対してプロットしたグラフである。3 is a graph plotting the surface roughness of the inner surface of the tube and the polishing amount obtained by the magnetic polishing method of Example 1 against the processing time. 実施例1の磁気研磨方法で得られた管内面の各部位における研磨前後の表面粗さを示す説明図である。It is explanatory drawing which shows the surface roughness before and behind grinding | polishing in each site | part of the pipe | tube inner surface obtained with the magnetic polishing method of Example 1. FIG. 実施例2の磁気研磨方法で得られた管内面の表面粗さと研磨量とを処理時間に対してプロットしたグラフである。6 is a graph plotting the surface roughness of the inner surface of the tube and the polishing amount obtained by the magnetic polishing method of Example 2 against the processing time. 実施例2の磁気研磨方法で得られた管内面の各部位における研磨前後の表面粗さを示す説明図である。It is explanatory drawing which shows the surface roughness before and behind grinding | polishing in each site | part of the pipe | tube inner surface obtained with the magnetic polishing method of Example 2. FIG. 研磨加工前後の管内面の写真と拡大写真であり、(A)は研磨加工前の写真、(B)はその拡大写真、(C)は研磨加工後の写真、(D)はその拡大写真である。(A) is a photo before polishing, (B) is an enlarged photo, (C) is a photo after polishing, and (D) is an enlarged photo. is there. 磁石工具を用いない磁気研磨方法の一例を示す模式図である。It is a schematic diagram which shows an example of the magnetic polishing method which does not use a magnet tool.

以下、本発明に係る磁気研磨方法及び磁気研磨装置について、図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する範囲を包含し、以下に示す説明及び図面等に限定されない。   Hereinafter, a magnetic polishing method and a magnetic polishing apparatus according to the present invention will be described with reference to the drawings. In addition, this invention includes the range which has the technical feature, and is not limited to description, drawing, etc. which are shown below.

[磁気研磨方法及び装置]
本発明に係る磁気研磨方法は、図1に示すように、磁石工具3を管1内に配置し、その磁石工具3を磁力で吸引する外部磁石12を管1外に配置し、その外部磁石12の回転により磁石工具3と管1とを相対運動させて磁石工具3で管1の内面を研磨する磁気研磨方法である。そして、磁石工具3が、先端に磁石5(5a,5b)を備えた2つのアーム部材4(4a,4b)と、その2つのアーム部材4(4a,4b)を回動可能に接続する接続部6とを有し、磁石工具3の磁石5(5a,5b)には磁性砥粒2が着磁し、その磁性砥粒2が管1の内面を研磨する、ことに特徴がある。
[Magnetic polishing method and apparatus]
In the magnetic polishing method according to the present invention, as shown in FIG. 1, a magnet tool 3 is disposed in a tube 1, an external magnet 12 for attracting the magnet tool 3 with a magnetic force is disposed outside the tube 1, and the external magnet This is a magnetic polishing method in which the magnet tool 3 and the tube 1 are moved relative to each other by rotating 12 and the inner surface of the tube 1 is polished with the magnet tool 3. And the magnet tool 3 connects the two arm members 4 (4a, 4b) provided with the magnets 5 (5a, 5b) at the tip and the two arm members 4 (4a, 4b) so as to be rotatable. The magnetic abrasive grains 2 are magnetized on the magnets 5 (5a, 5b) of the magnetic tool 3 and the magnetic abrasive grains 2 polish the inner surface of the tube 1.

本発明に係る磁気研磨装置10は、図1及び図2に示すように、管1の内部に配置するための磁石工具3と、磁石工具3を管1の外側から磁力で吸引する外部磁石12と、その外部磁石12を回転させて管1と磁石工具3とを相対運動させる回転機構13とを有している。そして、磁石工具3が、磁性砥粒2を着磁可能な磁石5(5a,5b)を先端に備えた2つのアーム部材4(4a,4b)と、その2つのアーム部材4(4a,4b)を回動可能に接続する接続部6とを有する、ことに特徴がある。この磁石工具3は、管1の内面形状に追従し、接続部6で接続された2つのアーム部材4(4a,4b)の角度が変化可能な状態で研磨する。   As shown in FIGS. 1 and 2, a magnetic polishing apparatus 10 according to the present invention includes a magnet tool 3 for disposing inside a tube 1 and an external magnet 12 that attracts the magnet tool 3 from the outside of the tube 1 by magnetic force. And a rotating mechanism 13 that rotates the external magnet 12 to move the tube 1 and the magnet tool 3 relative to each other. The magnet tool 3 includes two arm members 4 (4a, 4b) each having a magnet 5 (5a, 5b) capable of magnetizing the magnetic abrasive grain 2 at the tip, and the two arm members 4 (4a, 4b). And a connecting portion 6 that connects the first and second members in a rotatable manner. The magnet tool 3 follows the shape of the inner surface of the tube 1 and polishes in a state where the angle of the two arm members 4 (4a, 4b) connected by the connecting portion 6 can be changed.

こうした磁気研磨方法及び装置は、磁石工具3が、先端に磁石5を備えた2つのアーム部材4とその2つのアーム部材4を回動可能に接続する接続部6とを有するので、磁石工具3は、管1の内面形状に追従し、接続部6で接続された2つのアーム部材4の角度θが変化可能な状態で研磨する。その結果、2つのアーム部材4の動作自由度が高いので、2つのアーム部材4の先端の磁石5に着磁した磁性砥粒2が、管1の内面を高い加工力で研磨することができるとともに、曲がり部位の内面の表面粗さの場所による差を製造時よりも大幅に低減することができる。   In such a magnetic polishing method and apparatus, the magnet tool 3 includes the two arm members 4 each having the magnet 5 at the tip and the connecting portion 6 that rotatably connects the two arm members 4. Is polished in a state in which the angle θ of the two arm members 4 connected to the connection portion 6 can be changed following the shape of the inner surface of the tube 1. As a result, since the two arm members 4 have a high degree of freedom of operation, the magnetic abrasive grains 2 magnetized on the magnets 5 at the tips of the two arm members 4 can polish the inner surface of the tube 1 with a high processing force. At the same time, the difference in the surface roughness of the inner surface of the bent portion can be greatly reduced as compared with the manufacturing time.

以下、本発明を構成する各構成要素について詳しく説明する。   Hereafter, each component which comprises this invention is demonstrated in detail.

(外部磁石)
磁気研磨装置10は、図1及び図2に示すように、管1の外側に配置された外部磁石12(12a,12b)を有し、その外部磁石12は、磁性砥粒2に磁場を与える。こうした磁場は、磁性砥粒2を磁気吸引して磁性砥粒2を管1の内面に強く押し付けるように作用する。外部磁石12を備えた磁気研磨装置10としては各種の形態のものを挙げることができるが、図1及び図2の例では、外部管11を管1の外側に設け、その外部管11に外部磁石12を装着している。外部管11は、鋼材等であることが好ましく、例えば一般構造用圧延鋼材(SS400)等を挙げることができる。この外部管11は、外部磁石12と外部管11とで閉磁路14を形成するヨークとして機能する。
(External magnet)
As shown in FIGS. 1 and 2, the magnetic polishing apparatus 10 has external magnets 12 (12 a, 12 b) disposed outside the tube 1, and the external magnet 12 gives a magnetic field to the magnetic abrasive grains 2. . Such a magnetic field acts to magnetically attract the magnetic abrasive grains 2 and strongly press the magnetic abrasive grains 2 against the inner surface of the tube 1. As the magnetic polishing apparatus 10 provided with the external magnet 12, various forms can be exemplified. In the example of FIGS. 1 and 2, an external tube 11 is provided outside the tube 1, and the external tube 11 is externally connected to the external tube 11. A magnet 12 is attached. The outer tube 11 is preferably a steel material, and examples thereof include a general structural rolled steel material (SS400). The outer tube 11 functions as a yoke that forms a closed magnetic path 14 with the outer magnet 12 and the outer tube 11.

外部磁石12は、S極12aとN極12bとで構成されている。S極12aは、管1内に配置される磁石工具3のN極5aを磁気吸引し、N極12bは、管1内に配置される磁石工具3のS極5bを磁気吸引する。S極12aとN極12bは、通常、90°で配置されているが、必ずしも90°である必要はなく、任意である。   The external magnet 12 includes an S pole 12a and an N pole 12b. The S pole 12 a magnetically attracts the N pole 5 a of the magnet tool 3 disposed in the tube 1, and the N pole 12 b magnetically attracts the S pole 5 b of the magnet tool 3 disposed in the tube 1. The S pole 12a and the N pole 12b are normally arranged at 90 °, but are not necessarily 90 ° and are arbitrary.

外部磁石12の強さ(磁力)は、磁石の種類に依存するが、その強さは特に制限はなく、永久磁石でも電磁石でもよい。永久磁石としては、例えば希土類磁石、フェライト磁石、アルニコマグネット、MA磁石等を挙げることができる。希土類磁石は強力な磁界を得られる点で好ましい。希土類磁石としては、具体的には、ネオジウム磁石(Nd−Fe−B)やサマリウムコバルト磁石(Sm−Co)が好ましく用いられる。   The strength (magnetic force) of the external magnet 12 depends on the type of magnet, but the strength is not particularly limited, and may be a permanent magnet or an electromagnet. Examples of permanent magnets include rare earth magnets, ferrite magnets, alnico magnets, and MA magnets. Rare earth magnets are preferred in that a strong magnetic field can be obtained. Specifically, a neodymium magnet (Nd—Fe—B) or a samarium cobalt magnet (Sm—Co) is preferably used as the rare earth magnet.

N極とS極の形状にも特に制限はない。通常は、円柱や多角柱等の柱状の磁石をN極及びS極として用いる。また、磁束密度を高める観点から、N極及び/又はS極の先端を錘台形、例えば円錐台形や角錘台形としてもよい。また、磁石は角部の磁場強度が大きくなることから、N極やS極の先端を切り欠きが入った形状とすることもできる。   There are no particular restrictions on the shape of the N and S poles. Normally, columnar magnets such as cylinders and polygonal columns are used as the N pole and S pole. Further, from the viewpoint of increasing the magnetic flux density, the tip of the N pole and / or the S pole may be a frustum shape, for example, a truncated cone shape or a truncated pyramid shape. In addition, since the magnetic field strength at the corners of the magnet is increased, the tip of the N pole or S pole can be formed with a notch.

(回転機構)
回転機構13は、外部磁石12が装着された外部管11を回転させる装置である。そうした装置であれば、その具体的な構成は特に限定されない。例えば、図2(A)に示すように、ベルト(例えばタイミングベルト)とプーリと駆動源(モータ)等で構成することができる。この回転機構13で外部管11を回転させることにより、外部管11に装着された外部磁石12が回転し、回転した外部磁石12に追従して管1内の磁石工具3が回転する。回転する磁石工具3と回転しない管1とは、相対運動となり、磁石工具3の先端に着磁した磁性砥粒2が管1の内面を研磨する。こうして、管1の内面が高い加工力で研磨される。
(Rotating mechanism)
The rotation mechanism 13 is a device that rotates the external tube 11 to which the external magnet 12 is attached. If it is such a device, its specific configuration is not particularly limited. For example, as shown in FIG. 2A, a belt (for example, a timing belt), a pulley, a drive source (motor), and the like can be used. By rotating the outer tube 11 by the rotation mechanism 13, the external magnet 12 mounted on the outer tube 11 rotates, and the magnet tool 3 in the tube 1 rotates following the rotated external magnet 12. The rotating magnet tool 3 and the non-rotating tube 1 are in relative motion, and the magnetic abrasive grains 2 magnetized at the tip of the magnet tool 3 polish the inner surface of the tube 1. Thus, the inner surface of the tube 1 is polished with a high processing force.

この装置10は、管1は回転せずに、外部磁石12を回転させているので、曲がり管を研磨することができる。曲がり管を研磨するための本発明に係る磁気研磨装置10は、外部磁石12の幅(すなわち、管1の長手方向の外部磁石幅)は短い長さであることが好ましく、管1の直径や曲がりの程度にも関係するが、曲がり管の内面を研磨しながら外部管11内を通過させることができる長さであることが好ましく、例示としては、5mm以上、100mm以下の範囲内を挙げることができる。   Since this apparatus 10 rotates the external magnet 12 without rotating the pipe 1, the bent pipe can be polished. In the magnetic polishing apparatus 10 according to the present invention for polishing a bent tube, the width of the external magnet 12 (that is, the width of the external magnet in the longitudinal direction of the tube 1) is preferably a short length. Although it is related to the degree of bending, it is preferably a length that allows the inside of the outer tube 11 to pass through while polishing the inner surface of the bent tube, and examples include a range of 5 mm to 100 mm. Can do.

(磁石工具)
磁石工具3は、図1及び図2に示すように、管1内に配置され、外部磁石12によって磁気吸引されて、管1の内面に押し付けられる。磁石工具3は、管1の内面形状に追従し、接続部6で接続された2つのアーム部材4a,4bの角度θが変化可能な状態になっている。そして、回転機構13による外部磁石12の回転によって、磁石工具3と管1とが相対運動し、磁石工具3の先端に着磁した磁性砥粒2が管1の内面を研磨する。磁石工具3は、図3及び図4に示すように、先端に磁石5(5a,5b)を備えた2つのアーム部材4(4a,4b)と、その2つのアーム部材4(4a,4b)を回動可能に接続する接続部6とを有している。
(Magnet tool)
As shown in FIGS. 1 and 2, the magnet tool 3 is arranged in the tube 1, is magnetically attracted by the external magnet 12, and is pressed against the inner surface of the tube 1. The magnet tool 3 follows the shape of the inner surface of the tube 1 and is in a state where the angle θ of the two arm members 4a and 4b connected by the connecting portion 6 can be changed. Then, the rotation of the external magnet 12 by the rotation mechanism 13 causes the magnet tool 3 and the tube 1 to move relative to each other, and the magnetic abrasive grains 2 magnetized at the tip of the magnet tool 3 polish the inner surface of the tube 1. As shown in FIGS. 3 and 4, the magnet tool 3 includes two arm members 4 (4a, 4b) each having a magnet 5 (5a, 5b) at the tip, and the two arm members 4 (4a, 4b). And a connecting part 6 for connecting the two in a rotatable manner.

アーム部材4(4a,4b)は、2つの部材で構成され、接続部6でそれぞれの一端が接続されている。アーム部材4は、接続部6で自在に角度θが変化可能になっている。アーム部材4の材質は、金属であれば特に限定されず、通常、鋼材等のような磁化率高いものが好ましい。また、磁性材ワイヤの束で形成されたものであってもよい。   The arm member 4 (4a, 4b) is composed of two members, and one end of each is connected by a connecting portion 6. The angle θ of the arm member 4 can be freely changed at the connection portion 6. The material of the arm member 4 is not particularly limited as long as it is a metal, and usually a material having a high magnetic susceptibility such as steel is preferable. Further, it may be formed of a bundle of magnetic material wires.

磁石5(5a,5b)は、永久磁石であり、アーム部材4の先端に接合されている。接合手段は特に限定されないが、接着剤での接合でも機械的な接合であってもよい。磁石5の強さ(磁力)は、磁石の種類に依存するが、その強さは特に制限はなく、例えば希土類磁石、フェライト磁石、アルニコマグネット、MA磁石等を挙げることができる。希土類磁石は強力な磁界を得られる点で好ましい。希土類磁石としては、具体的には、ネオジウム磁石(Nd−Fe−B)やサマリウムコバルト磁石(Sm−Co)が好ましく用いられる。磁石5は、N極5aとS極5bで構成されている。N極5aは、S極からなる外部磁石12aに対向して配置され、S極5bは、N極からなる外部磁石12bに対向して配置されている。   The magnet 5 (5a, 5b) is a permanent magnet and is joined to the tip of the arm member 4. The joining means is not particularly limited, and may be joining with an adhesive or mechanical joining. The strength (magnetic force) of the magnet 5 depends on the type of magnet, but the strength is not particularly limited, and examples thereof include rare earth magnets, ferrite magnets, alnico magnets, and MA magnets. Rare earth magnets are preferred in that a strong magnetic field can be obtained. Specifically, a neodymium magnet (Nd—Fe—B) or a samarium cobalt magnet (Sm—Co) is preferably used as the rare earth magnet. The magnet 5 includes an N pole 5a and an S pole 5b. The N pole 5a is disposed to face the external magnet 12a composed of the S pole, and the S pole 5b is disposed to face the external magnet 12b composed of the N pole.

接続部6は、先端に磁石を備えた2つのアーム部材が回動可能に接続する部位である。接続部6の接続手段は特に限定されないが、屈曲可能な機械的な接続手段を適用することができる。こうした接続部6を備えた磁石工具3は、動作自由度が高く、管1の内面形状に応じて2つのアーム部材4a,4bを回動させることができる。   The connecting portion 6 is a portion where two arm members each having a magnet at the tip end are rotatably connected. Although the connection means of the connection part 6 is not specifically limited, the bendable mechanical connection means can be applied. The magnet tool 3 provided with such a connection portion 6 has a high degree of freedom in operation, and can rotate the two arm members 4a and 4b in accordance with the inner surface shape of the tube 1.

この接続部6は、2つのアーム部材4a,4b間の角度θを変えることができるように回動し、その角度θは90°であってもよいし、図4(A)に示すように90°以下であってもよいし、90°以上であってもよい。その角度θは、特に曲がり部分を研磨しているときに、管の内面形状に応じて微調整され、磁石工具3で管内面を効果的に研磨することができる。可動する接続部6は、図1等では1つであるが、2つでもよいし3つ以上であってもよい。特に3つの場合は、2つのアーム部材4a,4bの角度を任意に変化させることができる。   The connecting portion 6 rotates so that the angle θ between the two arm members 4a and 4b can be changed, and the angle θ may be 90 °, as shown in FIG. It may be 90 ° or less, or 90 ° or more. The angle θ is finely adjusted according to the shape of the inner surface of the tube, particularly when the bent portion is polished, and the inner surface of the tube can be effectively polished with the magnet tool 3. The movable connecting portion 6 is one in FIG. 1 or the like, but may be two or three or more. In particular, in the case of three, the angles of the two arm members 4a and 4b can be arbitrarily changed.

なお、先端の磁石5a,5bは、フェルト、不織布等で覆われていてもよい。   The tip magnets 5a and 5b may be covered with felt, nonwoven fabric, or the like.

こうした磁石工具3は、管1の内面形状に応じ、図4(A)に示すように、アーム部材4a,4bが90°以下の角度θになっていてもよいし、図4(B)に示すように、アーム部材4a,4bが90°以上の角度θになっていてもよい。もちろん、90°であってもよい。磁石工具3は、外部磁石12が回転することによって追従して回転するが、回転中のアーム部材4a,4bの角度θは、回転中、一定であってもよいし、管1の内面形状に応じて角度θが変化してもよい。   In such a magnet tool 3, the arm members 4a and 4b may be at an angle θ of 90 ° or less, as shown in FIG. As shown, the arm members 4a and 4b may have an angle θ of 90 ° or more. Of course, it may be 90 °. The magnet tool 3 rotates following the rotation of the external magnet 12. However, the angle θ of the rotating arm members 4a and 4b may be constant during the rotation, or the inner shape of the tube 1 may be changed. Accordingly, the angle θ may change.

(被加工物)
管1は、被加工物として本発明の磁気研磨方法で適用される管である。管1の形状は、直線状のストレート管であってもよいし、曲がり管であってもよい。本発明では、曲がり管が好ましく適用でき、特に大径曲がり管や厚肉曲がり管等が好ましい。管1の大きさも特に限定されず、例えば直径0.5mm以上、80mm以下の範囲内で、内径0.4mm以上、80mm以下の範囲内であればよい。管1の長さも特に限定されないが、10mm以上、5000mm以下の範囲内であればよい。また、管1の内径は、長手方向に一定でも途中で変化するものであってもよい。
(Workpiece)
The tube 1 is a tube applied as a workpiece by the magnetic polishing method of the present invention. The shape of the tube 1 may be a straight straight tube or a bent tube. In the present invention, a bent pipe is preferably applicable, and a large-diameter bent pipe, a thick-walled bent pipe, and the like are particularly preferable. The size of the tube 1 is not particularly limited, and may be, for example, in the range of 0.5 mm to 80 mm in diameter and in the range of 0.4 mm to 80 mm in inner diameter. The length of the tube 1 is not particularly limited as long as it is in the range of 10 mm or more and 5000 mm or less. Further, the inner diameter of the tube 1 may be constant in the longitudinal direction or may change in the middle.

管1の材質は、金属管であっても樹脂管であってもよく、特に限定されない。金属管の材質としては、例えば、SUS304ステンレス鋼等を挙げることができる。樹脂管の材質としては、例えば、ポリカーボネート、塩化ビニル、ポリエチレン、ポリプロピレン、ウレタン、アクリル、MCナイロン(登録商標)、ポリアセタール、ABS樹脂、等を挙げることができる。   The material of the tube 1 may be a metal tube or a resin tube, and is not particularly limited. Examples of the material of the metal tube include SUS304 stainless steel. Examples of the material of the resin tube include polycarbonate, vinyl chloride, polyethylene, polypropylene, urethane, acrylic, MC nylon (registered trademark), polyacetal, ABS resin, and the like.

特に曲がり管は、製造時点で曲がり部位の内面の表面粗さに差が生じているが、本発明に係る磁気研磨方法で磁気研磨を行うことにより、曲がり部位内面の表面粗さの差を小さくすることができる。   In particular, the bending pipe has a difference in the surface roughness of the inner surface of the bent portion at the time of manufacture, but by performing magnetic polishing with the magnetic polishing method according to the present invention, the difference in the surface roughness of the inner surface of the bent portion is reduced. can do.

(磁性砥粒)
磁性砥粒2は、磁性粒子2aと研磨粒子2bとを有している。磁性砥粒2には、さらにスラリー媒体(図示しない)を含んだスラリー状の磁性砥粒2であることが好ましい。こうして構成された磁性砥粒2により、管1の内面を効果的に精密研磨することができる。磁性砥粒2aと研磨粒子2bを含む磁性砥粒2(スラリー状の磁性砥粒を含む。以下同じ。)は、外部磁石12が回転することにより、磁石工具3とともに回転し、管1の内面に対して相対移動する。
(Magnetic abrasive)
The magnetic abrasive grain 2 has magnetic particles 2a and abrasive particles 2b. The magnetic abrasive grains 2 are preferably slurry-like magnetic abrasive grains 2 further containing a slurry medium (not shown). With the magnetic abrasive grains 2 thus configured, the inner surface of the tube 1 can be effectively and precisely polished. Magnetic abrasive grains 2 including magnetic abrasive grains 2a and abrasive grains 2b (including slurry-like magnetic abrasive grains; hereinafter the same) rotate together with magnet tool 3 as external magnet 12 rotates, and the inner surface of tube 1 Move relative to.

磁性砥粒2aとしては、鉄、コバルト、ニッケル、クロムやこれらの酸化物、合金、化合物等、一般に磁性体と呼ばれる元素を全部又は一部に含む粒子が用いられる。具体例としては、電解鉄粉、カルボニル鉄粉、ニッケル粉、Ni−P合金粉又はNi−B合金粉等のニッケル合金粉等を使用することができる。また、高温高圧下の不活性ガス中で鉄と焼結させた球状の酸化アルミニウム粉や、不活性ガス雰囲気中でのアルミニウムと酸化鉄とのテルミット反応の生成物粉等を用いることも可能である。なお、市販されている磁性砥粒(東洋研磨材工業株式会社;KMX−80)や、その他の未市販の磁性砥粒等も用いることができる。また、磁性粒子の表面に、他の材料を被覆してなる粒子であってもよい。   As the magnetic abrasive grains 2a, particles containing all or part of an element generally called a magnetic material such as iron, cobalt, nickel, chromium, oxides, alloys, and compounds thereof are used. As specific examples, electrolytic iron powder, carbonyl iron powder, nickel powder, Ni-P alloy powder, nickel alloy powder such as Ni-B alloy powder, or the like can be used. It is also possible to use spherical aluminum oxide powder sintered with iron in an inert gas under high temperature and pressure, or a product powder of a thermite reaction between aluminum and iron oxide in an inert gas atmosphere. is there. Commercially available magnetic abrasive grains (Toyo Abrasives Co., Ltd .; KMX-80), other non-commercial magnetic abrasive grains, and the like can also be used. Moreover, the particle | grains which coat | cover another material on the surface of a magnetic particle may be sufficient.

なお、これらの磁性砥粒2は、磁気粒子2bとして用いてもよく、その場合には、磁性砥粒2が下記の磁気粒子2bを含んでいなくてもよい。   These magnetic abrasive grains 2 may be used as the magnetic particles 2b. In this case, the magnetic abrasive grains 2 may not include the following magnetic particles 2b.

磁性砥粒2aの大きさは、平均粒径Dが2μm以上、1500μm以下の範囲内であることが好ましい。なお、上記範囲内の磁性砥粒2aについて、その粒度分布は特に限定されず、磁性砥粒2aの形状についても特に限定されない。平均粒径Dは、磁性砥粒2aの電子顕微鏡写真から測定した平均値であり、表面粗さRzは、JIS B 0601(2001)に基づいて測定した最大高さである。   As for the size of the magnetic abrasive grains 2a, the average particle diameter D is preferably in the range of 2 μm or more and 1500 μm or less. In addition, about the magnetic abrasive grain 2a in the said range, the particle size distribution is not specifically limited, The shape of the magnetic abrasive grain 2a is not specifically limited either. The average particle diameter D is an average value measured from an electron micrograph of the magnetic abrasive grains 2a, and the surface roughness Rz is a maximum height measured based on JIS B 0601 (2001).

研磨粒子2bとしては、ダイヤモンド粒子、酸化アルミニウム粒子、酸化セリウム粒子、炭化ケイ素粒子、二酸化ケイ素粒子、酸化クロム粒子、又はそれらの複合体等が挙げられる。また、JIS表示でA、WA、GC、SA、MA、C、MD、CBNとして表されているものを含む、Al、SiC、ZrO、BC、ダイヤモンド、立方晶窒化ホウ素、MgO、CeO又はヒュームドシリカ等の研磨粒子であってもよい。中でも、WA砥粒又はGC砥粒が好ましい。なお、GC砥粒は、ケイ砂SiOとコークスCとの混合物を電気抵抗炉で加熱し、高温(2000℃)で反応させて製造した緑色炭化ケイ素研磨材である。 Examples of the abrasive particles 2b include diamond particles, aluminum oxide particles, cerium oxide particles, silicon carbide particles, silicon dioxide particles, chromium oxide particles, and composites thereof. In addition, Al 2 O 3 , SiC, ZrO 2 , B 4 C, diamond, cubic boron nitride, including those expressed as A, WA, GC, SA, MA, C, MD, CBN in JIS display, Abrasive particles such as MgO, CeO 2 or fumed silica may also be used. Among these, WA abrasive grains or GC abrasive grains are preferable. The GC abrasive grains are green silicon carbide abrasives produced by heating a mixture of silica sand SiO 2 and coke C in an electric resistance furnace and reacting at a high temperature (2000 ° C.).

研磨粒子2bの大きさや形状は特に制限されず、各種の形態ものを用いることができる。例えば、研磨粒子2bの平均粒径としては、0.1μm以上、好ましくは2μm以上であり、80μm以下、好ましくは20μm以下である。平均粒径Dは、磁性砥粒2aの電子顕微鏡写真から測定した平均値である。   The size and shape of the abrasive particles 2b are not particularly limited, and various forms can be used. For example, the average particle size of the abrasive particles 2b is 0.1 μm or more, preferably 2 μm or more, and 80 μm or less, preferably 20 μm or less. The average particle diameter D is an average value measured from an electron micrograph of the magnetic abrasive grains 2a.

スラリー媒体は、磁性砥粒2aと研磨粒子2bをスラリー状にする媒体である。スラリー状とする際の好ましい媒体としては、軽油、水の他、一般的に研磨液として用いられる水溶性や油溶性の液体等が挙げられる。なお、スラリー媒体は、研磨粒子2bを磁性砥粒2内に分散させるための添加剤を含まないようにしてもよい。スラリー媒体が添加剤を含まないようにしても、磁性砥粒2aが自生攪拌現象するようにでき、研磨粒子2bを均一分散させることができるので、そうした添加剤は不要にすることができる。   The slurry medium is a medium in which the magnetic abrasive grains 2a and the abrasive particles 2b are made into a slurry. As a preferable medium in the slurry state, water-soluble and oil-soluble liquids generally used as polishing liquids can be used in addition to light oil and water. The slurry medium may not contain an additive for dispersing the abrasive particles 2b in the magnetic abrasive grains 2. Even if the slurry medium does not contain an additive, the magnetic abrasive grains 2a can cause a self-stirring phenomenon, and the abrasive particles 2b can be uniformly dispersed, so that such an additive can be dispensed with.

磁性砥粒2においては、磁性砥粒2中に含まれる磁性砥粒2aの含有量は30重量%〜70重量%の範囲であり、研磨粒子2bの含有量は10重量%〜60重量%の範囲であり、これら磁性砥粒2aと研磨粒子2bとをあわせた総含有量は70重量%〜90重量%の範囲であるように構成される。なお、磁性砥粒2aの含有量は、磁気研磨装置3や磁性砥粒2aの粒径等の条件とも関係し、例えば自生攪拌現象を生じやすいように設定してもよいし、また、研磨粒子2bの含有量は、樹脂パイプの内面の研磨の程度(粗研磨、通常研磨、仕上研磨等)や研磨効率を考慮して設定してもよい。また、スラリー媒体の含有量は、調製された磁性砥粒2が管1と磁石との間の相対運動によっても磁石の対向位置に流体物として留まっているように、ある程度の粘度を有するように設定してもよい。   In the magnetic abrasive grain 2, the content of the magnetic abrasive grain 2 a contained in the magnetic abrasive grain 2 is in the range of 30 wt% to 70 wt%, and the content of the abrasive grain 2 b is 10 wt% to 60 wt%. The total content of the magnetic abrasive grains 2a and the abrasive particles 2b is in the range of 70% by weight to 90% by weight. The content of the magnetic abrasive grains 2a is also related to conditions such as the particle size of the magnetic polishing apparatus 3 and the magnetic abrasive grains 2a, and may be set so that, for example, a spontaneous stirring phenomenon is likely to occur. The content of 2b may be set in consideration of the degree of polishing of the inner surface of the resin pipe (rough polishing, normal polishing, finish polishing, etc.) and polishing efficiency. Further, the content of the slurry medium is such that the prepared magnetic abrasive grains 2 have a certain degree of viscosity so that the magnetic abrasive grains 2 remain as fluids at the opposing position of the magnet due to the relative movement between the tube 1 and the magnet. It may be set.

(その他)
本発明に係る磁気研磨方法では、粗研磨、通常研磨、仕上研磨等のように研磨精度の段階毎に適した複数種の磁性砥粒2を準備することにより、段階毎の研磨を行うことができる。具体的には、磁性砥粒2aの平均粒径と研磨粒子2bの平均粒径とを変化させた複数の磁性砥粒2を準備し、平均粒径D及び平均粒径dの大きい粒子(磁性砥粒2a及び/又は研磨粒子2b)を含む磁性砥粒2から段階的に管1内に入れ替えて研磨する。例えば、実施例1では、2段階の磁性砥粒2を準備し、段階的に管内に入れて研磨している。また、実施例2では、3段階の磁性砥粒2を準備し、段階的に管内に入れて研磨している。このように、例えば粗研磨、中間研磨又は仕上研磨のいずれで行うかによって、磁性砥粒2aと研磨粒子2bとを適した平均粒径Dと平均粒径dとした複数の磁性砥粒2を準備し、平均粒径Dと平均粒径dの大きい粒子を含む磁性砥粒2から段階的に管1内に入れ替えて研磨すれば、粗研磨、中間研磨、仕上研磨を順次行うことができる。その結果、研磨段階毎に最も適した磁性砥粒2を用いることにより、研磨効率を向上させることができる。
(Other)
In the magnetic polishing method according to the present invention, it is possible to perform polishing step by step by preparing a plurality of types of magnetic abrasive grains 2 suitable for each step of polishing accuracy, such as rough polishing, normal polishing, and finish polishing. it can. Specifically, a plurality of magnetic abrasive grains 2 in which the average particle diameter of the magnetic abrasive grains 2a and the average particle diameter of the abrasive particles 2b are changed are prepared, and particles having a large average particle diameter D and an average particle diameter d (magnetic The magnetic abrasive grains 2 including the abrasive grains 2a and / or abrasive grains 2b) are gradually replaced into the tube 1 for polishing. For example, in Example 1, two stages of magnetic abrasive grains 2 are prepared, and are polished in stages in a tube. Further, in Example 2, three stages of magnetic abrasive grains 2 are prepared, and are stepped into the tube and polished. As described above, a plurality of magnetic abrasive grains 2 having an average particle diameter D and an average particle diameter d suitable for the magnetic abrasive grains 2a and the abrasive particles 2b depending on, for example, rough polishing, intermediate polishing, or finish polishing. If prepared, the magnetic abrasive grains 2 including particles having a large average particle diameter D and a large average particle diameter d are gradually replaced into the tube 1 and polished, rough polishing, intermediate polishing, and finish polishing can be sequentially performed. As a result, the polishing efficiency can be improved by using the most suitable magnetic abrasive grain 2 for each polishing stage.

実施例を挙げて本発明をさらに具体的に説明する。なお、本発明の範囲は以下の実験例に限定されるものではない。   The present invention will be described more specifically with reference to examples. The scope of the present invention is not limited to the following experimental examples.

[実施例1]
図2に示す磁気研磨装置10を用いた。この磁気研磨装置10は、内部に磁石工具3とスラリー状の磁性砥粒2を入れた管1を固定し、外部磁石12を装着した外部管11を回転させることができる装置である。外部磁石12は、90°で外部管11の内周面に配置した。磁石工具3が備えるアーム部材4a,4bの角度も90°に折り曲げた状態で管内に挿入した。実験条件は以下のとおりとし、管1の内面研磨を行った。
[Example 1]
A magnetic polishing apparatus 10 shown in FIG. 2 was used. The magnetic polishing apparatus 10 is an apparatus capable of fixing a tube 1 containing a magnet tool 3 and slurry-like magnetic abrasive grains 2 therein and rotating an external tube 11 equipped with an external magnet 12. The external magnet 12 was disposed on the inner peripheral surface of the external tube 11 at 90 °. The arm members 4a and 4b included in the magnet tool 3 were inserted into the tube in a state where the angle was also bent at 90 °. The experimental conditions were as follows, and the inner surface of the tube 1 was polished.

[実施例2]
実施例1において、以下の条件に変更した以外は、実施例1と同じにして管1の内面研磨を行った。
[Example 2]
In Example 1, the inner surface of the tube 1 was polished in the same manner as in Example 1 except that the following conditions were changed.

[比較例1]
実施例1において、磁石工具3を用いないで磁性砥粒2だけを管内に入れた。それ以外は、実施例1と同じにして管1の内面研磨を行った。
[Comparative Example 1]
In Example 1, only the magnetic abrasive grain 2 was put in the pipe without using the magnet tool 3. Otherwise, the inner surface of the tube 1 was polished in the same manner as in Example 1.

[測定及び結果]
表1及び表2に示すように、曲がり管1と外部磁石12との間隙を5mmとし、ある程度余裕をもたせた。また、加工10分毎に曲がり管の洗浄を行い、接触式の表面粗さ測定器により加工面の表面粗さ測定を行うと共に、併せて混合磁性砥粒及び不織布の交換をした。ここでの加工実験では、60分の加工毎に磁性粒子や研磨粒子の粒径を細かくしていく多段階研磨を行った。その実験条件を表1及び表2に示す。また、図6及び図8に示した曲がり管内面の各部A〜Cでの表面粗さについては、同一の製造条件で同時に製造された曲がり管を用い、研磨前の曲がり管と、所定の研磨時間研磨した後の曲がり管をそれぞれ切断して、各部の表面粗さを測定した。
[Measurements and results]
As shown in Table 1 and Table 2, the gap between the bent tube 1 and the external magnet 12 was set to 5 mm, and a certain margin was provided. In addition, the bent tube was washed every 10 minutes of processing, and the surface roughness of the processed surface was measured with a contact-type surface roughness measuring device, and the mixed magnetic abrasive grains and the nonwoven fabric were exchanged together. In this processing experiment, multi-step polishing was performed in which the particle size of magnetic particles and abrasive particles was reduced every 60 minutes. The experimental conditions are shown in Tables 1 and 2. Moreover, about the surface roughness in each part AC of the bending pipe inner surface shown in FIG.6 and FIG.8, using the bending pipe manufactured simultaneously on the same manufacturing conditions, the bending pipe before grinding | polishing, and predetermined | prescribed grinding | polishing Each of the bent tubes after time polishing was cut and the surface roughness of each part was measured.

図5は、実施例1の実験結果である。加工前に1778nmRaであった曲がり管の加工面の表面粗さは、1段階目の第1研磨工程で53nmRaまで小さくなり、2段階目の第2研磨工程で48nmRaまで小さくなった。   FIG. 5 shows the experimental results of Example 1. The surface roughness of the processed surface of the bent pipe, which was 1778 nm Ra before processing, was reduced to 53 nm Ra in the first polishing step of the first step and decreased to 48 nm Ra in the second polishing step of the second step.

図6は、実施例1の磁気研磨方法で得られた管内面の各部位における研磨加工前後の表面粗さを示している。曲がり部の内側部位Aでは、研磨前の2085nmRaから研磨後の90nmRaになり、曲がり部の外側部位Bでは、研磨前の1417nmRaから研磨後の86nmRaになり、ストレート部位Cでは、研磨前の1778nmRaから研磨後の48nmRaになり、いずれの箇所でも表面粗さが顕著に小さくなった。また、各部での表面粗さの差は、加工前は668nmであったが、加工後は42nmとなり、その差は著しく小さくなった。   FIG. 6 shows the surface roughness before and after polishing at each part of the inner surface of the tube obtained by the magnetic polishing method of Example 1. In the inner portion A of the bent portion, the current value is from 2085 nmRa before polishing to 90 nmRa after polishing, in the outer portion B of the bent portion is changed from 1417 nmRa before polishing to 86 nmRa after polishing, and in the straight portion C from 1778 nmRa before polishing. After polishing, the thickness became 48 nm Ra, and the surface roughness was remarkably reduced at any location. The difference in surface roughness at each part was 668 nm before processing, but was 42 nm after processing, and the difference was remarkably small.

図7は、実施例2の実験結果である。加工前に1638nmRaであった曲がり管の加工面の表面粗さは、1段階目の第1研磨工程で69nmRaまで小さくなり、2段階目の第2研磨工程で33nmRaまで小さくなり、3段階目の第3研磨工程で11nmRaまで小さくなった。   FIG. 7 shows the experimental results of Example 2. The surface roughness of the processed surface of the bent tube, which was 1638 nm Ra before processing, is reduced to 69 nm Ra in the first polishing step in the first step, and is reduced to 33 nm Ra in the second polishing step in the second step. It decreased to 11 nmRa in the third polishing step.

図8は、実施例2の磁気研磨方法で得られた管内面の各部位における研磨前後の表面粗さを示している。曲がり部の内側部位Aでは、研磨前の2085nmRaから研磨後の13nmRaになり、曲がり部の外側部位Bでは、研磨前の1417nmRaから研磨後の11nmRaになり、ストレート部位Cでは、研磨前の1638nmRaから研磨後の11nmRaになり、いずれの箇所でも表面粗さが顕著に小さくなった。また、各部での表面粗さの差は、加工前は668nmであったが、加工後は2nmとなり、その差は著しく小さくなった。   FIG. 8 shows the surface roughness before and after polishing in each part of the inner surface of the tube obtained by the magnetic polishing method of Example 2. In the inner part A of the bent part, it becomes 13 nmRa after polishing from 2085 nmRa before polishing, in the outer part B of the bent part, it becomes 11 nmRa after polishing from 1417 nmRa before polishing, and in the straight part C from 1638 nmRa before polishing. The surface roughness was 11 nmRa after polishing, and the surface roughness was remarkably reduced at any location. Further, the difference in surface roughness at each part was 668 nm before processing, but was 2 nm after processing, and the difference was remarkably small.

図5〜図8の結果より、磁石工具3が、2つのアーム部材4a,4bの動作自由度を高める接続部6としてユニバーサルジョイントを用いたことで、曲がり管の曲がり部でも磁石工具3が安定に動作したためと考えられる。なお、10分間刻みで研磨したときの表面粗さRaは、所定の時間が経過したとき回転を止め、曲がり管をエタノールで超音波洗浄し、切断した後に表面粗さRaを測定した。表面粗さRaの測定は、表面粗さ測定機(株式会社ミツトヨ、型番:SV−624−3D)を用い、JIS B 0601(2001)に基づき、曲がり管の内面のA〜Cの3箇所測定した。   From the results of FIGS. 5 to 8, the magnetic tool 3 is stable even at the bent portion of the bent pipe by using the universal joint as the connecting portion 6 that increases the freedom of operation of the two arm members 4 a and 4 b. It is thought that it worked. The surface roughness Ra when polished for 10 minutes was measured by stopping the rotation when a predetermined time had elapsed, ultrasonically cleaning the bent tube with ethanol, and cutting the surface roughness Ra. The surface roughness Ra is measured using a surface roughness measuring machine (Mitutoyo Corporation, model number: SV-624-3D), based on JIS B 0601 (2001), at three locations A to C on the inner surface of the bent pipe. did.

図5及び図7示す研磨量に着目すると、加工が進行し表面粗さが小さくなる毎に研磨時間毎の研磨量の変化が少なくなっている。また、磁性砥粒を用いた2段階までの研磨時間毎の研磨量の変化が、WA砥粒を用いた3段階からのものよりも大きいことから、磁性砥粒を用いた場合の方が、加工力は大きいことがわかる。   Focusing on the polishing amount shown in FIGS. 5 and 7, the change in the polishing amount for each polishing time decreases as the processing progresses and the surface roughness decreases. In addition, since the change in the polishing amount per polishing time up to two stages using magnetic abrasive grains is larger than that from three stages using WA abrasive grains, the case where magnetic abrasive grains are used, It can be seen that the processing force is large.

以上の結果より、磁石工具3を用いて曲がり管の内部からの加工圧力を強化した本発明に係る磁気研磨方法は、管の内面を精密に研磨する上で有効であった。特に、実施例2では、初期の表面粗さが1638nmRaであった加工面を、研磨後には11nmRaまで小さくなった。また、研磨加工前は600nmRa程度あった曲がり部の加工面の内側と外側における表面粗さの差を、研磨後には2nmRaまで減少させることができた。   From the above results, the magnetic polishing method according to the present invention in which the machining pressure from the inside of the bent tube was reinforced using the magnet tool 3 was effective in precisely polishing the inner surface of the tube. In particular, in Example 2, the processed surface having an initial surface roughness of 1638 nmRa was reduced to 11 nmRa after polishing. In addition, the difference in surface roughness between the inside and outside of the processed surface of the bent portion, which was about 600 nmRa before polishing, could be reduced to 2 nmRa after polishing.

図9は、実施例2における樹脂パイプの内面の加工前後の比較写真である。加工前の図9(A)(B)の写真は、表面粗さ1638nmRaで鏡面ではないが、図9(C)(D)の写真は、表面粗さ11nmRaで鏡面であった。   FIG. 9 is a comparative photograph before and after processing the inner surface of the resin pipe in Example 2. The photographs of FIGS. 9A and 9B before processing are not mirror surfaces with a surface roughness of 1638 nmRa, but the photographs of FIGS. 9C and 9D are mirror surfaces with a surface roughness of 11 nmRa.

1 管
2 磁性砥粒
2a 磁性粒子
2b 研磨粒子
3 磁石工具
4(4a、4b) 2つのアーム部材
5(5a、5b) 磁石
6 接続部
10 磁気研磨装置
11 外部管
12(12a、12b) 外部磁石
13 回転機構
14 閉磁路
θ 2つのアーム部材間の角度


DESCRIPTION OF SYMBOLS 1 Tube 2 Magnetic abrasive grain 2a Magnetic particle 2b Abrasive particle 3 Magnet tool 4 (4a, 4b) Two arm members 5 (5a, 5b) Magnet 6 Connection part 10 Magnetic polishing apparatus 11 External pipe 12 (12a, 12b) External magnet 13 Rotating mechanism 14 Closed magnetic path θ Angle between two arm members


Claims (6)

磁石工具を管内に配置し、前記磁石工具を磁力で吸引する外部磁石を管外に配置し、前記外部磁石の回転により前記磁石工具と前記管とを相対運動させて前記磁石工具で前記管の内面を研磨する磁気研磨方法であって、
前記磁石工具が、先端に磁石を備えた2つのアーム部材と、前記2つのアーム部材を回動可能に接続する接続部とを有し、前記磁石工具の前記磁石には磁性砥粒が着磁し、該磁性砥粒が前記管の内面を研磨する、ことを特徴とする磁気研磨方法。
A magnet tool is disposed inside the tube, an external magnet that attracts the magnet tool with a magnetic force is disposed outside the tube, and the magnet tool and the tube are moved relative to each other by rotation of the external magnet so that the magnet tool A magnetic polishing method for polishing an inner surface,
The magnet tool has two arm members each having a magnet at a tip, and a connecting portion that rotatably connects the two arm members, and magnetic abrasive grains are magnetized on the magnet of the magnet tool. And a magnetic polishing method wherein the magnetic abrasive grains polish the inner surface of the tube.
前記管が、大径曲がり管又は厚肉曲がり管である、請求項1に記載の磁気研磨方法。   The magnetic polishing method according to claim 1, wherein the tube is a large-diameter bent tube or a thick-walled bent tube. 前記磁性砥粒は、磁性粒子と研磨粒子とを有し、前記磁性粒子が電解鉄粉であり、前記研磨粒子がWA砥粒又はGC砥粒である、請求項1又は2に記載の磁気研磨方法。   The magnetic polishing according to claim 1, wherein the magnetic abrasive grains include magnetic particles and abrasive particles, the magnetic particles are electrolytic iron powder, and the abrasive particles are WA abrasive grains or GC abrasive grains. Method. 管の内部に配置するための磁石工具と、前記磁石工具を前記管の外側から磁力で吸引する外部磁石と、前記外部磁石を回転させて前記管と前記磁石工具とを相対運動させる回転機構とを有し、
前記磁石工具が、磁性砥粒を着磁可能な磁石を先端に備えた2つのアーム部材と、前記2つのアーム部材を回動可能に接続する接続部とを有する、ことを特徴とする磁気研磨装置。
A magnet tool for disposing inside the tube, an external magnet for attracting the magnet tool magnetically from the outside of the tube, and a rotating mechanism for rotating the external magnet to move the tube and the magnet tool relative to each other. Have
Magnetic polishing characterized in that the magnet tool has two arm members each having a magnet capable of magnetizing magnetic abrasive grains at a tip thereof, and a connecting portion that rotatably connects the two arm members. apparatus.
前記磁石工具は、前記管の内面形状に追従し、前記接続部で接続された前記2つのアーム部材の角度が変化可能な状態で研磨する、請求項4に記載の磁気研磨装置。   5. The magnetic polishing apparatus according to claim 4, wherein the magnet tool performs polishing in a state in which an angle of the two arm members connected by the connection portion can change following the inner shape of the pipe. 前記管が、大径曲がり管又は厚肉曲がり管である、請求項4又は5に記載の磁気研磨装置。

The magnetic polishing apparatus according to claim 4 or 5, wherein the pipe is a large-diameter bent pipe or a thick-walled bent pipe.

JP2014180012A 2014-09-04 2014-09-04 Magnetic polishing method and magnetic polishing apparatus using a magnet tool Active JP6371645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014180012A JP6371645B2 (en) 2014-09-04 2014-09-04 Magnetic polishing method and magnetic polishing apparatus using a magnet tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014180012A JP6371645B2 (en) 2014-09-04 2014-09-04 Magnetic polishing method and magnetic polishing apparatus using a magnet tool

Publications (2)

Publication Number Publication Date
JP2016052704A true JP2016052704A (en) 2016-04-14
JP6371645B2 JP6371645B2 (en) 2018-08-08

Family

ID=55744646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014180012A Active JP6371645B2 (en) 2014-09-04 2014-09-04 Magnetic polishing method and magnetic polishing apparatus using a magnet tool

Country Status (1)

Country Link
JP (1) JP6371645B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107433515A (en) * 2017-09-15 2017-12-05 辽宁科技大学 Spiral electromagnetic field complex space elbow internal wall magnetic abrasive finishing burnishing device and method
CN108555764A (en) * 2018-06-08 2018-09-21 辽宁科技大学 Magnetic conductive tube internal grinding burnishing device
CN109909814A (en) * 2019-03-21 2019-06-21 辽宁科技大学 A kind of device of the compound device to hole burr removal of electrolysis rotary ultrasonic magnetic force
CN109986414A (en) * 2019-03-21 2019-07-09 辽宁科技大学 A kind of device being electrolysed rotary ultrasonic magnetic force composite polishing plane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100226B1 (en) 2018-10-24 2020-05-15 한국철도기술연구원 Apparatus for polishing inner surface of structure and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122085A (en) * 1983-12-07 1985-06-29 佐藤 忠吉 Abrasive for washing inside of pipe having magnetic force and pipe-inside washing method using said abrasive
JPS63221965A (en) * 1987-03-06 1988-09-14 Kureha Chem Ind Co Ltd Method and device for polishing pipe material
JPS63221962A (en) * 1987-03-06 1988-09-14 Kureha Chem Ind Co Ltd Polishing device for pipe
JPH04975U (en) * 1990-04-11 1992-01-07
JP2005501702A (en) * 2001-08-29 2005-01-20 コンアグラ グロサリイ プロダクツ カンパニー Device and method for removing deposits on measuring instruments
JP2014131799A (en) * 2013-01-04 2014-07-17 Gaus Co Ltd Pipe cleaning robot

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122085A (en) * 1983-12-07 1985-06-29 佐藤 忠吉 Abrasive for washing inside of pipe having magnetic force and pipe-inside washing method using said abrasive
JPS63221965A (en) * 1987-03-06 1988-09-14 Kureha Chem Ind Co Ltd Method and device for polishing pipe material
JPS63221962A (en) * 1987-03-06 1988-09-14 Kureha Chem Ind Co Ltd Polishing device for pipe
JPH04975U (en) * 1990-04-11 1992-01-07
JP2005501702A (en) * 2001-08-29 2005-01-20 コンアグラ グロサリイ プロダクツ カンパニー Device and method for removing deposits on measuring instruments
JP2014131799A (en) * 2013-01-04 2014-07-17 Gaus Co Ltd Pipe cleaning robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107433515A (en) * 2017-09-15 2017-12-05 辽宁科技大学 Spiral electromagnetic field complex space elbow internal wall magnetic abrasive finishing burnishing device and method
CN107433515B (en) * 2017-09-15 2023-04-28 辽宁科技大学 Magnetic particle grinding and polishing device and method for inner wall of spiral electromagnetic field complex space bent pipe
CN108555764A (en) * 2018-06-08 2018-09-21 辽宁科技大学 Magnetic conductive tube internal grinding burnishing device
CN109909814A (en) * 2019-03-21 2019-06-21 辽宁科技大学 A kind of device of the compound device to hole burr removal of electrolysis rotary ultrasonic magnetic force
CN109986414A (en) * 2019-03-21 2019-07-09 辽宁科技大学 A kind of device being electrolysed rotary ultrasonic magnetic force composite polishing plane

Also Published As

Publication number Publication date
JP6371645B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
Khan et al. Selection of optimum polishing fluid composition for ball end magnetorheological finishing (BEMRF) of copper
Heng et al. Review of superfinishing by the magnetic abrasive finishing process
JP2010052123A (en) Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2007268689A (en) Magnetic abrasive finishing device, method therefor, and machining tool used therefor
JP5036374B2 (en) Paste material
JP5818338B2 (en) Magnetic inner surface polishing apparatus and magnetic inner surface polishing method
JPS59161262A (en) Magnetic attraction type method for abrasion
Heng et al. A novel auto-gaping magnetic pole system for inner surface finishing of non-circular pipes using magnetic abrasive finishing process
JP2008254106A (en) Paste material
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
JP2007045878A (en) Magnetic abrasive grain
JP2015168029A (en) magnetic polishing method and polishing slurry
JP4185986B2 (en) Magnetic deburring method
CN207155395U (en) A kind of magnetic flow liquid burnishing device
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
JP2007210073A (en) Magnetic grinding device and magnetic grinding tool
JP5569998B2 (en) Paste material
JP2021133450A (en) Fixed abrasive polishing method applying magnetism-assisted processing method and polishing apparatus
JP4185985B2 (en) Magnetically assisted processing
JP2006272520A (en) Magnetism-assisted processing method and magnetic tool for use in it
CN111843627A (en) Polishing method and polishing device based on magnetic composite fluid
JP4471197B2 (en) Polishing method that does not require processing pressure control
ZOU et al. Development of a new Magnetic Abrasive Finishing Processing
KR101591569B1 (en) Polishing apparatus for the aspheric lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6371645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250