JP2016047545A - Plug for piercing-rolling on seamless steel pipe - Google Patents

Plug for piercing-rolling on seamless steel pipe Download PDF

Info

Publication number
JP2016047545A
JP2016047545A JP2014173378A JP2014173378A JP2016047545A JP 2016047545 A JP2016047545 A JP 2016047545A JP 2014173378 A JP2014173378 A JP 2014173378A JP 2014173378 A JP2014173378 A JP 2014173378A JP 2016047545 A JP2016047545 A JP 2016047545A
Authority
JP
Japan
Prior art keywords
plug
rolling
piercing
steel pipe
seamless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014173378A
Other languages
Japanese (ja)
Inventor
昌士 松本
Masashi Matsumoto
昌士 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014173378A priority Critical patent/JP2016047545A/en
Publication of JP2016047545A publication Critical patent/JP2016047545A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plug for piercing-rolling on seamless steel pipe capable of providing excellent durability as well as self-lubricating property when used to perform piercing-rolling on a seamless pipe, particularly on a high alloy seamless steel pipe.SOLUTION: A plug for piercing-rolling on seamless steel pipe that is used for performing piercing-rolling on seamless steel pipe, comprises: metal matrix; a vapor-deposited film 5 made of Al-Cr-based nitride or Al-Cr-B-based nitride, coating on a surface of the plug; and a tip portion 4a of the metal matrix, made of heat resistant alloy, preferably, Mo-based alloy, Ni-based alloy, or Co-based alloy.SELECTED DRAWING: Figure 1

Description

本発明は継目無鋼管穿孔圧延用プラグに関し、特に高合金鋼継目無鋼管を穿孔圧延する場合に優れた耐久性を発揮し、かつ内面性状の優れた継目無鋼管を製造することができる継目無鋼管穿孔圧延用プラグに関する。   The present invention relates to a plug for piercing and rolling seamless steel pipes, and more particularly, a seamless steel pipe that exhibits excellent durability when piercing and rolling high-alloy steel seamless steel pipes and that can produce seamless steel pipes having excellent inner surface properties. The present invention relates to a steel pipe piercing and rolling plug.

熱間で継目無鋼管を製造する代表的な方法として、マンネスマン・ピアサと称される穿孔圧延機により加熱された丸ビレットを穿孔圧延して中空素管を製造し、該中空素管にプラグミルやマンドレルミルと称される延伸圧延機などによって縮径減肉加工を施し、所定寸法の継目無鋼管に仕上げる方法がある。   As a typical method for producing a seamless steel pipe in the hot state, a hollow billet is produced by piercing and rolling a round billet heated by a piercing and rolling machine called Mannesmann Piercer. There is a method in which a reduced diameter thinning process is performed by a drawing mill called a mandrel mill to finish a seamless steel pipe having a predetermined size.

上記の穿孔圧延機は、図2に示すように、互いに逆向きに傾斜させて対向配置され同一方向に回転する2本の傾斜ロール1と、パスライン上に配置されたマンドレル3により支持されたプラグ2を備えている。   As shown in FIG. 2, the piercing and rolling mill is supported by two inclined rolls 1 that are opposed to each other while being inclined in opposite directions and are rotated in the same direction, and a mandrel 3 that is arranged on a pass line. A plug 2 is provided.

上記のように構成された穿孔圧延機による穿孔圧延過程では、傾斜ロール1で圧延される丸ビレットBの中心部に回転鍛造効果によってマンネスマン割れが発生し、この割れをプラグ2によって押し広げることで中空素管Hを得る。   In the piercing and rolling process by the piercing and rolling machine configured as described above, a Mannesmann crack is generated by the rotary forging effect at the center of the round billet B rolled by the inclined roll 1, and this crack is spread by the plug 2. A hollow shell H is obtained.

上記の熱間穿孔圧延過程においては、プラグ2は、加熱された丸ビレットBおよび中空素管Hとの絶え間ない接触によって常時、高温、高負荷にさらされるため、非常に摩耗もしくは溶損しやすい。そのため、一般に、鋼製のプラグでは900〜1000℃の高温でスケール付け処理を施し、プラグ表面に数10〜数100μmのスケール被膜を形成させ、損耗防止を図っている。しかし、上記鋼製のプラグは、近年特に需要の増加してきたCrを5%以上含有するような高合金鋼の穿孔圧延に使用されたとき、損耗が著しく、丸ビレット数本の穿孔圧延にしか耐えない。   In the hot piercing and rolling process described above, the plug 2 is constantly exposed to high temperature and high load due to constant contact with the heated round billet B and the hollow shell H, and thus is very easily worn or melted. Therefore, in general, a steel plug is subjected to a scaling process at a high temperature of 900 to 1000 ° C., and a scale film of several tens to several hundreds of μm is formed on the plug surface to prevent wear. However, the above-mentioned steel plugs, when used for piercing and rolling of high alloy steels containing 5% or more of Cr, which has been increasing in demand in recent years, are extremely worn and can only be used for piercing and rolling several round billets. I can't stand it.

上記のような高合金鋼の穿孔圧延でプラグの損耗が顕著になる原因については、従来の調査によって、高合金鋼の丸ビレットを穿孔圧延している間、主にマンネスマン割れ部でプラグ先端部の表層に形成していたスケールが局所的に剥ぎ取られ、プラグ先端部に焼付きが発生するためであることが明らかになっている。   The reason why plug wear is conspicuous in the piercing and rolling of high alloy steel as described above is that the tip of the plug is mainly at the Mannesmann cracked part during the piercing and rolling of the round billet of high alloy steel according to the conventional investigation. It has been clarified that the scale formed on the surface layer is peeled off locally and seizure occurs at the tip of the plug.

更に、スケールは断熱作用を有しているため、プラグ母材が高温に曝されることを防止しているが、スケールが剥ぎ取られたプラグ先端部は丸ビレットからの熱伝導、加工熱および摩擦熱などによって温度が上昇し、高温変形が著しくなる。この結果プラグ先端部の損耗が急速に進むと考えられる。   Furthermore, since the scale has a heat insulating action, the plug base material is prevented from being exposed to high temperatures, but the plug tip from which the scale has been stripped is subjected to heat conduction from the round billet, processing heat and The temperature rises due to frictional heat and the like, and high temperature deformation becomes significant. As a result, it is considered that the wear of the plug tip portion proceeds rapidly.

上記のようなプラグ先端部に発生する焼き付きや高温変形の問題に対して、従来、プラグ材質の変更やプラグの表面改質によりプラグの高温強度を向上させることで、穿孔中のプラグの損耗を抑制し、プラグ寿命の向上を図る方法が数多く提案されている。   In order to prevent the seizure and high-temperature deformation that occur at the plug tip as described above, the high-temperature strength of the plug has been improved by changing the plug material or modifying the surface of the plug. Many methods have been proposed for controlling and improving the plug life.

例えば、特許文献1に、プラグ全体、またはプラグ最外面の一部を含むプラグ部分がセラミックからなる継目無鋼管圧延用プラグが提案されている。また、特許文献2には、少なくとも先端部が50重量%以上のニオブを含有するニオブ合金から成り、その表面に珪化物層を有する継目無鋼管穿孔圧延用プラグが提案されている。   For example, Patent Document 1 proposes a seamless steel pipe rolling plug in which the entire plug or a plug portion including a part of the outermost surface of the plug is made of ceramic. Patent Document 2 proposes a seamless steel pipe piercing and rolling plug having a niobium alloy containing niobium at 50% by weight or more at the tip and having a silicide layer on the surface thereof.

特開平10−180315号公報JP-A-10-180315 特開平10−156410号公報JP-A-10-156410

しかし、上述の従来技術では、以下のような課題があった。   However, the above-described conventional techniques have the following problems.

特許文献1または2に記載されているセラミックス材や珪化物の表面層の潤滑性は従来の鋼製プラグの表層部に形成されているスケールの潤滑性よりも劣っているため、継目無鋼管穿孔圧延用プラグに適用した場合にはプラグ表面の潤滑性が低下する。プラグ表面の潤滑性の低下は穿孔圧延の前進率の低下を引き起こし、穿孔圧延中の丸ビレットの空揉み数を増加させるため、マンネスマン割れを過度に大きくし、中空素管の内面性状を悪化させる。更に、プラグ表面と被圧延材間の摩擦係数の増加により摩擦発熱が増大するため、特に二相ステンレス鋼やNi基合金などの穿孔圧延で被圧延材の内面の温度が著しく高くなり、穿孔圧延された後の中空素管内面にカブレなどの疵が発生しやすいという問題があった。   Since the lubricity of the surface layer of the ceramic material or silicide described in Patent Document 1 or 2 is inferior to the lubricity of the scale formed on the surface layer portion of the conventional steel plug, seamless steel pipe drilling When applied to a rolling plug, the lubricity of the plug surface decreases. Decreasing lubricity on the plug surface causes a decrease in the advance rate of piercing and rolling, and increases the number of round billets that stagnate during piercing and rolling, so that Mannesmann cracks are excessively increased and the internal properties of the hollow shell are deteriorated. . Furthermore, since the frictional heat generation increases due to an increase in the coefficient of friction between the plug surface and the material to be rolled, the temperature of the inner surface of the material to be rolled becomes particularly high in piercing and rolling such as duplex stainless steel and Ni-based alloy, and piercing and rolling. There is a problem that wrinkles such as fogging are likely to occur on the inner surface of the hollow shell after being formed.

本発明は、継目無鋼管、特に高合金継目無鋼管を穿孔圧延する場合に優れた耐久性を発揮し、かつ自己潤滑性に優れた継目無鋼管穿孔圧延用プラグを提供することを目的とする。   It is an object of the present invention to provide a plug for seamless steel pipe piercing and rolling that exhibits excellent durability when piercing and rolling seamless steel pipes, particularly high alloy seamless steel pipes, and is excellent in self-lubricity. .

本発明者等は、金属母材の表面に種々の硬質被膜を形成させた継目無鋼管穿孔圧延用プラグを用いて、高合金鋼の丸ビレットの熱間穿孔圧延を実施し、プラグの耐久性や製造された鋼管の内面品質の要因となる前記硬質被膜の高温域での潤滑性と硬度ついて鋭意検討した結果、以下の知見を得た。   The inventors conducted hot piercing and rolling of a high billet steel round billet using a seamless steel pipe piercing and rolling plug in which various hard coatings were formed on the surface of a metal base material, and the durability of the plug As a result of intensive studies on the lubricity and hardness of the hard coating in the high temperature range, which are factors of the inner surface quality of the manufactured steel pipe, the following knowledge was obtained.

一般に、高温域で高硬度を有することや、鉄鋼材料を機械加工する際の焼付きを防止するため、高融点のセラミックス、サーメット、または超硬合金を工具材料に適用した事例が数多く存在する。   In general, there are many cases in which high melting point ceramics, cermets, or cemented carbides are applied to tool materials in order to have high hardness in a high temperature range and to prevent seizure when machining steel materials.

しかしながら、上記の硬質材料は、耐衝撃性に劣るため、継目無鋼管穿孔圧延用プラグに適用した場合、熱衝撃や衝撃荷重などの高負荷にさらされるため、容易に破損するという問題があった。特に、硬質材料単体で作製されたプラグは穿孔圧延中に破損し、その破損の主な起点がプラグとマンドレルとの接合部であることが分かった。   However, since the above hard material is inferior in impact resistance, when it is applied to a plug for seamless steel pipe piercing and rolling, it is exposed to high loads such as thermal shock and impact load, and thus it is easily broken. . In particular, it was found that a plug made of a hard material alone was damaged during piercing and rolling, and the main starting point of the damage was the joint between the plug and the mandrel.

上記のような破損の問題を防止するために、プラグの母材を鉄鋼材料で作製し、該母材の表面に硬質材料を被覆することで、プラグとマンドレルとの接合部を起点とする破損を抑制し、かつ、丸ビレットおよび中空素管と接触する面は硬質材料の特性を有するプラグとすることが行われている。   In order to prevent the above problem of breakage, the plug base material is made of a steel material, and the surface of the base material is covered with a hard material, so that the break starting from the joint between the plug and the mandrel In addition, the surface that contacts the round billet and the hollow shell is made a plug having the characteristics of a hard material.

硬質の被膜材として、CrN系の被膜材は、鉄鋼材との摩擦特性が優れており、かつ高硬度であることがよく知られている。また、被膜形成方法としては、物理蒸着による方法が、母材を高温まで加熱する必要がないため母材の損傷が少なく、かつ、溶射による方法と異なり被膜中に不純物の混合や内部欠陥の生成が少ないため被膜の強度が高く、冷間切削用工具の表面改質技術として広く用いられている。   As a hard coating material, it is well known that a CrN-based coating material has excellent friction characteristics with a steel material and has a high hardness. In addition, as a film formation method, the physical vapor deposition method does not need to heat the base material to a high temperature, so there is less damage to the base material, and unlike the thermal spraying method, impurities are mixed and internal defects are generated in the film. Therefore, it is widely used as a surface modification technique for cold cutting tools.

しかしながら、CrNの耐熱温度は一般的に700℃程度であるため継目無鋼管穿孔圧延のような1000℃以上の高温環境で使用するには適していない。そこで、上記したCrNの優れた特性を失わずに、耐熱温度を向上する方法を検討した結果、CrNにAlを添加することが有効であることが判明した。CrNにAlを25〜50原子%の範囲で添加したAl−Cr系窒化物は、CrNよりも耐熱温度が向上し、1000℃以上の高温雰囲気下での使用が可能になるとともに、常温における硬さがビッカース硬度で約3000に向上する。   However, since the heat resistant temperature of CrN is generally about 700 ° C., it is not suitable for use in a high temperature environment of 1000 ° C. or higher such as seamless steel pipe piercing and rolling. Therefore, as a result of studying a method for improving the heat-resistant temperature without losing the excellent characteristics of CrN, it has been found that it is effective to add Al to CrN. An Al—Cr nitride obtained by adding Al to CrN in a range of 25 to 50 atomic% has a higher heat resistance temperature than CrN and can be used in a high temperature atmosphere of 1000 ° C. or higher, and is hard at room temperature. Is improved to about 3000 in Vickers hardness.

さらに、Al−Cr系窒化物にBを3〜25原子%の範囲で添加することによって高温環境での耐摩耗性が向上した。この耐摩耗性の向上は、BがAl−Cr系窒化物内に分散し、被膜表面で酸化されることにより自己潤滑性を有するB層を窒化物被膜の表面に形成することによると考えられる。そこで、高温摺動試験により1000℃に加熱したCrNの被膜、Al−Cr系窒化物(金属成分のみの原子%で45%Al−55%Cr)の被膜およびAl−Cr−B系窒化物(金属成分のみの原子%で45%Al−45%Cr−10%B)の被膜の摩擦係数を評価した。設定荷重は5Nとし、相手材はSUS304とした。その結果、表1に示すように、CrNの被膜では摩擦係数が約0.45であったのに対し、Al−Cr系窒化物の被膜の摩擦係数は約0.3、さらにAl−Cr−B系窒化物の被膜の摩擦係数は約0.25であった。この結果から、CrNの被膜と比較して、Al−Cr系窒化物の被膜は、潤滑性と硬度の向上効果が得られ、さらにAl−Cr系窒化物に上記範囲でBを添加したAl−Cr−B系窒化物の被膜は、潤滑性がさらに向上するため、より耐摩耗性が向上すると考えられる。 Furthermore, the wear resistance in a high temperature environment was improved by adding B to the Al—Cr nitride in the range of 3 to 25 atomic%. This improvement in wear resistance is due to the formation of a B 2 O 3 layer having self-lubricating properties on the surface of the nitride film by dispersing B in the Al—Cr nitride and being oxidized on the surface of the film. it is conceivable that. Therefore, a CrN film heated to 1000 ° C. by a high-temperature sliding test, an Al—Cr-based nitride film (45% Al-55% Cr in terms of atomic percentage of only the metal component), and an Al—Cr—B-based nitride ( The friction coefficient of the coating of 45% Al-45% Cr-10% B) in terms of atomic% of only the metal component was evaluated. The set load was 5N, and the counterpart material was SUS304. As a result, as shown in Table 1, the coefficient of friction of the CrN film was about 0.45, whereas the coefficient of friction of the Al—Cr nitride film was about 0.3, and Al—Cr— The friction coefficient of the B-based nitride coating was about 0.25. From this result, compared with the CrN coating, the Al—Cr nitride coating has an effect of improving lubricity and hardness, and further Al—Cr in which Al is added in the above range. It is considered that the wear of the Cr—B-based nitride film is further improved because the lubricity is further improved.

また、継目無鋼管穿孔圧延用プラグは、特に変形抵抗が大きな13Cr鋼等の高合金鋼ビレットを穿孔圧延中に、負荷荷重の増大と被圧延材の加工発熱による温度上昇でプラグ先端部の高温変形が大きくなる。この際、プラグ表面に被覆した硬質被膜がプラグ母材の変形に追随出来ず、破壊に至ることがある。このような被膜の破壊に対しては、プラグ先端部を重量%でMoを99.0〜99.5%含むMo基、Niを45〜65%含むNi基、またはCoを43〜50%含むCo基等の耐熱合金で製造し、プラグ母材の高温変形を小さくすることがさらに望ましいことが明らかになった。   In addition, the plug for seamless steel pipe piercing and rolling has a high temperature at the tip of the plug due to an increase in load load and a temperature rise due to processing heat generated in the material to be rolled during piercing and rolling of a high alloy steel billet such as 13Cr steel having a large deformation resistance. Deformation increases. At this time, the hard coating coated on the plug surface cannot follow the deformation of the plug base material and may break down. For such destruction of the coating, the plug tip is Mo-based containing 99.0 to 99.5% Mo by weight%, Ni-based containing 45 to 65% Ni, or Co containing 43 to 50%. It has become clear that it is more desirable to manufacture with a heat-resistant alloy such as Co base and reduce the high temperature deformation of the plug base material.

本発明は、上記知見に基づいて完成されたもので、下記の要旨からなる。   The present invention has been completed on the basis of the above findings and comprises the following gist.

(1)金属母材の継目無鋼管穿孔圧延用プラグであって、該プラグの表面にAl−Cr系窒化物の被膜を有することを特徴とする継目無鋼管穿孔圧延用プラグ。   (1) A plug for seamless steel pipe piercing and rolling of a metal base material, wherein the plug has a coating of Al-Cr nitride on the surface of the plug.

(2)前記金属母材の先端部が耐熱合金からなることを特徴とする(1)に記載の継目無鋼管穿孔圧延用プラグ。   (2) The seamless steel pipe piercing-rolling plug according to (1), wherein a tip portion of the metal base material is made of a heat-resistant alloy.

(3)前記プラグの常温における表面の硬さがビッカース硬度で3000以上3500以下であることを特徴とする(1)または(2)に記載の継目無鋼管穿孔圧延用プラグ。   (3) The plug for seamless steel pipe piercing and rolling according to (1) or (2), wherein the surface hardness of the plug at room temperature is 3000 to 3500 in terms of Vickers hardness.

(4)前記被膜が金属成分のみの原子%でAl:25〜50%、Cr:50〜75%を含有することを特徴とする(1)〜(3)のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   (4) The seamless steel pipe according to any one of (1) to (3), wherein the coating contains Al: 25 to 50% and Cr: 50 to 75% in atomic% of only a metal component. Plug for piercing and rolling.

(5)前記被膜がPVD法により形成されたことを特徴とする(1)〜(4)のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   (5) The seamless steel pipe piercing-rolling plug according to any one of (1) to (4), wherein the coating film is formed by a PVD method.

(6)前記被膜がBを金属成分のみの原子%で3〜25%含有することを特徴とする(1)〜(5)のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   (6) The plug for seamless steel pipe piercing and rolling according to any one of (1) to (5), wherein the coating contains B in an amount of 3 to 25% in terms of atomic% of only the metal component.

(7)前記耐熱合金が質量%でMo:99.0〜99.5%のMo基合金、Ni:45〜65%のNi基合金、またはCo:43〜50%のCo基合金のいずれかであることを特徴とする(2)〜(6)のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   (7) Mo: 99.0 to 99.5% Mo-based alloy, Ni: 45 to 65% Ni-based alloy, or Co: 43 to 50% Co-based alloy. The seamless steel pipe piercing and rolling plug according to any one of (2) to (6).

本発明の継目無鋼管穿孔圧延用プラグは、高合金継目無鋼管を製造する場合においても、優れた耐久性を発揮し、かつ優れた自己潤滑性を有するため、該プラグを穿孔圧延に用いることによって内面品質の優れた高合金継目無鋼管を低コストで製造することが可能となる。   The seamless steel pipe piercing and rolling plug of the present invention exhibits excellent durability and has excellent self-lubricating property even when producing a high alloy seamless steel pipe, and therefore the plug is used for piercing and rolling. This makes it possible to produce a high alloy seamless steel pipe with excellent inner surface quality at a low cost.

本発明に係る継目無鋼管穿孔圧延用プラグの一例を示す断面模式図Sectional schematic diagram showing an example of a seamless steel pipe piercing and rolling plug according to the present invention 穿孔圧延機による圧延態様を示す模式図Schematic diagram showing the rolling mode by piercing and rolling mill

以下、本発明の継目無鋼管穿孔圧延用プラグについて図面を参照しつつ説明する。図1は本発明に係る継目無鋼管穿孔圧延用プラグの一例を示す断面模式図である。該プラグは先端部4a、本体部4b、およびAl−Cr系窒化物の蒸着被膜5で構成される。なお、図1では、プラグの金属母材が本体部4bと先端部4aに分割され、各部が異なる材料の場合を示しているが、本発明では本体部4bと先端部4aが一体の場合も含まれる。   Hereinafter, the seamless steel pipe piercing and rolling plug of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a seamless steel pipe piercing and rolling plug according to the present invention. The plug is composed of a tip end portion 4a, a main body portion 4b, and an Al—Cr nitride deposited film 5. 1 shows a case where the metal base material of the plug is divided into the main body portion 4b and the tip portion 4a, and the respective parts are made of different materials. However, in the present invention, the main body portion 4b and the tip portion 4a may be integrated. included.

前述したように、プラグの金属母材の本体部4b(本体部4bと先端部4aが一体の場合は、先端部4aも含む)の素材は、マンドレルとの接合部での破損を防止するため、靭性を有する鋼材とし、先端部4aと本体部4bの表面を硬質のAl−Cr系窒化物で被覆する。被膜の厚さは1μm未満では耐摩耗性が劣り、10μmを超えるとチッピングや膜剥離を生じやすくなって寿命が低下するため、1〜10μmが好ましい。より好ましくは2〜5μmであるが、特に規定するものではない。   As described above, the material of the main body portion 4b (including the front end portion 4a when the main body portion 4b and the front end portion 4a are integrated) of the metal base material of the plug is used to prevent breakage at the joint portion with the mandrel. The steel material having toughness is used, and the surfaces of the tip portion 4a and the main body portion 4b are covered with hard Al-Cr nitride. When the thickness of the coating is less than 1 μm, the wear resistance is inferior, and when it exceeds 10 μm, chipping and film peeling tend to occur and the life is reduced, so that the thickness is preferably 1 to 10 μm. More preferably, it is 2 to 5 μm, but is not particularly specified.

通常、Al−Cr系窒化物のような被膜を形成するには、化学気相蒸着法(CVD法)、物理気相蒸着法(PVD法)等、種々の方法が適用できるが、継目無鋼管圧延用プラグの場合は、被膜を形成する処理温度によって金属母材の硬度低下や被膜の密着性の問題が発生するため、PVD法の一種であるイオンプレーティング法が好ましい。   Usually, various methods such as chemical vapor deposition (CVD) and physical vapor deposition (PVD) can be applied to form a film such as Al-Cr nitride. In the case of a rolling plug, the ion plating method, which is a kind of PVD method, is preferable because the hardness of the metal base material and the problem of adhesion of the coating occur depending on the processing temperature for forming the coating.

また、プラグの金属母材とAl−Cr系窒化物の蒸着被膜との密着性を向上させるために、プラグの金属母材の表面の硬度を高くすることが好ましい。前記金属母材が鋼製の場合には、表面を硬化する方法として、窒化処理を行なうことが一般的であり、例えば塩浴窒化法等の窒化処理であれば500〜550℃程度の低温側で処理することが可能である。したがって、焼き戻し温度が550℃以上である高速度鋼(SKH)や合金ダイス鋼(SKD)等をプラグの金属母材の素材として選定すれば、前記窒化処理によって前記金属母材の機械的性質(強度や靭性など)が変化することがない。   Further, in order to improve the adhesion between the metal base material of the plug and the deposited film of the Al—Cr nitride, it is preferable to increase the hardness of the surface of the metal base material of the plug. When the metal base material is made of steel, it is common to perform nitriding as a method for hardening the surface. For example, in the case of nitriding such as a salt bath nitriding method, a low temperature side of about 500 to 550 ° C. Can be processed. Therefore, if high-speed steel (SKH) or alloy die steel (SKD) having a tempering temperature of 550 ° C. or higher is selected as the material of the metal base material of the plug, the mechanical properties of the metal base material are obtained by the nitriding treatment. (Strength, toughness, etc.) will not change.

さらに、プラグの先端部4aおよび本体部4bの表面は、Al−Cr系窒化物の蒸着被膜5の剥離を抑制するために、表面粗さが算術平均粗さRaで0.2μm以下となるように仕上げられることが好ましい。継目無鋼管穿孔圧延用プラグのように高荷重が負荷されると、蒸着被膜と基材であるプラグの金属母材との界面の凹凸部、特に前記金属母材表面の凸部に応力が集中し、そこを起点に蒸着被膜が破壊されるため、プラグの金属母材(先端部4aおよび本体部4b)の表面粗さは平滑にすることが好ましい。   Furthermore, the surface of the plug tip 4a and the body 4b has a surface roughness of 0.2 μm or less in terms of arithmetic average roughness Ra in order to suppress peeling of the deposited film 5 of Al—Cr nitride. Is preferably finished. When a high load is applied like a plug for seamless steel pipe piercing and rolling, stress concentrates on the irregularities at the interface between the vapor-deposited coating and the metal base material of the plug, which is the base material, particularly the convex parts on the surface of the metal base material. And since the vapor deposition film is destroyed from there, it is preferable that the surface roughness of the metal base material (the tip portion 4a and the main body portion 4b) of the plug is made smooth.

プラグの先端部4aは、前述したように高温強度を必要とするため、耐熱合金からなることが好ましい。より好ましくは、質量%でNiを45〜65%含有しているNi基合金、Moを99.0〜99.5%含有しているMo基合金、またはCoを43〜50%含有しているCo基合金等に代表されるような耐熱合金であることが望ましい。   As described above, the tip 4a of the plug is preferably made of a heat-resistant alloy because it requires high-temperature strength. More preferably, the Ni base alloy containing 45 to 65% Ni by mass%, the Mo base alloy containing 99.0 to 99.5% Mo, or 43 to 50% Co. A heat-resistant alloy such as a Co-base alloy is desirable.

また、プラグの先端部4aと本体部4bとの装着態様は、図1に示したような両者の凹凸部分を焼き嵌め、ネジ止め、圧入あるいは圧接などし、その軸心回りに相互回転不能に固定接続する方法、もしくは、上記凹凸部分を適宜な脱落防止機構を用いてルーズに嵌め合わせるなどし、その軸心回りに相互回転可能に装着する方法のうちいずれの方法で行われたものでも良い。   The plug tip 4a and main body 4b are mounted in such a manner that the concave and convex portions as shown in FIG. 1 are shrink-fitted, screwed, press-fitted, or press-contacted so that they cannot be rotated around the axis. It may be performed by any of a method of fixed connection or a method of fitting the concave and convex portions to the loose using an appropriate drop-off preventing mechanism and mounting them so that they can rotate around their axes. .

また、本発明において、Al−Cr系窒化物の蒸着被膜は、高負荷の環境下でも高硬度と耐久性を発揮することが求められるために、その組成を金属成分のみの原子%でAlが25%以上50%以下、Crが50%以上75%以下とすることが好ましい。   In the present invention, the deposited film of Al-Cr nitride is required to exhibit high hardness and durability even under a high load environment. It is preferable that 25% or more and 50% or less and Cr be 50% or more and 75% or less.

さらに、Al−Cr系窒化物にBを添加し、Al−Cr−B系窒化物の蒸着被膜とすることで蒸着被膜表面の自己潤滑性を向上させることが可能である。この場合、BはBNとして蒸着被膜中に分散する。このBNが蒸着被膜表面で酸化されることにより自己潤滑性を有するB層を蒸着被膜の表面に形成し、蒸着被膜表面の自己潤滑性を向上する。Bが過少であるとBの自己潤滑性を十分に発現できず、また、Bが過剰であるとCrやAlのホウ化物を析出して蒸着被膜が脆化するため、Bの成分比率は原子%で3%以上、25%以下が好ましい。 Furthermore, it is possible to improve the self-lubricating property on the surface of the deposited film by adding B to the Al—Cr-based nitride to obtain a deposited film of the Al—Cr—B based nitride. In this case, B is dispersed as BN in the deposited film. When this BN is oxidized on the surface of the vapor deposition coating, a B 2 O 3 layer having self-lubricating properties is formed on the surface of the vapor deposition coating, thereby improving the self-lubricity of the surface of the vapor deposition coating. If B is too small, the self-lubricating property of B 2 O 3 cannot be fully expressed. If B is excessive, borides of Cr and Al are precipitated and the deposited film becomes brittle. The ratio is preferably 3% or more and 25% or less in atomic%.

以上に説明した本発明の継目無鋼管穿孔圧延用プラグは、常法に従って穿孔圧延機にセットして使用される。上記のように構成されたプラグを用いることにより、プラグ表層部に溶損やえぐれなどの損傷が発生することが抑制されるため、高Cr鋼などの難加工材料の穿孔圧延が可能となる。また、プラグ表面に生じる酸化物層が極めて良好な潤滑性を有するので、穿孔圧延における前進効率が優れ、内面性状が良好な継目無鋼管を製造することができる。   The seamless steel pipe piercing and rolling plug of the present invention described above is used by being set in a piercing and rolling machine according to a conventional method. By using the plug configured as described above, it is possible to suppress the occurrence of damage such as erosion or erosion in the plug surface layer portion, and therefore it becomes possible to perform piercing and rolling of difficult-to-work materials such as high Cr steel. In addition, since the oxide layer generated on the plug surface has very good lubricity, it is possible to manufacture a seamless steel pipe having excellent advancement efficiency in piercing and rolling and having good inner surface properties.

以下、実施例に基づいて、本発明について具体的に説明する。   Hereinafter, based on an Example, this invention is demonstrated concretely.

本発明例のプラグは、図1に示すような複合構造のプラグであって、先端部4aを表2に示す組成の耐熱合金、本体部4bを塩浴窒化法により窒化処理を行って表面を硬化した合金ダイス鋼(SKD61)とし、先端部4aと本体部4bの凹凸部分を焼き嵌めして固定接続した。その後、イオンプレーティング法により、ターゲット材を変更することで、表2に示すような成分組成で膜厚が約3μmのAl−Cr系窒化物の蒸着被膜またはAl−Cr−B系窒化物の蒸着被膜を本体部4bと先端部4aの表面に形成させたプラグを本発明例として使用した。   The plug of the example of the present invention is a plug having a composite structure as shown in FIG. 1. The tip portion 4a is a heat-resistant alloy having the composition shown in Table 2, and the main body portion 4b is nitrided by a salt bath nitriding method to have a surface. Hardened alloy die steel (SKD61) was used, and the concave and convex portions of the tip portion 4a and the main body portion 4b were shrink-fitted and fixedly connected. Thereafter, by changing the target material by an ion plating method, an Al-Cr-based nitride vapor-deposited film or an Al-Cr-B-based nitride having a component composition as shown in Table 2 and a film thickness of about 3 μm is used. A plug in which a deposited film was formed on the surface of the main body portion 4b and the tip portion 4a was used as an example of the present invention.

また、比較例として使用したプラグは、従来の継目無鋼管穿孔圧延用プラグと同様、低合金鋼製の一体型プラグであり、その表面に厚さ約200μmのスケールを形成させたプラグである。   Further, the plug used as a comparative example is a low-alloy steel integrated plug, similar to the conventional seamless steel pipe piercing and rolling plug, and is a plug having a surface with a thickness of about 200 μm formed thereon.

上記の各プラグを穿孔圧延機にセットし、1200℃に加熱された外径58mm、長さ250mmのSUS420J2製の丸ビレットを、外径69mm、内径54mm、長さ450mmの中空素管に穿孔圧延することで各プラグの性能を評価した。   Each plug is set in a piercing and rolling machine, and a round billet made of SUS420J2 having an outer diameter of 58 mm and a length of 250 mm heated to 1200 ° C. is pierced and rolled into a hollow shell having an outer diameter of 69 mm, an inner diameter of 54 mm, and a length of 450 mm. Thus, the performance of each plug was evaluated.

プラグの耐久性を評価するため、1本の穿孔圧延が終わるたびに目視でプラグを観察し、プラグの損耗の程度によって継続使用の可否を判断しながら、前記丸ビレット10本の穿孔圧延を実施した。   In order to evaluate the durability of the plug, each round billet is subjected to piercing and rolling while visually observing the plug every time one piercing and rolling is completed, and judging whether or not to continue use depending on the degree of plug wear. did.

また、潤滑性の評価指標として、中空素管の長さおよび穿孔圧延時間から、<1>式に示すように、穿孔圧延の前進効率を圧延ロールの圧延速度の穿孔方向成分と中空素管の圧延速度との比として算出した。前進効率が高い程プラグの潤滑性が優れていることを示す。   Further, as an evaluation index of lubricity, from the length of the hollow shell and the piercing and rolling time, as shown in the formula <1>, the forward efficiency of the piercing and rolling is determined by the piercing direction component of the rolling speed of the rolling roll and the hollow shell. It was calculated as a ratio with the rolling speed. The higher the forward efficiency, the better the lubricity of the plug.

(前進効率)=(L/t)/(Vr×sinθ) <1>
ここで、L:中空素管の長さ
t:穿孔圧延時間
Vr:圧延ロールの圧延速度
θ:圧延ロールの傾斜角
これらの算出結果と穿孔圧延後のプラグの損耗状態の結果を表2に併せて示した。表2から明らかなように、本発明プラグは、10本の前記丸ビレットをプラグが損耗することなく穿孔圧延することができた。さらに、本発明プラグは、穿孔圧延の前進効率も比較例よりも高く、潤滑性が優れていることが分かった。
(Forward efficiency) = (L / t) / (Vr × sin θ) <1>
Where L: the length of the hollow shell
t: piercing and rolling time
Vr: Rolling speed of the rolling roll
θ: Inclination angle of rolling roll These calculation results and the results of plug wear after piercing and rolling are also shown in Table 2. As is apparent from Table 2, the plug of the present invention was able to pierce and roll 10 round billets without damaging the plug. Furthermore, it was found that the plug of the present invention has higher piercing and rolling advancement efficiency than the comparative example, and is excellent in lubricity.

一方、比較例である従来型の低合金鋼製のプラグでは2本目の丸ビレットまではプラグが損耗することなく穿孔圧延ができたが、3本目の丸ビレットを穿孔圧延した後、プラグの損耗が確認され、継続使用できなかった。   On the other hand, with the conventional low alloy steel plug as a comparative example, the plug could be pierced and rolled up to the second round billet without damaging the plug, but after the third round billet was pierced and rolled, the plug was worn out. Was confirmed and could not be used continuously.

Figure 2016047545
Figure 2016047545

Figure 2016047545
Figure 2016047545

1 傾斜ロール
2 穿孔圧延用プラグ
3 マンドレル
B 丸ビレット
H 中空素管
4a 本発明に係る継目無鋼管穿孔圧延用プラグの先端部
4b 本発明に係る継目無鋼管穿孔圧延用プラグの本体部
5 Al−Cr系窒化物の蒸着被膜
DESCRIPTION OF SYMBOLS 1 Inclined roll 2 Plug for piercing-rolling 3 Mandrel B Round billet H Hollow base tube 4a Tip part 4b of the seamless steel pipe piercing-rolling plug according to the present invention Main body 5 of the plug for seamless steel piercing-rolling according to the present invention Al- Cr-based nitride deposition coating

Claims (7)

金属母材の継目無鋼管穿孔圧延用プラグであって、該プラグの表面にAl−Cr系窒化物の被膜を有することを特徴とする継目無鋼管穿孔圧延用プラグ。   A plug for seamless steel pipe piercing and rolling of a metal base material, wherein the plug has a coating of Al-Cr nitride on the surface of the plug. 前記金属母材の先端部が耐熱合金からなることを特徴とする請求項1に記載の継目無鋼管穿孔圧延用プラグ。   The seamless steel pipe piercing-rolling plug according to claim 1, wherein a tip portion of the metal base material is made of a heat-resistant alloy. 前記プラグの常温における表面の硬さがビッカース硬度で3000以上3500以下であることを特徴とする請求項1または2に記載の継目無鋼管穿孔圧延用プラグ。   The plug for seamless steel pipe piercing and rolling according to claim 1 or 2, wherein a surface hardness of the plug at normal temperature is 3000 to 3500 in terms of Vickers hardness. 前記被膜が金属成分のみの原子%でAl:25〜50%、Cr:50〜75%を含有することを特徴とする請求項1〜3のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   The plug for seamless steel pipe piercing and rolling according to any one of claims 1 to 3, wherein the coating contains Al: 25 to 50% and Cr: 50 to 75% in atomic% of only a metal component. 前記被膜がPVD法により形成されたことを特徴とする請求項1〜4のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   The plug for seamless steel pipe piercing and rolling according to any one of claims 1 to 4, wherein the coating is formed by a PVD method. 前記被膜がBを金属成分のみの原子%で3〜25%含有することを特徴とする請求項1〜5のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   The plug for seamless steel pipe piercing and rolling according to any one of claims 1 to 5, wherein the coating contains B in an amount of 3 to 25% in terms of atomic% of only the metal component. 前記耐熱合金が質量%でMo:99.0〜99.5%のMo基合金、Ni:45〜65%のNi基合金、またはCo:43〜50%のCo基合金のいずれかであることを特徴とする請求項2〜6のいずれかに記載の継目無鋼管穿孔圧延用プラグ。   The heat-resistant alloy is either Mo: 99.0 to 99.5% Mo-based alloy, Ni: 45 to 65% Ni-based alloy, or Co: 43 to 50% Co-based alloy by mass%. The seamless steel pipe piercing and rolling plug according to any one of claims 2 to 6.
JP2014173378A 2014-08-28 2014-08-28 Plug for piercing-rolling on seamless steel pipe Pending JP2016047545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173378A JP2016047545A (en) 2014-08-28 2014-08-28 Plug for piercing-rolling on seamless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173378A JP2016047545A (en) 2014-08-28 2014-08-28 Plug for piercing-rolling on seamless steel pipe

Publications (1)

Publication Number Publication Date
JP2016047545A true JP2016047545A (en) 2016-04-07

Family

ID=55648754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173378A Pending JP2016047545A (en) 2014-08-28 2014-08-28 Plug for piercing-rolling on seamless steel pipe

Country Status (1)

Country Link
JP (1) JP2016047545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042286A (en) * 2018-10-15 2020-04-23 한화에어로스페이스 주식회사 Turbo Device
CN111069289A (en) * 2019-12-09 2020-04-28 朗瑞(泰州)金属工具有限公司 Novel steel pipe piercing plug and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034588A (en) * 1970-05-11 1977-07-12 Columbiana Foundry Company Methods of piercing and enlarging elongate metal members such as seamless tubes
JPH02263505A (en) * 1989-04-04 1990-10-26 Daido Steel Co Ltd Tool for working
JPH08309408A (en) * 1995-05-19 1996-11-26 Nkk Corp Manufacture of seamless pipe excellent in resistance of piercing plug
JPH0941127A (en) * 1995-08-03 1997-02-10 Kobe Steel Ltd Hard film
JPH1025566A (en) * 1996-07-12 1998-01-27 Yamaguchi Pref Gov Formation of composite hard film excellent in high temperature oxidation resistance by ion plating
JP2005330539A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Abrasion-resistant coated member
JP2011240436A (en) * 2010-05-19 2011-12-01 Mitsubishi Materials Corp Surface coated cutting tool excellent in heat resistance and fusion resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034588A (en) * 1970-05-11 1977-07-12 Columbiana Foundry Company Methods of piercing and enlarging elongate metal members such as seamless tubes
JPH02263505A (en) * 1989-04-04 1990-10-26 Daido Steel Co Ltd Tool for working
JPH08309408A (en) * 1995-05-19 1996-11-26 Nkk Corp Manufacture of seamless pipe excellent in resistance of piercing plug
JPH0941127A (en) * 1995-08-03 1997-02-10 Kobe Steel Ltd Hard film
JPH1025566A (en) * 1996-07-12 1998-01-27 Yamaguchi Pref Gov Formation of composite hard film excellent in high temperature oxidation resistance by ion plating
JP2005330539A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Abrasion-resistant coated member
JP2011240436A (en) * 2010-05-19 2011-12-01 Mitsubishi Materials Corp Surface coated cutting tool excellent in heat resistance and fusion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042286A (en) * 2018-10-15 2020-04-23 한화에어로스페이스 주식회사 Turbo Device
KR102579798B1 (en) * 2018-10-15 2023-09-15 한화에어로스페이스 주식회사 Turbo Device
CN111069289A (en) * 2019-12-09 2020-04-28 朗瑞(泰州)金属工具有限公司 Novel steel pipe piercing plug and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2873468B1 (en) Plug for rolling seamless steel pipe, method for manufacturing said plug, and method for manufacturing seamless steel pipe in which said plug is used
JP5610101B1 (en) Hot pipe plug
JPH10180315A (en) Rolling plug for seamless tube and manufacture of seamless tube
JP4264755B2 (en) Hot working tool steel, hot working tool and plug for seamless pipe manufacturing
JP6590213B2 (en) Manufacturing method of cold working mold
JP2016047545A (en) Plug for piercing-rolling on seamless steel pipe
JP4900385B2 (en) High alloy rolling mandrel bar, surface treatment method and manufacturing method thereof, and method of operating seamless steel pipe manufacturing apparatus
US20190360084A1 (en) In-bath roll and method for producing in-bath roll
JP4093978B2 (en) Tool steel with self-lubricating properties
JP6237540B2 (en) Seamless steel pipe manufacturing method
JPH04270003A (en) Hot tube making tool and its production
JP4314884B2 (en) Mandrel bar for hot seamless pipe rolling
JP2778140B2 (en) Ni-base alloy hot tool and post-processing method of the hot tool
JPH03204106A (en) Plug for manufacturing hot seamless tube
JP5075575B2 (en) High temperature processing tools
JP6603665B2 (en) Rolling rod as internal tool in the manufacture of seamless metal hollow bodies and a method of manufacturing metal hollow bodies
JP4736773B2 (en) Seamless steel pipe manufacturing method
JPH10156410A (en) Plug for piercing seamless steel tube and manufacture of seamless steel tube using the same
JP2776256B2 (en) Surface treatment tool for hot working
JPH03193204A (en) Plug for manufacturing hot seamless tube
JPH08309408A (en) Manufacture of seamless pipe excellent in resistance of piercing plug
JPH1081937A (en) Forging roll for seamless steel tube and its production
JP2002113507A (en) Plug for piercing seamless steel tube and method for manufacturing seamless steel tube
JP2618397B2 (en) Tool scale adhesion method for hot working
JPH11285709A (en) Guide shoe for piercing and rolling seamless steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523