JP2016036430A - Dental diagnostic apparatus - Google Patents

Dental diagnostic apparatus Download PDF

Info

Publication number
JP2016036430A
JP2016036430A JP2014160156A JP2014160156A JP2016036430A JP 2016036430 A JP2016036430 A JP 2016036430A JP 2014160156 A JP2014160156 A JP 2014160156A JP 2014160156 A JP2014160156 A JP 2014160156A JP 2016036430 A JP2016036430 A JP 2016036430A
Authority
JP
Japan
Prior art keywords
light
laser
fiber
diagnostic apparatus
dental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014160156A
Other languages
Japanese (ja)
Inventor
松浦 祐司
Yuji Matsuura
祐司 松浦
周平 笹澤
Shuhei Sasazawa
周平 笹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014160156A priority Critical patent/JP2016036430A/en
Publication of JP2016036430A publication Critical patent/JP2016036430A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dental diagnostic apparatus that performs a component analysis of a tooth by a laser-induced breakdown spectroscopy, and based on the result, diagnoses "dental caries."SOLUTION: An optical pulse generated from a laser light source 1 is transmitted by a light irradiation fiber 2 and irradiated to a tooth. Plasma light generated then is detected by a light detection fiber 3, and transmitted to a spectroscope 4. A spectroscopic spectrum of the plasma light is measured by the spectroscope 4, the result is analyzed by an analysis/control device 5, an element concentration is calculated, and the result of dental caries diagnosis is displayed.SELECTED DRAWING: Figure 1

Description

本発明は,歯科診断装置に関するものであり,特にレーザー誘起ブレークダウン分光法によって歯牙の成分分析を行い,その結果をもとに「う蝕」の診断を行うことが可能な歯科診断装置に関する.   The present invention relates to a dental diagnostic apparatus, and more particularly to a dental diagnostic apparatus capable of performing dental component analysis by laser-induced breakdown spectroscopy and diagnosing “caries” based on the result.

レーザー光パルスを物体に照射した際に発生するプラズマ光には,光照射された物体を構成する各元素のスペクトルが含まれるため,分光器によってプラズマ光を分析することにより,物体の含有元素の濃度分析が可能であり,この分析手法をレーザー誘起ブレークダウン分光法と呼ぶ.   Since the plasma light generated when the object is irradiated with a laser light pulse contains the spectrum of each element composing the irradiated object, analyzing the plasma light with a spectroscope allows the analysis of the elements contained in the object. Concentration analysis is possible, and this analysis method is called laser-induced breakdown spectroscopy.

歯牙はハイドロキシアパタイトを中心とし,様々な無機物で構成され,それらの含有量はう蝕の状態により変化するため,レーザー誘起ブレークダウン分光法を用いて,ある特定の元素の濃度分析を行えば,歯牙のう蝕を定量的に検出することが可能である.
特開2013−036779公報 特表2004−521714公報
Teeth are mainly composed of hydroxyapatite and are composed of various inorganic substances, and their contents vary depending on the caries state. Therefore, if laser-induced breakdown spectroscopy is used to analyze the concentration of a specific element, It is possible to detect dental caries quantitatively.
JP 2013-036779 A Special table 2004-521714 gazette

現在,う蝕診断はの患者への問診や探針による触診,歯牙の視診を総合し,歯科医師の主観によって行われているが,これは痛みを伴うといった負担や,診断精度が歯科医師の熟練度に依存するといった課題がある.特に初期状態のう蝕はエナメル質の白濁や色素沈着,わずかなう窩といった変化しか起こらずに痛みも少ないため,問診や視診での判断は容易ではなく,見逃しや診断精度のばらつきが表れることが多い   At present, caries diagnosis is conducted by subjecting the patient, palpating with a probe, and visual inspection of the tooth, and is performed by the dentist's subjectivity. There is a problem that depends on the skill level. In particular, caries in the initial state only changes, such as enamel white turbidity, pigmentation, and slight cavities, and there is little pain, so it is not easy to make judgments during interviews and inspections, and oversight and variation in diagnostic accuracy may occur. There are many

またレーザー誘起ブレークダウン分光法を用いたう蝕検出方法の報告もあるが,これらの報告では可視域に特徴的なピークを持つ炭素,マグネシウム,ストロンチウムなどの元素を基準に歯牙の健康状態の判別が行われていた.しかし,う蝕がかなり進んだ状態においては状態判別が可能なことが示されているものの,初期う蝕の断定においては検出感度や判断精度が不十分であった.   There are also reports of caries detection methods using laser-induced breakdown spectroscopy. In these reports, discrimination of dental health based on elements such as carbon, magnesium, and strontium that have characteristic peaks in the visible range. Was done. However, although it has been shown that the state can be discriminated when the caries has progressed considerably, the detection sensitivity and the judgment accuracy are insufficient in the determination of the initial caries.

本発明は従来の歯科診断装置がもつ上記の問題点を解決するために考案されたものであり,初期う蝕を正確に検出し,元素の含有量を元にした定量的なう蝕進行度の状態診断が行えるため,初期う蝕の見逃しや健常歯の過切削などを防ぎ,患者にとって負担の少ない治療を可能とする歯科診断装置を実現することを目的としている.   The present invention has been devised to solve the above-mentioned problems of conventional dental diagnosis devices, and can accurately detect initial caries and quantitatively evaluate the progress of caries based on the elemental content. The purpose of this study is to realize a dental diagnosis device that can prevent oversight of initial caries and overcutting of healthy teeth, enabling treatment with less burden on patients.

上記課題を解決するために,レーザー誘起ブレークダウン分光法を用いた歯科診断装置であって,レーザー光パルスを発生するレーザー光源と,レーザー光パルスを歯牙まで伝送する光照射用ファイバと,レーザー照射により発生したプラズマ光を検出する光検出用ファイバと,プラズマ光を測定するための分光器を備え,分光器により測定されたスペクトルを基準に診断を行う歯科診断装置を提供する.   In order to solve the above problems, a dental diagnostic apparatus using laser-induced breakdown spectroscopy, a laser light source that generates a laser light pulse, a light irradiation fiber that transmits the laser light pulse to a tooth, and laser irradiation We provide a dental diagnostic device that has a light detection fiber that detects the plasma light generated by the sensor and a spectroscope for measuring the plasma light, and makes a diagnosis based on the spectrum measured by the spectroscope.

また,前記分光器が紫外光を分析可能であることを特徴とする歯科診断装置であってもよい.   The spectroscope may be a dental diagnostic apparatus characterized by being able to analyze ultraviolet light.

また,前記歯科診断装置が,紫外光領域に出現する亜鉛の発光スペクトル強度を基準に診断を行うことを特徴とするものであってもよい.   Further, the dental diagnostic apparatus may be characterized in that the diagnosis is performed based on the emission spectrum intensity of zinc appearing in the ultraviolet region.

また,前記歯科診断装置が,紫外光領域に出現する亜鉛の発光スペクトル強度とカルシウムの発光スペクトル強度の強度比を基準に診断を行うことを特徴とするものであってもよい.   The dental diagnostic apparatus may be characterized in that a diagnosis is performed based on an intensity ratio between an emission spectrum intensity of zinc appearing in an ultraviolet light region and an emission spectrum intensity of calcium.

また,前記光照射用ファイバが中空光ファイバであることを特徴とする歯科診断装置であってもよい.   In addition, a dental diagnostic apparatus characterized in that the light irradiation fiber is a hollow optical fiber.

また,前記光検出用ファイバが中空光ファイバであり,前記光照射用ファイバと同一であることを特徴とする歯科診断装置であってもよい.   The optical detection fiber may be a hollow optical fiber, and may be the same as the light irradiation fiber.

また,前記歯科診断装置が,歯牙を切削するためのレーザー治療装置をさらに備えたものであってもよい.   The dental diagnostic apparatus may further include a laser treatment apparatus for cutting teeth.

また,前記レーザー治療装置が前記分光器により測定されたスペクトルを基準にレーザー照射を停止することを特徴とする歯科診断装置であってもよい.   The dental treatment apparatus may be characterized in that the laser treatment apparatus stops laser irradiation based on a spectrum measured by the spectrometer.

以下,図面に基づいて本発明の実施の形態を説明する.図1は,本発明の実施の形態の一例を示す歯科診断装置の構成図である.レーザー光源1から発生する光パルスは,光照射用ファイバ2によって伝送され,歯牙に照射される.その際に発生するプラズマ光を光検出用ファイバ3によって検出し,分光器4まで伝送する.分光器4ではプラズマ光の分光スペクトルを測定しその結果を分析・制御装置5によって分析し,元素濃度の計算を行うとともに,う蝕診断の結果を表示する.また分析・制御装置5はレーザー光源1に接続されており,光源の光パルスに同期してスペクトル検出を行う.   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a dental diagnosis apparatus showing an example of an embodiment of the present invention. The light pulse generated from the laser light source 1 is transmitted by the light irradiating fiber 2 and irradiated on the teeth. Plasma light generated at that time is detected by the optical detection fiber 3 and transmitted to the spectrometer 4. The spectroscope 4 measures the spectral spectrum of the plasma light, analyzes the result by the analysis / control device 5, calculates the element concentration, and displays the result of the caries diagnosis. The analysis / control device 5 is connected to the laser light source 1 and performs spectrum detection in synchronization with the light pulse of the light source.

レーザー光源1としては,波長1064 nm のQスイッチネオジウムヤグ(Nd:YAG)レーザーが好適であり,パルス幅は7から8 ns程度であること好ましい.また,光照射用ファイバ2としては,高ピークパワー光伝送に有利な中空光ファイバを利用することが好ましい.レーザー光源1の光はレンズを用いて光照射用ファイバ2の入射端に集光され,レーザー光を歯牙表面まで導く.光照射用ファイバ2の先端部において歯牙表面から発生したプラズマ光は,石英ガラスファイバなどので光検出用ファイバ3によって検出され,ファイバ入射型分光器4でスペクトル測定を行うが,測定する波長範囲は 200nmから800nmであり,特に200-350nmの紫外光領域を含むことが望ましい.そのため,光検出用ファイバ3は紫外領域において充分な低損失性を有する必要がある.また,正確な測定を行うために分光器4は,0.2nm以下の分解能をもつことが好ましい.なお,測定の際には,低濃度元素の検出を目的として,中空ファイバを介してサンプル表面にArガスを噴射するとプラズマの発生効率が向上する.
As the laser light source 1, a Q-switch neodymium yag (Nd: YAG) laser with a wavelength of 1064 nm is suitable, and the pulse width is preferably about 7 to 8 ns. As the light irradiation fiber 2, it is preferable to use a hollow optical fiber that is advantageous for high peak power light transmission. The light from the laser light source 1 is focused on the incident end of the light irradiating fiber 2 using a lens, and the laser light is guided to the tooth surface. The plasma light generated from the tooth surface at the tip of the light irradiating fiber 2 is detected by the light detecting fiber 3 such as a silica glass fiber, and spectrum measurement is performed by the fiber incident spectroscope 4, but the wavelength range to be measured is It is desirable to include the ultraviolet light region of 200 to 350 nm, especially 200 to 350 nm. Therefore, the optical detection fiber 3 needs to have a sufficiently low loss in the ultraviolet region. In order to perform accurate measurement, the spectrometer 4 preferably has a resolution of 0.2 nm or less. In the measurement, for the purpose of detecting low-concentration elements, Ar gas is injected onto the sample surface through a hollow fiber to improve the plasma generation efficiency.

光照射用ファイバ2は,光検出用ファイバ3を兼ねることも可能であり,その際は光照射用ファイバ2の入射端にビームスプリッタを配置し,検出光の光路を照射用レーザー光の光路から分離して分光器4へと導く.こうすることによって,ファイバの構造が単純化され,より細径かつ柔軟な測定用ファイバプローブを構成することが可能である.   The light irradiating fiber 2 can also serve as the light detecting fiber 3. In this case, a beam splitter is disposed at the incident end of the light irradiating fiber 2, and the optical path of the detection light is changed from the optical path of the irradiating laser light. Separate and guide to spectrometer 4. By doing so, the structure of the fiber is simplified, and it is possible to construct a fiber probe for measurement that is thinner and more flexible.

図2は健常歯およびう蝕歯のスペクトルの測定例である.光照射用ファイバ2の出射端における光パルスエネルギーを20 mJ程度とし,積分時間100 msで50回測定し,その平均値をグラフに示している.歯牙の最表層にあるエナメル質は,リン酸カルシウムの結晶であるハイドロキシアパタイトと金属などの微小成分を含む無機質が96%を占め,残りは3%程度の水とタンパク質や脂質等の有機物が1%程度で構成される.図2に示すように,主成分であるリン酸カルシウムのほかに微量成分である亜鉛が検出されており,亜鉛のスペクトルピークは,う蝕の進行に起因して大きく増大している.これは無機元素の中でも亜鉛はエナメル質表層に高い濃度で存在し,歯牙組織のう蝕によって,ハイドロキシアパタイトの結晶が脱灰すると同時に,様々な無機元素も析出するが,特に初期う蝕ではエナメル質のごく表層で発生するため,亜鉛が他の物質に比べてう蝕による結晶構造変化の影響を大きく受けるためである.そのため,亜鉛のスペクトルピーク強度を基準とすることにより初期う蝕を高い精度で検出することが可能である.また亜鉛の他にもマグネシウムやストロンチウムのスペクトルピーク強度を基準とすることも可能である.   Figure 2 shows an example of the spectrum measurement of healthy and carious teeth. The optical pulse energy at the exit end of the fiber 2 for light irradiation is about 20 mJ, measured 50 times with an integration time of 100 ms, and the average value is shown in the graph. The enamel on the outermost layer of the tooth is composed of calcium phosphate crystal hydroxyapatite and minerals containing fine components such as metals, accounting for 96%, and the remaining about 3% water and organic matter such as proteins and lipids about 1%. As shown in Fig. 2, in addition to the main component calcium phosphate, a trace component of zinc is detected, and the spectrum peak of zinc is greatly increased due to the progress of caries. . Among inorganic elements, zinc is present at a high concentration in the enamel surface layer, and hydroxyapatite crystals are demineralized simultaneously with dental caries, and various inorganic elements are precipitated. This is because zinc is greatly affected by changes in the crystal structure due to caries compared to other materials because it occurs on the surface layer of high quality. Therefore, it is possible to detect initial caries with high accuracy by using the spectral peak intensity of zinc as a reference. In addition to zinc, the spectral peak intensity of magnesium and strontium can be used as a reference.

また図2ではう蝕歯においてカルシウムのスペクトルピーク強度が低下している.これはハイドロキシアパタイトの結晶が脱灰して濃度が低下するためである.そこで亜鉛のピーク強度とカルシウムのピーク強度の比を基準とすることにより,さらに高い精度の検出が可能となるとともに,レーザー光強度やプラズマ光強度のばらつきによる影響を低減することができる.   In Fig. 2, the spectral peak intensity of calcium is decreased in carious teeth. This is because the hydroxyapatite crystals decalcify and the concentration decreases. Therefore, by using the ratio between the peak intensity of zinc and the peak intensity of calcium as a reference, it is possible to detect with higher accuracy and to reduce the influence of variations in laser light intensity and plasma light intensity.

図3は,測定値から亜鉛とカルシウムのスペクトルピークの強度比を計算した散布図である.健常歯と初期う蝕歯との差が明確に確認でき,強度比の平均値は,健常歯が0.0044,初期う蝕歯は0.013,象牙質う蝕歯は0.017で,その値に大きな差があることが分かる.また,散布図から,0.008付近に診断の境界線を引くことで,健常歯と初期う蝕を含むう蝕歯をほとんど区別できることも分かる.確度についても境界線を元に計算すると,健常歯は98.2%,初期う蝕は85.2%,象牙質う蝕は96.6%と精度の高い判別が可能である.   Fig. 3 is a scatter diagram in which the intensity ratio of the spectral peak of zinc and calcium is calculated from the measured values. The difference between the healthy teeth and the initial carious teeth can be clearly confirmed, and the average value of the intensity ratio is 0.0044 for the healthy teeth, 0.013 for the initial carious teeth, and 0.017 for the dentine carious teeth. I understand. It can also be seen from the scatter plot that a normal line and a carious tooth including the initial caries can be almost distinguished by drawing a diagnostic boundary around 0.008. When the accuracy is calculated based on the boundary line, it is possible to discriminate with high accuracy: 98.2% for healthy teeth, 85.2% for initial caries and 96.6% for dentin caries.

また,亜鉛,マグネシウム,ストロンチウムなどのう蝕の診断基準となる成分のスペクトルピーク強度は,う蝕部を切削することにより減少する.そのため,切削を行いながらこれらの成分のピーク強度を測定することにより,う蝕部の完全な除去が終了したことを客観的に判断することが可能である.エルビウムヤグレーザーなどを用いた歯牙治療システムと本発明の歯科診断システムを組み合わせることにより,レーザーによるう蝕の切削中に,診断基準となる成分のスペクトルピーク強度が基準値を下回ることを検出し,自動的に切削用レーザーを停止するようなシステムを構成することも可能である.   In addition, the spectral peak intensities of components that are diagnostic criteria for caries such as zinc, magnesium, and strontium are reduced by cutting the caries. Therefore, it is possible to objectively judge that the complete removal of the caries has been completed by measuring the peak intensity of these components while cutting. By combining a dental treatment system using an erbium yag laser or the like and the dental diagnosis system of the present invention, it is detected that the spectral peak intensity of a component serving as a diagnostic reference is lower than the standard value during the caries cutting by laser. It is also possible to configure a system that automatically stops the cutting laser.

本発明の実施の形態を示す歯科診断装置の構成図である.It is a block diagram of the dental diagnosis apparatus which shows embodiment of this invention. 本発明の歯科診断装置によって測定された健常歯およびう蝕歯の発光スペクトルである.It is the emission spectrum of a healthy tooth and a carious tooth measured by the dental diagnostic apparatus of the present invention. 本発明の歯科診断装置によって測定された健常歯およびう蝕歯の発光スペクトルから計算した,亜鉛とカルシウムのピーク強度比の散布図である.It is a scatter diagram of the peak intensity ratio of zinc and calcium calculated from the emission spectra of healthy and carious teeth measured by the dental diagnostic apparatus of the present invention.

1 レーザー光源
2 光照射用ファイバ
3 光検出用ファイバ
4 分光器
5 分析・制御装置
DESCRIPTION OF SYMBOLS 1 Laser light source 2 Light irradiation fiber 3 Optical detection fiber 4 Spectrometer 5 Analysis and control apparatus

Claims (8)

レーザー誘起ブレークダウン分光法を用いた歯科診断装置であって,
レーザー光パルスを発生するレーザー光源と,前記レーザー光パルスを歯牙まで伝送する光照射用ファイバと,
レーザー照射により発生したプラズマ光を検出する光検出用ファイバと,
前記プラズマ光を測定するための分光器を備え,前記分光器により測定されたスペクトルを基準に診断を行う歯科診断装置.
A dental diagnostic device using laser-induced breakdown spectroscopy,
A laser light source for generating a laser light pulse, a light irradiation fiber for transmitting the laser light pulse to a tooth,
A light detection fiber for detecting plasma light generated by laser irradiation;
A dental diagnostic apparatus comprising a spectroscope for measuring the plasma light, and performing a diagnosis based on a spectrum measured by the spectroscope.
前記分光器が紫外光を分析可能であることを特徴とする請求項1に記載の歯科診断装置.   The dental diagnostic apparatus according to claim 1, wherein the spectroscope is capable of analyzing ultraviolet light. 紫外光領域に出現する亜鉛の発光スペクトル強度を基準に診断を行うことを特徴とする請求項1に記載の歯科診断装置.   The dental diagnostic apparatus according to claim 1, wherein diagnosis is performed based on an emission spectrum intensity of zinc appearing in an ultraviolet light region. 紫外光領域に出現する亜鉛の発光スペクトル強度とカルシウムの発光スペクトル強度の比を基準に診断を行うことを特徴とする請求項1に記載の歯科診断装置.   The dental diagnostic apparatus according to claim 1, wherein diagnosis is performed based on a ratio of an emission spectrum intensity of zinc appearing in an ultraviolet light region and an emission spectrum intensity of calcium. 前記光照射用ファイバが中空光ファイバであることを特徴とする請求項1に記載の歯科診断装置.   The dental diagnostic apparatus according to claim 1, wherein the light irradiation fiber is a hollow optical fiber. 前記光検出用ファイバが中空光ファイバであり,前記光照射用ファイバと同一であることを特徴とする請求項1に記載の歯科診断装置.   The dental diagnostic apparatus according to claim 1, wherein the light detection fiber is a hollow optical fiber, and is the same as the light irradiation fiber. 歯牙を切削するためのレーザー治療装置をさらに備えた請求項1に記載の歯科診断装置.   The dental diagnostic apparatus according to claim 1, further comprising a laser treatment apparatus for cutting a tooth. 前記レーザー治療装置が前記分光器により測定されたスペクトルを基準にレーザー照射を停止することを特徴とする請求項7に記載の歯科診断装置.   8. The dental diagnosis apparatus according to claim 7, wherein the laser treatment apparatus stops laser irradiation based on a spectrum measured by the spectrometer.
JP2014160156A 2014-08-06 2014-08-06 Dental diagnostic apparatus Pending JP2016036430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160156A JP2016036430A (en) 2014-08-06 2014-08-06 Dental diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160156A JP2016036430A (en) 2014-08-06 2014-08-06 Dental diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2016036430A true JP2016036430A (en) 2016-03-22

Family

ID=55528089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160156A Pending JP2016036430A (en) 2014-08-06 2014-08-06 Dental diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP2016036430A (en)

Similar Documents

Publication Publication Date Title
Hibst et al. Detection of occlusal caries by laser fluorescence: basic and clinical investigations
Samek et al. Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth
US11202918B2 (en) Eye treatment system
WO2007025377A1 (en) Interproximal tooth defects detection
Samek et al. Clinical application of laser-induced breakdown spectroscopy to the analysis of teeth and dental materials
Sasazawa et al. Optical-fiber-based laser-induced breakdown spectroscopy for detection of early caries
WO2014097135A1 (en) Dental apparatus and method of utilizing the same
Buchalla et al. Fluorescence spectroscopy of dental calculus
Ko et al. Diagnosis and staging of caries using spectral factors derived from the blue laser-induced autofluorescence spectrum
Kekkonen et al. Chemical imaging of human teeth by a time-resolved Raman spectrometer based on a CMOS single-photon avalanche diode line sensor
Abrams et al. In vitro detection of caries around amalgam restorations using four different modalities
Oancea et al. In vitro evaluation of laser fluorescence devices for caries detection through stereomicroscopic imaging
US10010250B2 (en) Dental apparatus and method of utilizing the same
JP2016036430A (en) Dental diagnostic apparatus
KR20180071088A (en) Apparatus and method for tooth screening
RU2365327C1 (en) Automated device for stomatology diagnostics
Saggu et al. Raman microspectroscopy/micro‐optical coherence tomography approach for chairside diagnosis of periodontal diseases: A pilot study
KR101828019B1 (en) Device for diagnosis of incipient caries using fluorescence spectrum and image
Thomas et al. Investigation of in vitro dental erosion by optical techniques
JPH0871092A (en) Initial dental caries detector
Wang et al. Fluorescence spectrometry based chromaticity mapping, characterization, and quantitative assessment of dental caries
KR101787721B1 (en) Device for diagnosis of incipient caries using fluorescence spectrum
JP2004163131A (en) Tooth caries detector using laser beam
Chung et al. Image-guided removal of occlusal caries lesions with a λ= 9.3-µm CO2 laser using near-IR transillumination
Kekkonen et al. Time-and spectrally-resolved mesoscopic Raman and fluorescence imaging of carious enamel by a CMOS SPAD-based spectrometer