JP2016039495A - 撮像装置及びその制御方法 - Google Patents

撮像装置及びその制御方法 Download PDF

Info

Publication number
JP2016039495A
JP2016039495A JP2014161712A JP2014161712A JP2016039495A JP 2016039495 A JP2016039495 A JP 2016039495A JP 2014161712 A JP2014161712 A JP 2014161712A JP 2014161712 A JP2014161712 A JP 2014161712A JP 2016039495 A JP2016039495 A JP 2016039495A
Authority
JP
Japan
Prior art keywords
noise
signal
holding
optical signal
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014161712A
Other languages
English (en)
Inventor
槙子 齋藤
Makiko Saito
槙子 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014161712A priority Critical patent/JP2016039495A/ja
Publication of JP2016039495A publication Critical patent/JP2016039495A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させることのできる撮像装置及びその制御方法を提供する。【解決手段】複数の画素から出力される光信号を保持する容量CTs1と、複数の画素から出力されるノイズ信号を保持する容量CTn1と、容量CTs1に接続され、容量CTs1を介して光信号を保持する容量CTs2と、容量CTn1に接続され、容量CTn1を介してノイズ信号を保持する容量CTn2とを有する固体撮像素子を備え、容量CTn1にノイズ信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで容量CTs2に光信号を保持させ、容量CTs1に光信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで容量CTn2にノイズ信号を保持させる。【選択図】図4

Description

本発明は、固体撮像素子を有する撮像装置及びその制御方法に関する。
一般に、デジタルカメラ等の撮像装置においては、CCD又はCMOSイメージセンサ等の固体撮像素子が用いられており、光学像に応じて固体撮像素子から出力された電気信号を、静止画像又は動画像として記録・再生している。固体撮像素子としてCMOSイメージセンサが用いられた撮像装置においては、撮影の際、光学像に応じてCMOSイメージセンサのフォトダイオードに発生した電荷を読み出し回路で信号電圧に変換し、当該信号電圧を増幅して出力端子から出力している。
このような撮像装置においては、固体撮像素子で光学像を電気信号に変換して出力する過程において、画像の画質劣化の原因となる様々なノイズが発生する。代表的なノイズとして、画素毎の製造バラツキに起因して発生する画素欠陥によるノイズや読み出し回路を構成するアンプ等の部品の製造バラツキに起因する固定パターンノイズ等が挙げられる。さらに、画素及び読み出し回路のリセットノイズや画素領域において発生する暗電流等の撮像動作を行う度に変動するランダムノイズも代表的なノイズとして知られている。
前述のようなノイズを固体撮像素子の内部で除去する手法として、以下に説明するような『S−N動作』が知られている(例えば、特許文献1参照)。まず、画素内のフォトダイオードをリセットした後に、固体撮像素子を露光させることで、フォトダイオードで光電変換及び電荷の蓄積が行われる。そして、固体撮像素子の露光が終了するタイミングに合わせて、フォトダイオードを除いて、画素内のフォトダイオード後段の回路(以下、「後段回路」ともいう)及び読み出し回路をリセットする。
リセットが完了すると、フォトダイオードに蓄積された電荷を後段回路に出力しない状態で、画素のリセットレベルの信号を、ノイズ成分として読み出し回路が有する第1のラインメモリに転送して、当該ノイズ成分を第1のラインメモリに保持する。以下、ノイズ成分の信号を「N信号」とも呼び、N信号の転送動作を「N転送」とも呼ぶ。続いて、フォトダイオードに光信号として蓄積された電荷を後段回路に出力し、読み出し回路が有する第2のラインメモリに保持する。以下、光信号を「S信号」とも呼び、S信号の転送を「S転送」とも呼ぶ。
S転送が終了した後、第2のラインメモリに保持されたS信号と第1のラインメモリに保持されたN信号とは、順次最後段の出力回路ブロックに送られる。最後に、出力回路ブロック等に設けられた差動回路で、S信号とN信号との差分を求める。この差分信号が画像信号として固体撮像素子の後段の画像処理回路に送られる。以上の動作のうち、N転送、S転送、及びN信号とS信号との差分演算動作が、一般的にS−N動作と呼ばれる動作の概要である。前述のS−N動作を行うことによって、画素及び読み出し回路毎に異なるノイズ成分を、撮像動作の都度適切に除去して、良好な画質の画像信号を得ることが可能となる。
特開2004−134752号公報
しかしながら、前述のS−N動作を行うことによって、新たにノイズ成分が生成されて、画質を劣化させてしまう場合がある。固体撮像素子に供給される電源やGND(グランド)が常に安定しており、N転送時とS転送時とで電源電圧が一定であれば、S−N動作を行うことによってノイズ成分を過不足なく除去することができる。しかし、固体撮像素子に供給される電源電圧は、固体撮像素子の外部の負荷変動等によって変動してしまう。
N転送からS転送までの間に、固体撮像素子に供給される電源電圧が変動した場合には、N転送時とS転送時との各々のタイミングにおいて、異なるレベルのオフセットが重畳されてしまう。この状態でS信号とN信号との差分演算を行うと、N信号に重畳されたオフセットとS信号に重畳されたオフセットの差分が、新たなノイズとなって画像信号に現れ、画質を劣化させてしまう。
一般に、S−N動作は同一の画素行に配された画素群の信号に対して、同一のタイミングで行われる。したがって、同一行の画素からのN信号同士には同じレベルのオフセットが重畳され、同一行の画素からのS信号同士には、N信号に重畳されたレベルとは異なる、同じレベルのオフセットが重畳されることとなる。すなわち、N信号に重畳されたオフセットとS信号に重畳されたオフセットとの差分に起因するノイズは、同一行の画素同士で等しいレベルとなり、画像中に横縞状のパターンノイズとなって現れる。
本発明の目的は、固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させることのできる撮像装置及びその制御方法を提供することである。
本発明に係る撮像装置は、複数の画素と、前記複数の画素から出力される光信号を保持する第1の光信号保持手段と、前記複数の画素から出力されるノイズ信号を保持する第1のノイズ信号保持手段と、前記第1の光信号保持手段に接続され、前記第1の光信号保持手段を介して前記光信号を保持する第2の光信号保持手段と、前記第1のノイズ信号保持手段に接続され、前記第1のノイズ信号保持手段を介して前記ノイズ信号を保持する第2のノイズ信号保持手段とを有する固体撮像素子と、前記第1のノイズ信号保持手段に前記ノイズ信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで前記第2の光信号保持手段に前記光信号を保持させ、前記第1の光信号保持手段に前記光信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで前記第2のノイズ信号保持手段に前記ノイズ信号を保持させる制御手段とを備えることを特徴とする。
本発明によれば、固体撮像素子に供給される電源電圧の変動による光信号とノイズ信号との間に発生するノイズを打ち消し、供給される電源電圧の変動に起因する画質劣化を低減させることができる。
本発明の実施形態に係る撮像装置の構成例を示す図である。 本実施形態における固体撮像素子の構成例を示す等価回路図である。 本実施形態における固体撮像素子の信号読み出し動作を説明するためのタイミングチャートである。 第1の実施形態における第2垂直転送期間の駆動タイミングの決定方法を示す図である。 第2の実施形態における第2垂直転送期間の駆動タイミングの決定方法を示す図である。
以下、本発明の実施形態を図面に基づいて説明する。
(第1の実施形態)
本発明の第1の実施形態について説明する。図1は、本発明の実施形態に係る撮像装置の構成例を示すブロック図である。本実施形態に係る撮像装置は、固体撮像素子3を有する。レンズ1は、被写体の光学像を固体撮像素子3に結像させる。絞り2は、レンズ1を通過した光の光量を変化させる。固体撮像素子3は、光学像を光電変換によって電気信号(画像信号)に変換し出力する。
固体撮像素子3から出力された画像信号(撮像信号ともいう)は、撮像信号処理回路4に供給される。撮像信号処理回路4は、画像信号を増幅するゲイン可変アンプ部とそのゲイン値を補正するためのゲイン補正回路部とを有する。撮像信号処理回路4から出力された画像信号は、アナログ−デジタル(A/D)変換部5によってA/D変換されて、画像データとして信号処理部6に供給される。
信号処理部6は、A/D変換部5から出力された画像データに対して各種の補正を行うとともに、必要に応じてデータ圧縮を行う。なお、固体撮像素子3、撮像信号処理回路4、A/D変換部5、及び信号処理部6に対してタイミング発生部13から各種のタイミングパルスが供給される。
全体制御・演算部12は、各種の演算を行うとともに、撮像装置の制御を行う。メモリ部7には画像データが一時的に記憶される。外部インターフェース(I/F)部10は、例えば、外部コンピュータ等の外部機器11と通信を行う。なお、外部I/F部10は、無線ユニット18を介して画像データを送信する等の外部機器11との通信を無線で行うこともできる。
記録媒体制御インターフェース(I/F)部8には、記録媒体9を着脱可能である。記録媒体9が記録媒体制御I/F部8に装着されている場合、記録媒体制御I/F部8によって記録媒体9に対して画像データの記録及び読み出しが行われる。なお、記録媒体9は、例えば、半導体メモリで構成されている。
ストロボ部14は、AF(オートフォーカス)補助光の投光及びフラッシュ調光を行う。電源回路15は、電源供給手段としての電池等から供給された電圧を所望の電圧に変換するDC/DC回路を有し、撮像装置で必要な電圧を必要な期間だけ、記録媒体9を含む各部に供給する。なお、レンズ1の鏡筒は、全体制御・演算部12の制御下でモータ16によって駆動され、絞り2は、モータ17によって駆動される。
前述のような構成の撮像装置においては、固体撮像素子3に供給される電源電圧を変動させるノイズ源となりうる機器や部品が、固体撮像素子の近傍、すなわち撮像装置の内部や撮像装置の至近に配置されている。例えば、ストロボ14等の機器や、電源回路15のDC/DC回路や、レンズ1の鏡筒や絞り2等を駆動するためのモータ16、17や、コンピュータ等の外部機器11と通信を行うための外部I/F部10や無線ユニット18等である。
これらノイズ源となりうる各部が動作すると、各部の駆動に伴って所定周期の電源変動や電磁波が発生し、その影響を受けて固体撮像素子3に供給される電源電圧が不安定になる。固体撮像素子の信号読み出し中にこのような電源変動や電磁波が発生すると、固体撮像素子に供給される電源の電位が経時変化することにより、読み出された画素信号にノイズを生じさせ、画質を劣化させてしまう。なお、図1に示した機器や部品以外にも、動作によって撮像装置の電源及び固体撮像素子周辺の磁場を変動させうる機器や部品はノイズ源となりうる。
図2は、図1に示した固体撮像素子3の等価回路図を示す図である。図3に示すトランジスタのそれぞれは、例えばMOS(Metal Oxide Semiconductor)トランジスタである。固体撮像素子3を構成する各回路素子は、半導体集積回路製造技術によって、例えば、単結晶シリコンのような1つの半導体基板上に形成される。ここでは、画素アレイの行数及び列数は、n行×m列(n及びmの各々は2以上の整数)であるとする。
固体撮像素子3は、2次元マトリックス状に配列された複数の単位画素300を有しており、これら単位画素300によって画素部が構成される。単位画素300は、フォトダイオードPDを有しており、フォトダイオードPDは、光を受けて電気信号である光信号を発生する。図示の例では、フォトダイオードPDは、そのアノードが接地されている。フォトダイオードPDのカソードは、フォトダイオードPDに蓄積された光信号電荷を転送するための転送トランジスタMTxを介して、増幅トランジスタMAmpのゲートに接続されている。増幅トランジスタMAmpのゲートには、当該増幅トランジスタMAmpをリセットするためのリセットトランジスタMResのソースが接続され、リセットトランジスタMResのドレインはリセット電源に接続されている。また、増幅トランジスタMAmpのドレインは直接電源に接続されている。
i行目(1≦i≦n)の単位画素300における転送トランジスタMTxのゲートは、横方向に延長して配置される画素信号転送線PTxiに接続される。i行目の単位画素300におけるリセットトランジスタMResのゲートは、横方向に延長して配置される画素リセット線PResiに接続される。i行目の単位画素300における選択トランジスタMSelのゲートは、横方向に延長して配置される画素選択線PSeliに接続される。画素信号転送線PTxi、画素リセット線PResi、及び画素選択線PSeliは、垂直走査回路(VSR)ブロック302に接続されている。
画素信号転送線PTxiには、垂直走査回路ブロック302で生成され画素信号の転送を制御するための制御パルス(画素信号転送パルス)が、後述するタイミングで供給される。画素リセット線PResiには、垂直走査回路ブロック302で生成され単位画素300のリセットを制御するための制御パルス(画素リセットパルス)が、後述するタイミングで供給される。画素選択線PSeliには、垂直走査回路ブロック302で生成され信号転送を行う画素行を選択するための制御パルス(画素選択パルス)が、後述するタイミングで供給される。
j列目(1≦j≦m)の単位画素300における増幅トランジスタMAmpのソースは、縦方向に延長して配置される垂直(列方向)出力線VLjに選択トランジスタMSelを介して接続される。垂直出力線VLjは、定電流源Iに接続されるととともに、クランプ容量C0に接続される。また、クランプ容量C0は、演算増幅器301の反転入力端子に接続される。演算増幅器301の反転入力端子には、帰還容量Cfを介して出力端子が接続される。帰還容量Cfと並列に、演算増幅器301に接続される各容量を放電するための容量リセットトランジスタMC0Rが接続される。演算増幅器301の非反転入力端子は、クランプ電圧VC0R(VREF)に接続される。
演算増幅器301の出力端子は、第1のノイズ信号転送トランジスタMTn1を介してノイズ信号(撮像信号の基準信号)を一時保持するための容量CTn1(第1のノイズ信号保持手段)に接続される。また、演算増幅器301の出力端子は、第1の光信号転送トランジスタMTs1を介して光信号(撮像信号)を一時保持するための容量CTs1(第1の光信号保持手段)に接続される。容量CTn1、CTs1の逆側の端子は、基準電位(GND)に接続されている。なお、容量CTn1、CTs1の逆側の端子が接続されたGNDは、他のGNDと高インピーダンスで接続されており、電源レベルが変動しやすい構成となっている。
第1のノイズ信号転送トランジスタMTn1と容量CTn1との接続点は、第2のノイズ信号転送トランジスタMTn2を介して、ノイズ信号を一時保持するための容量CTn2(第2のノイズ信号保持手段)に接続される。第1の光信号転送トランジスタMTs1と容量CTs1との接続点は、第2の光信号転送トランジスタMTs2を介して、光信号を一時保持するための容量CTs2(第2の光信号保持手段)に接続される。容量CTn2、CTs2の逆側の端子は接地されている。
第2のノイズ信号転送トランジスタMTn2と容量CTn2との接続点、及び第2の光信号転送トランジスタMTs2と容量CTs2との接続点は、水平転送トランジスタMCHn、MCHsを介して、それぞれ水平出力線OUTn、OUTsに接続される。水平出力線OUTn、OUTsは、ノイズ信号と光信号とを不図示の後段の回路に伝達する。不図示の後段の回路には、ノイズ信号(N信号)と光信号(S信号)との差分演算を行うことが可能な差分手段が設けられ、ノイズ信号と光信号との差分処理が行われる。
各列の第1のノイズ信号転送トランジスタMTn1のゲートは、第1のノイズ信号転送線PTn1に共通に接続され、後述するタイミングで制御パルス(第1のノイズ信号転送パルス)が供給される。各列の第1の光信号転送トランジスタMTs1のゲートは、第1の光信号転送線PTs1に共通に接続され、後述するタイミングで制御パルス(第1の光信号転送パルス)が供給される。
各列の第2のノイズ信号転送トランジスタMTn2のゲートは、第2のノイズ信号転送線PTn2に共通に接続され、後述するタイミングで制御パルス(第2のノイズ信号転送パルス)が供給される。各列の第2の光信号転送トランジスタMTs2のゲートは、第2の光信号転送線PTs2に共通に接続され、後述するタイミングで制御パルス(第2の光信号転送パルス)が供給される。j列目の水平転送トランジスタMCHn、MCHsのゲートは、列選択線PHjを介して水平走査回路(HSR)ブロック303に接続され、後述するタイミングで列毎に制御パルス(水平転送パルス)が供給される。
図3は、本実施形態における固体撮像素子3の信号読み出し動作を説明するための駆動タイミングを示すタイミングチャートである。ここで、固体撮像素子3における画素領域のうち、1行目からn行目までの信号読み出し動作を1フレームとする。このとき、1フレーム分の信号読み出し動作は、読み出しを行う画素領域の1行目から開始し、1行目、2行目、…、(i−1)行目、i行目、(i+1)行目、…、n行目の順に行われるものとする。
図2及び図3を参照して、固体撮像素子3のi行目に注目して、その読み出し動作を説明する。以下では、固体撮像素子3が有する各トランジスタのゲートに対して、“H”(ハイレベル)の制御パルスが入力されたときに、各トランジスタがオンする(導通状態となる)ものとして説明する。
まず、第1垂直転送期間として、i行目の画素を選択して、容量CTn1にノイズ信号(撮像信号の基準信号、N信号)を保持し、容量CTs1に光信号(撮像信号、S信号)を保持するまでの動作について説明する。時刻T1に、行送りパルスPVがトリガクロック信号として垂直走査回路(VSR)302に入力される。行送りパルスPVが“H”となった瞬間に、読み出し対象として選択される画素行の行送りが行われて読み出し対象が(i−1)行目の画素からi行目の画素に移る。時刻T2に、画素選択パルスPSeliが“H”となり、i行目の画素の選択トランジスタMSelがオンとなって、i行目の画素300が、各々の画素列に対応する垂直出力線VLjに接続される。
時刻T3に、画素リセットパルスPResiが“L”となって、i行目の画素300のフローティングディフュージョン部のリセットが解除され、フローティングディフュージョン部のリセットレベルが決定される。時刻T4に、第1の光信号転送パルスPTs1及び第1のノイズ信号転送パルスPTn1が“H”となって、容量CTs1及びCTn1のリセットが開始される。時刻T5に、第1の光信号転送パルスPTs1及び第1のノイズ信号転送パルスPTn1が“L”となって、容量CTs1、CTn1のリセットが終了される。時刻T6に、クランプパルスPC0Rが“L”となり、クランプ容量C0のリセットが終了される。
時刻T7に、第1のノイズ信号転送パルスPTn1が“H”となり、画素300のフローティングディフュージョン部の電位(電圧)が容量CTn1に出力される。時刻T8に、第1のノイズ信号転送パルスPTn1が“L”となり、この時点におけるフローティングディフュージョン部の電位(電圧)が、ノイズ信号として容量CTn1に保持される。
時刻T9に、第1の光信号転送パルスPTs1が“H”となり、画素300のフローティングディフュージョン部の電位(電圧)が容量CTs1に出力される。第1の光信号転送パルスPTs1が“H”である期間の時刻T10に、画素信号転送パルスPTxiが“H”となる。画素信号転送パルスPTxiが“H”となることで、i行目の画素の転送トランジスタMTxがオンとなって、i行目の画素のフォトダイオードPDに蓄積されていた電荷がフローティングディフュージョン部に転送される。
時刻T11に、画素信号転送パルスPTxiが“L”となり、転送トランジスタMTxがオフされて、フォトダイオードPDからフローティングディフュージョン部への電荷転送が終了する。演算増幅器301が、垂直出力線VLjの、画素のフォトダイオードPDから転送された電荷量に応じた電位変動に応答するのを待った後、次の動作に移る。時刻T12に、第1の光信号転送パルスPTs1が“L”となり、この時点でフローティングディフュージョン部に蓄積された電荷量に応じた電位(電圧)が、光信号として容量CTs1に保持される。
以上に説明した時刻T1〜T12の期間に行われる動作が、第1垂直転送期間として、i行目の画素を選択して、容量CTn1にノイズ信号を保持し、容量CTs1に光信号を保持するまでの動作である。
第1垂直転送期間の後、時刻T13に、画素リセットパルスPResiが“H”となって、フローティングディフュージョン部のリセットが開始される。なお、フローティングディフュージョン部のリセットは、第1垂直転送期間が終了した後から、後述するi行目の画素行の選択解除(時刻T19)よりも前の任意のタイミングで行ってよい。時刻T14に、クランプパルスPC0Rが“H”となり、クランプ容量C0のリセットが開始される。なお、クランプ容量のリセットは、第1垂直転送期間が終了した後から、次の行(ここではi+1行目)を読み出し対象とするために行送りパルスPVが垂直走査回路(VSR)302に入力されるよりも前の任意のタイミングで行ってよい。
次に、第2垂直転送期間として、容量CTn1に保持されたノイズ信号(撮像信号の基準信号、N信号)を容量CTn2に保持し、容量CTs1に保持された光信号(撮像信号、S信号)を容量CTs2に保持するまでの動作について説明する。時刻T15に、信号保持容量リセットパルスPCTRが“H”となり、容量CTn2、CTs2のリセットが開始される。時刻T16に、信号保持容量リセットパルスPCTRが“L”となり、容量CTn2、CTs2のリセットが終了される。
時刻T17に、第2の光信号転送パルスPTs2が“H”となり、容量CTs1と容量CTs2とが接続される。時刻T18に、第2の光信号転送パルスPTs2が“L”となり、容量CTs1に保持されていた光信号が、容量CTs2に保持される。時刻T20に、第2のノイズ信号転送パルスPTn2が“H”となり、容量CTn1と容量CTn2とが接続される。時刻T21に、第2のノイズ信号転送パルスPTn2が“L”となり、容量CTn1に保持されていたノイズ信号が、容量CTn2に保持される。
以上に説明した時刻T15〜T21の期間に行われる動作が、第2垂直転送期間として、容量CTn1に保持されたノイズ信号を容量CTn2に保持し、容量CTs1に保持された光信号を容量CTs2に保持するまでの動作である。
第2垂直転送期間における各動作のタイミングの決め方についての詳細は後述する。なお、ここでは時刻T19に、画素選択パルスPSeliを“L”とすることで、i行目の画素の選択トランジスタMSelをオフさせてi行目の画素の選択を解除しているが、本動作は、第2垂直転送期間中に行うことが必須ではない。本動作は、第1垂直転送期間が終了した後から、次の行(ここではi+1行目)を読み出し対象とするために行送りパルスPVが垂直走査回路(VSR)302に入力されるよりも前の任意のタイミングで行ってよい。
次に、水平転送期間として、容量CTn2に保持されたノイズ信号(撮像信号の基準信号、N信号)、及び容量CTs2に保持された光信号(撮像信号、S信号)を、後段の回路へと出力するまでの動作について説明する。第2垂直転送期間の後、列送りパルスPHがトリガクロック信号として水平走査回路(HSR)303に入力されると、列転送パルスが、読み出し領域の先頭列から末尾の列まで順に列選択線PHjへと入力される。したがって、容量CTs2、CTn2に保持された信号は、時刻T22から時刻T23までの間に、1列分ずつ順番に水平出力線OUTs、OUTnに送られ、後段の回路へと出力される。以上に説明した時刻T22〜T23の期間に行われる動作が、水平転送期間として、容量CTn2に保持されたノイズ信号及び容量CTs2に保持された光信号を、後段の回路へと出力するまでの動作である。
以上に説明した、第1垂直転送期間、第2垂直転送期間、及び水平転送期間の一連の動作が、i行目の画素1行分の信号読み出し動作である。この動作を繰り返すことにより、1フレーム分の信号読み出しを行う。なお、i行目の第2垂直転送期間が終了した時点で、i行目の画素の光信号は容量CTs2に保持され、i行目の画素のノイズ信号は容量CTn2に保持されている。したがって、容量CTs1、CTn1をリセットして、次の行(i+1行)の画素からの信号を保持することができる。すなわち、図3に示したように、i行目の水平転送期間の動作と、(i+1)行目の第1垂直転送期間の動作とは、並行して行うことができる。
図4(A)〜(C)は、第1垂直転送期間〜第2垂直転送期間における各動作の駆動タイミングの決定方法を示す概念図である。ここで、第2垂直転送期間における各動作の駆動タイミングの決定方法について説明する前に、図4(A)を参照して固体撮像素子3に入力される基準電位が変動することによるノイズ発生のメカニズムについて述べる。
図1に示した撮像装置は、前述したようにその内部又は近傍に固体撮像素子3に供給される電源電圧を変動させる、ノイズ源となり得る要素を多数有している。これらの機器等が動作すると、その動作による所定周期の電源変動や電磁波などによって、固体撮像素子3に供給される電源電圧が不安定になる。なお、各々のノイズ源は、それぞれに固有の周期でノイズである電磁波や電源変動を生じさせる。図2に示した固体撮像素子3において、容量CTn1及び容量CTs1が接続されるGNDは、他のGNDと高インピーダンスで接続されており、電源レベルが変動しやすい構成となっている。
図4(A)中のVinには、容量CTn1及び容量CTs1が接続されるGNDに供給される電源電圧が、ノイズ源によって変動する様を模式的に示している。ここで、ノイズ源が固体撮像素子の信号読み出し中に動作し、固体撮像素子に供給される電源電圧Vinが、図4(A)に示したように周波数f1[Hz]で変動した場合について考える。
前述したように時刻T8において、ノイズ信号が容量CTn1に保持されるが、その際、その時点での電源電圧Vinの振幅Vrn1をノイズとして重畳した状態でノイズ信号が容量CTn1に保持されることとなる。また、時刻T12において、光信号が容量CTs1に保持されるが、その際、その時点での電源電圧Vinの振幅Vrs1をノイズとして重畳した状態で光信号が容量CTs1に保持されることとなる。時刻T8と時刻T12との間で電源電圧Vinは変動しているので、容量CTn1に保持されたノイズ信号と容量CTs1に保持された光信号との間には、
(Vrs1−Vrn1)
のノイズが発生したことに相当する。
また、時刻T18aにおいて、光信号が容量CTs2に保持されるが、その際、その時点での電源電圧Vinの振幅Vrs2をノイズとして重畳した状態で光信号が容量CTs2に保持されることとなる。また、時刻T21aにおいて、ノイズ信号が容量CTn2に保持されるが、その際、その時点での電源電圧Vinの振幅Vrn2をノイズとして重畳した状態でノイズ信号が容量CTn2に保持されることとなる。時刻T18aと時刻T21aとの間で電源電圧Vinは変動しているので、容量CTn2に保持されたノイズ信号と容量CTs2に保持された光信号との間には、
(Vrs2−Vrn2)
のノイズが発生したことに相当する。
したがって、容量CTs2、CTn2から出力される最終的な信号には、
(Vrs1−Vrn1)+(Vrs2−Vrn2)
のノイズが発生することとなる。この値が画素行毎に変化した場合、ノイズは画像信号に横縞状のパターンノイズとして現れる。以上が、固体撮像素子に入力される電源電圧が変動することによる、ノイズ発生のメカニズムである。
次に、図4(A)を参照して、このようなノイズを低減させるための第2垂直転送期間における各動作の駆動タイミングの決定方法について説明する。前述のようなノイズを低減させるためには、
|(Vrs1−Vrn1)+(Vrs2−Vrn2)|
の値が最小となるタイミングで、容量CTs2及び容量CTn2における信号保持を行えばよい。
なお、ノイズ信号が容量CTn1に保持される時刻T8と光信号が容量CTs1に保持される時刻T12との間隔が長いほど、画素に発生する暗電流によって、時刻T8と時刻T12との間に暗電流ノイズの差が発生してしまう。そのため、時刻T8と時刻T12との間隔を必要以上に長くすることは好ましくない。一方で、時刻T12については、演算増幅器301が、垂直出力線VLjの最大の電位変動に十分応答するまでの期間を確保して設定する必要がある。したがって、時刻T8と時刻T12との間隔は、演算増幅器301が、垂直出力線VLjの最大の電位変動に十分応答するために過不足ない期間に設定されるものとする。
したがって、このように設定された駆動タイミングにおいて電源電圧に重畳されるノイズVrn1、Vrs1に対し、
|(Vrs1−Vrn1)+(Vrs2−Vrn2)|
の値が最小となるノイズVrs2、Vrn2が保持されるように容量CTs2及び容量CTn2における信号保持のタイミングを決定する。
例えば、固体撮像素子3の信号読み出し動作中に駆動される可能性のある機器をすべて駆動させた状態で、固体撮像素子から信号を読み出し、ノイズの最も少なくなるような駆動パターンを決定して撮像装置に記憶させておけばよい。具体的には、固体撮像素子の信号読み出し動作中に駆動される可能性のある機器をすべて駆動させた状態で、固体撮像素子から信号を読み出す。これを、容量CTs2及び容量CTn2における信号保持のタイミングを変えながら繰り返す。
前述したとおり、ノイズ成分|(Vrs1−Vrn1)+(Vrs2−Vrn2)|は、画像信号に横縞状のノイズとして現れる。したがって、得られた画像信号から、例えば、行方向の写像を求め、写像の振幅が最小となるような画像を取得した際の駆動パターンを、ノイズの最も少なくなるような駆動パターンとして選択すればよい。あるいは、固体撮像素子に供給される電源電圧の波形や変動周波数を、固体撮像素子の信号読み出し動作中に駆動される可能性のある機器をすべて駆動させた状態で測定するか、又はシミュレーション等によって求める。求めた波形や変動周波数から、ノイズの最も少なくなるような駆動パターンを演算によって決定し、撮像装置の出荷前に予め撮像装置に記憶させておけばよい。
測定やシミュレーション等で得た変動周波数から、演算によってノイズの最も少なくなるような駆動パターンを求める方法としては、下記のような方法がある。例えば、電源電圧Vinが周波数f1[Hz]で変動するとき、図4(A)に示したように容量CTn1及び容量CTs2の保持タイミングの間隔ΔT1が、電源電圧Vinの変動周期1/f1[s]の整数倍となるようにタイミングT18aを決定する。
ΔT1=T18a−T8=k×(1/f1) (k=整数)
また、容量CTs1及び容量CTn2の保持タイミングの間隔ΔT2が、電源電圧Vinの変動周期1/f1[s]の整数倍となるようにタイミングT21aを決定する。
ΔT2=T21a−T12=l×(1/f1) (l=整数)
図4(B)及び図4(C)に示す例についても、容量CTs2の保持タイミングと容量CTn2の保持タイミングとの決定方法は、図4(A)と同様である。すなわち、容量CTn1及び容量CTs2の保持タイミングの間隔ΔT1が、電源電圧Vinの変動周期1/f1[s]の整数倍となるようにタイミングT18b、T18cを決定する。また、容量CTs1及び容量CTn2の保持タイミングの間隔ΔT2が、電源電圧Vinの変動周期1/f1[s]の整数倍となるようにタイミングT21b、T21cを決定する。しかし、図4(A)においてはl=kとしているのに対し、図4(B)や図4(C)に示すように、l≠kとしてもよい。なお、図4(C)では、容量CTs2の保持タイミングと容量CTn2の保持タイミングとの順序が、図4(A)や図4(B)に示した例とは逆になっているが、容量CTs2への保持と容量CTn2への保持とは、どちらを先に行ってもよい。以上が第2垂直転送期間における各動作の駆動タイミングの決定方法である。
このようにすることで、容量CTn1の保持タイミングT8と容量CTs2の保持タイミングT18とが電源電圧の変動に対して同位相に設定され、基準電圧に重畳されるノイズVrn1、Vrs2が同じレベルとなる。また、容量CTs1の保持タイミングT12と容量CTn2の保持タイミングT21とが電源電圧の変動に対して同位相に設定され、基準電圧に重畳されるノイズVrs1、Vrn2が同じレベルとなる。したがって、容量CTn2に保持されたノイズ信号と容量CTs2に保持された光信号との間に発生したノイズによって、容量CTn1に保持されたノイズ信号と容量CTs1に保持された光信号との間に発生したノイズを打ち消すことができる。すなわち、(Vrs1−Vrn1)+(Vrs2−Vrn2)=(Vrs1−Vrn2)+(Vrs2−Vrn1)=0となる。したがって、本実施形態に述べた方法で決定した駆動タイミングによれば、固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させることができる。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。以下、第2の実施形態による固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させるための駆動タイミングの決定方法について説明する。本実施形態では、撮像装置に複数のノイズ源を有し、各々のノイズ源が、タイミング毎にそれぞれ異なる複数の組み合わせで動作するものとする。また、各々のノイズ源が発生させるノイズの周期が、各々異なるものとする。
本実施形態では、このような撮像装置において、同時に動作するノイズ源の組み合わせ毎に、それぞれのノイズ低減に適した複数の固体撮像素子の駆動パターンを用意しておく。そして、どのノイズ源が動作しているかに応じて、適した駆動パターンを選択するようにする。この点が、第2の実施形態と第1の実施形態との差異である。本実施形態に係る撮像装置の構成は、図1に示した第1の実施形態に係る撮像装置の構成と同様であるので、説明は割愛する。また、本実施形態における固体撮像素子の構成や基本的な駆動タイミングは、図2に示した第1の実施形態における固体撮像素子の構成や図3に示した第1の実施形態における固体撮像素子の駆動タイミングと同様であるので、説明は割愛する。
図1に示したような構成の撮像装置においては、固体撮像素子3に供給される電源電圧を変動させるノイズ源となりうる機器や部品が、固体撮像素子の近傍、すなわち撮像装置の内部や撮像装置の至近に配置されている。例えば、ストロボ14等の機器や、電源回路15のDC/DC回路や、レンズ1の鏡筒や絞り2等を駆動するためのモータ16、17や、コンピュータ等の外部機器11と通信を行うための外部インターフェース部10や無線ユニット18等である。なお、図1に示した機器や部品以外にも、動作によって撮像装置の電源及び固体撮像素子周辺の磁場を変動させうる機器や部品はノイズ源となりうる。
これらのノイズ源は、各々のノイズ源毎に固有の周期で電源変動や電磁波を生じさせるので、どのノイズ源が動作しているかによって、固体撮像素子に供給される電源の変動周期も異なることとなる。固体撮像素子に供給される電源電圧の変動に起因するノイズを低減させるために適した駆動タイミングは、固体撮像素子に供給される電源電圧の変動周波数によって異なる。そこで本実施形態においては、固体撮像素子から信号を読み出す際に、どのノイズ源が動作しているかに応じて、ノイズを低減させるために適した駆動パターンを選択する。
例えば、電源回路15のDC/DC回路等の常時動作しているようなノイズ源に加えて、それ以外の第1のノイズ源が動作することによって、固体撮像素子に供給される電源電圧が周波数f1[Hz]で変動するものとする。このとき、例えば図4(A)に示したように、容量CTn1の保持タイミングT8と容量CTs1の保持タイミングT12との間で生じるノイズを打ち消すように、容量CTs2の保持タイミングT18aと容量CTn2の保持タイミングT21aを決定する。これを第1の駆動タイミングとして、撮像装置に記憶しておく。
また、電源回路15のDC/DC回路等の常時動作しているようなノイズ源に加えて、第1のノイズ源とは異なる第2のノイズ源が動作することによって、固体撮像素子に供給される電源電圧が周波数f2[Hz]で変動するものとする。このとき、例えば図5に示すように、容量CTn1の保持タイミングT8と容量CTs1の保持タイミングT12との間で生じるノイズを打ち消すように、容量CTs2の保持タイミングT18dと容量CTn2の保持タイミングT21dを決定する。これを第2の駆動タイミングとして、撮像装置に記憶しておく。
そして、固体撮像素子から信号を読み出す際、読み出し開始前に各ノイズ源が動作しているか否かの判定動作を行う。固体撮像素子から信号を読み出す際に、第1のノイズ源が動作していれば、第1の駆動タイミングによって信号の読み出しを行うようにし、第2のノイズ源が動作していれば、第2の駆動タイミングによって信号の読み出しを行うようにする。このようにすることで、動作するノイズ源の組み合わせに応じた適切な駆動パターンで固体撮像素子を駆動し、固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させることができる。
なお、2通りの周波数の例について述べたが、同時に動作するノイズ源の組み合わせ毎に異なるタイミングを記憶しておき、各ノイズ源の動作判定の結果に従って使用する駆動タイミングを選択すればよい。例えば、図1に示した構成の撮像装置では、ストロボ14や、電源回路15のDC/DC回路、レンズ1の鏡筒や絞り2等を駆動するためのモータ16、17、外部機器11と通信を行うための外部I/F部10や無線ユニット18等がノイズ源となる。したがって、電源回路15のDC/DC回路に加えて、モータ16、17が動作したとき、ストロボ14が動作したとき、外部I/F部10や無線ユニット18が動作したときのそれぞれについてノイズ低減に適した駆動パターンを記憶しておけばよい。そして、各ノイズ源の動作判定の結果に従い、使用する駆動タイミングを選択すればよい。
なお、ノイズが最も少なくなるような駆動パターンを求める方法は、第1の実施形態と同様である。レンズやストロボ、無線ユニット等の機器が交換可能である場合には、接続可能な機器のそれぞれについて、同様にノイズ低減に適した駆動パターンを記憶しておけばよい。そして、接続された機器のノイズ源の周波数が取得できるような情報を通信によって取得し、各々の機器が動作した際に使用する駆動タイミングを選択すればよい。通信によって、接続された機器のノイズ源の周波数が取得できないような場合には、本撮影前にプリ撮影として接続された各ノイズ源を同時に動作するノイズ源の組み合わせ毎に駆動させながら、記憶してある各駆動タイミングで遮光画像を取得しておく。そして、同時に動作するノイズ源の組み合わせに応じて、最もノイズが少なくなる駆動タイミングを、該当の機器が動作したときの駆動パターンとして選択すればよい。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。以下、第3の実施形態による固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させるための駆動タイミングの決定方法について説明する。本実施形態に係る撮像装置の構成は、図1に示した第1の実施形態に係る撮像装置の構成と同様であるので、説明は割愛する。また、本実施形態における固体撮像素子の構成や基本的な駆動タイミングは、図2に示した第1の実施形態における固体撮像素子の構成や図3に示した第1の実施形態における固体撮像素子の駆動タイミングと同様であるので、説明は割愛する。
図1に示したような構成の撮像装置においては、固体撮像素子3に供給される電源電圧を変動させるノイズ源となりうる機器や部品が、固体撮像素子の近傍、すなわち撮像装置の内部や撮像装置の至近に配置されている。例えば、ストロボ14等の機器や、電源回路15のDC/DC回路や、レンズ1の鏡筒や絞り2等を駆動するためのモータ16、17や、コンピュータ等の外部機器11と通信を行うための外部インターフェース部10や無線ユニット18等である。なお、図1に示した機器や部品以外にも、動作によって撮像装置の電源及び固体撮像素子周辺の磁場を変動させうる機器や部品はノイズ源となりうる。
これらのノイズ源は、各々のノイズ源毎に固有の周波数で電源変動や電磁波を生じさせるが、特に、電源回路15のDC/DC回路が発する電磁波の周波数については電源供給手段から供給される電圧によっても異なることとなる。例えば、一般的な撮像装置では、電源供給手段として電池が使用される。電池の放電の進み具合等により、電池から供給される電圧が異なるため、DC/DC回路の駆動周波数が変化することでDC/DC回路が発する電磁波の周波数も変化するため、固体撮像素子に供給される電源の変動の周波数が変化してしまう。
固体撮像素子に供給される電源電圧の変動に起因するノイズを低減させるために、適した駆動タイミングは、固体撮像素子に供給される電源電圧の変動周波数によって異なる。そこで本実施形態においては、固体撮像素子から信号を読み出す際に、電源供給手段から電源回路15のDC/DC回路に供給される電源電圧に応じて、ノイズを低減させるために適した駆動パターンを選択する。
例えば、電源供給手段から電源回路15のDC/DC回路に供給される電圧レベルが第1の電圧レベルであるとき、固体撮像素子に供給される電源電圧が周波数f1[Hz]で変動するものとする。このとき、例えば図4(A)に示したように、容量CTn1の保持タイミングT8と容量CTs1の保持タイミングT12との間で生じるノイズを打ち消すように、容量CTs2の保持タイミングT18aと容量CTn2の保持タイミングT21aを決定する。これを第1の駆動タイミングとして、撮像装置に記憶しておく。
また、電源供給手段から電源回路15のDC/DC回路に供給される電圧レベルが第1の電圧レベルより低い第2の電圧レベルであるとき、固体撮像素子に供給される電源電圧が周波数f2[Hz]で変動するものとする。このとき、例えば図5に示したように、容量CTn1の保持タイミングT8と容量CTs1の保持タイミングT12との間で生じるノイズを打ち消すように、容量CTs2の保持タイミングT18dと容量CTn2の保持タイミングT21dを決定する。これを第2の駆動タイミングとして、撮像装置に記憶しておく。
そして、電源供給手段から電源回路15のDC/DC回路に供給される電圧レベルが、第1の電圧レベルと第2の電圧レベルの間の所定の閾値以上であるときには、固体撮像素子から信号を読み出す際に、第1の駆動タイミングを用いるようにする。また、電源供給手段から電源回路15のDC/DC回路に供給される電圧レベルが、第1の電圧レベルと第2の電圧レベルの間の所定の閾値未満であるときには、固体撮像素子から信号を読み出す際に、第2の駆動タイミングを用いるようにする。このようにすることで、電源供給手段から電源回路15のDC/DC回路に供給される電圧レベルに応じた適切な駆動パターンで固体撮像素子を駆動し、固体撮像素子に供給される電源電圧の変動に起因する画質劣化を低減させることができる。
なお、2通りの周波数の例について述べたが、電圧レベルをより子細に分割してそれぞれに異なる駆動タイミングを記憶しておき、電源供給手段から電源回路15のDC/DC回路に供給される電圧レベルに従って、使用する駆動タイミングを選択してもよい。
(本発明の他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、前述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
なお、前記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
3:固体撮像素子 4:撮像信号処理回路 7:メモリ部 12:全体制御・演算部 13:タイミング発生部 15:電源回路 300:画素 CTs1:容量(第1の光信号保持手段) CTn1:容量(第1のノイズ信号保持手段) CTs2:容量(第2の光信号保持手段) CTn2:容量(第2のノイズ信号保持手段) MTs1:第1の光信号転送トランジスタ MTn1:第1のノイズ信号転送トランジスタ MTs2:第2の光信号転送トランジスタ MTn2:第2のノイズ信号転送トランジスタ PTs1:第1の光信号転送パルス PTn1:第1のノイズ信号転送パルス PTs2:第2の光信号転送パルス PTn2:第2のノイズ信号転送パルス

Claims (6)

  1. 複数の画素と、前記複数の画素から出力される光信号を保持する第1の光信号保持手段と、前記複数の画素から出力されるノイズ信号を保持する第1のノイズ信号保持手段と、前記第1の光信号保持手段に接続され、前記第1の光信号保持手段を介して前記光信号を保持する第2の光信号保持手段と、前記第1のノイズ信号保持手段に接続され、前記第1のノイズ信号保持手段を介して前記ノイズ信号を保持する第2のノイズ信号保持手段とを有する固体撮像素子と、
    前記第1のノイズ信号保持手段に前記ノイズ信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで前記第2の光信号保持手段に前記光信号を保持させ、前記第1の光信号保持手段に前記光信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで前記第2のノイズ信号保持手段に前記ノイズ信号を保持させる制御手段とを備えることを特徴とする撮像装置。
  2. 前記第2の光信号保持手段に前記光信号を保持させるタイミング及び前記第2のノイズ信号保持手段に前記ノイズ信号を保持させるタイミングは、重畳される前記ノイズの周期と、前記第1の光信号保持手段が前記光信号を保持するタイミングと、前記第1のノイズ信号保持手段が前記ノイズ信号を保持するタイミングとに基づいて決定されることを特徴とする請求項1記載の撮像装置。
  3. それぞれの周期で前記ノイズを発生させる複数のノイズ源のうち、同時に動作する前記ノイズ源の組み合わせ毎に、前記第2の光信号保持手段に前記光信号を保持させるタイミング及び前記第2のノイズ信号保持手段に前記ノイズ信号を保持させるタイミングを記憶しておき、
    前記制御手段は、前記固体撮像素子からの信号読み出し動作と同時に動作する前記ノイズ源の組み合わせに応じて、前記第2の光信号保持手段に前記光信号を保持させるタイミング及び前記第2のノイズ信号保持手段に前記ノイズ信号を保持させるタイミングを選択することを特徴とする請求項2記載の撮像装置。
  4. 前記第2の光信号保持手段に前記光信号を保持させるタイミング及び前記第2のノイズ信号保持手段に前記ノイズ信号を保持させるタイミングは、さらに供給される電源電圧に基づいて決定されることを特徴とする請求項2又は3記載の撮像装置。
  5. 前記第1のノイズ信号保持手段が前記ノイズ信号を保持するタイミングとの間隔が、重畳される前記ノイズの周期の整数倍になるように前記第2の光信号保持手段に前記光信号を保持させるタイミングが決定され、前記第1の光信号保持手段が前記光信号を保持するタイミングとの間隔が、重畳される前記ノイズの周期の整数倍になるように前記第2のノイズ信号保持手段に前記ノイズ信号を保持させるタイミングが決定されることを特徴とする請求項2〜4の何れか1項に記載の撮像装置。
  6. 複数の画素と、前記複数の画素から出力される光信号を保持する第1の光信号保持手段と、前記複数の画素から出力されるノイズ信号を保持する第1のノイズ信号保持手段と、前記第1の光信号保持手段に接続され、前記第1の光信号保持手段を介して前記光信号を保持する第2の光信号保持手段と、前記第1のノイズ信号保持手段に接続され、前記第1のノイズ信号保持手段を介して前記ノイズ信号を保持する第2のノイズ信号保持手段とを有する固体撮像素子を備える撮像装置の制御方法であって、
    前記複数の画素から出力される前記光信号を前記第1の光信号保持手段に保持し、
    前記複数の画素から出力される前記ノイズ信号を前記第1のノイズ信号保持手段に保持し、
    前記第1のノイズ信号保持手段に前記ノイズ信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで前記第2の光信号保持手段に前記光信号を保持し、
    前記第1の光信号保持手段に前記光信号を保持する際に重畳されたノイズと同位相のノイズが重畳されるタイミングで前記第2のノイズ信号保持手段に前記ノイズ信号を保持することを特徴とする撮像装置の制御方法。
JP2014161712A 2014-08-07 2014-08-07 撮像装置及びその制御方法 Pending JP2016039495A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161712A JP2016039495A (ja) 2014-08-07 2014-08-07 撮像装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161712A JP2016039495A (ja) 2014-08-07 2014-08-07 撮像装置及びその制御方法

Publications (1)

Publication Number Publication Date
JP2016039495A true JP2016039495A (ja) 2016-03-22

Family

ID=55530257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161712A Pending JP2016039495A (ja) 2014-08-07 2014-08-07 撮像装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP2016039495A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228863A (ja) * 2016-06-21 2017-12-28 コニカミノルタ株式会社 放射線画像撮影装置
WO2018207437A1 (ja) * 2017-05-10 2018-11-15 キヤノン株式会社 放射線撮像装置、その駆動方法及び放射線撮像システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017228863A (ja) * 2016-06-21 2017-12-28 コニカミノルタ株式会社 放射線画像撮影装置
WO2018207437A1 (ja) * 2017-05-10 2018-11-15 キヤノン株式会社 放射線撮像装置、その駆動方法及び放射線撮像システム
JP2018191225A (ja) * 2017-05-10 2018-11-29 キヤノン株式会社 放射線撮像装置、その駆動方法及び放射線撮像システム
US10969501B2 (en) 2017-05-10 2021-04-06 Canon Kabushiki Kaisha Radiation imaging apparatus, driving method therefor, and radiation imaging system

Similar Documents

Publication Publication Date Title
US10038868B2 (en) Solid-state image sensing device and electronic device
US10416323B2 (en) Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
US9800809B2 (en) Imaging apparatus, imaging system, and method for reducing a difference in resolutions
JP4929075B2 (ja) 固体撮像装置およびその駆動方法、撮像装置
JP2015061135A (ja) 固体撮像装置
US9432603B2 (en) Imaging apparatus
JP2010028676A (ja) 撮像システムおよび固体撮像素子の駆動方法
JP6739288B2 (ja) 固体撮像装置、その制御方法、撮像システム及びカメラ
JPWO2013128581A1 (ja) 撮像装置、撮像システム、撮像装置の駆動方法
JP2015170863A (ja) 固体撮像装置及びその制御方法、プログラム、記憶媒体
JP4921011B2 (ja) 撮像装置及びその駆動方法
US10560653B2 (en) Image sensing apparatus and control method for performing analog-to-digital conversion
JP5921092B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2016039495A (ja) 撮像装置及びその制御方法
US10834353B2 (en) Image sensor and control method therefor, and image capturing apparatus
JP5219775B2 (ja) 撮像素子及び撮像装置
JP6598837B2 (ja) 撮像装置、撮像システム
JP6242467B2 (ja) 撮像装置、撮像システム
JP2015126367A (ja) 画像処理装置、その制御方法、および制御プログラム、並びに撮像装置
US11284017B2 (en) Image pickup device and storage medium
JP4386296B2 (ja) 半導体固体撮像装置
JP2016015611A (ja) 撮像装置及びその駆動方法
JP2015204583A (ja) 撮像装置
JP2011188380A (ja) 固体撮像装置