JP2016051764A - Method for manufacturing flexible copper wiring board, and support film-attached flexible copper-clad laminate used therefor - Google Patents

Method for manufacturing flexible copper wiring board, and support film-attached flexible copper-clad laminate used therefor Download PDF

Info

Publication number
JP2016051764A
JP2016051764A JP2014175364A JP2014175364A JP2016051764A JP 2016051764 A JP2016051764 A JP 2016051764A JP 2014175364 A JP2014175364 A JP 2014175364A JP 2014175364 A JP2014175364 A JP 2014175364A JP 2016051764 A JP2016051764 A JP 2016051764A
Authority
JP
Japan
Prior art keywords
film
flexible copper
support film
wiring board
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014175364A
Other languages
Japanese (ja)
Other versions
JP6323261B2 (en
Inventor
敦 猪狩
Atushi Igari
敦 猪狩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014175364A priority Critical patent/JP6323261B2/en
Priority to CN201580043280.7A priority patent/CN106576428B/en
Priority to PCT/JP2015/072753 priority patent/WO2016031559A1/en
Priority to KR1020167035645A priority patent/KR102378236B1/en
Priority to TW104126325A priority patent/TWI584707B/en
Publication of JP2016051764A publication Critical patent/JP2016051764A/en
Application granted granted Critical
Publication of JP6323261B2 publication Critical patent/JP6323261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Adhesive Tapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture, from a flexible copper-clad laminate, a flexible copper wiring board which is used for a chip-on-film (COF), a flexible printed wiring board (FPC), etc. with good precision.SOLUTION: A method for manufacturing a flexible copper wiring board comprises: a step for laminating a copper on one face of a resin film; a step for laminating, as a support film, a biaxially stretched film on the other face of the resin film through an adhesive layer; a step for forming a copper wiring line by etching the copper; a heating step for heating the resultant support film-attached flexible copper-clad laminate; and a peeling step for peeling the support film. A film of which the thermal shrinkage is 0.1% or less at 150°C after 30 minutes in each extension direction of the biaxially stretched film is used.SELECTED DRAWING: Figure 1

Description

本発明は、チップ・オン・フィルム(COF:Chip On Film)やフレキシブルプリント配線板(FPC:Flexible Printed Circuit)などに使用されるフレキシブル銅配線板の製造方法、及び、それに用いる支持フィルム付のフレキシブル銅張積層板(FCCL:Flexible Copper Clad Laminate)に関する。   The present invention relates to a method for producing a flexible copper wiring board used for a chip-on-film (COF), a flexible printed circuit (FPC), and the like, and a flexible film with a support film used therefor. It is related with a copper clad laminated board (FCCL: Flexible Copper Clad Laminate).

樹脂フィルムはフレキシブル性を有し、加工が容易であるため、その表面に金属膜や酸化物膜を形成して電子部品や光学部品、包装材料などに広く産業界で用いられている。例えば、フレキシブル性を有するフレキシブル配線基板が携帯電話など小型電子機器で使用されている。   Resin films have flexibility and are easy to process. Therefore, a metal film or an oxide film is formed on the surface of the resin film and is widely used in the industry for electronic parts, optical parts, packaging materials, and the like. For example, flexible wiring boards having flexibility are used in small electronic devices such as mobile phones.

フレキシブル銅配線板の製造方法として、例えば樹脂フィルムの一方の表面に金属薄膜が形成されたフレキシブル銅張積層板を出発材料とし、これに選択的エッチング工程により金属薄膜の不要部分を除去して配線パターンを形成し、めっき工程等を経ることで製造する方法が挙げられる。   As a method for manufacturing a flexible copper wiring board, for example, a flexible copper-clad laminate having a metal thin film formed on one surface of a resin film is used as a starting material, and an unnecessary portion of the metal thin film is removed by a selective etching process. The method of manufacturing by forming a pattern and passing through a plating process etc. is mentioned.

しかしながら、フレキシブル銅張積層板は、柔軟性、屈曲性に富むものであるが故に、そのままの状態ではハンドリング強度が十分ではなく搬送時に樹脂フィルムが変形したり、あるいは切れるという問題があり、選択的エッチング処理等を行うことが困難である。また、スプロケットホールの強度を十分に確保することができず、搬送時にスプロケットホールが変形し、配線パターン及びソルダーレジストパターン等を所定の位置に高精度に形成できないという問題もあった。従って、フレキシブル銅張積層板の金属薄膜が形成されていない表面に支持フィルムを粘着層を介して積層し、一時的にハンドリング強度を向上させた状態で選択的エッチング処理を施し、配線パターンを形成した後、金属張積層板から支持フィルムを剥離することによって、フレキシブル銅配線板を得る方法が多く採用されている。   However, since the flexible copper clad laminate is rich in flexibility and flexibility, there is a problem that the handling strength is not sufficient in the state as it is, and there is a problem that the resin film is deformed or cut at the time of transport, and selective etching treatment is performed. Etc. are difficult to perform. In addition, the strength of the sprocket hole cannot be sufficiently ensured, and the sprocket hole is deformed at the time of conveyance, and there is a problem that the wiring pattern, the solder resist pattern, and the like cannot be formed with high precision at predetermined positions. Therefore, a support film is laminated on the surface of the flexible copper-clad laminate on which the metal thin film is not formed via an adhesive layer, and a selective etching process is performed with the handling strength temporarily improved to form a wiring pattern. After that, a method of obtaining a flexible copper wiring board by peeling the support film from the metal-clad laminate is often employed.

このような支持フィルムの一例として、たとえば特許文献1では、ポリエチレンテレフタレート(PET)フィルムなどを基材とした粘着シートが提案されている。   As an example of such a support film, for example, Patent Document 1 proposes an adhesive sheet based on a polyethylene terephthalate (PET) film or the like.

しかし、支持フィルムを積層した場合、フレキシブル銅張積層板の寸法安定性に及ぼす可能性が懸念されている。近年求められる配線の幅は10〜15μm程度となっており、寸法安定性の高さがフレキシブル銅張積層板には強く要求されるためである。支持フィルムを接着されていないフレキシブル銅張積層板は、ポリイミドなどが樹脂基材として用いられるために、加熱による収縮自体は若干あるもののロットごとのばらつきは小さい。そのため、予めエッチング工程や加熱工程を行う前のフレキシブル銅張積層板と工程後のフレキシブル銅配線板のサンプル長を測定し、工程前後の収縮率の相関を算出しておき、収縮を予め見込んでフレキシブル銅張積層板のほうを設計することにより、工程後のフレキシブル銅配線板の配線パターンを精度よく形成することが可能であった。   However, when a support film is laminated, there is concern about the possibility of affecting the dimensional stability of the flexible copper-clad laminate. This is because the wiring width required in recent years is about 10 to 15 μm, and high dimensional stability is strongly required for the flexible copper-clad laminate. The flexible copper-clad laminate to which the support film is not bonded has a small variation per lot although there is some shrinkage due to heating because polyimide or the like is used as a resin substrate. Therefore, measure the sample length of the flexible copper-clad laminate before the etching process and heating process and the flexible copper wiring board after the process in advance, calculate the correlation between the shrinkage ratio before and after the process, and anticipate the shrinkage in advance. By designing the flexible copper-clad laminate, it was possible to accurately form the wiring pattern of the flexible copper wiring board after the process.

しかし、PETなどの支持フィルムを積層させたフレキシブル銅張積層板を用いた場合には、PET自体の収縮率がポリイミドなどの樹脂基材に比べて極めて大きいため、その積層体である支持フィルム付フレキシブル銅張積層板も寸法変化にはばらつきが大きくなり、工程前後の寸法変化率に相関がほとんど見られない。そのため、近年求められる配線幅のスペックに対応するためには、銅張積層板のロットごとにパラメータを調整しなければならない。そのようなロットごとのパラメータの調整は、工程の調整の手間、調整時の原料ロス、製品の品質バラツキの悪化、歩留まり低下など様々な悪影響を及ぼす。そのため、近年の小型電子機器で使用できるフレキシブル銅張積層板で使用した場合には、その歩留りが低下し、生産性の悪いフレキシブル銅張積層板となってしまうという問題がある。   However, when a flexible copper-clad laminate with a support film such as PET laminated is used, the shrinkage rate of PET itself is much larger than that of a resin substrate such as polyimide. The flexible copper clad laminate also has a large variation in dimensional change, and there is almost no correlation between the dimensional change rate before and after the process. Therefore, parameters must be adjusted for each lot of copper clad laminates in order to meet the wiring width specifications required in recent years. Such parameter adjustment for each lot has various adverse effects such as labor for process adjustment, loss of raw materials during adjustment, deterioration of product quality variation, and yield reduction. Therefore, when it uses with the flexible copper clad laminated board which can be used with recent small electronic devices, the yield falls and there exists a problem that it will become a flexible copper clad laminated board with low productivity.

特開2001−106998号公報JP 2001-106998 A

本発明は、フレキシブル銅配線板の製造方法において、支持フィルム付銅配線板形成工程を含むものであっても、支持フィルム付銅配線板寸法安定性が高く、そのため、その歩留りが高く、生産性の高いフレキシブル銅張積層板の製造方法を提供することを目的とする。   In the method for producing a flexible copper wiring board, the present invention has a high dimensional stability of a copper wiring board with a supporting film, even if it includes a copper wiring board forming step with a supporting film, so that the yield is high and the productivity is high. It aims at providing the manufacturing method of a high flexible copper clad laminated board.

本発明者らは、銅配線板形成工程で用いる支持フィルム付銅配線板について、鋭意検討をした。フレキシブル銅張積層板に用いられているポリイミドなどの樹脂フィルムは、高温条件下で圧縮又は引張応力が加わると、その応力の影響を寸法安定性に変化が生じる。そのため、樹脂フィルムに支持フィルムが密着していた場合、高温条件下でその支持フィルムの寸法が大きく変化する場合には、支持フィルムの寸法変化によって樹脂フィルム自体の寸法安定性に影響を与えることを発見した。そこで、支持フィルムとして、2軸延伸フィルムであって、それぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下のものを用いることで、支持フィルム付銅配線板自体の熱安定性が高くなり、課題であった銅張積層板の寸法変化率が安定し、支持フィルム付であっても工程前後の相関が維持できることを見出し、本発明を完成するに至った。   The present inventors diligently studied the copper wiring board with a support film used in the copper wiring board forming step. When a compressive or tensile stress is applied to a resin film such as polyimide used for a flexible copper clad laminate under a high temperature condition, the influence of the stress changes in dimensional stability. Therefore, when the support film is in close contact with the resin film, if the size of the support film changes greatly under high temperature conditions, the dimensional stability of the resin film itself is affected by the change in the size of the support film. discovered. Therefore, the support film is a biaxially stretched film, each having a thermal shrinkage rate at 150 ° C. × 30 minutes in the stretch direction of 0.1% or less, respectively. The thermal stability of itself increased, the dimensional change rate of the copper clad laminate, which was a problem, was stabilized, and it was found that the correlation before and after the process could be maintained even with a support film, and the present invention was completed. .

すなわち、本発明の第一は、樹脂フィルムの一方の面側に銅配線が形成されているフレキシブル銅配線板の製造方法であって、前記樹脂フィルムの一方の面側に銅を積層するフレキシブル銅張積層板形成工程と、前記樹脂フィルムの他方の面側に、粘着層を介して、2軸延伸フィルムを支持フィルムとして積層する支持フィルム付フレキシブル銅張積層板形成工程と、前記銅をエッチングして前記銅配線を形成する銅配線形成工程と、前記支持フィルム付フレキシブル銅張積層板を加熱する加熱工程と、前記支持フィルムを剥離する剥離工程と、を備え、前記支持フィルムとして、前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下であるフィルムを用いる、フレキシブル銅配線板の製造方法である。   That is, the first of the present invention is a method for manufacturing a flexible copper wiring board in which a copper wiring is formed on one surface side of a resin film, wherein the copper is laminated on one surface side of the resin film. Etching the copper with a laminated laminate forming step, a flexible copper clad laminate forming step with a support film for laminating a biaxially stretched film as a support film via an adhesive layer on the other surface side of the resin film, A copper wiring forming step for forming the copper wiring, a heating step for heating the flexible copper-clad laminate with a support film, and a peeling step for peeling the support film. Flexible copper using a film having a thermal shrinkage of 0.1% or less after 150 ° C. for 30 minutes in each stretching direction of the stretched film It is a preparation method for one-plate.

本発明の第二は、前記支持フィルムが、2軸延伸ポリエステルである第一の発明に記載のフレキシブル銅配線板の製造方法である。   2nd of this invention is a manufacturing method of the flexible copper wiring board as described in 1st invention whose said support film is biaxially-stretched polyester.

本発明の第三は、前記樹脂フィルムが、ポリイミドフィルムである第一又は第二の発明に記載のフレキシブル銅配線板の製造方法である。   3rd of this invention is a manufacturing method of the flexible copper wiring board as described in 1st or 2nd invention whose said resin film is a polyimide film.

本発明の第四は、前記支持フィルムの厚さが、前記樹脂フィルムの厚さの0.4倍以上3.4倍以下である第一から第三のいずれかの発明に記載のフレキシブル銅配線板の製造方法である。   A fourth aspect of the present invention is the flexible copper wiring according to any one of the first to third aspects, wherein the thickness of the support film is not less than 0.4 times and not more than 3.4 times the thickness of the resin film. It is a manufacturing method of a board.

本発明の第五は、前記支持フィルム付フレキシブル銅張積層板について、所定の条件下での寸法変化の実測値を測定し、この実測値を、前記フレキシブル銅配線板の寸法変化の予測値とする寸法変化予測工程を更に備える第一から第四のいずれかの発明に記載のフレキシブル銅配線板の製造方法である。   In the fifth aspect of the present invention, the flexible copper-clad laminate with a support film is measured for an actual measurement value of a dimensional change under a predetermined condition, and the actual measurement value is calculated as a predicted value of a dimensional change of the flexible copper wiring board. It is a manufacturing method of the flexible copper wiring board as described in any one of the 1st to 4th invention further equipped with the dimension change estimation process to perform.

本発明の第六は、前記所定の条件が、エッチング処理及び/又は加熱処理である第五の発明に記載のフレキシブル銅配線板の製造方法である。   6th of this invention is a manufacturing method of the flexible copper wiring board as described in 5th invention whose said predetermined conditions are an etching process and / or a heat processing.

本発明の第七は、樹脂フィルムの一方の面側に銅が積層されているフレキシブル銅張積層板と、前記フレキシブル銅張積層板の前記樹脂フィルムの他方の面側に、粘着層を介して、2軸延伸フィルムが支持フィルムとして積層されている、支持フィルム付フレキシブル銅張積層板であって、前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下である支持フィルム付フレキシブル銅張積層板である。   A seventh aspect of the present invention is a flexible copper clad laminate in which copper is laminated on one surface side of a resin film, and an adhesive layer on the other surface side of the resin film of the flexible copper clad laminate. A biaxially stretched film is laminated as a support film, and is a flexible copper-clad laminate with a support film, each having a heat shrinkage ratio after 150 ° C. × 30 minutes in each stretching direction of the biaxially stretched film, It is a flexible copper clad laminated board with a support film which is 0.1% or less.

本発明の第八は、第七の発明に記載の支持フィルム付フレキシブル銅張積層板が用いられているフレキシブル配線基板である。   The eighth of the present invention is a flexible wiring board in which the flexible copper-clad laminate with a support film described in the seventh invention is used.

本発明によれば、フレキシブル銅配線板の製造方法において、支持フィルム付銅配線板形成工程を含むものであっても、支持フィルムの2軸延伸フィルムのそれぞれ延伸方向(MD:Machine Direction、TD:Transverse Direction)における、150℃×30分後における熱収縮率が、それぞれ0.1%以下のものを用いることでフレキシブル銅配線板そのものの寸法安定性が高く、その歩留りが高く、生産性の高いフレキシブル銅張積層板の製造方法である。   According to the present invention, in the method for producing a flexible copper wiring board, even if it includes a copper wiring board forming step with a support film, each of the stretching directions (MD: Machine Direction, TD :) of the biaxially stretched film of the support film. In the Transverse Direction), the heat shrinkage rate after 150 ° C. × 30 minutes is 0.1% or less, respectively, so that the flexible copper wiring board itself has high dimensional stability, high yield, and high productivity. It is a manufacturing method of a flexible copper clad laminated board.

本発明のフレキシブル銅配線板の製造方法を示す図である。It is a figure which shows the manufacturing method of the flexible copper wiring board of this invention.

以下、本発明の実施形態について説明する。本発明に係るフレキシブル銅配線板の製造方法は、図1に示すように、樹脂フィルムの一方の面側に銅を積層するフレキシブル銅張積層板形成工程1と、前記樹脂フィルムの他方の面側に、粘着層を介して、2軸延伸フィルムを支持フィルムとして積層する支持フィルム付フレキシブル銅張積層板形成工程2と、前記銅をエッチングして前記銅配線を形成する銅配線形成工程3と、加熱工程4と、前記支持フィルムを剥離する剥離工程5と、を備えるフレキシブル銅配線板の製造方法であって、前記支持フィルムとして、前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下であるフィルムを用いることを特徴とする。   Hereinafter, embodiments of the present invention will be described. As shown in FIG. 1, the method for producing a flexible copper wiring board according to the present invention includes a flexible copper clad laminate forming step 1 in which copper is laminated on one surface side of a resin film, and the other surface side of the resin film. In addition, a flexible copper-clad laminate with a support film forming step 2 for laminating a biaxially stretched film as a support film via an adhesive layer, a copper wiring forming step 3 for forming the copper wiring by etching the copper, It is a manufacturing method of a flexible copper wiring board provided with the heating process 4 and the peeling process 5 which peels the said support film, Comprising: 150 degreeC * 30 minutes in each extending direction of the said biaxially stretched film as said support film A film having a thermal shrinkage rate of 0.1% or less is used.

[フレキシブル銅張積層板形成工程1]
本発明に係るフレキシブル銅配線板の製造方法は、樹脂フィルムの一方の面側に銅を積層する工程を含む。当該工程は、例えば、樹脂フィルムと銅箔の間に接着剤を用いて両者を重ねて張り合わせる方法や真空蒸着法、スパッタリング法、イオンプレーティング法などの乾式めっき法により、樹脂フィルム上に、クロム、酸化クロム、ニッケルなどの銅以外の金属からなる下地金属層を50Å〜200Å程度成膜した後、乾式めっき法又は湿式めっき法により銅を被膜する方法など、公知の方法を用いることができる。
[Flexible copper-clad laminate forming process 1]
The manufacturing method of the flexible copper wiring board which concerns on this invention includes the process of laminating | stacking copper on the one surface side of a resin film. The process is, for example, on the resin film by a dry plating method such as a method of vacuum bonding, sputtering, ion plating, or the like by using an adhesive between the resin film and the copper foil. A known method such as a method in which a base metal layer made of a metal other than copper, such as chromium, chromium oxide, or nickel, is formed to a thickness of about 50 to 200 mm and then coated with copper by a dry plating method or a wet plating method can be used. .

本発明の銅張積層板形成工程1に使用することができる樹脂フィルムは、一般的なフレキシブル回路基板の製造に使用されている樹脂フィルムであれば、特に限定されることなく使用することができる。例えば、ポリイミド系フィルム、ポリアミド系フィルム、ポリエチレンテレフタレート(PET)やポリエチレンテレナフタレート(PEN)などのポリエステル系フィルム、ポリテトラフルオロエチレン系フィルム、ポリフェニレンサルファイド系フィルム、ポリエチレンナフタレート系フィルム、液晶ポリマー系フィルムの群から選ばれた1種の絶縁フィルムを使用することができる。特に、フレキシブル銅配線板に必要とされる、耐熱性、誘電体特性、電気絶縁性、耐薬品性の観点からポリイミドフィルムを用いることが好ましい。   If the resin film which can be used for the copper clad laminated board formation process 1 of this invention is a resin film currently used for manufacture of a general flexible circuit board, it can be used without being specifically limited. . For example, polyimide film, polyamide film, polyester film such as polyethylene terephthalate (PET) and polyethylene terephthalate (PEN), polytetrafluoroethylene film, polyphenylene sulfide film, polyethylene naphthalate film, liquid crystal polymer film One type of insulating film selected from the group can be used. In particular, it is preferable to use a polyimide film from the viewpoints of heat resistance, dielectric properties, electrical insulation, and chemical resistance required for flexible copper wiring boards.

銅被膜層の膜厚は0.01μm〜35μmの範囲とすることが好ましく、0.3μm〜15μmの範囲とすることがより好ましく、0.3μm〜12μmの範囲とすることがさらに好ましい。銅被膜層の膜厚が0.01μm未満であると、配線部の電気導電性に問題が発生しやすくなり、また、強度上の問題が生じたりする可能性がある。一方、膜厚が35μmを超えて厚くなると、ヘヤークラックや反りなどを生じて密着性が低下する場合があるほか、サイドエッチングの影響が大きくなり、狭ピッチ化が難しくなる場合もある。   The film thickness of the copper coating layer is preferably in the range of 0.01 μm to 35 μm, more preferably in the range of 0.3 μm to 15 μm, and even more preferably in the range of 0.3 μm to 12 μm. If the film thickness of the copper coating layer is less than 0.01 μm, a problem may easily occur in the electrical conductivity of the wiring portion, and a problem in strength may occur. On the other hand, if the film thickness exceeds 35 μm, hair cracking or warping may occur and adhesion may be reduced, and the influence of side etching may be increased, making narrow pitching difficult.

[支持フィルム付フレキシブル銅張積層板形成工程2]
本発明に係るフレキシブル銅配線板の製造方法は、2軸延伸フィルムを支持フィルムとして積層する工程を含むことを特徴とする。当該工程は、樹脂フィルムと支持フィルムの間に粘着剤を介して両者を重ねて張り合わせる方法など従来公知の方法より行うことができる。
[Flexible copper clad laminate with support film forming step 2]
The method for producing a flexible copper wiring board according to the present invention includes a step of laminating a biaxially stretched film as a support film. The said process can be performed from conventionally well-known methods, such as the method of laminating | stacking both together via an adhesive between a resin film and a support film.

本発明に用いられる支持フィルムは、2軸延伸フィルムであり、それぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下であるフィルムを用いることを特徴とし、好ましくは0.07%以下であり、さらに好ましくは0.05%以下である。支持フィルムとして0.1%以下であるフィルムを用いることで、樹脂フィルムが高温条件下での支持フィルムの寸法変化による圧縮又は引張応力の影響を受けることが小さいため、その歩留りが高く、生産性の高いフレキシブル銅張積層板の製造方法を提供することができる。   The support film used in the present invention is a biaxially stretched film, and is characterized by using a film having a thermal shrinkage rate of 0.1% or less after 150 ° C. × 30 minutes in the stretching direction, respectively. Is 0.07% or less, more preferably 0.05% or less. By using a film that is 0.1% or less as the support film, the resin film is less susceptible to compression or tensile stress due to dimensional changes of the support film under high temperature conditions, so its yield is high and productivity is high. The manufacturing method of a flexible copper clad laminated board with high height can be provided.

支持フィルムは、それぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下であるフィルムであればどのような材料を用いることもできる。特に、耐熱性、耐溶剤性、汎用性の高さから、2軸延伸ポリエステル樹脂を用いることが好ましい。   Any material can be used for the supporting film as long as the thermal shrinkage after 30 minutes at 150 ° C. in the stretching direction is 0.1% or less. In particular, it is preferable to use a biaxially stretched polyester resin because of its high heat resistance, solvent resistance, and versatility.

支持フィルム付フレキシブル銅張積層板であって、前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下である支持フィルム付フレキシブル銅張積層板は、その後にエッチングして前記銅配線を形成する銅配線形成工程及び加熱工程を加えたとしても、支持フィルム自体の収縮率が小さい。そのため、樹脂フィルムに対し支持フィルムに起因する圧縮又は引張応力が加わる影響が小さく、当該支持フィルム付フレキシブル銅張積層板を用いて製造されたフレキシブル銅張積層板は、その歩留りが高く、生産性の高いものにすることができる。したがって、当該支持フィルム付フレキシブル銅張積層板は極めて有用である。   A flexible copper clad laminate with a support film, wherein the biaxially stretched film has a heat shrinkage rate of 0.1% or less after 150 ° C. for 30 minutes in each stretching direction. Even if it adds the copper wiring formation process and heating process which etch a board after that and forms the said copper wiring, the shrinkage rate of support film itself is small. Therefore, the impact of compressive or tensile stress due to the support film on the resin film is small, and the flexible copper clad laminate produced using the flexible copper clad laminate with the support film has a high yield and productivity. Can be high. Therefore, the said flexible copper clad laminated board with a support film is very useful.

支持フィルムの厚さは、後のフレキシブル銅配線板製造の工程の取扱いの観点から自由に選択することができるが、好ましくは樹脂フィルム厚の0.4倍以上3.4倍以下であり、より好ましくは0.5倍以上1.5倍以下である。   The thickness of the support film can be freely selected from the viewpoint of the handling of the subsequent process of manufacturing the flexible copper wiring board, but is preferably 0.4 to 3.4 times the resin film thickness, and more Preferably they are 0.5 times or more and 1.5 times or less.

[銅配線形成工程3]
本発明に係るフレキシブル銅配線板の製造方法は、銅をエッチングして前記銅配線を形成する銅配線形成工程を含むことを特徴とする。エッチングして前記銅配線を形成する銅配線形成工程には、従来公知の方法で行うことができる。例えば、導電性金属層上にフォトレジスト層を形成し、このフォトレジスト層を露光、現像して所望のパターンを形成する。次に、こうして形成されたフォトレジストパターンをマスクとして、露出した導電性金属層をエッチングして、フォトレジストパターンと略相似形状の導電性金属層からなる配線パターンを形成する。次いでフォトレジスト層をアルカリ溶液等により剥離除去した後、配線パターン間に残存する銅をエッチングにより除去することにより行うことができる。
[Copper wiring formation process 3]
The manufacturing method of the flexible copper wiring board which concerns on this invention includes the copper wiring formation process which etches copper and forms the said copper wiring. The copper wiring forming step of forming the copper wiring by etching can be performed by a conventionally known method. For example, a photoresist layer is formed on the conductive metal layer, and this photoresist layer is exposed and developed to form a desired pattern. Next, using the photoresist pattern thus formed as a mask, the exposed conductive metal layer is etched to form a wiring pattern made of a conductive metal layer having a shape substantially similar to the photoresist pattern. Subsequently, after removing and removing the photoresist layer with an alkaline solution or the like, the copper remaining between the wiring patterns can be removed by etching.

[加熱工程4]
本発明に係るフレキシブル銅配線板の製造方法は、支持フィルム付フレキシブル銅張積層板を加熱する加熱工程を含む。例えば、フォトレジスト塗布後の乾燥のために加熱が行われ、前記エッチング処理後、レジストを剥離し、すずめっきを行った後にホイスカー抑制のため加熱するリフロー処理が行われる。また、ソルダーレジスト印刷後はレジストを完全に硬化させるために加熱が行われる。
[Heating step 4]
The manufacturing method of the flexible copper wiring board which concerns on this invention includes the heating process which heats the flexible copper clad laminated board with a support film. For example, heating is performed for drying after applying the photoresist, and after the etching process, the resist is peeled off, tin plating is performed, and then a reflow process for heating to suppress whisker is performed. Further, after the solder resist printing, heating is performed to completely cure the resist.

[剥離工程5]
本発明に係るフレキシブル銅配線板の製造方法は、支持フィルムを剥離する剥離工程を含む。支持フィルムは、フレキシブル銅配線板製造の工程における取扱いの容易さの観点から積層されたものであるため、フレキシブル銅張積層板として出荷する際には、最終的には、支持フィルムを剥離する剥離工程を含む。なお、当該剥離工程は、フレキシブル銅張積層板として出荷前に剥離させても良いし、出荷後、例えば電子機器への接着直前に剥離させることによって実現できる場合も含む。
[Peeling step 5]
The manufacturing method of the flexible copper wiring board which concerns on this invention includes the peeling process which peels a support film. Since the support film is laminated from the viewpoint of ease of handling in the process of manufacturing a flexible copper wiring board, when shipping as a flexible copper-clad laminate, the support film is finally peeled off. Process. In addition, the said peeling process may be made to peel before shipment as a flexible copper clad laminated board, and also includes the case where it can implement | achieve by making it peel immediately before adhesion, for example to an electronic device after shipment.

[フレキシブル銅配線板の寸法変化の予測値とする寸法変化予測工程]
本発明は、支持フィルムとして前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下であるフィルムを用いることを特徴としている。例えば、支持フィルム付フレキシブル銅張積層板について、所定の条件下での寸法変化の実測値を測定し、この実測値を、前記フレキシブル銅配線板の寸法変化の予測値とする寸法変化予測工程を更に備えることもできる。
[Dimensional change prediction process for predicting dimensional change of flexible copper wiring board]
The present invention is characterized by using, as the support film, a film having a thermal shrinkage rate of 0.1% or less after 150 ° C. for 30 minutes in each stretching direction of the biaxially stretched film. For example, for a flexible copper-clad laminate with a support film, a dimensional change prediction step is performed in which an actual measurement value of a dimensional change under a predetermined condition is measured, and the actual measurement value is a predicted value of a dimensional change of the flexible copper wiring board. It can also be provided.

例えば、上記の方法で製造された支持フィルム付フレキシブル銅張積層板について、所定の条件下で寸法変化の実測値を測定し、その後のフレキシブル銅配線板の寸法変化の予測値とする寸法変化予測工程を更に加えることで、その予測値により銅配線の設計を行えば、品質のばらつきが向上し、歩留りも向上することができるため、さらに有用である。   For example, for a flexible copper-clad laminate with a support film manufactured by the above method, a dimensional change prediction is performed by measuring an actual measurement value of a dimensional change under a predetermined condition and then predicting a dimensional change of the flexible copper wiring board. If the copper wiring is designed based on the predicted value by further adding a process, it is more useful because quality variation can be improved and yield can be improved.

上記所定の条件下とは、例えば、エッチング処理工程や加熱工程などフレキシブル銅張積層板の寸法の変化に影響を与える恐れがある工程をいう。例えばエッチング処理工程によって、樹脂フィルムに積層された銅が溶かされることにより、銅の積層によって固定された樹脂フィルムが銅の溶解によって、その樹脂フィルムに掛かるテンションが下がることで、樹脂フィルムが伸びる傾向にある。また、加熱工程によって、樹脂フィルムに積層されている支持フィルムが収縮するため、支持フィルムの収縮によって樹脂フィルムが縮む傾向にある。そのため、これらの工程は寸法の変化に影響を与える恐れがある工程に含まれる。   The predetermined condition refers to a process that may affect changes in the dimensions of the flexible copper-clad laminate, such as an etching process or a heating process. For example, when the copper laminated on the resin film is melted by the etching process, the resin film fixed by the copper lamination tends to stretch due to the dissolution of copper and the tension applied to the resin film is lowered. It is in. Moreover, since the support film laminated | stacked on the resin film shrink | contracts by a heating process, it exists in the tendency for a resin film to shrink by shrinkage | contraction of a support film. Therefore, these processes are included in processes that may affect the change in dimensions.

以下、本発明のフレキシブル銅配線板の製造方法を実施例にもとづいてさらに詳細に説明する。なお、本発明はかかる実施例に限定されるものではない。   Hereinafter, the manufacturing method of the flexible copper wiring board of this invention is demonstrated still in detail based on an Example. In addition, this invention is not limited to this Example.

(実施例1)
<支持フィルム付フレキシブル銅張積層板の製造>
樹脂フィルムに通常CTE(線膨張係数)グレードであるポリイミド樹脂(厚さ:38μm 東レ・デュポン社製:カプトン150EN)の一方の面側に銅をスパッタリングと電気めっきを用いて8μm積層させ、ポリイミド樹脂面側にさらに支持フィルム(厚さ:50μm 改善PETフィルム 熱収縮率規格がそれぞれ0.1%以下)を粘着剤にて積層させ、支持フィルム付フレキシブル銅張積層板のサンプルを作成した。また、支持フィルムを積層させないフレキシブル銅張積層板のサンプルを作成した。なお、サンプル長はいずれもMD方向156mm、TD方向が160mmであった。
(Example 1)
<Manufacture of flexible copper clad laminate with support film>
A polyimide resin is usually laminated with 8 μm of copper on one side of a polyimide film (thickness: 38 μm, manufactured by Toray DuPont: Kapton 150EN), which is a CTE (linear expansion coefficient) grade, by using sputtering and electroplating. Further, a support film (thickness: 50 μm improved PET film, heat shrinkage ratio standard of 0.1% or less) was laminated on the surface side with an adhesive to prepare a sample of a flexible copper-clad laminate with a support film. Moreover, the sample of the flexible copper clad laminated board which does not laminate | stack a support film was created. The sample length was 156 mm in the MD direction and 160 mm in the TD direction.

<環境変化試験>
上記サンプルについてエッチング処理、加熱処理及び支持フィルム剥離処理を行った。なお、支持フィルムを接着させていないサンプルは支持フィルム剥離処理を行わなかった。
<Environmental change test>
The sample was subjected to etching treatment, heat treatment and support film peeling treatment. In addition, the sample which did not adhere | attach a support film did not perform a support film peeling process.

エッチング処理は塩化第二鉄溶液を40℃に温めて20分浸漬させる条件下で行い、その後、23℃、50RH%24時間放置した。また、加熱試験は、150℃、30分の条件下で行い、その後、23℃、50RH%24時間放置した。   The etching treatment was performed under the condition that the ferric chloride solution was warmed to 40 ° C. and immersed for 20 minutes, and then allowed to stand at 23 ° C. and 50 RH% for 24 hours. The heating test was performed under conditions of 150 ° C. and 30 minutes, and then left at 23 ° C. and 50 RH% for 24 hours.

(実施例2)
樹脂フィルムに低CTEグレードであるポリイミド樹脂(厚さ:38μm 東レ・デュポン社製:カプトン150ENA)を用いたこと以外は実施例1と同様に試験を行った。
(実施例3)
樹脂フィルムに通常CTEグレードであるポリイミド樹脂(厚さ:35μm 宇部興産ン社製:Upilex35SGA)を用いたこと以外は実施例1と同様に試験を行った。
(実施例4)
樹脂フィルムに低CTEグレードであるポリイミド樹脂(厚さ:35μm 宇部興産社製:Upilex35SGAV1)を用いたこと以外は実施例1と同様に試験を行った。
(比較例1)
支持フィルムとしてポリイミド樹脂面側に熱収縮率規格がそれぞれ0.3〜0.5%である現行のPETフィルムを用いたこと以外は実施例1と同様に試験を行った。
(比較例2)
支持フィルムとしてポリイミド樹脂面側に熱収縮率規格がそれぞれ0.3〜0.5%である現行のPETフィルムを用いたこと以外は実施例2と同様に試験を行った。
(比較例3)
支持フィルムとしてポリイミド樹脂面側に熱収縮率規格がそれぞれ0.3〜0.5%である現行のPETフィルムを用いたこと以外は実施例3と同様に試験を行った。
(比較例4)
支持フィルムとしてポリイミド樹脂面側に熱収縮率規格がそれぞれ0.3〜0.5%である現行のPETフィルムを用いたこと以外は実施例4と同様に試験を行った。
(Example 2)
The test was performed in the same manner as in Example 1 except that a low CTE grade polyimide resin (thickness: 38 μm, manufactured by Toray DuPont: Kapton 150ENA) was used for the resin film.
(Example 3)
The test was performed in the same manner as in Example 1 except that a polyimide resin (thickness: 35 μm, Ube Industries, Ltd .: Upilex35SGA), which is usually CTE grade, was used for the resin film.
Example 4
The test was conducted in the same manner as in Example 1 except that a low CTE grade polyimide resin (thickness: 35 μm, Ube Industries, Ltd .: Upilex35SGAV1) was used for the resin film.
(Comparative Example 1)
The test was performed in the same manner as in Example 1 except that the current PET film having a thermal shrinkage ratio standard of 0.3 to 0.5% was used on the polyimide resin surface side as the support film.
(Comparative Example 2)
The test was performed in the same manner as in Example 2 except that the current PET film having a heat shrinkage ratio standard of 0.3 to 0.5% was used on the polyimide resin surface side as the support film.
(Comparative Example 3)
The test was performed in the same manner as in Example 3 except that the current PET film having a heat shrinkage standard of 0.3 to 0.5% was used on the polyimide resin surface side as the support film.
(Comparative Example 4)
The test was performed in the same manner as in Example 4 except that the current PET film having a thermal shrinkage ratio standard of 0.3 to 0.5% was used on the polyimide resin surface side as the support film.

(寸法安定試験結果)
各環境変化における試験前の寸法からの寸法変化率(%)の差を表1に示した。具体的には、エッチング処理、加熱処理及び支持フィルム剥離処理を行った前後の各サンプルのMD方向・TD方向の寸法の測定値から寸法変化率(%)をそれぞれ求め、実施例、比較例の各サンプルの寸法変化率(%)と支持フィルムを積層させていないサンプルとの寸法変化率(%)との差をそれぞれ求めた。なお、寸法測定には0.3μm以下の分解能で長さを測定することができる精密測長器を用いる必要があり、大日本スクリーン製造(株)製精密自動測長機DR−5000を用いた。
(Dimension stability test results)
Table 1 shows the difference in dimensional change rate (%) from the dimension before the test in each environmental change. Specifically, the dimensional change rate (%) was obtained from the measured values of the MD and TD dimensions of each sample before and after the etching treatment, the heat treatment and the support film peeling treatment, and the examples and comparative examples were obtained. The difference between the dimensional change rate (%) of each sample and the dimensional change rate (%) of the sample on which the support film was not laminated was determined. In addition, it is necessary to use a precision length measuring device that can measure the length with a resolution of 0.3 μm or less for the dimension measurement, and a precision automatic length measuring machine DR-5000 manufactured by Dainippon Screen Mfg. Co., Ltd. was used. .

Figure 2016051764
Figure 2016051764

表1により、いずれの樹脂フィルムにおいても収縮率が0.1%以下の支持フィルムを積層させた実施例に係る支持フィルム付フレキシブル銅張積層板の寸法変化率(%)と、PETフィルムを積層させていないフレキシブル銅張積層板の寸法変化率(%)の差はTD方向、MD方向共に、比較例のそれよりも小さい値であることが分かる。   According to Table 1, the dimensional change rate (%) of the flexible copper-clad laminate with support film according to the example in which the support film having a shrinkage rate of 0.1% or less is laminated in any resin film, and the PET film are laminated. It can be seen that the difference in the dimensional change rate (%) of the flexible copper-clad laminate that has not been made is smaller than that of the comparative example in both the TD direction and the MD direction.

このことから、収縮率が0.1%以下の支持フィルムを用いた実施例に係る支持フィルム付フレキシブル銅張積層板は支持フィルムを張り付けることによる寸法変化の影響が小さいことが分かる。そのため、収縮率が0.1%以下の支持フィルムを用いたフレキシブル銅配線板の製造方法は、製造工程でのハンドリング強度を向上させた状態で製造することを可能にしつつ、且つ支持フィルムを接着されていないで製造するフレキシブル銅配線板同様にロットごとのばらつきは小さくなる。そのため、本発明に係るフレキシブル銅配線板の製造方法は、その歩留りが高く、極めて生産性の高い製造方法であることが分かる。   From this, it can be seen that the flexible copper-clad laminate with support film according to the example using the support film having a shrinkage rate of 0.1% or less is less affected by dimensional change caused by pasting the support film. Therefore, the method for manufacturing a flexible copper wiring board using a support film having a shrinkage rate of 0.1% or less enables manufacturing with improved handling strength in the manufacturing process, and bonds the support film. As with a flexible copper wiring board that is not manufactured, variation among lots is reduced. Therefore, it turns out that the manufacturing method of the flexible copper wiring board which concerns on this invention is a manufacturing method with the high yield and extremely high productivity.

一方、比較例の収縮率0.3〜0.5%の現行支持フィルムを積層させた支持フィルム付フレキシブル銅張積層板の寸法変化率(%)と、支持フィルムのない寸法変化率(%)の差は、実施例のものと比較して大きい値を示している。そのため、収縮率が大きい支持フィルムを用いた場合には、フレキシブル銅配線板の寸法が大きく変化することが分かる。   On the other hand, the dimensional change rate (%) of the flexible copper-clad laminate with support film in which the current support film having a shrinkage rate of 0.3 to 0.5% of the comparative example is laminated, and the dimensional change rate without the support film (%) The difference of is a large value compared with the thing of an Example. Therefore, when a support film with a large shrinkage rate is used, it can be seen that the dimensions of the flexible copper wiring board change greatly.

このことから、収縮率を管理していない支持フィルムを用いてフレキシブル銅配線板を製造した場合には、フレキシブル銅配線板の寸法変化率にばらつきが大きくなることが推認できる。そのため、収縮率が0.1%以下の支持フィルムを用いた製造方法と比較すると、収縮率を管理していない支持フィルムを用いた製造方法は工程前後の寸法変化率に相関が見られなくなると考えられるため、生産性の低い製造方法であることが分かる。   From this, when manufacturing a flexible copper wiring board using the support film which is not managing shrinkage | contraction rate, it can be guessed that dispersion | variation becomes large in the dimensional change rate of a flexible copper wiring board. Therefore, when compared with the production method using a support film having a shrinkage rate of 0.1% or less, the production method using a support film that does not manage the shrinkage rate is no longer correlated with the dimensional change rate before and after the process. Since it is considered, it turns out that it is a manufacturing method with low productivity.

1 銅板
2 樹脂フィルム
3 支持フィルム
4 粘着層
1 Copper Plate 2 Resin Film 3 Support Film 4 Adhesive Layer

Claims (8)

樹脂フィルムの一方の面側に銅配線が形成されているフレキシブル銅配線板の製造方法であって、
前記樹脂フィルムの一方の面側に銅を積層するフレキシブル銅張積層板形成工程と、
前記樹脂フィルムの他方の面側に、粘着層を介して、2軸延伸フィルムを支持フィルムとして積層する支持フィルム付フレキシブル銅張積層板形成工程と、
前記銅をエッチングして前記銅配線を形成する銅配線形成工程と、
前記支持フィルム付フレキシブル銅張積層板を加熱する加熱工程と、
前記支持フィルムを剥離する剥離工程と、を備え、
前記支持フィルムとして、前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下であるフィルムを用いる、フレキシブル銅配線板の製造方法。
A method for producing a flexible copper wiring board in which copper wiring is formed on one surface side of a resin film,
A flexible copper clad laminate forming step of laminating copper on one surface side of the resin film;
On the other surface side of the resin film, through a pressure-sensitive adhesive layer, a flexible copper-clad laminate with a support film for laminating a biaxially stretched film as a support film;
A copper wiring forming step of etching the copper to form the copper wiring;
A heating step of heating the flexible copper-clad laminate with the support film;
A peeling step of peeling the support film,
The manufacturing method of a flexible copper wiring board using the film whose thermal shrinkage rate after 150 degreeC x 30 minutes in each extending | stretching direction of the said biaxially stretched film is 0.1% or less as said support film, respectively.
前記支持フィルムが、2軸延伸ポリエステルである請求項1に記載のフレキシブル銅配線板の製造方法。   The method for producing a flexible copper wiring board according to claim 1, wherein the support film is biaxially stretched polyester. 前記樹脂フィルムが、ポリイミドフィルムである請求項1又は2に記載のフレキシブル銅配線板の製造方法。   The method for producing a flexible copper wiring board according to claim 1, wherein the resin film is a polyimide film. 前記支持フィルムの厚さが、前記樹脂フィルムの厚さの0.4倍以上3.4倍以下である請求項1から3いずれかに記載のフレキシブル銅配線板の製造方法。   The method for manufacturing a flexible copper wiring board according to any one of claims 1 to 3, wherein the thickness of the support film is 0.4 to 3.4 times the thickness of the resin film. 前記支持フィルム付フレキシブル銅張積層板について、所定の条件下での寸法変化の実測値を測定し、
この実測値を、前記フレキシブル銅配線板の寸法変化の予測値とする寸法変化予測工程を更に備える請求項1から4のいずれかに記載のフレキシブル銅配線板の製造方法。
For the flexible copper-clad laminate with support film, measure the measured value of the dimensional change under a predetermined condition,
The manufacturing method of the flexible copper wiring board in any one of Claim 1 to 4 further equipped with the dimension change prediction process which makes this measured value the predicted value of the dimension change of the said flexible copper wiring board.
前記所定の条件が、エッチング処理及び/又は加熱処理である請求項5に記載のフレキシブル銅配線板の製造方法。   The method for manufacturing a flexible copper wiring board according to claim 5, wherein the predetermined condition is an etching process and / or a heat treatment. 樹脂フィルムの一方の面側に銅が積層されているフレキシブル銅張積層板と、
前記フレキシブル銅張積層板の前記樹脂フィルムの他方の面側に、粘着層を介して、2軸延伸フィルムが支持フィルムとして積層されている、支持フィルム付フレキシブル銅張積層板であって、
前記2軸延伸フィルムのそれぞれ延伸方向における、150℃×30分後における熱収縮率が、それぞれ0.1%以下である支持フィルム付フレキシブル銅張積層板。
A flexible copper-clad laminate in which copper is laminated on one side of the resin film;
A biaxially stretched film is laminated as a support film on the other surface side of the resin film of the flexible copper clad laminate via an adhesive layer, and is a flexible copper clad laminate with a support film,
The flexible copper clad laminated board with a support film whose heat shrinkage rate after 150 degreeC x 30 minutes in each extending direction of the said biaxially stretched film is 0.1% or less, respectively.
請求項7記載の支持フィルム付フレキシブル銅張積層板が用いられているフレキシブル配線基板。
The flexible wiring board in which the flexible copper clad laminated board with a support film of Claim 7 is used.
JP2014175364A 2014-08-29 2014-08-29 Manufacturing method of flexible copper wiring board and flexible copper-clad laminate with support film used therefor Active JP6323261B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014175364A JP6323261B2 (en) 2014-08-29 2014-08-29 Manufacturing method of flexible copper wiring board and flexible copper-clad laminate with support film used therefor
CN201580043280.7A CN106576428B (en) 2014-08-29 2015-08-11 The manufacturing method of flexible copper wiring plate and its flexible copper-clad laminate used with support membrane
PCT/JP2015/072753 WO2016031559A1 (en) 2014-08-29 2015-08-11 Method for manufacturing flexible copper wiring board, and flexible copper-clad layered board with support film used in said copper wiring board
KR1020167035645A KR102378236B1 (en) 2014-08-29 2015-08-11 Method for manufacturing flexible copper wiring board, and flexible copper-clad layered board with support film used in said copper wiring board
TW104126325A TWI584707B (en) 2014-08-29 2015-08-13 A method for manufacturing a flexible copper wiring board, and a method for manufacturing a flexible copper clad sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175364A JP6323261B2 (en) 2014-08-29 2014-08-29 Manufacturing method of flexible copper wiring board and flexible copper-clad laminate with support film used therefor

Publications (2)

Publication Number Publication Date
JP2016051764A true JP2016051764A (en) 2016-04-11
JP6323261B2 JP6323261B2 (en) 2018-05-16

Family

ID=55399456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175364A Active JP6323261B2 (en) 2014-08-29 2014-08-29 Manufacturing method of flexible copper wiring board and flexible copper-clad laminate with support film used therefor

Country Status (5)

Country Link
JP (1) JP6323261B2 (en)
KR (1) KR102378236B1 (en)
CN (1) CN106576428B (en)
TW (1) TWI584707B (en)
WO (1) WO2016031559A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102575789B1 (en) * 2016-10-04 2023-09-06 에스케이넥실리스 주식회사 Flexible Copper Clad Laminate of Low Rate of Dimensional Change and Method for Manufacturing The Same
CN109962173A (en) * 2017-12-25 2019-07-02 昆山维信诺科技有限公司 A kind of flexible display panels and its manufacturing method
CN112105155B (en) * 2020-08-20 2022-01-11 瑞声新能源发展(常州)有限公司科教城分公司 Chip FPC and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004228A1 (en) * 1999-07-08 2001-01-18 Somar Corporation Pressure-sensitive adhesive film being easy to peel
JP2003017822A (en) * 2001-07-04 2003-01-17 Fujimori Kogyo Co Ltd Protective film, resin conductor foil laminate attached with, protective film and method of manufacturing flexible printed wiring board using the same
WO2006001270A1 (en) * 2004-06-29 2006-01-05 Kaneka Corporation Novel polyimide film
WO2007039969A1 (en) * 2005-10-05 2007-04-12 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, flexible dispersion-type electroluminescence element, process for producing the same, and electronic device making use thereof
JP2015162635A (en) * 2014-02-28 2015-09-07 味の素株式会社 Method for manufacturing printed wiring board

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770380B2 (en) * 1998-08-11 2004-08-03 Nikko Materials Usa, Inc. Resin/copper/metal laminate and method of producing same
JP3856582B2 (en) * 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP2001106998A (en) 1999-08-02 2001-04-17 Somar Corp Adhesive sheet and reinforcing material for film for printing using the same
CN1442891A (en) * 2002-03-04 2003-09-17 铱远科技股份有限公司 Soft type encapsulating structure and its making method
JP4063082B2 (en) * 2003-01-10 2008-03-19 日本電気株式会社 Flexible electronic device and manufacturing method thereof
US7367116B2 (en) * 2003-07-16 2008-05-06 Matsushita Electric Industrial Co., Ltd. Multi-layer printed circuit board, and method for fabricating the same
JP4828884B2 (en) * 2005-07-26 2011-11-30 株式会社東芝 Printed circuit wiring board and electronic device
KR101086656B1 (en) * 2009-06-30 2011-11-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil for printed wiring board
JP5115527B2 (en) * 2009-08-20 2013-01-09 日立電線株式会社 Copper foil for printed wiring board and method for producing the same
CN103857833B (en) * 2011-09-30 2018-09-07 Jx日矿日石金属株式会社 Excellent copper foil, its manufacturing method and printed wiring board or negative electrode battery material using the electrolytic copper foil with resin adhesiveness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004228A1 (en) * 1999-07-08 2001-01-18 Somar Corporation Pressure-sensitive adhesive film being easy to peel
JP2003017822A (en) * 2001-07-04 2003-01-17 Fujimori Kogyo Co Ltd Protective film, resin conductor foil laminate attached with, protective film and method of manufacturing flexible printed wiring board using the same
WO2006001270A1 (en) * 2004-06-29 2006-01-05 Kaneka Corporation Novel polyimide film
WO2007039969A1 (en) * 2005-10-05 2007-04-12 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, flexible dispersion-type electroluminescence element, process for producing the same, and electronic device making use thereof
JP2015162635A (en) * 2014-02-28 2015-09-07 味の素株式会社 Method for manufacturing printed wiring board

Also Published As

Publication number Publication date
WO2016031559A1 (en) 2016-03-03
CN106576428B (en) 2019-10-18
KR102378236B1 (en) 2022-03-25
TWI584707B (en) 2017-05-21
KR20170049464A (en) 2017-05-10
TW201618620A (en) 2016-05-16
JP6323261B2 (en) 2018-05-16
CN106576428A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
TWI633817B (en) Coreless assembly support substrate
JP6119433B2 (en) Plating laminate and manufacturing method thereof
JP6706013B1 (en) Copper clad laminate and method for manufacturing copper clad laminate
JP5615253B2 (en) Method for producing thick film polyimide flexible metal laminate
JP6323261B2 (en) Manufacturing method of flexible copper wiring board and flexible copper-clad laminate with support film used therefor
JP6557308B2 (en) Soft copper foil laminated film having a low rate of dimensional change and method for producing the same
JP2007144626A (en) Conductor clad laminated sheet, wiring circuit board and its manufacturing method
JP6663769B2 (en) Rolled copper foil, copper-clad laminate, flexible printed circuit board and electronic equipment
US7186311B2 (en) Process for producing substrate for flexible circuit board
KR20130100333A (en) Method for forming circuit on flexible laminate substrate
JP6252988B2 (en) Two-layer copper-clad laminate and method for producing the same, flexible wiring board using the same, and method for producing the same
JP2011171621A (en) Copper foil with resistor layer and copper clad laminate including the same, and method of manufacturing the copper clad laminate
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP6127871B2 (en) Evaluation method of maximum warpage of double-layer plating substrate
JPH10242593A (en) Flexible wiring board and manufacture thereof
JP6337825B2 (en) Method for judging quality of polyimide film, and method for producing copper-clad laminate and flexible wiring board using the polyimide film
KR20170071205A (en) Flexible copper clad laminate fim and method of manufacturing the same
KR100641341B1 (en) Flexible copper clad laminate using coducting polymer and the method for producing the same
JP2005271449A (en) Laminate for flexible printed circuit board
JP6252989B2 (en) Two-layer copper-clad laminate and method for producing the same, flexible wiring board using the same, and method for producing the same
JP2010219552A (en) Method of manufacturing wiring board
JP6705094B2 (en) Copper foil with release film and method for producing copper foil with release film
JP4571436B2 (en) Wiring board manufacturing method
JP6476901B2 (en) Manufacturing method of multilayer wiring board
JP2006175634A (en) Metal-polyimide substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6323261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150