JP2016050535A - Cylinder deactivation type internal combustion engine - Google Patents

Cylinder deactivation type internal combustion engine Download PDF

Info

Publication number
JP2016050535A
JP2016050535A JP2014176654A JP2014176654A JP2016050535A JP 2016050535 A JP2016050535 A JP 2016050535A JP 2014176654 A JP2014176654 A JP 2014176654A JP 2014176654 A JP2014176654 A JP 2014176654A JP 2016050535 A JP2016050535 A JP 2016050535A
Authority
JP
Japan
Prior art keywords
cylinder
opening
exhaust
closing mechanism
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014176654A
Other languages
Japanese (ja)
Inventor
高明 武本
Takaaki Takemoto
高明 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2014176654A priority Critical patent/JP2016050535A/en
Publication of JP2016050535A publication Critical patent/JP2016050535A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylinder deactivation type internal combustion engine capable of enhancing and supercharging intake air flow in an operation cylinder with a simple constitution.SOLUTION: A cylinder deactivation type internal combustion engine 1 includes an operation cylinder 20, a deactivation cylinder 10 stopped in fuel injection in a cylinder deactivation operation, a cam 15 for deactivation, producing compressed air in a deactivation cylinder 10 from an intake stroke to a compression stroke, and opening and closing an exhaust valve 13 so that the exhaust valve 13 is opened in a latter stage of the compression stroke, a passage opening/closing mechanism 3 for opening and closing an exhaust passage 130, a connection pipe 4 for connecting the exhaust passage 130 with an intake passage 220, a connection pipe opening/closing mechanism 5 for opening and closing the connection pipe 4, and an opening/closing control portion 8A. The opening/closing control portion 8A controls the opening/closing mechanisms 3, 5 so that the exhaust passage 130 is opened in a normal operation, the exhaust passage 130 and the connection pipe 4 are closed when the exhaust valve 13 is opened in the cylinder deactivation operation, and a communication pipe 4 is kept in an opened state to supply compressed air to the operation cylinder 20 in the intake stroke through the connection pipe 4.SELECTED DRAWING: Figure 1

Description

本発明は、複数の気筒を備えて、一部の気筒の運転を休止し、残部の気筒のみを運転する気筒休止型内燃機関に関する。特に、簡単な構成でありながら、運転気筒内の吸気流動を強化したり、過給したりできる気筒休止型内燃機関に関する。   The present invention relates to a cylinder deactivation type internal combustion engine that includes a plurality of cylinders, deactivates some cylinders, and operates only the remaining cylinders. In particular, the present invention relates to a cylinder deactivation type internal combustion engine that can reinforce or supercharge intake air flow in an operating cylinder with a simple configuration.

従来、複数の気筒を有する内燃機関を搭載した自動車では、運転状態に応じて複数の気筒のうち一部の気筒の運転を休止し、残部の気筒のみで運転を行う気筒休止運転が知られている。気筒休止運転の代表的な形態では、運転を休止する気筒の燃料噴射を停止すると共にバルブリフトが0(ゼロ)となる形状のカムによって吸気バルブ及び排気バルブを閉じたままとし、ピストン運動のみを行う。   Conventionally, in an automobile equipped with an internal combustion engine having a plurality of cylinders, a cylinder deactivation operation is known in which some cylinders are deactivated depending on the operation state and only the remaining cylinders are activated. Yes. In a typical form of cylinder deactivation operation, the fuel injection of the cylinder to be deactivated is stopped and the intake valve and the exhaust valve are kept closed by a cam having a valve lift of 0 (zero), and only the piston motion is performed. Do.

特許文献1は、4サイクル運転を行う各気筒に、吸気バルブ及び排気バルブに加えて第3の弁を備えるディーゼルエンジンの過給装置を開示している。この装置は、休止側気筒の圧縮後期に第3の弁を開いて圧縮空気を高圧タンクに送り、稼働側気筒の圧縮初期にこの気筒の第3の弁を開いて高圧タンクの圧縮空気を過給に用いる構成である。   Patent Literature 1 discloses a turbocharger for a diesel engine in which a third valve is provided in addition to an intake valve and an exhaust valve in each cylinder that performs four-cycle operation. In this device, the third valve is opened at the later stage of compression of the idle side cylinder to send compressed air to the high pressure tank, and the third valve of this cylinder is opened at the initial stage of compression of the working side cylinder to allow the compressed air in the high pressure tank to pass. It is the structure used for supply.

特許文献2は、休止対応気筒より下流の排気通路と通常運転気筒より上流の吸気通路とを連通し、開閉弁によって開閉する空気連絡通路を有すると共に、休止対応気筒における4サイクルの位相が通常運転気筒よりも180°遅れた気筒休止式内燃機関を開示している。この内燃機関では、休筒運転時、休止対応気筒は燃料噴射及び点火プラグの発火が停止され、4サイクルに則ったピストン運動と吸気バルブ及び排気バルブの開閉とを行う。特許文献2では、休止対応気筒の排気行程で、排気通路を閉じかつ空気連絡通路の開閉弁を開くと、休止対応気筒のピストンが押し出す空気を、空気連絡通路を通って、吸気行程にある通常運転気筒に供給でき、過給作用を奏するとしている。   Patent Document 2 has an air communication passage that opens and closes by an open / close valve that communicates an exhaust passage downstream from a cylinder corresponding to a stop and an intake passage upstream from a normal operation cylinder, and has a four-cycle phase in the stop corresponding cylinder in a normal operation. A cylinder deactivation internal combustion engine that is 180 degrees behind the cylinder is disclosed. In this internal combustion engine, during the cylinder deactivation operation, the cylinder corresponding to the deactivation operation stops the fuel injection and ignition of the ignition plug, and performs the piston motion according to the four cycles and the opening and closing of the intake valve and the exhaust valve. In Patent Document 2, when the exhaust passage is closed and the on / off valve of the air communication passage is opened in the exhaust stroke of the cylinder corresponding to the pause, the air pushed out by the piston of the cylinder corresponding to the pause is normally in the intake stroke through the air communication passage. It can be supplied to the operating cylinder and has a supercharging effect.

実開昭61−036130号公報Japanese Utility Model Publication No. 61-036130 特開2005−214035号公報Japanese Patent Laying-Open No. 2005-214035

簡単な構成でありながら、気筒休止運転中に、運転を行う運転気筒内の吸気流動を強化したり、過給したりできる構成が望まれる。   In spite of a simple configuration, a configuration is desired in which the intake air flow in the operating cylinder to be operated can be enhanced or supercharged during the cylinder deactivation operation.

特許文献1の過給装置では、第3の弁に加えて高圧タンクが必要であり、燃焼室及びその周辺が複雑な構造になる上に、設置スペースが大きくなる、コスト高を招くといった問題がある。   In the supercharging device of Patent Document 1, a high-pressure tank is required in addition to the third valve, and the combustion chamber and its surroundings have a complicated structure, and the installation space increases and the cost increases. is there.

特許文献2の内燃機関では、休止対応気筒と通常運転気筒とにおける4サイクルの位相が180°ずれているため、休止対応気筒から通常運転気筒に供給する空気が休止対応気筒で圧縮されておらず、過給効果が小さいと考えられる。休止対応気筒が排気行程にあるとき、休止対応気筒の排気バルブが開いているため、ピストンが下死点から上死点に向かって上昇する過程でピストンが押し出す空気を通常運転気筒に随時送ることになるからである。即ち、休止対応気筒が排出する空気の容量(シリンダ容積に実質的に等しい)と、通常運転気筒が受け取る容量とが実質的に等しい。   In the internal combustion engine of Patent Document 2, the phases of the four cycles in the stop corresponding cylinder and the normal operation cylinder are shifted by 180 °, so that the air supplied from the stop corresponding cylinder to the normal operation cylinder is not compressed in the stop corresponding cylinder. The supercharging effect is considered to be small. When the stop-response cylinder is in the exhaust stroke, the exhaust valve of the stop-response cylinder is open, so that the air that the piston pushes as the piston rises from bottom dead center to top dead center is sent to the normal operation cylinder as needed Because it becomes. That is, the capacity of air discharged by the cylinder corresponding to the pause (substantially equal to the cylinder volume) is substantially equal to the capacity received by the normal operation cylinder.

そこで、本発明の目的の一つは、簡単な構成でありながら、運転気筒内の吸気流動を強化したり、過給したりできる気筒休止型内燃機関を提供することにある。   Accordingly, one of the objects of the present invention is to provide a cylinder deactivation type internal combustion engine that can reinforce or supercharge intake air flow in an operating cylinder with a simple configuration.

第一の本発明の気筒休止型内燃機関は、4サイクル運転を行う運転気筒と、通常運転時、4サイクルのピストン運動を行い、気筒休止運転時には燃料噴射が停止された状態で前記ピストン運動を行う休止気筒と、通常運転時、前記休止気筒の吸気バルブ及び排気バルブを前記4サイクルに則って開閉する運転バルブ開閉機構と、気筒休止運転時、吸気行程から圧縮行程に亘って前記休止気筒内に圧縮空気を生成するように前記休止気筒の吸気バルブ及び排気バルブを開閉し、圧縮行程の後期から膨張行程の初期に亘って前記排気バルブを開く休止バルブ開閉機構と、通常運転時と気筒休止運転時とで前記運転バルブ開閉機構と前記休止バルブ開閉機構とを切り替える切替機構と、前記休止気筒に接続される排気通路を開閉する通路開閉機構と、前記排気通路における前記通路開閉機構よりも上流側と、前記運転気筒に接続される吸気通路とを連結する連結管と、前記連結管を開閉する連結管開閉機構と、以下の開閉制御部とを備える。この開閉制御部は、前記通路開閉機構及び前記連結管開閉機構を以下のように制御する。
(1)前記休止気筒が通常運転にあるとき、前記運転バルブ開閉機構によって前記排気バルブが少なくとも開いている間は前記排気通路を開いた状態にする。
(2)前記休止気筒が気筒休止運転にあるときに圧縮行程の後期から膨張行程の初期に亘って前記排気バルブを開いている間、前記圧縮空気を貯留する閉空間を前記排気通路に形成するために、前記排気通路及び前記連結管を閉じた状態にし、前記連結管を介して吸気行程にある前記運転気筒に前記閉空間に貯留された前記圧縮空気を供給するために、前記排気通路を閉じた状態とし、かつ前記連結管を開いた状態にする。
The cylinder deactivation type internal combustion engine according to the first aspect of the present invention performs an operation cylinder that performs four-cycle operation, and performs a four-cycle piston movement during normal operation, and performs the piston movement in a state where fuel injection is stopped during cylinder deactivation operation. A non-operating cylinder to be operated, an operating valve opening / closing mechanism for opening and closing an intake valve and an exhaust valve of the non-operating cylinder in accordance with the four cycles during normal operation; A pause valve opening / closing mechanism that opens and closes the intake valve and exhaust valve of the idle cylinder so as to generate compressed air and opens the exhaust valve from the latter half of the compression stroke to the early stage of the expansion stroke, and during normal operation and cylinder idle A switching mechanism that switches between the operation valve opening and closing mechanism and the pause valve opening and closing mechanism during operation, and a passage opening and closing mechanism that opens and closes an exhaust passage connected to the idle cylinder A connecting pipe that connects the upstream side of the passage opening / closing mechanism in the exhaust passage with an intake passage connected to the operating cylinder, a connecting pipe opening / closing mechanism that opens and closes the connecting pipe, and the following opening / closing control unit: Prepare. The opening / closing controller controls the passage opening / closing mechanism and the connecting pipe opening / closing mechanism as follows.
(1) When the deactivated cylinder is in normal operation, the exhaust valve is opened at least while the exhaust valve is open by the operation valve opening / closing mechanism.
(2) A closed space for storing the compressed air is formed in the exhaust passage while the exhaust valve is open from the latter stage of the compression stroke to the initial stage of the expansion stroke when the deactivated cylinder is in the cylinder deactivation operation. In order to supply the compressed air stored in the closed space to the operating cylinder in the intake stroke via the connection pipe, the exhaust passage and the connection pipe are closed. A closed state is set, and the connecting pipe is opened.

第二の本発明の気筒休止型内燃機関は、4サイクル運転を行う運転気筒と、通常運転時、4サイクルのピストン運動を行い、気筒休止運転時には燃料噴射が停止された状態で前記ピストン運動を行う休止気筒と、通常運転時、前記休止気筒の吸気バルブ及び排気バルブを前記4サイクルに則って開閉する運転バルブ開閉機構と、気筒休止運転時、膨張行程から排気行程に亘って前記休止気筒内に圧縮気体を生成するように前記休止気筒の吸気バルブを閉じ、排気バルブを開く休止バルブ開閉機構と、通常運転時と気筒休止運転時とで前記運転バルブ開閉機構と前記休止バルブ開閉機構とを切り替える切替機構と、前記休止気筒に接続される排気通路を開閉する通路開閉機構と、前記排気通路における前記通路開閉機構よりも上流側と、前記運転気筒に接続される吸気通路とを連結する連結管と、前記連結管を開閉する連結管開閉機構と、前記運転気筒に接続される排気通路内の気体を前記休止気筒側の排気通路における前記通路開閉機構よりも上流側に導入する排ガス導入管と、前記排ガス導入管を開閉する導入管開閉機構と、以下の開閉制御部とを備える。この開閉制御部は、前記通路開閉機構、前記連結管開閉機構、及び導入管開閉機構を以下のように制御する。
(1)前記休止気筒が通常運転にあるとき、前記運転バルブ開閉機構によって前記排気バルブが少なくとも開いている間は前記排気通路を開いた状態にする。
(2)前記休止気筒が気筒休止運転にあるときに、以下のようにする。
(2−1)膨張行程から排気行程に亘って前記吸気バルブを閉じ、かつ前記排気バルブを開いている間、前記休止気筒が前記排ガス導入管を介して前記運転気筒側の排気通路内の気体を吸入し、吸入した気体を圧縮した前記圧縮気体を貯留する閉空間を前記排気通路に形成するために、前記排気通路及び前記連結管を閉じた状態にし、かつ前記排ガス導入管を開いた状態にする。
(2−2)前記連結管を介して吸気行程にある前記運転気筒に前記閉空間に貯留された前記圧縮気体を供給するために、前記排気通路及び前記排ガス導入管を閉じた状態とし、かつ前記連結管を開いた状態にする。
The cylinder deactivation type internal combustion engine of the second aspect of the present invention performs an operation cylinder that performs four-cycle operation, and performs a four-cycle piston movement during normal operation, and performs the piston movement in a state where fuel injection is stopped during cylinder deactivation operation. A non-operating cylinder to be operated, an operating valve opening / closing mechanism for opening and closing an intake valve and an exhaust valve of the non-operating cylinder in accordance with the four cycles during normal operation, and an in-stop cylinder from the expansion stroke to the exhaust stroke in the cylinder deactivation operation. A closed valve opening / closing mechanism that closes the intake valve of the deactivated cylinder and opens an exhaust valve so as to generate compressed gas, and the operated valve open / close mechanism and the deactivated valve open / close mechanism during normal operation and during cylinder deactivated operation. A switching mechanism for switching, a passage opening and closing mechanism for opening and closing an exhaust passage connected to the deactivated cylinder, an upstream side of the passage opening and closing mechanism in the exhaust passage, and the operation A connecting pipe for connecting to an intake passage connected to the cylinder; a connecting pipe opening / closing mechanism for opening and closing the connecting pipe; and a gas in the exhaust passage connected to the operating cylinder for passing the gas in the exhaust passage on the idle cylinder side An exhaust gas introduction pipe introduced upstream of the opening / closing mechanism, an introduction pipe opening / closing mechanism for opening / closing the exhaust gas introduction pipe, and the following opening / closing control unit are provided. The opening / closing control unit controls the passage opening / closing mechanism, the connecting pipe opening / closing mechanism, and the introduction pipe opening / closing mechanism as follows.
(1) When the deactivated cylinder is in normal operation, the exhaust valve is opened at least while the exhaust valve is open by the operation valve opening / closing mechanism.
(2) When the idle cylinder is in cylinder idle operation, the following is performed.
(2-1) While the intake valve is closed and the exhaust valve is opened from the expansion stroke to the exhaust stroke, the idle cylinder passes through the exhaust gas introduction pipe and the gas in the exhaust passage on the operating cylinder side The exhaust passage and the connecting pipe are closed and the exhaust gas introduction pipe is opened to form a closed space in the exhaust passage for storing the compressed gas obtained by compressing the sucked gas. To.
(2-2) In order to supply the compressed gas stored in the closed space to the operating cylinder in the intake stroke through the connection pipe, the exhaust passage and the exhaust gas introduction pipe are closed, and The connecting pipe is opened.

上記の気筒休止型内燃機関は、過給機を備えておらず、簡単な構成でありながら、運転気筒内の吸気流動を強化したり、過給したりできる。   The above-described cylinder deactivation type internal combustion engine does not include a supercharger, and has a simple configuration, but can reinforce or supercharge intake air flow in the operating cylinder.

実施形態1の気筒休止型内燃機関を模式的に示す概略構成図であり、気筒休止運転時に休止気筒が圧縮行程の後期にある状態を示す。1 is a schematic configuration diagram schematically illustrating a cylinder deactivation type internal combustion engine according to Embodiment 1, and illustrates a state in which a deactivation cylinder is in a later stage of a compression stroke during cylinder deactivation operation. 実施形態1の気筒休止型内燃機関を模式的に示す概略構成図であり、気筒休止運転時に運転気筒が吸気行程にある状態を示す。1 is a schematic configuration diagram schematically illustrating a cylinder deactivation type internal combustion engine according to a first embodiment, showing a state in which an operating cylinder is in an intake stroke during cylinder deactivation operation. 実施形態1の気筒休止型内燃機関について、休止気筒及び運転気筒の吸気バルブ及び排気バルブが開く時期、排気通路の開閉時期、連結管の開閉時期をピストンの変位角度で示す説明図である。FIG. 3 is an explanatory diagram showing the opening timing of the intake valve and the exhaust valve of the deactivated cylinder and the operating cylinder, the opening / closing timing of the exhaust passage, and the opening / closing timing of the connecting pipe as displacement angles of the piston in the cylinder deactivation type internal combustion engine of the first embodiment. 実施形態1の気筒休止型内燃機関を模式的に示す概略構成図であり、全筒運転時において、気筒休止運転時に休止気筒となる気筒が圧縮行程の後期にある状態を示す。1 is a schematic configuration diagram schematically illustrating a cylinder deactivation type internal combustion engine according to a first embodiment, and illustrates a state where a cylinder that is a deactivation cylinder at the time of cylinder deactivation operation is in a later stage of a compression stroke during all cylinder operation. 実施形態2の気筒休止型内燃機関を模式的に示す概略構成図であり、気筒休止運転時に休止気筒が膨張行程にある状態を示す。It is a schematic block diagram which shows typically the cylinder deactivation type internal combustion engine of Embodiment 2, and shows the state in which a deactivation cylinder is in an expansion stroke at the time of cylinder deactivation operation. 実施形態2の気筒休止型内燃機関を模式的に示す概略構成図であり、気筒休止運転時に運転気筒が吸気行程にある状態を示す。FIG. 6 is a schematic configuration diagram schematically illustrating a cylinder deactivation type internal combustion engine according to a second embodiment, showing a state in which an operating cylinder is in an intake stroke during a cylinder deactivation operation. 実施形態2の気筒休止型内燃機関について、休止気筒及び運転気筒の吸気バルブ及び排気バルブの開く時期、排気通路の開閉時期、連結管の開閉時期、排ガス導入管の開閉時期をピストンの変位角度で示す説明図である。In the cylinder deactivation type internal combustion engine of the second embodiment, the opening timing of the intake and exhaust valves of the deactivated cylinder and the operating cylinder, the opening and closing timing of the exhaust passage, the opening and closing timing of the connecting pipe, and the opening and closing timing of the exhaust gas introduction pipe are determined by the displacement angle of the piston. It is explanatory drawing shown.

以下、図面を参照して、本発明の気筒休止型内燃機関の具体例を説明する。図において同一符号は同一名称物を示す。図において、カム15〜19のプロフィル、通路開閉機構・連結管開閉機構・導入管開閉機構の配置位置、連結管・排ガス導入管の接続位置などは例示である。図2,図6では、気筒10の動弁系を省略し、図2,図4−図6では、気筒20の動弁系を省略している。   Hereinafter, a specific example of a cylinder deactivation type internal combustion engine of the present invention will be described with reference to the drawings. In the figure, the same reference numeral indicates the same name. In the drawing, the profiles of the cams 15 to 19, the arrangement positions of the passage opening / closing mechanism / connecting pipe opening / closing mechanism / introducing pipe opening / closing mechanism, the connecting positions of the connecting pipe / exhaust gas introducing pipe, and the like are examples. 2 and 6, the valve system of the cylinder 10 is omitted, and in FIGS. 2 and 4 to 6, the valve system of the cylinder 20 is omitted.

[実施形態1]
・全体構成
以下、図1〜図4を参照して実施形態1の気筒休止型内燃機関1Aを説明する。実施形態1の気筒休止型内燃機関1Aは、吸気行程、圧縮行程、燃焼(膨張)行程、排気行程という4サイクル運転を行う複数の気筒10,20を備えており、図示しない自動車に搭載されて、自動車の走行などに必要な出力を発生する。内燃機関1Aは、自動車の運転状態に応じて、複数の気筒10,20のうち全ての気筒を運転する全筒運転と、一部の気筒の運転を休止し、残部の気筒のみで運転を行う気筒休止運転とが可能な構成を備える。具体的には、内燃機関1Aは、運転状態を検知する各種のセンサ800からの情報を受け、全筒運転と気筒休止運転との切替判断を行って、切替に応じて、運転を停止する気筒(ここでは休止気筒10)について吸気バルブ12及び排気バルブ13の開閉動作を変更する全体制御部80を備える。センサ800は、後述するクランクシャフトの回転数を検知するものや、冷却水の温度を検知するものなど、全筒・休止の切り替えのトリガとなり得るパラメータを測定するものが挙げられる。
[Embodiment 1]
Overall Configuration Hereinafter, a cylinder deactivation type internal combustion engine 1 </ b> A according to the first embodiment will be described with reference to FIGS. 1 to 4. The cylinder deactivation type internal combustion engine 1A according to the first embodiment includes a plurality of cylinders 10 and 20 that perform four-cycle operation including an intake stroke, a compression stroke, a combustion (expansion) stroke, and an exhaust stroke, and is mounted on an unillustrated automobile. Generates output necessary for driving a car. The internal combustion engine 1A performs all-cylinder operation for operating all cylinders among the plurality of cylinders 10 and 20 according to the operation state of the automobile, and operation for some cylinders, and only the remaining cylinders are operated. It has a configuration that enables cylinder deactivation. Specifically, the internal combustion engine 1A receives information from various sensors 800 that detect the operating state, performs switching determination between all-cylinder operation and cylinder deactivation operation, and stops the operation according to the switching. An overall control unit 80 is provided for changing the opening / closing operation of the intake valve 12 and the exhaust valve 13 (here, the idle cylinder 10). Examples of the sensor 800 include a sensor that detects a rotation speed of a crankshaft, which will be described later, and a sensor that detects a temperature of cooling water.

実施形態1の気筒休止型内燃機関1Aは、気筒休止運転時、運転を停止する気筒(ここでは休止気筒10)によって圧縮空気を形成し、この圧縮空気を、通常運転を行う気筒(ここでは運転気筒20)に供給可能な構成であることを特徴の一つとする。以下、基本構成を説明し、その後に特徴点を詳細に説明する。   In the cylinder deactivation type internal combustion engine 1A according to the first embodiment, during cylinder deactivation operation, compressed air is formed by a cylinder that is deactivated (here, deactivation cylinder 10), and this compressed air is used as a cylinder that performs normal operation (here operation). One of the characteristics is that the cylinder 20) can be supplied. Hereinafter, the basic configuration will be described, and then feature points will be described in detail.

・基本構成
内燃機関1Aの基本的構成は、4サイクル運転を行う内燃機関と同様である。概略を述べると、内燃機関1Aは、筒状のシリンダ本体100,200と、各シリンダ本体100,200内(ブロック内)を上下動といった直線的な往復運動をするピストン110,210(図2)とを有する気筒10,20を備える。シリンダ本体100,200の上部(ヘッド)には、燃焼室が設けられる。各シリンダ本体100,200には、吸気通路120,220、及び排気通路130,230が接続される。更に、内燃機関1Aは、吸気通路120,220と燃焼室との間を開閉する吸気バルブ12,22と、排気通路130,230と燃焼室との間を開閉する排気バルブ13,23と、燃焼室に配置された点火プラグ150,250とを備える。
Basic configuration The basic configuration of the internal combustion engine 1A is the same as that of an internal combustion engine that performs four-cycle operation. Generally speaking, the internal combustion engine 1A includes cylindrical cylinder bodies 100, 200 and pistons 110, 210 (FIG. 2) that perform linear reciprocating motion such as up and down movement in the cylinder bodies 100, 200 (in blocks). Cylinders 10 and 20 having A combustion chamber is provided in the upper part (head) of the cylinder main bodies 100 and 200. An intake passage 120, 220 and an exhaust passage 130, 230 are connected to each cylinder body 100, 200. Further, the internal combustion engine 1A includes an intake valve 12, 22 that opens and closes between the intake passages 120, 220 and the combustion chamber, an exhaust valve 13, 23 that opens and closes between the exhaust passages 130, 230 and the combustion chamber, And spark plugs 150 and 250 disposed in the chamber.

ピストン110,210は、コンロッドを介してクランクシャフト(図示せず)に接続される。上記往復運動(ピストン運動)が回転運動に変えられて上記出力となる。クランクシャフトの回転は、タイミングベルト(図示せず)を介して、複数のカムを備えるカムシャフト(図示せず)に伝えられる。カムは、所定のプロフィルを有しており、カムシャフトの回転に伴って、吸気バルブ12,22、排気バルブ13,23を直接又はロッカーアーム(図示せず)を介して押圧する又は開放する。各バルブ12,22,13,23は、ステムの外周にバルブスプリングが嵌められており、上述の押圧又は開放によってバルブスプリングが伸縮することで開閉する。カムのみ、又はカム及びロッカーアームは、バルブ12,22,13,23を開閉するバルブ開閉機構として機能する。気筒休止運転を行う内燃機関1Aは、複数のカムを1本のカムシャフトに備えるシングルオーバーヘッドカムシャフト(SOHC)方式、吸気バルブ12,22の開閉を行う複数のカムを備える吸気用カムシャフトと、排気バルブ13,23の開閉を行う複数のカムを備える排気用カムシャフトとを備えるダブルオーバーヘッドカムシャフト(DOHC)方式のいずれも利用できる。図では、DOHC方式を例示する。   Pistons 110 and 210 are connected to a crankshaft (not shown) via connecting rods. The reciprocating motion (piston motion) is changed to a rotational motion and becomes the output. The rotation of the crankshaft is transmitted to a camshaft (not shown) having a plurality of cams via a timing belt (not shown). The cam has a predetermined profile, and pushes or opens the intake valves 12 and 22 and the exhaust valves 13 and 23 directly or via a rocker arm (not shown) as the camshaft rotates. Each valve 12, 22, 13, 23 has a valve spring fitted on the outer periphery of the stem, and opens and closes when the valve spring expands and contracts by the above-described pressing or releasing. Only the cam or the cam and the rocker arm functions as a valve opening / closing mechanism that opens and closes the valves 12, 22, 13, and 23. An internal combustion engine 1A that performs cylinder deactivation operation includes a single overhead camshaft (SOHC) system that includes a plurality of cams on a single camshaft, an intake camshaft that includes a plurality of cams that open and close intake valves 12 and 22; Any of a double overhead camshaft (DOHC) system including an exhaust camshaft including a plurality of cams for opening and closing the exhaust valves 13 and 23 can be used. In the figure, the DOHC method is illustrated.

内燃機関1Aに備える各気筒10,20における4サイクルの位相は、任意である。即ち、両気筒10,20の4サイクルの位相が同相である場合、4サイクルの位相が180°ずれている場合、360°ずれている場合、540°ずれている場合などをとり得る(後述する図3も参照)。図1,図2,図4、後述する図5,図6では、両気筒10,20の4サイクルの位相が540°ずれている場合を例示する。   The phases of the four cycles in each of the cylinders 10 and 20 provided in the internal combustion engine 1A are arbitrary. That is, the phases of the four cycles of the cylinders 10 and 20 may be the same, the phase of the four cycles may be shifted by 180 °, may be shifted by 360 °, may be shifted by 540 °, and the like (described later). (See also FIG. 3). 1, 2, and 4, and FIGS. 5 and 6 to be described later, the case where the phases of the four cycles of both cylinders 10 and 20 are shifted by 540 ° is illustrated.

・特徴点
・・バルブ開閉機構及び切替機構
実施形態1の気筒休止型内燃機関1Aは、気筒休止運転時、運転を休止する休止気筒10について、全体制御部80が燃料噴射、及び点火プラグ150の発火を停止するように噴射装置(図示せず)などを制御すると共に、吸気バルブ12及び排気バルブ13の開閉を行う点を特徴の一つとする。即ち、休止気筒10は、ピストン110の往復運動と両バルブ12,13の開閉とを行い、燃焼を行わない。そのため、内燃機関1Aは、通常運転時(全筒運転時)に休止気筒10の両バルブ12,13が4サイクルに則って開閉するように設けられた運転バルブ開閉機構と、気筒休止運転時に休止気筒10の両バルブ12,13が特定の開閉動作を行うように設けられた休止バルブ開閉機構と、通常運転時と気筒休止運転時とで両バルブ開閉機構を切り替える切替機構(図示せず)と、切替機構を制御する切替制御部81とを備える。
-Features-Valve opening / closing mechanism and switching mechanism In the cylinder deactivation type internal combustion engine 1A of the first embodiment, for the deactivated cylinder 10 which is deactivated during the cylinder deactivation operation, the overall control unit 80 performs fuel injection and the ignition plug 150 One of the features is that an injection device (not shown) and the like are controlled so as to stop ignition, and the intake valve 12 and the exhaust valve 13 are opened and closed. That is, the idle cylinder 10 performs a reciprocating motion of the piston 110 and opens and closes both valves 12 and 13 and does not perform combustion. Therefore, the internal combustion engine 1A has an operation valve opening / closing mechanism provided so that both valves 12 and 13 of the deactivated cylinder 10 are opened and closed according to four cycles during normal operation (all cylinder operation), and deactivated during cylinder deactivated operation. A pause valve opening / closing mechanism provided so that the valves 12 and 13 of the cylinder 10 perform a specific opening / closing operation, and a switching mechanism (not shown) for switching the both valve opening / closing mechanisms between a normal operation and a cylinder pause operation. And a switching control unit 81 for controlling the switching mechanism.

吸気バルブ12は、気筒休止運転時、通常運転時と同様に4サイクルに則って開閉する。従って、吸気バルブ12については、通常運転時と休止運転時とでバルブ開閉機構を切り替える必要が無く、通常運転時のバルブ開閉機構(運転バルブ開閉機構)をそのまま利用できる。即ち、吸気バルブ12が主として吸気行程で開き、主として吸気行程以外の行程では閉じるように設けられた運転バルブ開閉機構を利用できる。図1,図4では、吸気バルブ12の運転バルブ開閉機構として、カム19を例示する。   The intake valve 12 opens and closes according to four cycles in the cylinder deactivation operation, as in the normal operation. Therefore, for the intake valve 12, there is no need to switch the valve opening / closing mechanism between normal operation and resting operation, and the valve opening / closing mechanism (operating valve opening / closing mechanism) during normal operation can be used as it is. That is, it is possible to use an operation valve opening / closing mechanism provided so that the intake valve 12 is mainly opened in the intake stroke and closed in a stroke other than the intake stroke. 1 and 4, a cam 19 is illustrated as an operation valve opening / closing mechanism of the intake valve 12.

排気バルブ13については、通常運転時と気筒休止運転時とで、開閉時期が異なるように設けられたバルブ開閉機構を利用する。通常運転時に用いる運転バルブ開閉機構には、排気バルブ13が4サイクルに則って開閉する、即ち主として排気行程で開き、主として排気行程以外の行程では閉じるように設けられたものが利用できる。図4では、排気バルブ13の運転バルブ開閉機構として、運転用カム18を例示する。一方、気筒休止運転時に用いる休止バルブ開閉機構は、排気バルブ13が吸気行程から圧縮行程の後期に亘って閉じ、圧縮行程の後期から膨張行程の初期に亘って開くように設けられたものが利用できる。図3に示す休止気筒10(Cly.1)の排気バルブの項について、黒色の矢印と共に、openと付した範囲は、気筒休止運転時に排気バルブ13が開く時期を例示している。図1では、排気バルブ13の休止バルブ開閉機構として、上述の特定の時期に排気バルブ13が開くようなプロフィルを有する休止用カム15を例示する。なお、排気バルブ13の具体的な開弁タイミングは、休止用カム15のプロフィルやピストン110の頂面に設定する排気バルブ13用のバルブリセスの形状などによって異なる。   For the exhaust valve 13, a valve opening / closing mechanism provided so that the opening / closing timing differs between the normal operation and the cylinder deactivation operation is used. As the operation valve opening / closing mechanism used in the normal operation, an exhaust valve 13 that opens and closes in accordance with four cycles, that is, mainly opens in an exhaust stroke and closes in a stroke other than the exhaust stroke can be used. In FIG. 4, an operation cam 18 is illustrated as an operation valve opening / closing mechanism of the exhaust valve 13. On the other hand, a stop valve opening / closing mechanism used during cylinder deactivation operation is provided such that the exhaust valve 13 is closed from the intake stroke to the latter half of the compression stroke and opened from the latter half of the compression stroke to the beginning of the expansion stroke. it can. Regarding the term of the exhaust valve of the deactivated cylinder 10 (Cly.1) shown in FIG. 3, the range marked open along with the black arrow exemplifies the time when the exhaust valve 13 opens during the cylinder deactivated operation. In FIG. 1, as a pause valve opening / closing mechanism for the exhaust valve 13, a pause cam 15 having a profile such that the exhaust valve 13 opens at the above specific time is illustrated. The specific valve opening timing of the exhaust valve 13 differs depending on the profile of the cam 15 for pause, the shape of the valve recess for the exhaust valve 13 set on the top surface of the piston 110, and the like.

運転バルブ開閉機構と休止バルブ開閉機構との切り替えは、ロッカーアーム切替え式、カムスライド式などの公知の可変バルブシステムに利用されている構成を利用できる。この例では、カムシャフトの軸方向にカム部分が移動するカムスライド式としており、カム部分として、休止用カム15と運転用カム18とを備え、切替機構として、両カム15,18の間に設けられる螺旋溝部(図示せず)を備える。内燃機関1Aは、上記螺旋溝部に差し込み可能なプランジャを備える電磁ソレノイド(図示せず)を備え、切替制御部81は、この電磁ソレノイドを制御する。切替制御部81は、例えば、通常運転から気筒休止運転に切り替える命令信号を全体制御部80から受け取ると、プランジャを突出するように電磁ソレノイドに命令する。突出したプランジャは、カムシャフトの回転に伴って螺旋溝部の溝に沿って摺接することで、運転用カム18から休止用カム15に切り替えられる。   For switching between the operation valve opening / closing mechanism and the stop valve opening / closing mechanism, a configuration used in a known variable valve system such as a rocker arm switching type or a cam slide type can be used. In this example, the cam portion is a cam slide type in which the cam portion moves in the axial direction of the camshaft. As the cam portion, a pause cam 15 and an operation cam 18 are provided. A spiral groove (not shown) is provided. The internal combustion engine 1A includes an electromagnetic solenoid (not shown) including a plunger that can be inserted into the spiral groove, and the switching control unit 81 controls the electromagnetic solenoid. For example, when receiving a command signal for switching from normal operation to cylinder deactivation operation from the overall control unit 80, the switching control unit 81 commands the electromagnetic solenoid to project the plunger. The protruding plunger is switched from the operating cam 18 to the resting cam 15 by slidingly contacting the spiral groove along the rotation of the camshaft.

・・通路開閉機構
実施形態1の気筒休止型内燃機関1Aは、複数の気筒10,20のうち、少なくとも一つの気筒に接続される排気通路を開閉可能な構成としている点を特徴の一つとする。具体的には内燃機関1Aは、休止気筒10に接続される排気通路130に通路開閉機構3を備える。
..Passage opening / closing mechanism One of the features of the cylinder deactivation type internal combustion engine 1A according to the first embodiment is that an exhaust passage connected to at least one of the plurality of cylinders 10 and 20 can be opened and closed. . Specifically, the internal combustion engine 1 </ b> A includes a passage opening / closing mechanism 3 in an exhaust passage 130 connected to the idle cylinder 10.

通路開閉機構3は、通常運転時に気筒10が排気ガスを排出できるように排気通路130を開いた状態にでき、かつ気筒休止運転時に気筒10がつくる圧縮空気が下流側(図示しないマフラー側)に漏出しないように排気通路130を閉じた状態にできるものを適宜利用できる。例えば、電動弁や電磁弁などといった電気的に制御可能な弁などが好適に利用できる。ここでは、電磁バタフライ弁とし、後述する開閉制御部8Aは、この電磁弁の開閉動作を制御する。   The passage opening / closing mechanism 3 can open the exhaust passage 130 so that the cylinder 10 can exhaust the exhaust gas during normal operation, and the compressed air produced by the cylinder 10 during the cylinder deactivation operation is on the downstream side (muffler side not shown). What can make exhaust state 130 closed so that it may not leak can be used suitably. For example, an electrically controllable valve such as an electric valve or an electromagnetic valve can be suitably used. Here, the electromagnetic butterfly valve is used, and an opening / closing control unit 8A described later controls the opening / closing operation of the electromagnetic valve.

排気通路130における通路開閉機構3の配置位置は適宜選択できるが、下流に行き過ぎると、通路開閉機構3によって堰き止められた排気通路130内の空間(排気バルブ13から通路開閉機構3までの空間)が広くなる。この空間が広いと、気筒休止運転時に休止気筒10が吸入した空気を圧縮する際に、ピストン110のストロークに対して圧縮する空気の体積が大きく、圧縮効果を十分に得難い。上記空間ができるだけ小さくなるように通路開閉機構3の配置位置を選択すると、上記圧縮効果が得られ易く好ましい。通路開閉機構3の配置位置は、上記空間内の体積がシリンダ容積未満となる位置が好ましい。例えば、上記配置位置は、排気通路130における排気バルブ13の配置箇所近傍であって、排気通路130における後述の連結管4の接続箇所よりも下流が好ましい。   The arrangement position of the passage opening / closing mechanism 3 in the exhaust passage 130 can be selected as appropriate, but if it goes too far downstream, the space in the exhaust passage 130 blocked by the passage opening / closing mechanism 3 (the space from the exhaust valve 13 to the passage opening / closing mechanism 3). Becomes wider. When this space is wide, the volume of the air compressed with respect to the stroke of the piston 110 is large when compressing the air taken in by the deactivated cylinder 10 during the cylinder deactivation operation, and it is difficult to obtain a sufficient compression effect. It is preferable to select the arrangement position of the passage opening / closing mechanism 3 so that the space becomes as small as possible because the compression effect is easily obtained. The arrangement position of the passage opening / closing mechanism 3 is preferably a position where the volume in the space is less than the cylinder volume. For example, the arrangement position is preferably in the vicinity of the arrangement position of the exhaust valve 13 in the exhaust passage 130 and downstream of the connection position of the later-described connecting pipe 4 in the exhaust passage 130.

・・連結管及び連結管開閉機構
実施形態1の気筒休止型内燃機関1Aは、複数の気筒10,20のうち、気筒休止運転時に運転を休止する休止気筒10側の排気通路130と、通常運転を行う運転気筒20側の吸気通路220とを連通可能な構成としている点を特徴の一つとする。具体的には内燃機関1Aは、休止気筒10側の排気通路130における通路開閉機構3よりも上流側と、気筒20に接続される吸気通路220とを連結する連結管4と、連結管4を開閉する連結管開閉機構5とを備える。
.. Connecting Pipe and Connecting Pipe Opening / Closing Mechanism The cylinder deactivation type internal combustion engine 1A according to the first embodiment includes the exhaust passage 130 on the deactivation cylinder 10 side that is deactivated during cylinder deactivation operation, and the normal operation of the plurality of cylinders 10 and 20. One of the features is that the intake passage 220 on the side of the operating cylinder 20 that performs the operation can be communicated. Specifically, the internal combustion engine 1 </ b> A includes a connecting pipe 4 that connects an upstream side of the passage opening / closing mechanism 3 in the exhaust passage 130 on the idle cylinder 10 side and an intake passage 220 connected to the cylinder 20, and a connecting pipe 4. And a connecting pipe opening / closing mechanism 5 that opens and closes.

連結管4は、気筒休止運転時に休止気筒10が形成する圧縮空気を、適宜な時期に運転気筒20に供給する通路として機能する。この機能を考慮すると、上述の圧縮効果を高められるように、連結管4内の体積が小さいことが好ましい。具体的には、連結管4を細く、短くすることが好ましいと考えられる。例えば、連結管4は、図1に示すように隣り合う気筒10,気筒20の排気通路130と吸気通路220とを接続すると、短くできて好ましい。また、連結管4における排気通路130との接続位置は、排気バルブ13の配置箇所近傍とし、連結管4における吸気通路220との接続位置は、吸気バルブ22の配置箇所近傍とすると、連結管4を短くできて好ましい。   The connecting pipe 4 functions as a passage for supplying compressed air formed by the deactivated cylinder 10 to the activated cylinder 20 at an appropriate time during the deactivated cylinder operation. Considering this function, it is preferable that the volume in the connecting pipe 4 is small so that the above-described compression effect can be enhanced. Specifically, it is considered preferable to make the connecting pipe 4 thin and short. For example, it is preferable that the connecting pipe 4 can be shortened if the exhaust passage 130 and the intake passage 220 of the adjacent cylinders 10 and 20 are connected as shown in FIG. If the connection position of the connection pipe 4 with the exhaust passage 130 is in the vicinity of the position where the exhaust valve 13 is disposed, and the connection position of the connection pipe 4 with the intake passage 220 is in the vicinity of the position where the intake valve 22 is disposed, the connection pipe 4. Can be shortened.

連結管4の開口径、傾斜角度、外形などは適宜選択することができる。例えば、連結管4を経た上述の圧縮空気(高圧の新気)が運転気筒20のシリンダ本体200内に導入されることで、運転気筒20が吸い込んだ気体、代表的には燃料と空気との混合気がスワール渦やタンブル渦などの特定の流動をし易いように、連結管4に指向性を持たせることができる。   The opening diameter, inclination angle, outer shape, and the like of the connecting pipe 4 can be selected as appropriate. For example, the compressed air (high-pressure fresh air) that has passed through the connecting pipe 4 is introduced into the cylinder body 200 of the operating cylinder 20, so that the gas sucked by the operating cylinder 20, typically fuel and air, Directivity can be imparted to the connecting pipe 4 so that the air-fuel mixture can easily perform a specific flow such as a swirl vortex or a tumble vortex.

連結管開閉機構5は、気筒休止運転時に上述の通路開閉機構3と共に閉じた状態となることで、休止気筒10側の排気通路130に閉空間を形成することを機能の一つとする。実施形態1の気筒休止型内燃機関1Aは、この閉空間を休止気筒10が形成した圧縮空気の貯留槽として利用し、適宜な時期に、連結管開閉機構5を開くことで、連結管4を介して、上記貯留槽内の圧縮空気を運転気筒20に供給する。この機能を考慮すると、連結管開閉機構5は、上述の通路開閉機構3と同様に電気的に制御可能な弁などが好適に利用できる。ここでは、電磁バタフライ弁とし、後述する開閉制御部8Aは、この電磁弁の開閉動作を制御する。連結管4における連結管開閉機構5の配置位置は適宜選択できる。上記配置位置は、例えば、排気通路130と連結管4との接続箇所近傍などとすると、上記貯留槽の容積を小さくでき、上述の圧縮効果を高められると考えられる。   One function of the connecting pipe opening / closing mechanism 5 is to form a closed space in the exhaust passage 130 on the deactivated cylinder 10 side by being closed together with the above-described passage opening / closing mechanism 3 during the cylinder deactivation operation. The cylinder deactivation type internal combustion engine 1A according to the first embodiment uses this closed space as a compressed air storage tank formed by the deactivation cylinder 10, and opens the coupling tube opening / closing mechanism 5 at an appropriate time, so that the coupling tube 4 is opened. Accordingly, the compressed air in the storage tank is supplied to the operating cylinder 20. In consideration of this function, the connecting pipe opening / closing mechanism 5 can be suitably used as an electrically controllable valve as with the above-described passage opening / closing mechanism 3. Here, the electromagnetic butterfly valve is used, and an opening / closing control unit 8A described later controls the opening / closing operation of the electromagnetic valve. The arrangement position of the connection pipe opening / closing mechanism 5 in the connection pipe 4 can be selected as appropriate. If the arrangement position is, for example, in the vicinity of the connection location between the exhaust passage 130 and the connecting pipe 4, it is considered that the volume of the storage tank can be reduced and the compression effect described above can be enhanced.

・・開閉制御部
実施形態1の気筒休止型内燃機関1Aは、通常運転時、気筒10が生成する排気ガスを排気通路130を介して排出でき、気筒休止運転時、休止気筒10がつくる圧縮空気を休止気筒10側の排気通路130に一旦貯留し、適宜な時期に運転気筒20に供給できるように、休止気筒10側の排気通路130の開閉動作を行う通路開閉機構3及び連結管4の開閉動作を行う連結管開閉機構5を制御する開閉制御部8Aを備えることを特徴の一つとする。図1では、全体制御部80の一部に開閉制御部8A、上述の切替制御部81を備える例を示すが、各制御部8A,80,81をそれぞれ別個に備えることができる(この点は、後述する実施形態2も同様である)。制御の詳細は、以下の運転状態の項で説明する。
..Opening / Closing Control Unit The cylinder deactivation type internal combustion engine 1A of Embodiment 1 can discharge exhaust gas generated by the cylinder 10 through the exhaust passage 130 during normal operation, and compressed air generated by the deactivation cylinder 10 during cylinder deactivation operation. Is temporarily stored in the exhaust passage 130 on the deactivated cylinder 10 side, and the passage opening / closing mechanism 3 for opening and closing the exhaust passage 130 on the deactivated cylinder 10 side and opening / closing of the connecting pipe 4 so as to be supplied to the operating cylinder 20 at an appropriate time. One feature is that an open / close control unit 8A for controlling the connecting pipe opening / closing mechanism 5 that performs the operation is provided. Although FIG. 1 shows an example in which a part of the overall control unit 80 includes the opening / closing control unit 8A and the above-described switching control unit 81, each control unit 8A, 80, 81 can be provided separately (this point The same applies to Embodiment 2 described later). Details of the control will be described in the following operating state section.

・運転状態
・・通常運転時(図4)
内燃機関1Aの全体制御部80は、高出力などが必要な状態となっているか否かを各種のセンサ800からの情報に基づいて判断する。全体制御部80が全筒運転を行うと判断した場合、気筒10が通常運転を行えるようにする。具体的には、全体制御部80は、気筒10に対して燃料噴射の動作命令、点火プラグ150の点火動作命令、必要に応じて切替制御部81に切替命令をそれぞれ出す。切替制御部81は、電磁ソレノイドなどに命令して、気筒10のカムを、切替機構を介して運転用カム18に切り替える。開閉制御部8Aは、気筒10のカムの切替などに応じて、通路開閉機構3に命令して通路開閉機構3に開動作を行わせる(図4の実線参照)。具体的には、運転用カム18によって排気バルブ13が開いている間は少なくとも気筒10側の排気通路130が開いた状態になるように、開閉制御部8Aは、通路開閉機構3を制御する。
・ Operating state ・ ・ During normal operation (Fig. 4)
The overall control unit 80 of the internal combustion engine 1A determines whether or not a high output is necessary based on information from various sensors 800. When the overall control unit 80 determines that all cylinder operation is performed, the cylinder 10 is allowed to perform normal operation. Specifically, the overall control unit 80 issues a fuel injection operation command, a spark plug 150 ignition operation command to the cylinder 10, and a switching command to the switching control unit 81 as necessary. The switching control unit 81 instructs an electromagnetic solenoid or the like to switch the cam of the cylinder 10 to the driving cam 18 via the switching mechanism. The opening / closing controller 8A instructs the passage opening / closing mechanism 3 to perform the opening operation of the passage opening / closing mechanism 3 according to the switching of the cam of the cylinder 10 (see the solid line in FIG. 4). Specifically, the opening / closing controller 8 </ b> A controls the passage opening / closing mechanism 3 so that at least the exhaust passage 130 on the cylinder 10 side is opened while the exhaust valve 13 is opened by the operating cam 18.

上述の切替動作などによって、気筒10の吸気バルブ12及び排気バルブ13は、運転用カム18を利用して4サイクル運転に則って開閉し、ピストン110は往復運動を行う。即ち、通常運転時、気筒10は、4サイクルのうち吸気行程にあるとき、吸気バルブ12を開いて排気バルブ13を閉じた状態で代表的には空気と燃料との混合気を吸入し、圧縮行程にあるとき、吸気バルブ12及び排気バルブ13を閉じた状態で吸入した混合気を圧縮し、膨張行程にあるとき、圧縮した混合気を点火プラグ150の点火によって燃焼する。そして、気筒10は、排気行程にあるとき、通路開閉機構3が開いた状態にある排気通路130から排気ガスを排出する。なお、直噴式の内燃機関の場合には空気のみを吸入して、燃料室に燃料が直接噴射される。   By the switching operation described above, the intake valve 12 and the exhaust valve 13 of the cylinder 10 are opened and closed in accordance with the four-cycle operation using the operation cam 18, and the piston 110 reciprocates. That is, during normal operation, when the cylinder 10 is in the intake stroke of four cycles, the cylinder 10 typically sucks and compresses a mixture of air and fuel with the intake valve 12 open and the exhaust valve 13 closed. When in the stroke, the air-fuel mixture sucked in with the intake valve 12 and the exhaust valve 13 being closed is compressed, and when in the expansion stroke, the compressed air-fuel mixture is combusted by ignition of the spark plug 150. When the cylinder 10 is in the exhaust stroke, the cylinder 10 discharges exhaust gas from the exhaust passage 130 in which the passage opening / closing mechanism 3 is open. In the case of a direct injection internal combustion engine, only air is sucked and the fuel is directly injected into the fuel chamber.

一方、気筒20の吸気バルブ22及び排気バルブ23は、カム(図示せず)を利用して4サイクル運転に則って開閉し、ピストン210は往復運動を行う。   On the other hand, the intake valve 22 and the exhaust valve 23 of the cylinder 20 are opened and closed in accordance with a 4-cycle operation using a cam (not shown), and the piston 210 reciprocates.

通常運転時、連結管開閉機構5の開閉は問わない。連結管開閉機構5を閉じていてもよいし、開いてもよい。連結管開閉機構5が開いている場合、排気行程にある気筒10の排気ガスが連結管4を介して、気筒20側の吸気通路220に流れるが、この排気ガスは、気筒20が吸気行程にあるとき、混合気と共に吸引されて、排気再循環による効果が期待できる。   During normal operation, the connecting pipe opening / closing mechanism 5 may be opened or closed. The connecting pipe opening / closing mechanism 5 may be closed or opened. When the connecting pipe opening / closing mechanism 5 is open, the exhaust gas of the cylinder 10 in the exhaust stroke flows into the intake passage 220 on the cylinder 20 side via the connecting pipe 4, and this exhaust gas is in the intake stroke of the cylinder 20. In some cases, the gas is sucked together with the air-fuel mixture and the effect of exhaust gas recirculation can be expected.

・・気筒休止運転時(図1,図2)
内燃機関1Aの全体制御部80が気筒休止運転を行うと判断した場合、休止させる気筒(休止気筒10)が燃焼操作を行わず、特定の操作(圧縮空気の生成・貯留と運転気筒20への供給)を行えるようにする。具体的には、全体制御部80は、休止気筒10に対して燃料噴射の停止命令、点火プラグ150の点火停止命令、切替制御部81に切替命令をそれぞれ出す。切替制御部81は、電磁ソレノイドなどに命令して、気筒10のカムを、切替機構を介して運転用カム18から休止用カム15に切り替える。カムの切り替えは、排気バルブ13についてのみ行い、吸気バルブ12のカム19は、通常運転時のままとする。
..Cylinder deactivation operation (Figs. 1 and 2)
When the overall control unit 80 of the internal combustion engine 1A determines that the cylinder deactivation operation is performed, the cylinder to be deactivated (the deactivation cylinder 10) does not perform the combustion operation, and does not perform the specific operation (compression air generation / storage and operation into the operation cylinder 20). Supply). Specifically, the overall control unit 80 issues a fuel injection stop command, a spark plug 150 ignition stop command, and a switching command to the switching control unit 81 for the idle cylinder 10. The switching control unit 81 instructs an electromagnetic solenoid or the like to switch the cam of the cylinder 10 from the driving cam 18 to the pause cam 15 via the switching mechanism. The cam is switched only for the exhaust valve 13, and the cam 19 of the intake valve 12 is kept during normal operation.

開閉制御部8Aは、気筒10のカムの切替などに応じて、通路開閉機構3及び連結管開閉機構5に命令して開閉動作を行わせる。具体的には、(1)休止用カム15によって排気バルブ13が開いている間、(2)排気バルブ13が閉じて排気通路130の閉空間に圧縮空気を貯留している間の二つの期間は少なくとも、排気通路130及び連結管4が閉じた状態になるように(図1の実線参照)、開閉制御部8Aは、通路開閉機構3及び連結管開閉機構5を制御する。そして、開閉制御部8Aは、運転気筒20が吸気行程にあるときに、排気通路130が閉じ、連結管4が開いた状態になるように(図2の実線参照)、通路開閉機構3及び連結管開閉機構5を制御する。   The opening / closing control unit 8A instructs the passage opening / closing mechanism 3 and the connecting pipe opening / closing mechanism 5 to perform an opening / closing operation according to switching of the cam of the cylinder 10 or the like. Specifically, (1) while the exhaust valve 13 is opened by the pause cam 15, and (2) two periods during which the exhaust valve 13 is closed and compressed air is stored in the closed space of the exhaust passage 130. The opening / closing control unit 8A controls the passage opening / closing mechanism 3 and the connecting pipe opening / closing mechanism 5 so that at least the exhaust passage 130 and the connecting pipe 4 are closed (see the solid line in FIG. 1). The opening / closing control unit 8A then connects the passage opening / closing mechanism 3 and the connection so that the exhaust passage 130 is closed and the connection pipe 4 is opened (see the solid line in FIG. 2) when the operating cylinder 20 is in the intake stroke. The tube opening / closing mechanism 5 is controlled.

通路開閉機構3を閉じる時は、排気バルブ13を開く前であればよく、例えば、排気バルブ13を開く直前、休止気筒10の圧縮行程の任意のとき、気筒休止運転開始時などが挙げられる。又は、開閉制御部8Aは、気筒休止運転時には通路開閉機構3を閉状態とし、通常運転時にのみ通路開閉機構3を開状態とするように通路開閉機構3を制御することができる。この場合、例えば、カムの切り替えと連動するように、通路開閉機構3の開閉を制御すればよく、制御が単純になる。圧縮空気を形成するために排気通路130を閉じた後、そのまま閉じた状態を維持すればよく、開閉動作を別途行う必要がないからである。図3では、この場合、即ち気筒休止運転中、排気通路130が閉じ、通常運転時にのみ排気通路130が開く場合を例示する。連結管開閉機構5を閉じる時は、排気バルブ13を開く前であればよく、例えば、排気バルブ13を開く直前、休止気筒10の圧縮行程の任意のときなどが挙げられる。連結管開閉機構5を開く時は、貯留する圧縮空気を運転気筒20に供給するとき、具体的には、運転気筒20が吸気行程にある任意のときが挙げられる。   The passage opening / closing mechanism 3 may be closed before the exhaust valve 13 is opened, for example, immediately before the exhaust valve 13 is opened, any time during the compression stroke of the deactivated cylinder 10, or when the cylinder deactivation operation is started. Alternatively, the opening / closing control unit 8A can control the passage opening / closing mechanism 3 so that the passage opening / closing mechanism 3 is closed during the cylinder deactivation operation and the passage opening / closing mechanism 3 is opened only during normal operation. In this case, for example, the opening / closing of the passage opening / closing mechanism 3 may be controlled so as to be interlocked with the switching of the cam, and the control becomes simple. This is because, after the exhaust passage 130 is closed to form compressed air, the closed state may be maintained as it is, and there is no need to perform an opening / closing operation separately. FIG. 3 exemplifies the case where the exhaust passage 130 is closed during the cylinder deactivation operation and the exhaust passage 130 is opened only during the normal operation. The connection pipe opening / closing mechanism 5 may be closed before the exhaust valve 13 is opened. For example, immediately before the exhaust valve 13 is opened, or at any time during the compression stroke of the idle cylinder 10. When the connecting pipe opening / closing mechanism 5 is opened, when the compressed air to be stored is supplied to the operating cylinder 20, specifically, any time when the operating cylinder 20 is in the intake stroke can be mentioned.

以下、休止気筒10の4サイクルの行程ごとに説明する。
休止気筒10が吸気行程にあるとき、カム19の回転に伴って吸気バルブ12が開き、休止用カム15によって排気バルブ13は閉じた状態で、ピストン110が下死点に向かうに従って、燃料を含まない空気のみをシリンダ本体100に吸入する。
Hereinafter, each stroke of the idle cylinder 10 will be described.
When the idle cylinder 10 is in the intake stroke, the intake valve 12 is opened as the cam 19 rotates, and the exhaust valve 13 is closed by the idle cam 15 and the fuel is contained as the piston 110 moves toward the bottom dead center. Only air that is not present is sucked into the cylinder body 100.

休止気筒10が圧縮行程に入ると、カム19の回転に伴って吸気バルブ12が閉じ、休止用カム15によって排気バルブ13が閉じたまま、ピストン110が上死点に向かうに従って、シリンダ本体100内に吸入した上記空気が圧縮される。このようにして吸気行程から圧縮行程に亘って休止気筒10内に圧縮空気を生成する。   When the idle cylinder 10 enters the compression stroke, the intake valve 12 is closed with the rotation of the cam 19 and the exhaust valve 13 is closed by the idle cam 15, and the piston 110 moves toward the top dead center. The air sucked in is compressed. In this way, compressed air is generated in the idle cylinder 10 from the intake stroke to the compression stroke.

開閉制御部8Aは、休止気筒10の圧縮行程の後期に休止気筒10側の排気通路130及び連結管4が閉じた状態となるように通路開閉機構3及び連結管開閉機構5を制御する。通路開閉機構3及び連結管開閉機構5が閉じることで、排気通路130と通路開閉機構3及び連結管開閉機構5とで囲まれる閉空間を形成できる。   The opening / closing control unit 8A controls the passage opening / closing mechanism 3 and the connection pipe opening / closing mechanism 5 so that the exhaust passage 130 and the connection pipe 4 on the idle cylinder 10 side are closed in the latter stage of the compression stroke of the idle cylinder 10. By closing the passage opening / closing mechanism 3 and the connecting pipe opening / closing mechanism 5, a closed space surrounded by the exhaust passage 130, the passage opening / closing mechanism 3 and the connecting pipe opening / closing mechanism 5 can be formed.

休止気筒10の圧縮行程の後期に排気通路130に上記閉空間が形成された状態で、休止用カム15の回転に伴って排気バルブ13が開くと、休止気筒10が圧縮行程で形成した圧縮空気が上記閉空間に流動する。   When the exhaust valve 13 is opened along with the rotation of the deactivation cam 15 in a state where the closed space is formed in the exhaust passage 130 in the later stage of the compression stroke of the deactivation cylinder 10, the compressed air formed by the deactivation cylinder 10 in the compression stroke is opened. Flows into the closed space.

休止気筒10の圧縮行程の後期を経て膨張行程に入り、膨張行程の中期には、上述の圧縮空気を上記閉空間に充填し終わっており、休止用カム15の回転に伴って排気バルブ13が閉じる。こうすることで、休止気筒10が圧縮行程で形成した圧縮空気を排気通路130において排気バルブ13と通路開閉機構3と連結管開閉機構5とで封止された閉空間に貯留できる。   After the latter half of the compression stroke of the idle cylinder 10, the expansion stroke is entered, and in the middle of the expansion stroke, the above-mentioned compressed air is completely charged into the closed space. close up. In this way, the compressed air formed by the idle cylinder 10 during the compression stroke can be stored in the closed space sealed by the exhaust valve 13, the passage opening / closing mechanism 3, and the connecting pipe opening / closing mechanism 5 in the exhaust passage 130.

そして、開閉制御部8Aは、図2に示すように運転気筒20が吸気行程にあるときに連結管4が開いた状態となるように連結管開閉機構5を制御する。通路開閉機構3が閉じた状態で連結管開閉機構5が開くことで、排気通路130における上記閉空間に貯留していた圧縮空気を、連結管4を介して運転気筒20に供給できる。より具体的には、吸気行程に入って吸気バルブ22を開いて負圧になり始めている運転気筒20のシリンダ本体200に引き込まれるようにして、上記圧縮空気を運転気筒20に供給できる。   Then, the opening / closing control unit 8A controls the connecting pipe opening / closing mechanism 5 so that the connecting pipe 4 is opened when the operating cylinder 20 is in the intake stroke, as shown in FIG. By opening the connecting pipe opening / closing mechanism 5 with the passage opening / closing mechanism 3 closed, the compressed air stored in the closed space in the exhaust passage 130 can be supplied to the operating cylinder 20 via the connecting pipe 4. More specifically, the compressed air can be supplied to the operating cylinder 20 so as to be drawn into the cylinder body 200 of the operating cylinder 20 that has entered the intake stroke and opened the intake valve 22 and has started to become negative pressure.

図3を参照して、運転気筒20(Cyl.2)の4サイクルの位相ごとに、休止気筒10(Cyl.1)の排気バルブ13の開閉状態、排気通路130の開閉状態、連結管4の開閉状態を説明する。図3、及び後述の図7では、クランクシャフトの回転角度を基準として、両気筒(Cyl.1,2)について吸気バルブ及び排気バルブが開いている時期を矢印で示すと共にopenと付して示す。排気通路130及び連結管4、導入管(図7、後述する排ガス導入管6)について、開いている時期を矢印で示すと共にopenと付して示し、閉じている時期をハッチング及びcloseを付して示す。右欄の「全筒」は、全筒運転の場合(矢印は破線矢印)、「休止」は、気筒休止運転の場合(矢印は黒矢印)、「全・休」は、全筒運転又は気筒休止運転の場合を意味する。図において、矢印やハッチングを付した時期は例示である。特に、排気通路130の開閉時期、連結管4の開閉時期、排ガス導入管6の開閉時期は、明示した時期を含んで、又は含まずにその他の時期とすることができる。   With reference to FIG. 3, the open / close state of the exhaust valve 13, the open / close state of the exhaust passage 130, the open / close state of the exhaust pipe 130, and the connection pipe 4 of the idle cylinder 10 (Cyl.1) for every four-cycle phase of the operating cylinder 20 (Cyl.2). The open / close state will be described. In FIG. 3 and FIG. 7 to be described later, with reference to the rotation angle of the crankshaft, the opening timing of the intake valve and the exhaust valve for both cylinders (Cyl.1, 2) is indicated by arrows and indicated as open. . As for the exhaust passage 130, the connecting pipe 4, and the introduction pipe (FIG. 7, exhaust gas introduction pipe 6 described later), the opening time is indicated by an arrow and indicated as open, and the closing time is indicated by hatching and close. Show. “All cylinders” in the right column is for all cylinders operation (arrows are broken arrows), “Inactive” is for cylinders inactive (arrows are black arrows), “All / inactive” is all cylinders or cylinders It means the case of rest operation. In the figure, the periods with arrows and hatching are examples. In particular, the opening / closing timing of the exhaust passage 130, the opening / closing timing of the connecting pipe 4, and the opening / closing timing of the exhaust gas introduction pipe 6 may be other timings including or not including the explicit timing.

ここで、休止気筒10側の排気通路130の閉空間に貯留する圧縮空気を供給可能な時期とは、休止気筒10の排気バルブ13が閉じているとき、即ち、図3において「open」と付された範囲以外の時期である。上記の圧縮空気を供給可能な時期に、運転気筒20の吸気バルブ22が開いていれば、運転気筒20に上記圧縮空気を供給できる。例えば、休止気筒10(Cyl.1)と運転気筒20(Cyl.2)とについて、4サイクルの位相が同相である場合、180°ずれている場合、540°ずれている場合では、上記の圧縮空気を供給可能な時期に吸気バルブ22が概ね開いている。従って、これらの場合では、運転気筒20の吸気バルブ22が開いている任意の時期、例えば、吸気バルブ22を開くと同時に連結管4を開くことが挙げられる。連結管4を開くまでは、連結管4を閉じ続ける。図3では、休止気筒10の排気バルブ13を開くと同時に連結管4を閉じ、運転気筒20の吸気バルブ22を開くと同時に連結管4を開く場合を例示する。   Here, the time when the compressed air stored in the closed space of the exhaust passage 130 on the side of the deactivated cylinder 10 can be supplied refers to the time when the exhaust valve 13 of the deactivated cylinder 10 is closed, that is, “open” in FIG. The time is outside the specified range. If the intake valve 22 of the operating cylinder 20 is open at the time when the compressed air can be supplied, the compressed air can be supplied to the operating cylinder 20. For example, the compression of the cylinders 10 (Cyl.1) and the operating cylinder 20 (Cyl.2) when the four cycles are in phase, 180 ° shifted, 540 ° shifted as described above. The intake valve 22 is generally open when air can be supplied. Therefore, in these cases, an arbitrary timing when the intake valve 22 of the operating cylinder 20 is open, for example, opening the connection pipe 4 simultaneously with opening the intake valve 22 can be mentioned. The connection pipe 4 is kept closed until the connection pipe 4 is opened. FIG. 3 illustrates a case where the connection pipe 4 is closed simultaneously with opening the exhaust valve 13 of the idle cylinder 10 and the connection pipe 4 is opened simultaneously with opening the intake valve 22 of the operating cylinder 20.

一方、休止気筒10(Cyl.1)と運転気筒20(Cyl.2)とについて、4サイクルの位相が360°ずれている場合には、上記の圧縮空気を供給できない時期、即ち、図3においてCyl.10の排気バルブ13に「open」と付された範囲と、運転気筒20の吸気バルブ22が開いている時期とが重複する。従って、この場合には、休止気筒10の排気バルブ13が閉じた後であって、運転気筒20の吸気バルブ22が開いている時期、例えば、吸気行程の中期に連結管4を開くことが挙げられる。連結管4を開くまでは、連結管4を閉じ続ける。図3では、休止気筒10の排気バルブ13を開くと同時に連結管4を閉じ、運転気筒20の吸気行程中期に連結管4を開く場合を例示する。   On the other hand, when the phases of the four cycles of the idle cylinder 10 (Cyl.1) and the operating cylinder 20 (Cyl.2) are shifted by 360 °, the above-described period when the compressed air cannot be supplied, that is, in FIG. Cyl. The range in which “10” is set to the 10 exhaust valves 13 overlaps the time when the intake valve 22 of the operating cylinder 20 is open. Accordingly, in this case, after the exhaust valve 13 of the deactivated cylinder 10 is closed, the connection pipe 4 is opened when the intake valve 22 of the operating cylinder 20 is open, for example, in the middle of the intake stroke. It is done. The connection pipe 4 is kept closed until the connection pipe 4 is opened. FIG. 3 illustrates a case where the exhaust pipe 13 of the idle cylinder 10 is opened and the connecting pipe 4 is closed at the same time, and the connecting pipe 4 is opened in the middle of the intake stroke of the operating cylinder 20.

気筒休止運転中、開閉制御部8Aが通路開閉機構3と連結管開閉機構5とを制御することで、休止気筒10は、上述のピストン110の往復運動と吸気バルブ12及び排気バルブ13の開閉と通路開閉機構3の開閉と連結管開閉機構5の開閉とを利用した運転気筒20への圧縮空気の供給操作を繰り返し行う。   During the cylinder deactivation operation, the opening / closing control unit 8A controls the passage opening / closing mechanism 3 and the connecting pipe opening / closing mechanism 5, whereby the deactivation cylinder 10 performs the reciprocating motion of the piston 110 and the opening / closing of the intake valve 12 and the exhaust valve 13. The operation of supplying compressed air to the operating cylinder 20 using the opening / closing of the passage opening / closing mechanism 3 and the opening / closing of the connecting pipe opening / closing mechanism 5 is repeated.

・効果
実施形態1の気筒休止型内燃機関1Aは、気筒休止運転時、休止気筒10をポンプとして利用して圧縮空気を運転気筒20に供給可能である。特に、内燃機関1Aは、休止気筒10側の排気通路130を圧縮空気の貯留槽に利用できるため、運転気筒20の4サイクルの位相によらず、圧縮空気を確実に貯留でき、運転気筒20の吸気行程に供給できる。従って、内燃機関1Aは、運転気筒20の吸気流動を強化したり、過給したりできる。連結管4が指向性を有する場合には、上記運転気筒20の吸気流動を更に強化し易い。
Effect The cylinder deactivation type internal combustion engine 1A according to the first embodiment can supply compressed air to the operation cylinder 20 by using the deactivation cylinder 10 as a pump during the cylinder deactivation operation. In particular, the internal combustion engine 1A can use the exhaust passage 130 on the side of the idle cylinder 10 as a compressed air storage tank, and therefore can reliably store compressed air regardless of the four-cycle phase of the operating cylinder 20. Can be supplied to the intake stroke. Therefore, the internal combustion engine 1A can enhance the intake flow of the operating cylinder 20 or supercharge it. When the connecting pipe 4 has directivity, the intake flow of the operating cylinder 20 can be further enhanced.

特に、内燃機関1Aは、過給機や高圧タンクを備えておらず、気筒休止運転が可能な構成に対して休止気筒10側の排気通路130に通路開閉機構3を設けると共に、この排気通路130と運転気筒20側の吸気通路220とを連結する連結管4及び連結管開閉機構5を付加するという簡単な構成であり、過給機などの省略による軽量化、低コスト化が期待できる。   In particular, the internal combustion engine 1A is not provided with a supercharger or a high-pressure tank, and is provided with a passage opening / closing mechanism 3 in the exhaust passage 130 on the side of the deactivated cylinder 10 for a configuration capable of cylinder deactivation operation. And a connecting pipe 4 and a connecting pipe opening / closing mechanism 5 that connect the intake passage 220 on the operating cylinder 20 side are added, and weight reduction and cost reduction can be expected by omitting a supercharger or the like.

更に、休止気筒10は、排気通路130につくられる閉空間に圧縮空気を貯留することで休止気筒10内の圧力が低下する結果、休止気筒10の圧縮に起因する負の仕事を低減できる。そのため、内燃機関1Aは、休止気筒10の熱量の損失を低減できる。   Furthermore, the idle cylinder 10 can reduce negative work resulting from compression of the idle cylinder 10 as a result of the pressure in the idle cylinder 10 being reduced by storing compressed air in the closed space created in the exhaust passage 130. Therefore, the internal combustion engine 1A can reduce the heat loss of the idle cylinder 10.

[実施形態2]
・全体構成
以下、図5〜図7を参照して実施形態2の気筒休止型内燃機関1Bを説明する。実施形態1では、休止気筒10が空気を吸引し、この空気を圧縮して運転気筒20に供給する構成を説明した。実施形態2の気筒休止型内燃機関1Bは、休止気筒10が運転気筒20から排気ガスなどの気体を吸引し、この気体を圧縮して運転気筒20に供給する構成である。このような内燃機関1Bは、実施形態1の内燃機関1Aと共通する構成を備える。共通構成の概略を述べると、内燃機関1Bは、4サイクル運転を行う複数の気筒10,20と、気筒休止運転が可能な構成とを備え、気筒休止運転時、一方の気筒を休止気筒10、他方の気筒を運転気筒20とする。また、内燃機関1Bは、運転バルブ開閉機構、休止バルブ開閉機構、切替機構、通路開閉機構3、連結管4、連結管開閉機構5、これらの開閉機構3,5を制御する開閉制御部8Bとを備える。内燃機関1Bは、運転気筒20側の排気通路230内の気体、代表的には運転気筒20が生成した排気ガスを休止気筒10側に導入可能な排ガス導入管6を備える点、開閉制御部8Bが排ガス導入管6の開閉を制御する点、これらの構成によって休止気筒10が導入した気体を圧縮気体にして運転気筒20に供給する点が異なる。以下、この相違点を中心に説明し、実施形態1との共通構成については説明を省略する。
[Embodiment 2]
-Whole structure Hereinafter, the cylinder deactivation type internal combustion engine 1B of Embodiment 2 is demonstrated with reference to FIGS. In the first embodiment, the configuration in which the idle cylinder 10 sucks air, compresses the air, and supplies the compressed air to the operating cylinder 20 has been described. The cylinder deactivation type internal combustion engine 1 </ b> B according to the second embodiment is configured such that the deactivation cylinder 10 sucks a gas such as exhaust gas from the operation cylinder 20, compresses this gas, and supplies the compressed gas to the operation cylinder 20. Such an internal combustion engine 1B has the same configuration as the internal combustion engine 1A of the first embodiment. An outline of the common configuration will be described. The internal combustion engine 1B includes a plurality of cylinders 10 and 20 that perform four-cycle operation and a configuration that can perform cylinder deactivation operation. The other cylinder is the operating cylinder 20. The internal combustion engine 1B includes an operation valve opening / closing mechanism, a stop valve opening / closing mechanism, a switching mechanism, a passage opening / closing mechanism 3, a connecting pipe 4, a connecting pipe opening / closing mechanism 5, and an opening / closing control unit 8B for controlling these opening / closing mechanisms 3, 5. Is provided. The internal combustion engine 1B includes an exhaust gas introduction pipe 6 that can introduce gas in the exhaust passage 230 on the operating cylinder 20 side, typically, exhaust gas generated by the operating cylinder 20 to the idle cylinder 10 side, and an open / close control unit 8B. Controls the opening and closing of the exhaust gas introduction pipe 6 and differs in that the gas introduced into the idle cylinder 10 is compressed gas and supplied to the operating cylinder 20 by these configurations. Hereinafter, this difference will be mainly described, and the description of the common configuration with the first embodiment will be omitted.

・特徴点
・・バルブ開閉機構及び切替機構
実施形態2の気筒休止型内燃機関1Bは、通常運転時に休止気筒10の両バルブ12,13が4サイクルに則って開閉するように設けられた運転バルブ開閉機構と、気筒休止運転時に休止気筒10の両バルブ12,13が特定の開閉動作を行うように設けられた休止バルブ開閉機構と、通常運転時と気筒休止運転時とで両バルブ開閉機構を切り替える切替機構(図示せず)と、切替機構を制御する切替制御部81とを備える。特に、実施形態2の内燃機関1Bでは、吸気バルブ12の開閉に用いるバルブ開閉機構も、通常運転時と気筒休止運転時とで切り替える。
· Features · · Valve opening and closing mechanism and switching mechanism The cylinder deactivation type internal combustion engine 1B of the second embodiment is an operation valve provided such that both valves 12 and 13 of the deactivation cylinder 10 are opened and closed according to four cycles during normal operation. An open / close mechanism, a stop valve open / close mechanism provided so that both valves 12, 13 of the stop cylinder 10 perform a specific open / close operation during cylinder stop operation, and a both valve open / close mechanism during normal operation and cylinder stop operation are provided. A switching mechanism (not shown) for switching and a switching control unit 81 for controlling the switching mechanism are provided. In particular, in the internal combustion engine 1B of the second embodiment, the valve opening / closing mechanism used for opening / closing the intake valve 12 is also switched between the normal operation and the cylinder deactivation operation.

吸気バルブ12について通常運転時に用いる運転バルブ開閉機構には、実施形態1と同様のものが利用できる。気筒休止運転時に用いる休止バルブ開閉機構には、少なくとも吸気行程から圧縮行程に亘って閉じるように設けられたものが利用できる。即ち、通常運転時には吸気バルブ12を開く行程である吸気行程に対して、気筒休止運転時には吸気バルブ12を閉じるため、実施形態2の内燃機関1Bでは、気筒休止運転時に吸気バルブ12が開かなくてよいといえる。そこで、このような休止バルブ開閉機構として、バルブリフトが0(ゼロ)となる形状のカムを備えるものが利用できる。図5では、吸気バルブ12の休止バルブ開閉機構として、バルブリフトがゼロの休止用カム17を例示する。   As the operation valve opening / closing mechanism used during the normal operation of the intake valve 12, the same one as in the first embodiment can be used. As the deactivation valve opening / closing mechanism used during the cylinder deactivation operation, a mechanism provided so as to close at least from the intake stroke to the compression stroke can be used. That is, the intake valve 12 is closed during the cylinder deactivation operation in contrast to the intake stroke that is the stroke of opening the intake valve 12 during the normal operation. Therefore, in the internal combustion engine 1B of the second embodiment, the intake valve 12 does not open during the cylinder deactivation operation. It's good. Therefore, as such a stop valve opening / closing mechanism, a mechanism provided with a cam having a valve lift of 0 (zero) can be used. In FIG. 5, as a stop valve opening / closing mechanism of the intake valve 12, a stop cam 17 having a valve lift of zero is illustrated.

排気バルブ13について通常運転時に用いる運転バルブ開閉機構には、実施形態1と同様のもの、例えば、運転用カム18が利用できる。気筒休止運転時に用いる休止バルブ開閉機構には、排気バルブ13が吸気行程から圧縮行程に亘って閉じ、膨張行程から排気行程に亘って開くように設けられたものが利用できる。このような休止バルブ開閉機構は、例えば、クランクシャフトの回転角度でいうと、圧縮行程の開始角度を0°として、180°以上540°以下程度の範囲を満たす時期に排気バルブ13が開くように設けられたものが利用できる。図5では、排気バルブ13の休止バルブ開閉機構として、上述の特定の時期に排気バルブ13が開くようなプロフィルを有する休止用カム16を例示する。   As the operation valve opening / closing mechanism used during the normal operation of the exhaust valve 13, the same one as in the first embodiment, for example, the operation cam 18 can be used. As the stop valve opening / closing mechanism used during the cylinder stop operation, a mechanism provided so that the exhaust valve 13 is closed from the intake stroke to the compression stroke and opened from the expansion stroke to the exhaust stroke can be used. Such a stop valve opening / closing mechanism, for example, in terms of the rotation angle of the crankshaft, makes the exhaust valve 13 open at a time satisfying a range of 180 ° or more and 540 ° or less, with the start angle of the compression stroke being 0 °. The provided one can be used. In FIG. 5, as a pause valve opening / closing mechanism for the exhaust valve 13, a pause cam 16 having a profile such that the exhaust valve 13 opens at the specific time described above is illustrated.

両バルブ12,13について、運転バルブ開閉機構と休止バルブ開閉機構との切り替えは、実施形態1と同様にカムスライド式などを利用でき、切替制御部81が制御する。   For both the valves 12 and 13, the switching between the operation valve opening / closing mechanism and the resting valve opening / closing mechanism can use a cam slide type or the like as in the first embodiment, and is controlled by the switching control unit 81.

・・排ガス導入管及び導入管開閉機構
実施形態2の気筒休止型内燃機関1Bは、複数の気筒10,20のうち、気筒休止運転時に運転を休止する休止気筒10側の排気通路130と、通常運転を行う運転気筒20側の排気通路230とを連通可能な構成としている点を特徴の一つとする。具体的には内燃機関1Bは、休止気筒10側の排気通路130における通路開閉機構3よりも上流側と運転気筒20側の排気通路230とを連結する排ガス導入管6と、排ガス導入管6を開閉する導入管開閉機構7とを備える。導入管開閉機構7が開いている状態にあるとき、排気通路130における通路開閉機構3よりも上流側に、運転気筒20側の排気通路230内に存在する気体、代表的には排気ガスを導入できる。
.. Exhaust gas introduction pipe and introduction pipe opening / closing mechanism The cylinder deactivation type internal combustion engine 1B according to the second embodiment includes, among the plurality of cylinders 10 and 20, an exhaust passage 130 on the deactivation cylinder 10 side that is deactivated during cylinder deactivation operation, One of the features is that the exhaust passage 230 on the side of the operating cylinder 20 that operates is communicable. Specifically, the internal combustion engine 1B includes an exhaust gas introduction pipe 6 that connects an upstream side of the passage opening / closing mechanism 3 in the exhaust passage 130 on the idle cylinder 10 side and an exhaust passage 230 on the operating cylinder 20 side, and an exhaust gas introduction pipe 6. And an introduction pipe opening / closing mechanism 7 for opening and closing. When the introduction pipe opening / closing mechanism 7 is in an open state, the gas existing in the exhaust passage 230 on the operating cylinder 20 side, typically the exhaust gas, is introduced upstream of the passage opening / closing mechanism 3 in the exhaust passage 130. it can.

排ガス導入管6は、上述のように運転気筒20側の排気通路230から、この通路230内の気体を休止気筒10側の排気通路130に導入できればよく、大きさ(開口径、長さなど)や外形などは適宜選択することができる。   The exhaust gas introduction pipe 6 only needs to be able to introduce the gas in the passage 230 from the exhaust passage 230 on the operating cylinder 20 side to the exhaust passage 130 on the idle cylinder 10 side as described above, and the size (opening diameter, length, etc.). The outer shape and the like can be selected as appropriate.

導入管開閉機構7は、気筒休止運転時、上述の通路開閉機構3,連結管開閉機構5と共に閉じている状態にあるとき、休止気筒10側の排気通路130に閉空間を形成することを機能の一つとする。実施形態2の気筒休止型内燃機関1Bは、この閉空間を休止気筒10が形成した圧縮気体の貯留槽として利用し、適宜な時期に、連結管開閉機構5を開くことで、連結管4を介して、上記貯留槽内の圧縮気体を運転気筒20に供給する。この機能を考慮すると、導入管開閉機構7は、上述の通路開閉機構3,連結管開閉機構5と同様に電動弁や電磁弁などといった電気的に制御可能な弁などが好適に利用できる。ここでは、電磁バタフライ弁とし、後述する開閉制御部8Bは、この電磁弁の開閉動作を制御する。排ガス導入管6における導入管開閉機構7の配置位置は適宜選択できる。上記配置位置は、例えば、排気通路130と排ガス導入管6との接続箇所近傍などとすると、上記貯留槽の容積を小さくでき、上述の圧縮効果を高められると考えられる。   The introduction pipe opening / closing mechanism 7 functions to form a closed space in the exhaust passage 130 on the side of the deactivated cylinder 10 when it is closed together with the above-described passage opening / closing mechanism 3 and the connecting pipe opening / closing mechanism 5 during the cylinder deactivation operation. One of them. The cylinder deactivation type internal combustion engine 1B according to the second embodiment uses this closed space as a compressed gas storage tank formed by the deactivation cylinder 10 and opens the coupling tube opening / closing mechanism 5 at an appropriate time to open the coupling tube 4. Then, the compressed gas in the storage tank is supplied to the operating cylinder 20. In consideration of this function, as the introduction pipe opening / closing mechanism 7, an electrically controllable valve such as a motor-operated valve or an electromagnetic valve can be preferably used as in the above-described passage opening / closing mechanism 3 and connecting pipe opening / closing mechanism 5. Here, the electromagnetic butterfly valve is used, and an opening / closing control unit 8B described later controls the opening / closing operation of the electromagnetic valve. The arrangement position of the introduction pipe opening / closing mechanism 7 in the exhaust gas introduction pipe 6 can be selected as appropriate. If the arrangement position is, for example, in the vicinity of a connection location between the exhaust passage 130 and the exhaust gas introduction pipe 6, it is considered that the volume of the storage tank can be reduced and the compression effect described above can be enhanced.

・・開閉制御部
実施形態2の気筒休止型内燃機関1Bは、通常運転時、気筒10が生成する排気ガスを排気通路130を介して排出でき、気筒休止運転時、運転気筒20側の排気通路230内に存在する気体、代表的には運転気筒20が生成する排気ガスを休止気筒10で吸い込んで圧縮した後、休止気筒10側の排気通路130に一旦貯留し、適宜な時期に運転気筒20に供給できるように、休止気筒10側の排気通路130の開閉動作を行う通路開閉機構3、連結管4の開閉動作を行う連結管開閉機構5、排ガス導入管6の開閉動作を行う導入管開閉機構7を制御する開閉制御部8Bを備えることを特徴の一つとする。制御の詳細は、以下の運転状態の項で説明する。
..Opening / closing control unit The cylinder deactivation type internal combustion engine 1B of Embodiment 2 can exhaust the exhaust gas generated by the cylinder 10 through the exhaust passage 130 during normal operation, and during the cylinder deactivation operation, the exhaust passage on the operating cylinder 20 side The gas present in 230, typically the exhaust gas generated by the operating cylinder 20, is sucked into the idle cylinder 10 and compressed, and then temporarily stored in the exhaust passage 130 on the idle cylinder 10 side. The opening / closing mechanism 3 for opening / closing the exhaust passage 130 on the side of the idle cylinder 10, the connecting / closing mechanism 5 for opening / closing the connecting pipe 4, and the opening / closing of the introduction pipe for opening / closing the exhaust gas introduction pipe 6. One feature is that an open / close control unit 8B for controlling the mechanism 7 is provided. Details of the control will be described in the following operating state section.

・運転状態
・・通常運転時
内燃機関1Bの通常運転状態は、実施形態1の内燃機関1Aと同様であり、排気バルブ13が開いている間はすくなくとも気筒10側の排気通路130を開いた状態にする。通常運転時、連結管開閉機構5、導入管開閉機構7の開閉は問わない。両開閉機構5,7を閉じていてもよいし、開いてもよい。
· Operating state ·· During normal operation The normal operating state of the internal combustion engine 1B is the same as that of the internal combustion engine 1A of the first embodiment, and at least the exhaust passage 130 on the cylinder 10 side is open while the exhaust valve 13 is open. To. During normal operation, the connection pipe opening / closing mechanism 5 and the introduction pipe opening / closing mechanism 7 may be opened and closed. Both the opening / closing mechanisms 5 and 7 may be closed or opened.

・・気筒休止運転時(図5,図6)
内燃機関1Bの全体制御部80が気筒休止運転を行うと判断した場合、休止させる気筒(休止気筒10)が燃焼操作を行わず、特定の操作(圧縮気体の生成・貯留と運転気筒20への供給)を行えるようにする。具体的には、全体制御部80は、休止気筒10に対して燃料噴射の停止命令、点火プラグ150の点火停止命令、切替制御部81に切替命令をそれぞれ出す。切替制御部81は、電磁ソレノイドなどに命令して、休止気筒10の吸気バルブ12、排気バルブ13に対するカムを、切替機構を介して運転用カムから休止用カム16,17にそれぞれ切り替える。この切り替えによって、吸気バルブ12は気筒休止運転中閉じており、排気バルブ13のみ開閉する。
..Cylinder deactivation operation (Figs. 5 and 6)
When the overall control unit 80 of the internal combustion engine 1B determines that the cylinder deactivation operation is to be performed, the cylinder to be deactivated (the deactivation cylinder 10) does not perform the combustion operation, and does not perform a specific operation (compression gas generation / storage and operation cylinder 20). Supply). Specifically, the overall control unit 80 issues a fuel injection stop command, a spark plug 150 ignition stop command, and a switching command to the switching control unit 81 for the idle cylinder 10. The switching control unit 81 instructs an electromagnetic solenoid or the like to switch the cams for the intake valve 12 and the exhaust valve 13 of the deactivation cylinder 10 from the operation cam to the deactivation cams 16 and 17 via the switching mechanism. By this switching, the intake valve 12 is closed during the cylinder deactivation operation, and only the exhaust valve 13 is opened and closed.

開閉制御部8Bは、気筒10のカムの切替などに応じて、通路開閉機構3、連結管開閉機構5、導入管開閉機構7に命令して開閉動作を行わせる。具体的には、休止用カム17によって吸気バルブ12が閉じ、かつ休止用カム16によって排気バルブ13が開いている間は少なくとも、排気通路130及び連結管4が閉じた状態になり、排ガス導入管6が開いた状態になるように(図5の実線参照)、開閉制御部8Bは、各開閉機構3,5,7を制御する。また、排気バルブ13が閉じて排気通路130の閉空間に圧縮気体を貯留している間は少なくとも、排気通路130、連結管4、排ガス導入管6が閉じた状態になるように、開閉制御部8Bは、各開閉機構3,5,7を制御する。そして、運転気筒20が吸気行程にあるときに排気通路130及び連結管4が閉じた状態で、連結管4が開いた状態になるように連結管開閉機構5を制御する(図6の実線参照)。   The opening / closing control unit 8B instructs the passage opening / closing mechanism 3, the connecting pipe opening / closing mechanism 5, and the introduction pipe opening / closing mechanism 7 to perform an opening / closing operation in accordance with the switching of the cam of the cylinder 10. Specifically, the exhaust passage 130 and the connecting pipe 4 are closed at least while the intake valve 12 is closed by the stop cam 17 and the exhaust valve 13 is opened by the stop cam 16, and the exhaust gas introduction pipe The opening / closing control unit 8B controls each of the opening / closing mechanisms 3, 5, and 7 so that 6 is opened (see the solid line in FIG. 5). Further, the open / close control unit is configured so that at least the exhaust passage 130, the connecting pipe 4, and the exhaust gas introduction pipe 6 are closed while the exhaust valve 13 is closed and the compressed gas is stored in the closed space of the exhaust passage 130. 8B controls the open / close mechanisms 3, 5, and 7. Then, when the operating cylinder 20 is in the intake stroke, the connection pipe opening / closing mechanism 5 is controlled so that the connection pipe 4 is opened while the exhaust passage 130 and the connection pipe 4 are closed (see the solid line in FIG. 6). ).

通路開閉機構3を閉じる時及び導入管開閉機構7を開く時は、排気バルブ13を開く前であればよく、例えば、排気バルブ13を開く直前、休止気筒10の吸気行程又は圧縮行程の任意のとき、気筒休止運転開始時などが挙げられる。上述のように気筒休止運転時には通路開閉機構3を閉状態とし、通常運転時にのみ通路開閉機構3を開状態とすることができ、後述の図7では、この場合を例示する。連結管開閉機5を閉じる時は、排気バルブ13を開く前であればよく、例えば、排気バルブ13を開く直前、休止気筒10の吸気行程又は圧縮行程の任意のときなどが挙げられる。連結管開閉機構5を開く時は、貯留する圧縮空気を運転気筒20に供給するとき、具体的には、運転気筒20が吸気行程にある任意のときが挙げられる。導入管開閉機構7を閉じる時は、運転気筒20側の排気通路230からの気体の流動が終わった任意のときにできる。   When closing the passage opening / closing mechanism 3 and opening the introduction pipe opening / closing mechanism 7, it suffices to be before opening the exhaust valve 13. For example, immediately before opening the exhaust valve 13, any intake stroke or compression stroke of the idle cylinder 10 can be performed. At the time of starting the cylinder deactivation operation. As described above, the passage opening / closing mechanism 3 can be closed during the cylinder deactivation operation, and the passage opening / closing mechanism 3 can be opened only during the normal operation. FIG. 7 described later illustrates this case. The connection pipe opening / closing device 5 may be closed before the exhaust valve 13 is opened. Examples thereof include a state immediately before the exhaust valve 13 is opened and an arbitrary intake stroke or compression stroke of the idle cylinder 10. When the connecting pipe opening / closing mechanism 5 is opened, when the compressed air to be stored is supplied to the operating cylinder 20, specifically, any time when the operating cylinder 20 is in the intake stroke can be mentioned. The introduction pipe opening / closing mechanism 7 can be closed at any time when the gas flow from the exhaust passage 230 on the operating cylinder 20 side ends.

以下、休止気筒10の4サイクルの行程ごとに説明する。
休止気筒10が吸気行程から圧縮行程にあるとき、カム17が回転するものの吸気バルブ12は閉じた状態であり、休止用カム15によって排気バルブ13も閉じた状態であり、ピストン110のみが往復運動をしている。以降、吸気バルブ12は閉じたままである。
Hereinafter, each stroke of the idle cylinder 10 will be described.
When the idle cylinder 10 is in the compression stroke from the intake stroke, the cam 17 rotates but the intake valve 12 is closed, the exhaust valve 13 is also closed by the pause cam 15, and only the piston 110 reciprocates. I am doing. Thereafter, the intake valve 12 remains closed.

休止気筒10が膨張行程に入ると、開閉制御部8Bは、休止気筒10側の排気通路130及び連結管4が閉じた状態となり、排ガス導入管6が開いた状態となるように通路開閉機構3、連結管開閉機構5、導入管開閉機構7を制御する。この結果、排ガス導入管6によって、休止気筒10側の排気通路130と運転気筒20側の排気通路230とが連通する。この状態で、吸気バルブ部12が閉じたまま、休止用カム16の回転に伴って排気バルブ13が開くと、ピストン110が下死点に向かうに従って、負圧になり始めているシリンダ本体100に引き込まれるようにして、運転気筒20側の排気通路230内の気体を吸入できる。なお、運転気筒20側の排気通路230には、運転気筒20が生成した排気ガスに代表される酸素が少ないガスなどの気体が存在し、運転気筒20が排気行程にあれば、運転気筒20が生成したばかりの排気ガスが充填される。休止気筒10は、排ガス導入管6を介してこの低酸素ガスなどの気体を吸入する。休止気筒10が運転気筒20側の排気通路230内の気体を十分に吸入できたら、例えば、ピストン110が下死点に達して排気行程に移行するときになったら、開閉制御部8Bは、排ガス導入管6が閉じた状態となるように導入管開閉機構7を制御する。こうすることで、シリンダ本体100から排気通路130に亘って、通路開閉機構3、連結管開閉機構5、導入管開閉機構7で封止された閉空間に上記気体を充填できる。   When the deactivated cylinder 10 enters the expansion stroke, the opening / closing controller 8B causes the passage opening / closing mechanism 3 so that the exhaust passage 130 and the connecting pipe 4 on the deactivated cylinder 10 side are closed and the exhaust gas introduction pipe 6 is opened. The connecting pipe opening / closing mechanism 5 and the introduction pipe opening / closing mechanism 7 are controlled. As a result, the exhaust gas introduction pipe 6 communicates the exhaust passage 130 on the idle cylinder 10 side with the exhaust passage 230 on the operating cylinder 20 side. In this state, when the exhaust valve 13 is opened along with the rotation of the pause cam 16 with the intake valve portion 12 closed, the piston 110 is drawn into the cylinder body 100 that starts to become negative pressure as it goes to the bottom dead center. In this way, the gas in the exhaust passage 230 on the operating cylinder 20 side can be sucked. Note that in the exhaust passage 230 on the operating cylinder 20 side, there is a gas such as a gas with low oxygen typified by the exhaust gas generated by the operating cylinder 20, and if the operating cylinder 20 is in the exhaust stroke, the operating cylinder 20 The exhaust gas just generated is filled. The idle cylinder 10 sucks a gas such as the low oxygen gas through the exhaust gas introduction pipe 6. If the idle cylinder 10 can sufficiently suck the gas in the exhaust passage 230 on the operating cylinder 20 side, for example, when the piston 110 reaches the bottom dead center and shifts to the exhaust stroke, the opening / closing control unit 8B The introduction pipe opening / closing mechanism 7 is controlled so that the introduction pipe 6 is closed. By doing so, the gas can be filled into the closed space sealed by the passage opening / closing mechanism 3, the connecting pipe opening / closing mechanism 5, and the introduction pipe opening / closing mechanism 7 from the cylinder body 100 to the exhaust passage 130.

休止気筒10が排気行程に入ってピストン110が上死点に向かうに従って、上記閉空間内の気体が圧縮され、上記閉空間内に圧縮気体を充填できる。   As the idle cylinder 10 enters the exhaust stroke and the piston 110 moves toward the top dead center, the gas in the closed space is compressed, and the closed space can be filled with the compressed gas.

休止気筒10の排気行程の終期には、上述の圧縮気体を上記閉空間に充填し終わっており、休止用カム16の回転に伴って排気バルブ13が閉じる。こうすることで、休止気筒10が膨張行程から排気行程を経て形成した圧縮気体を、排気通路130において排気バルブ13と通路開閉機構3と連結管開閉機構5と導入管開閉機構7とで封止された閉空間に貯留できる。   At the end of the exhaust stroke of the idle cylinder 10, the above-described compressed gas has been filled in the closed space, and the exhaust valve 13 is closed as the idle cam 16 rotates. Thus, the compressed gas formed by the idle cylinder 10 through the expansion stroke and the exhaust stroke is sealed in the exhaust passage 130 by the exhaust valve 13, the passage opening / closing mechanism 3, the connecting pipe opening / closing mechanism 5, and the introduction pipe opening / closing mechanism 7. Can be stored in the closed space.

そして、開閉制御部8Bは、図6に示すように運転気筒20が吸気行程にあるときに連結管4が開いた状態となるように連結管開閉機構5を制御する。通路開閉機構3(排気通路130)と導入管開閉機構7(排ガス導入管6)とが閉じた状態で連結管開閉機構5が開くことで、排気通路130における上記閉空間に貯留保持していた圧縮気体を、連結管4を介して運転気筒20に供給できる。より具体的には、吸気行程にあるため吸気バルブ22を開いて負圧になり始めている運転気筒20のシリンダ本体200に引き込まれるようにして、上記圧縮気体を運転気筒20に供給できる。   Then, the opening / closing control unit 8B controls the connecting pipe opening / closing mechanism 5 so that the connecting pipe 4 is opened when the operating cylinder 20 is in the intake stroke, as shown in FIG. The connecting pipe opening / closing mechanism 5 is opened in a state where the passage opening / closing mechanism 3 (exhaust passage 130) and the introduction pipe opening / closing mechanism 7 (exhaust gas introduction pipe 6) are closed. Compressed gas can be supplied to the operating cylinder 20 via the connecting pipe 4. More specifically, the compressed gas can be supplied to the operating cylinder 20 by being drawn into the cylinder body 200 of the operating cylinder 20 that is starting to become negative pressure by opening the intake valve 22 because it is in the intake stroke.

図7を参照して、運転気筒20(Cyl.2)の4サイクルの位相ごとに、休止気筒10(Cyl.1)の排気バルブ13の開閉状態、排気通路130の開閉状態、連結管4の開閉状態、排ガス導入管6の開閉状態を説明する。   Referring to FIG. 7, the open / close state of exhaust valve 13, the open / close state of exhaust passage 130, the open / close state of exhaust passage 130 of idle cylinder 10 (Cyl.1), and the connection pipe 4, for every four cycles of operating cylinder 20 (Cyl.2). The open / close state and the open / close state of the exhaust gas introduction pipe 6 will be described.

ここで、休止気筒10側の排気通路130の閉空間に貯留する圧縮気体を供給可能な時期とは、休止気筒10の排気バルブ13が閉じているとき、即ち、図7において「open」と付された範囲以外の時期(休止気筒10の吸気行程から圧縮行程まで)である。上記の圧縮気体を供給可能な時期に、運転気筒20の吸気バルブ22が開いていれば、運転気筒20に上記圧縮気体を供給できる。例えば、休止気筒10(Cyl.1)と運転気筒20(Cyl.2)とについて、4サイクルの位相が同相である場合、180°ずれている場合では、上記の圧縮気体を供給可能な時期に吸気バルブ22が概ね開いている。従って、これらの場合では、運転気筒20の吸気バルブ22が開いている任意の時期に連結管4を開くことが挙げられる。図7の同相の場合では、休止気筒10の排気バルブ13を開くと同時に連結管4を閉じ、運転気筒20の吸気行程の中期に連結管4を開く形態、180°ずれの場合では、休止気筒10の排気バルブ13を開くと同時に連結管4を閉じ、吸気バルブ22を開くと同時に連結管4を開く形態を例示する。連結管4を開くまでは、連結管4を閉じ続ける。なお、図7では、休止気筒10が膨張行程にあるとき排ガス導入管6を開き、それ以外の行程では閉じる形態を例示する。   Here, the time at which the compressed gas stored in the closed space of the exhaust passage 130 on the side of the deactivated cylinder 10 can be supplied refers to “open” in FIG. 7 when the exhaust valve 13 of the deactivated cylinder 10 is closed. The time is outside the range (from the intake stroke to the compression stroke of the idle cylinder 10). If the intake valve 22 of the operating cylinder 20 is open at the time when the compressed gas can be supplied, the compressed gas can be supplied to the operating cylinder 20. For example, when the cylinders 4 (Cyl.1) and the operating cylinder 20 (Cyl.2) are in phase with each other and the phases of the four cycles are the same, or when they are 180 degrees apart, the above-mentioned compressed gas can be supplied. The intake valve 22 is generally open. Therefore, in these cases, the connecting pipe 4 can be opened at any time when the intake valve 22 of the operating cylinder 20 is open. In the case of the same phase in FIG. 7, the exhaust pipe 13 of the deactivated cylinder 10 is opened and the connecting pipe 4 is closed at the same time, and the connecting pipe 4 is opened in the middle of the intake stroke of the operating cylinder 20. 10 illustrates a mode in which the connection pipe 4 is closed simultaneously with the 10 exhaust valves 13 being opened, and the connection pipe 4 is opened simultaneously with the intake valve 22 being opened. The connection pipe 4 is kept closed until the connection pipe 4 is opened. FIG. 7 illustrates a mode in which the exhaust gas introduction pipe 6 is opened when the idle cylinder 10 is in the expansion stroke and is closed in other strokes.

一方、休止気筒10(Cyl.1)と運転気筒20(Cyl.2)とについて、4サイクルの位相が540°ずれている場合では、上記の圧縮空気を供給できない時期、即ち、図7においてCyl.10の排気バルブ13に「open」と付された範囲と、運転気筒20の吸気バルブ22が開いている時期とが重複する。しかし、休止気筒10の排気行程後期には、排気通路130における上記閉空間内の気体はある程度圧縮されている。そこで、この場合には、休止気筒10の排気行程後期、即ち運転気筒20の吸気行程後期に連結管4を開くことで、運転気筒20に圧縮気体を供給できる。   On the other hand, when the phases of the four cycles of the idle cylinder 10 (Cyl.1) and the operating cylinder 20 (Cyl.2) are shifted by 540 °, the above-described compressed air cannot be supplied, that is, Cyl in FIG. . The range in which “10” is set to the 10 exhaust valves 13 overlaps the time when the intake valve 22 of the operating cylinder 20 is open. However, the gas in the closed space in the exhaust passage 130 is compressed to some extent in the late stage of the exhaust stroke of the idle cylinder 10. Therefore, in this case, compressed gas can be supplied to the operating cylinder 20 by opening the connecting pipe 4 in the late stage of the exhaust stroke of the idle cylinder 10, that is, the late stage of the intake stroke of the operating cylinder 20.

他方、休止気筒10(Cyl.1)と運転気筒20(Cyl.2)とについて、4サイクルの位相が360°ずれている場合では、上記の圧縮空気を供給できない時期に、運転気筒20の吸気バルブ22を開いている時期が含まれる。そのため、この場合は、圧縮気体を利用できないと考えられる。   On the other hand, when the phases of the four cycles of the idle cylinder 10 (Cyl.1) and the operating cylinder 20 (Cyl.2) are shifted by 360 °, the intake air of the operating cylinder 20 is at a time when the compressed air cannot be supplied. The period when the valve 22 is opened is included. Therefore, in this case, it is considered that compressed gas cannot be used.

気筒休止運転中、開閉制御部8Bが通路開閉機構3と連結管開閉機構5と導入管開閉機構7とを制御することで、休止気筒10は、上述のピストン110の往復運動と吸気バルブ12及び排気バルブ13の開閉と通路開閉機構3の開閉と連結管開閉機構5の開閉と導入管開閉機構7の開閉とを利用した運転気筒20への圧縮気体の供給操作を繰り返し行う。   During cylinder deactivation operation, the opening / closing control unit 8B controls the passage opening / closing mechanism 3, the connecting pipe opening / closing mechanism 5, and the introduction pipe opening / closing mechanism 7, so that the deactivation cylinder 10 has the reciprocating motion of the piston 110 and the intake valve 12 and The operation of supplying compressed gas to the operating cylinder 20 using the opening / closing of the exhaust valve 13, the opening / closing of the passage opening / closing mechanism 3, the opening / closing of the connecting pipe opening / closing mechanism 5, and the opening / closing of the introduction pipe opening / closing mechanism 7 is repeated.

・効果
実施形態2の気筒休止型内燃機関1Bは、気筒休止運転時、休止気筒10をポンプとして利用して圧縮気体を運転気筒20に供給可能である。特に、内燃機関1Bは、休止気筒10側の排気通路130を圧縮気体の貯留槽に利用できるため、圧縮気体を確実に貯留でき、運転気筒20の吸気行程に供給できる。従って、内燃機関1Bは、運転気筒20の吸気流動を強化したり、過給したりできる上に、圧縮気体が排気ガスなどの低酸素気体であることから、層状燃焼が可能になる。連結管4が指向性を有する場合には、上記運転気筒20の吸気流動を更に強化し易い。
Effect The cylinder deactivation type internal combustion engine 1B according to the second embodiment can supply compressed gas to the operation cylinder 20 by using the deactivation cylinder 10 as a pump during the cylinder deactivation operation. In particular, the internal combustion engine 1 </ b> B can use the exhaust passage 130 on the idle cylinder 10 side as a compressed gas storage tank, so that the compressed gas can be reliably stored and supplied to the intake stroke of the operating cylinder 20. Therefore, the internal combustion engine 1B can reinforce the intake flow of the operating cylinder 20 or supercharge it, and the compressed gas is a low oxygen gas such as exhaust gas, so that stratified combustion is possible. When the connecting pipe 4 has directivity, the intake flow of the operating cylinder 20 can be further enhanced.

また、内燃機関1Bは、実施形態1と同様に過給機や高圧タンクを備えておらず、気筒休止運転が可能な構成に対しての付加構成が少なく簡単な構成であり、過給機などの省略による軽量化、低コスト化が期待できる。更に、休止気筒10は、実施形態1と同様に休止気筒10の圧縮に起因する負の仕事を低減できて、休止気筒10の熱量の損失を低減できる。   Further, the internal combustion engine 1B does not include a supercharger or a high-pressure tank as in the first embodiment, and has a simple configuration with few additional configurations to the configuration capable of cylinder deactivation operation, such as a supercharger. Reduction in weight and cost can be expected by omitting. Further, the idle cylinder 10 can reduce the negative work caused by the compression of the idle cylinder 10 as in the first embodiment, and can reduce the heat loss of the idle cylinder 10.

[実施形態3]
実施形態1,2の構成を組み合わせた構成とすることができる。即ち、実施形態3の気筒休止型内燃機関として、休止気筒10の運転バルブ開閉機構・休止バルブ開閉機構・切替機構と、通路開閉機構3と、連結管4と、連結管開閉機構5と、排ガス導入管6と、導入管開閉機構7と、これらの開閉機構3,5,7を制御する開閉制御部とを備えると共に、圧縮空気を供給する構造と、排気ガスに代表される圧縮気体を供給する構造とを選択可能な選択制御部とを備えることができる。この形態では、休止気筒10の吸気バルブ12の開閉を行うカムとして、運転用カム19と、休止用カム17とを備え、排気バルブ13の開閉を行うカムとして、運転用カム18と、休止用カム15,16とを備える。そして、センサ800などからの情報に基づいて、圧縮空気を利用するか、排気ガスに代表される圧縮気体を利用するかを選択制御部が判断して、切替制御部81にカムなどのバルブ開閉機構の切替命令を出すとよい。
[Embodiment 3]
It can be set as the structure which combined the structure of Embodiment 1,2. That is, as the cylinder deactivation type internal combustion engine of the third embodiment, the operation valve opening / closing mechanism, the deactivation valve opening / closing mechanism / switching mechanism, the passage opening / closing mechanism 3, the connection pipe 4, the connection pipe opening / closing mechanism 5, and the exhaust gas of the deactivation cylinder 10 The structure includes an introduction pipe 6, an introduction pipe opening / closing mechanism 7, and an opening / closing control unit for controlling these opening / closing mechanisms 3, 5, 7, a structure for supplying compressed air, and a compressed gas typified by exhaust gas And a selection control unit capable of selecting a structure to be performed. In this embodiment, an operation cam 19 and a deactivation cam 17 are provided as cams for opening and closing the intake valve 12 of the deactivation cylinder 10, and an operation cam 18 and deactivation as the cam for opening and closing the exhaust valve 13 are provided. And cams 15 and 16. Based on information from the sensor 800 or the like, the selection control unit determines whether to use compressed air or compressed gas typified by exhaust gas, and the switching control unit 81 opens and closes a valve such as a cam. A mechanism switching command may be issued.

[変形例1]
実施形態2では、休止気筒10が膨張行程から排気行程にあるときに運転気筒20側の排気通路230から気体を吸入して圧縮する構成を説明した。その他、休止気筒10が吸気行程から圧縮行程にあるときに運転気筒20側の排気通路230から気体を吸入して圧縮する構成とすることができる。この形態では、気筒休止運転時、休止気筒10の吸気バルブ12は閉じておき(休止用カム17を利用)、排気バルブ13は、吸気行程から圧縮行程に開くようなプロフィルを有するカムを利用すればよい。
[Modification 1]
In the second embodiment, the configuration has been described in which gas is sucked and compressed from the exhaust passage 230 on the operating cylinder 20 side when the idle cylinder 10 is in the exhaust stroke to the exhaust stroke. In addition, when the idle cylinder 10 is in the compression stroke from the intake stroke, the gas can be sucked and compressed from the exhaust passage 230 on the operating cylinder 20 side. In this embodiment, during the cylinder deactivation operation, the intake valve 12 of the deactivation cylinder 10 is closed (using the deactivation cam 17), and the exhaust valve 13 is a cam having a profile that opens from the intake stroke to the compression stroke. That's fine.

なお、本発明は上述の例示に限定されない。例えば、実施形態1,2などでは2つの気筒を備える内燃機関を例示するが、3つ以上の気筒を備える内燃機関とすることができる。特に、4気筒などの偶数気筒が好ましい。その他、両気筒10,20の4サイクルの位相ずれとして、90°刻みのずれを有するものとすることができる。例えば、両気筒10,20の位相が450°ずれている形態や、630°ずれている形態などとすることができる。   In addition, this invention is not limited to the above-mentioned illustration. For example, in the first and second embodiments, an internal combustion engine having two cylinders is illustrated, but an internal combustion engine having three or more cylinders can be used. In particular, even-numbered cylinders such as four cylinders are preferable. In addition, the phase shift of 4 cycles of both cylinders 10 and 20 can be shifted by 90 °. For example, it is possible to adopt a form in which the phases of the cylinders 10 and 20 are shifted by 450 °, a form in which the phases are shifted by 630 °, or the like.

本発明の気筒休止型内燃機関は、自動車などの内燃機関に利用できる。   The cylinder deactivation type internal combustion engine of the present invention can be used for an internal combustion engine such as an automobile.

1A,1B 気筒休止型内燃機関 3 通路開閉機構 4 連結管
5 連結管開閉機構 6 排ガス導入管 7 導入管開閉機構
8A,8B 開閉制御部
10,20 気筒 10 休止気筒 20 運転気筒
12,22 吸気バルブ 13,23 排気バルブ
15,16,17 休止用カム(休止バルブ開閉機構)
18 運転用カム(運転バルブ開閉機構) 19 吸気バルブのカム
80 全体制御部 81 切替制御部 800 センサ
100,200 シリンダ本体 110,210 ピストン
120,220 吸気通路 130,230 排気通路 150,250 点火プラグ
DESCRIPTION OF SYMBOLS 1A, 1B Cylinder dormant internal combustion engine 3 Passage opening / closing mechanism 4 Connection pipe 5 Connection pipe opening / closing mechanism 6 Exhaust gas introduction pipe 7 Introduction pipe opening / closing mechanism 8A, 8B Opening / closing control part 10, 20 cylinder 10 Inactive cylinder 20 Operating cylinder 12, 22 Intake valve 13, 23 Exhaust valve 15, 16, 17 Pause cam (pause valve opening / closing mechanism)
DESCRIPTION OF SYMBOLS 18 Operation cam (Operation valve opening / closing mechanism) 19 Intake valve cam 80 Overall control unit 81 Switching control unit 800 Sensor 100, 200 Cylinder body 110, 210 Piston 120, 220 Intake passage 130, 230 Exhaust passage 150, 250 Ignition plug

Claims (2)

4サイクル運転を行う運転気筒と、
通常運転時、4サイクルのピストン運動を行い、気筒休止運転時には燃料噴射が停止された状態で前記ピストン運動を行う休止気筒と、
通常運転時、前記休止気筒の吸気バルブ及び排気バルブを前記4サイクルに則って開閉する運転バルブ開閉機構と、
気筒休止運転時、吸気行程から圧縮行程に亘って前記休止気筒内に圧縮空気を生成するように前記休止気筒の吸気バルブ及び排気バルブを開閉し、圧縮行程の後期から膨張行程の初期に亘って前記排気バルブを開く休止バルブ開閉機構と、
通常運転時と気筒休止運転時とで前記運転バルブ開閉機構と前記休止バルブ開閉機構とを切り替える切替機構と、
前記休止気筒に接続される排気通路を開閉する通路開閉機構と、
前記排気通路における前記通路開閉機構よりも上流側と、前記運転気筒に接続される吸気通路とを連結する連結管と、
前記連結管を開閉する連結管開閉機構と、
前記休止気筒が通常運転にあるとき、前記運転バルブ開閉機構によって前記排気バルブが少なくとも開いている間は前記排気通路を開いた状態にし、
前記休止気筒が気筒休止運転にあるときに圧縮行程の後期から膨張行程の初期に亘って前記排気バルブを開いている間、前記圧縮空気を貯留する閉空間を前記排気通路に形成するために、前記排気通路及び前記連結管を閉じた状態にし、
前記連結管を介して吸気行程にある前記運転気筒に前記閉空間に貯留された前記圧縮空気を供給するために、前記排気通路を閉じた状態とし、かつ前記連結管を開いた状態にするように前記通路開閉機構及び前記連結管開閉機構を制御する開閉制御部とを備える気筒休止型内燃機関。
An operating cylinder for four-cycle operation;
A non-operating cylinder that performs a piston motion of four cycles during normal operation and performs the piston motion in a state where fuel injection is stopped during a cylinder deactivation operation;
An operation valve opening / closing mechanism that opens and closes the intake valve and the exhaust valve of the idle cylinder according to the four cycles during normal operation;
During cylinder deactivation operation, the intake valve and exhaust valve of the deactivation cylinder are opened and closed so as to generate compressed air in the deactivation cylinder from the intake stroke to the compression stroke, and from the latter stage of the compression stroke to the initial stage of the expansion stroke A pause valve opening / closing mechanism for opening the exhaust valve;
A switching mechanism that switches between the operation valve opening / closing mechanism and the suspension valve opening / closing mechanism between normal operation and cylinder deactivation operation;
A passage opening and closing mechanism for opening and closing an exhaust passage connected to the idle cylinder;
A connecting pipe that connects an upstream side of the passage opening / closing mechanism in the exhaust passage and an intake passage connected to the operating cylinder;
A connecting pipe opening and closing mechanism for opening and closing the connecting pipe;
When the idle cylinder is in normal operation, the exhaust valve is opened by the operation valve opening / closing mechanism at least while the exhaust valve is open,
In order to form a closed space in the exhaust passage for storing the compressed air while the exhaust valve is opened from the latter stage of the compression stroke to the initial stage of the expansion stroke when the idle cylinder is in the cylinder deactivation operation. The exhaust passage and the connecting pipe are closed,
In order to supply the compressed air stored in the closed space to the operating cylinder in the intake stroke via the connection pipe, the exhaust passage is closed and the connection pipe is opened. A cylinder deactivation type internal combustion engine comprising: an opening / closing control unit that controls the passage opening / closing mechanism and the connecting pipe opening / closing mechanism.
4サイクル運転を行う運転気筒と、
通常運転時、4サイクルのピストン運動を行い、気筒休止運転時には燃料噴射が停止された状態で前記ピストン運動を行う休止気筒と、
通常運転時、前記休止気筒の吸気バルブ及び排気バルブを前記4サイクルに則って開閉する運転バルブ開閉機構と、
気筒休止運転時、膨張行程から排気行程に亘って前記休止気筒内に圧縮気体を生成するように前記休止気筒の吸気バルブを閉じ、排気バルブを開く休止バルブ開閉機構と、
通常運転時と気筒休止運転時とで前記運転バルブ開閉機構と前記休止バルブ開閉機構とを切り替える切替機構と、
前記休止気筒に接続される排気通路を開閉する通路開閉機構と、
前記排気通路における前記通路開閉機構よりも上流側と、前記運転気筒に接続される吸気通路とを連結する連結管と、
前記連結管を開閉する連結管開閉機構と、
前記運転気筒に接続される排気通路内の気体を前記休止気筒側の排気通路における前記通路開閉機構よりも上流側に導入する排ガス導入管と、
前記排ガス導入管を開閉する導入管開閉機構と、
前記休止気筒が通常運転にあるとき、前記運転バルブ開閉機構によって前記排気バルブが少なくとも開いている間は前記排気通路を開いた状態にし、
前記休止気筒が気筒休止運転にあるときに膨張行程から排気行程に亘って前記吸気バルブを閉じ、かつ前記排気バルブを開いている間、前記休止気筒が前記排ガス導入管を介して前記運転気筒側の排気通路内の気体を吸入し、吸入した気体を圧縮した前記圧縮気体を貯留する閉空間を前記排気通路に形成するために、前記排気通路及び前記連結管を閉じた状態にし、かつ前記排ガス導入管を開いた状態にし、
前記連結管を介して吸気行程にある前記運転気筒に前記閉空間に貯留された前記圧縮気体を供給するために、前記排気通路及び前記排ガス導入管を閉じた状態とし、かつ前記連結管を開いた状態にするように前記通路開閉機構、前記連結管開閉機構、及び導入管開閉機構を制御する開閉制御部とを備える気筒休止型内燃機関。
An operating cylinder for four-cycle operation;
A non-operating cylinder that performs a piston motion of four cycles during normal operation and performs the piston motion in a state where fuel injection is stopped during a cylinder deactivation operation;
An operation valve opening / closing mechanism that opens and closes the intake valve and the exhaust valve of the idle cylinder according to the four cycles during normal operation;
A idle valve opening / closing mechanism that closes the intake valve of the idle cylinder and opens the exhaust valve so as to generate compressed gas in the idle cylinder from the expansion stroke to the exhaust stroke during cylinder idle operation;
A switching mechanism that switches between the operation valve opening / closing mechanism and the suspension valve opening / closing mechanism between normal operation and cylinder deactivation operation;
A passage opening and closing mechanism for opening and closing an exhaust passage connected to the idle cylinder;
A connecting pipe that connects an upstream side of the passage opening / closing mechanism in the exhaust passage and an intake passage connected to the operating cylinder;
A connecting pipe opening and closing mechanism for opening and closing the connecting pipe;
An exhaust gas introduction pipe for introducing gas in an exhaust passage connected to the operating cylinder to the upstream side of the passage opening / closing mechanism in the exhaust passage on the idle cylinder side;
An introduction pipe opening and closing mechanism for opening and closing the exhaust gas introduction pipe;
When the idle cylinder is in normal operation, the exhaust valve is opened by the operation valve opening / closing mechanism at least while the exhaust valve is open,
While the idle cylinder is in cylinder idle operation, the idle cylinder is closed via the exhaust gas introduction pipe while the intake valve is closed and the exhaust valve is opened from the expansion stroke to the exhaust stroke. In order to form a closed space in the exhaust passage for sucking the gas in the exhaust passage and compressing the sucked gas, the exhaust passage and the connecting pipe are closed, and the exhaust gas Open the inlet tube,
In order to supply the compressed gas stored in the closed space to the operating cylinder in the intake stroke through the connection pipe, the exhaust passage and the exhaust gas introduction pipe are closed, and the connection pipe is opened. A cylinder deactivation type internal combustion engine comprising: the passage opening / closing mechanism, the connection pipe opening / closing mechanism, and an opening / closing control unit that controls the introduction pipe opening / closing mechanism so as to be in a closed state.
JP2014176654A 2014-08-29 2014-08-29 Cylinder deactivation type internal combustion engine Pending JP2016050535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014176654A JP2016050535A (en) 2014-08-29 2014-08-29 Cylinder deactivation type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014176654A JP2016050535A (en) 2014-08-29 2014-08-29 Cylinder deactivation type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016050535A true JP2016050535A (en) 2016-04-11

Family

ID=55658231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014176654A Pending JP2016050535A (en) 2014-08-29 2014-08-29 Cylinder deactivation type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016050535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836663B1 (en) 2016-07-06 2018-03-09 현대자동차주식회사 Control method of super charger for vehicle and control system for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101836663B1 (en) 2016-07-06 2018-03-09 현대자동차주식회사 Control method of super charger for vehicle and control system for the same
US10227938B2 (en) 2016-07-06 2019-03-12 Hyundai Motor Company Method and system for controlling supercharger of vehicle

Similar Documents

Publication Publication Date Title
CN104141542B (en) System and method for operating direct injected fuel pump
JP2007132319A (en) Controller for four-cycle premixed compression self-igniting internal combustion engine
US7124717B2 (en) Method and device for operating an internal combustion engine
CN103328775B (en) There is quartastroke engine and the method for VVT
US8056541B1 (en) Internal combustion engine having an electric solenoid poppet valve and air/fuel injector
JP6123175B2 (en) Direct injection engine fuel injection system
KR101730062B1 (en) Large slow-running turbocharged two-stroke self-igniting internal combustion engine with a starting air system
JP5841660B2 (en) Multi-cylinder piston engine
US9945296B2 (en) Six-stroke engine and method of operating six-stroke engine
CN106257020B (en) Method and system for an engine
US9279350B2 (en) Intake valve closure control for dual-fuel engines
JP2016050534A (en) Cylinder deactivation type internal combustion engine
CN103527330A (en) Variable displacement
CN104727931A (en) Supercharging engine
US20150198083A1 (en) Dual-fuel engine having extended valve opening
KR101729371B1 (en) Multi-cylinder piston engine
US10655546B2 (en) Control device for internal combustion engine
JP6245114B2 (en) Control device for compression ignition engine
JP6213410B2 (en) Control device for compression ignition engine
JP2016050535A (en) Cylinder deactivation type internal combustion engine
US7506625B2 (en) Method and apparatus for controlling engine valve timing
JP2004204745A (en) System and method for controlling engine
CN106968751B (en) The system of the variable actuation of valve for internal combustion engine
JP2010024994A (en) Internal combustion engine
JP2014234821A (en) Ultra-high-efficiency internal combustion engine with centralized combustion chamber