JP2016033679A - Optical instrument - Google Patents

Optical instrument Download PDF

Info

Publication number
JP2016033679A
JP2016033679A JP2015219302A JP2015219302A JP2016033679A JP 2016033679 A JP2016033679 A JP 2016033679A JP 2015219302 A JP2015219302 A JP 2015219302A JP 2015219302 A JP2015219302 A JP 2015219302A JP 2016033679 A JP2016033679 A JP 2016033679A
Authority
JP
Japan
Prior art keywords
lens
power consumption
aperture
diaphragm
focus adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015219302A
Other languages
Japanese (ja)
Other versions
JP6008035B2 (en
Inventor
雅之 神村
Masayuki Kamimura
雅之 神村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2015219302A priority Critical patent/JP6008035B2/en
Publication of JP2016033679A publication Critical patent/JP2016033679A/en
Application granted granted Critical
Publication of JP6008035B2 publication Critical patent/JP6008035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Diaphragms For Cameras (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical instrument capable of stopping a lens at a position where electric power consumption is small without causing image blur.SOLUTION: An optical instrument includes: a lens drive device which is supplied with electric power from a camera body and drives a focus regulation lens; a diaphragm driving device which drives a diaphragm; and a drive control device which stops the focus regulation lens at a position where the lens can be held by small electric power consumption and which controls the diaphragm driving device so as to regulate an opening amount of the diaphragm in which a focal position by the focus regulation lens is settled within depth of a focus. Thus, lens position control devices S04 to S06 for controlling an AF motor can stop the lens at a position where electric power consumption is small without causing image blur.SELECTED DRAWING: Figure 7

Description

本発明は、光学機器に関し、より詳しくは、レンズ駆動装置を制御するレンズ位置制御装置に関する。   The present invention relates to an optical apparatus, and more particularly to a lens position control device that controls a lens driving device.

従来、デジタルカメラにおいて、低消費電力化に向けた多様な開発が行われている。そのひとつに、手振れ補正機構に用いられるステッピングモータにおける消費電力を抑える構成が知られている(特許文献1)。この構成では、ステッピングモータの磁極が手振れ補正後に停止した位置からより安定な位置に移動され、その後に励磁電力の供給が止められる構成である。この構成により、撮像時ふいに磁極が安定な位置に移動することによる像ブレを防ぎ、かつ、消費電力を抑える効果がある。この構成は、ステッピングモータを用いてレンズの位置を制御するオートフォーカス機構にも応用することが可能である。   Conventionally, various developments for reducing power consumption have been made in digital cameras. For example, a configuration that suppresses power consumption in a stepping motor used in a camera shake correction mechanism is known (Patent Document 1). In this configuration, the magnetic pole of the stepping motor is moved from the position where it was stopped after the camera shake correction to a more stable position, and then the supply of excitation power is stopped. With this configuration, there is an effect of preventing image blur due to movement of the magnetic pole to a stable position during imaging and suppressing power consumption. This configuration can also be applied to an autofocus mechanism that controls the position of the lens using a stepping motor.

特開2006−158019号公報JP 2006-158019 A

しかし、上述した構成を、オートフォーカス機構へ適用する場合、磁極を電力の消費が少ない位置へ単に移動させると問題が生じる。これは、磁極の停止位置がレンズの停止位置と連動するためである。つまり、磁極の移動前に合焦していても移動後には像のぼけが生ずる可能性がある。この像のぼけは、受光画素ピッチが小さくなるにつれて著しく目立つ傾向にある。つまり、近年の、画像高解像度化のために画素数を飛躍的に増大させた撮像素子を搭載したデジタルカメラにおいては受光画素ピッチが小さいため、像のぼけは看過できない。そこで、本発明では、像のぼけが生じることがなく、かつ、電力の消費が少ない位置にレンズすなわち磁極を停止させることができる光学機器の提供を目的としている。   However, when the configuration described above is applied to an autofocus mechanism, a problem arises if the magnetic pole is simply moved to a position where power consumption is low. This is because the stop position of the magnetic pole is interlocked with the stop position of the lens. That is, even if the magnetic pole is focused before the movement, the image may be blurred after the movement. This blurring of the image tends to be noticeable as the light receiving pixel pitch decreases. That is, in recent digital cameras equipped with an image sensor in which the number of pixels is dramatically increased to increase the resolution of the image, the light receiving pixel pitch is small, so that the image blur cannot be overlooked. Accordingly, an object of the present invention is to provide an optical apparatus that can stop a lens, that is, a magnetic pole, at a position where image blurring does not occur and power consumption is low.

本発明に係る光学機器は、電力を供給されて焦点調節レンズを駆動するレンズ駆動手段と、絞りを駆動する絞り駆動手段と、焦点調節レンズを低消費電力で保持可能な位置にて停止させるとともに、焦点調節レンズによる焦点位置が焦点深度に収まるように絞りの開口量を調整する絞り駆動手段を制御する絞り駆動制御手段とを備えることを特徴とする。   The optical apparatus according to the present invention stops the lens driving unit that is supplied with electric power to drive the focus adjustment lens, the diaphragm drive unit that drives the aperture stop, and the position where the focus adjustment lens can be held with low power consumption. And an aperture drive control means for controlling an aperture drive means for adjusting the aperture amount of the aperture so that the focus position by the focus adjustment lens falls within the depth of focus.

レンズ駆動手段は、ハーフステップ及びマイクロステップ駆動が可能なステッピングモータを有し、駆動制御手段は、ステッピングモータが最低消費電力で焦点調節レンズを保持可能な1相駆動状態となる1相位置へ移動制御することが好ましい。   The lens driving means has a stepping motor capable of half-step and micro-step driving, and the drive control means moves to a one-phase position where the stepping motor is in a one-phase driving state capable of holding the focus adjustment lens with minimum power consumption. It is preferable to control.

レンズとレンズを駆動するレンズ駆動手段とレンズ駆動手段を制御するCPUと、CPUの演算速度を落とすことによってCPUの消費電力を下げるCPU電力制御手段と、レンズ駆動手段への励磁電圧を下げることによってレンズ駆動手段の消費電力を下げる励磁制御手段とをさらに備えていても良い。   A lens, a lens driving means for driving the lens, a CPU for controlling the lens driving means, a CPU power control means for reducing the power consumption of the CPU by reducing the calculation speed of the CPU, and an excitation voltage to the lens driving means. Excitation control means for reducing the power consumption of the lens driving means may be further provided.

本発明に係るカメラは、カメラボディと、カメラボディに装着されるレンズ鏡筒と、レンズ鏡筒に設けられ、カメラボディから電力を供給されて焦点調節レンズを駆動するレンズ駆動手段と、絞りを駆動する絞り駆動手段と、焦点調節レンズを低消費電力で保持可能な位置にて停止させるとともに、焦点調節レンズによる焦点位置が焦点深度に収まるように絞りの開口量を調整するように絞り駆動手段を制御する絞り駆動制御手段とを備えることを特徴とする。   A camera according to the present invention includes a camera body, a lens barrel attached to the camera body, a lens driving unit that is provided in the lens barrel and that is supplied with electric power from the camera body to drive the focus adjustment lens, and a diaphragm. A stop driving means for driving and a stop driving means for stopping the focus adjusting lens at a position where it can be held with low power consumption and adjusting the aperture of the stop so that the focus position by the focus adjusting lens is within the depth of focus. And a diaphragm drive control means for controlling the movement.

本発明によれば、像のぼけが生じることがなく、かつ、電力の消費が少ない位置にレンズすなわち磁極を停止させることが出来る光学機器を提供することが可能となる。   According to the present invention, it is possible to provide an optical apparatus capable of stopping a lens, that is, a magnetic pole, at a position where image blur does not occur and power consumption is low.

本発明の実施形態を適用したカメラを表す全体図である。It is a general view showing the camera to which the embodiment of the present invention is applied. 本発明の実施形態を適用したカメラからレンズを外した図である。It is the figure which removed the lens from the camera to which the embodiment of the present invention is applied. 本発明の本実施形態を適用したカメラの電気的なブロック図である。It is an electrical block diagram of the camera to which this embodiment of this invention is applied. 本発明の実施形態を適用したステッピングモータの模式図である。It is a schematic diagram of a stepping motor to which an embodiment of the present invention is applied. 本発明の実施形態を適用したステッピングモータに入力される電圧を表す図である。It is a figure showing the voltage input into the stepping motor to which embodiment of this invention is applied. 本発明の本実施形態におけるステッピングモータのマイクロステップ駆動時の消費電力を表したグラフである。It is a graph showing the power consumption at the time of the micro step drive of the stepping motor in this embodiment of this invention. 本発明の実施形態におけるエコモード移行時のフローチャートである。It is a flowchart at the time of eco-mode transition in the embodiment of the present invention. 本発明の実施形態におけるF値と許容レンズ移動量との関係を表すテーブルである。It is a table showing the relationship between F value and the allowable lens movement amount in the embodiment of the present invention. 本発明の本実施形態におけるステッピングモータの磁極の位相と消費電力の関係を表す図である。It is a figure showing the relationship between the phase of the magnetic pole of the stepping motor in this embodiment of this invention, and power consumption. 本発明の本実施形態におけるステッピングモータの磁極の位相と消費電力の関係を表す図である。It is a figure showing the relationship between the phase of the magnetic pole of the stepping motor in this embodiment of this invention, and power consumption. 本発明の実施形態におけるエコモード解除時のフローチャートである。It is a flowchart at the time of cancellation | release of eco mode in embodiment of this invention.

以下、本発明の一実施形態を、図面を参照して説明する。図1はレンズ交換式カメラの外観を示し、図2はカメラボディ10からレンズ鏡筒15を外した状態を示している。このカメラシステムにおいてレンズ鏡筒15はカメラボディ10に対して着脱自在である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the appearance of the interchangeable lens camera, and FIG. 2 shows a state in which the lens barrel 15 is removed from the camera body 10. In this camera system, the lens barrel 15 is detachable from the camera body 10.

カメラボディ10のレンズマウント11の内周側には、複数の電気接点12が円弧状に配置されている。電気接点12の下側には、撮像素子(不図示)を収容した撮像素子ユニット13が設けられる。カメラボディ10の電源がオン状態であるとき、撮像素子によって動画像が得られ、ライブビューとしてモニタ(不図示)に表示可能である。カメラボディ10の上面にはシャッタボタン14が設けられる。   A plurality of electrical contacts 12 are arranged in an arc shape on the inner peripheral side of the lens mount 11 of the camera body 10. An image sensor unit 13 that houses an image sensor (not shown) is provided below the electrical contact 12. When the camera body 10 is powered on, a moving image is obtained by the image sensor and can be displayed on a monitor (not shown) as a live view. A shutter button 14 is provided on the upper surface of the camera body 10.

図3を参照して、このレンズ交換式カメラの電気的構成を説明する。カメラボディ10に設けられたカメラプロセッサ20には、レンズ鏡筒15へ電力を供給するカメラボディ側レンズ電源22と、レンズで集められた光を電気信号に変換するイメージセンサ24とが接続される。カメラボディ側レンズ電源22及びイメージセンサ24は、カメラプロセッサ20によって制御される。   The electrical configuration of this interchangeable lens camera will be described with reference to FIG. A camera processor 20 provided in the camera body 10 is connected to a camera body side lens power source 22 that supplies power to the lens barrel 15 and an image sensor 24 that converts light collected by the lens into an electrical signal. . The camera body side lens power supply 22 and the image sensor 24 are controlled by the camera processor 20.

レンズ鏡筒15に設けられたレンズCPU30には、レンズCPU30に電力を供給するレンズ側レンズ電源32が接続される。また、レンズCPU30には、AFレンズ(焦点調節レンズ)34の位置を制御するAFモータ36(レンズ駆動手段)及びAFモータ36へ電圧を制御するモータドライバ38が接続される。AFモータ36及びモータドライバ38は共に、レンズCPU30に制御され電力を供給される。また、レンズ位置センサ40はAFレンズ34に接続され、AFレンズ34の位置をレンズCPU30へ伝達する。絞りモータ42は、レンズCPU30に接続されて制御され、減速駆動機構43(絞り駆動制御手段)を介して絞り44を駆動制御して絞り値を調整する。   A lens-side lens power supply 32 that supplies power to the lens CPU 30 is connected to the lens CPU 30 provided in the lens barrel 15. The lens CPU 30 is connected to an AF motor 36 (lens driving means) that controls the position of the AF lens (focus adjustment lens) 34 and a motor driver 38 that controls the voltage to the AF motor 36. Both the AF motor 36 and the motor driver 38 are controlled by the lens CPU 30 and supplied with electric power. The lens position sensor 40 is connected to the AF lens 34 and transmits the position of the AF lens 34 to the lens CPU 30. The aperture motor 42 is connected to and controlled by the lens CPU 30 and adjusts the aperture value by driving the aperture 44 via a deceleration drive mechanism 43 (aperture drive control means).

カメラプロセッサ20とレンズCPU30とは電気接点12(図2参照)によって接続されて通信可能である。また、カメラボディ側レンズ電源22とレンズ側レンズ電源32とは電気接点12によって接続されて、レンズ側レンズ電源32はカメラボディ側レンズ電源22から電力を供給される。   The camera processor 20 and the lens CPU 30 are connected by an electrical contact 12 (see FIG. 2) and can communicate with each other. The camera body side lens power source 22 and the lens side lens power source 32 are connected by an electrical contact 12, and the lens side lens power source 32 is supplied with power from the camera body side lens power source 22.

図4は、AFモータ36に備えられるステッピングモータ50の模式図である。図5は、固定子であるコイルA〜Dに印加される電圧と、回転子である磁極60の位相との関係表した図である。図5の横軸は磁極60の位相を表し、縦軸は電圧を表す。図4及び図5を参照して、ステッピングモータ50が、マイクロステップ駆動されるときの動作を説明する。簡単のため、磁極60はS極とし、各コイルA〜Dは励磁電圧が印加されるとN極になるものとする。   FIG. 4 is a schematic diagram of a stepping motor 50 provided in the AF motor 36. FIG. 5 is a graph showing the relationship between the voltage applied to the coils A to D as the stator and the phase of the magnetic pole 60 as the rotor. The horizontal axis in FIG. 5 represents the phase of the magnetic pole 60, and the vertical axis represents the voltage. The operation when the stepping motor 50 is micro-step driven will be described with reference to FIGS. For simplicity, it is assumed that the magnetic pole 60 is an S pole and each of the coils A to D is an N pole when an excitation voltage is applied.

図4の状態(1)及び図5の状態(1)において、コイルDにのみ最大の励磁電圧が印加されることにより、コイルDはN極となり、S極である磁極60はコイルDに引き寄せられて初期位置(初期位相)に停止する。次に、状態(2)において、励磁電圧は、コイルAに最大の38%、コイルDに最大の92%印加される。このとき磁極60は、コイルAとコイルDとの間で、コイルDに近い位置に引き寄せられて停止する。状態(3)において、励磁電圧は、コイルAに最大の70%、コイルDに最大の70%印加される。このとき磁極60は、コイルAとコイルDとの中間位置に引き寄せられて停止する。状態(4)において、励磁電圧は、コイルAに最大の92%、コイルDに最大の38%印加される。このとき磁極60は、コイルAとコイルDとの間で、コイルAに近い位置に引き寄せられて停止する。状態(5)において、コイルAにのみ最大の励磁電圧が印加されると、磁極60はコイルAに引き寄せられて停止する。このように、磁極60の位置は、コイルAとコイルDに印加される励磁電圧の比率に関係する。磁極60は、状態(1)〜(5)の段階を経て初期位置から90度回転する。   In the state (1) of FIG. 4 and the state (1) of FIG. 5, when the maximum excitation voltage is applied only to the coil D, the coil D becomes the N pole and the magnetic pole 60 that is the S pole is attracted to the coil D. And stop at the initial position (initial phase). Next, in state (2), the excitation voltage is applied to coil A at the maximum of 38% and coil D at the maximum of 92%. At this time, the magnetic pole 60 is attracted to a position near the coil D between the coil A and the coil D and stopped. In state (3), the excitation voltage is applied to coil A at the maximum 70% and coil D at the maximum 70%. At this time, the magnetic pole 60 is attracted to an intermediate position between the coil A and the coil D and stopped. In state (4), the excitation voltage is applied to coil A up to 92% and coil D up to 38%. At this time, the magnetic pole 60 is attracted to a position near the coil A between the coil A and the coil D and stopped. In the state (5), when the maximum excitation voltage is applied only to the coil A, the magnetic pole 60 is attracted to the coil A and stops. Thus, the position of the magnetic pole 60 is related to the ratio of the excitation voltage applied to the coil A and the coil D. The magnetic pole 60 rotates 90 degrees from the initial position through the stages of states (1) to (5).

図6は、磁極60の位相と消費電力の関係を表したグラフである。横軸は、磁極60の位相を表し、縦軸は、ステッピングモータ50の消費電力を、1相駆動状態で消費する電力に対する比率(消費電力比)として表している。図6における状態(1)(5)(9)(13)は、図4及び図5の同符号と同じ状態を指す。   FIG. 6 is a graph showing the relationship between the phase of the magnetic pole 60 and the power consumption. The horizontal axis represents the phase of the magnetic pole 60, and the vertical axis represents the power consumption of the stepping motor 50 as a ratio (power consumption ratio) to the power consumed in the one-phase driving state. States (1), (5), (9), and (13) in FIG. 6 indicate the same states as those in FIGS. 4 and 5.

すなわち、図6の状態(1)ではコイルDにのみ励磁電圧が印加され磁極60は初期位置に停止される(図4参照)。状態(5)ではコイルAのみに励磁電圧が印加されて磁極60は初期位置から90度回転した位置に停止される。状態(9)ではコイルBのみに励磁電圧が印加されて磁極60は初期位置から180度回転した位置に停止される。状態(13)ではコイルCのみに励磁電圧が印加されて磁極60は初期位置から270度回転した位置に停止される。状態(1)(5)(9)(13)では、4つのコイルのうち1つのコイルにのみ励磁電圧が印加される。ここでは、これらの状態を1相駆動状態と呼ぶ。1相駆動状態では、他の状態と比較して消費電力が最少となる。また、この1相駆動状態となるときの、磁極60の位置及びAFレンズ34の光軸方向に沿った離散的なレンズ位置を1相位置ということにする。   That is, in the state (1) of FIG. 6, the excitation voltage is applied only to the coil D and the magnetic pole 60 is stopped at the initial position (see FIG. 4). In the state (5), the excitation voltage is applied only to the coil A, and the magnetic pole 60 is stopped at a position rotated 90 degrees from the initial position. In the state (9), the excitation voltage is applied only to the coil B, and the magnetic pole 60 is stopped at a position rotated 180 degrees from the initial position. In the state (13), the excitation voltage is applied only to the coil C, and the magnetic pole 60 is stopped at a position rotated 270 degrees from the initial position. In states (1), (5), (9), and (13), the excitation voltage is applied to only one of the four coils. Here, these states are referred to as a one-phase drive state. In the one-phase driving state, power consumption is minimized as compared with other states. Further, the discrete lens positions along the optical axis direction of the magnetic pole 60 and the optical axis of the AF lens 34 in the one-phase driving state are referred to as one-phase positions.

図7は、通常モードから消費電力が少ないエコモードへの移行処理を表す。一定時間、例えば10秒程度、カメラボディ10(図1参照)及びレンズ鏡筒15が操作されないとき、エコモードへの移行が開始される。エコモードとは、カメラボディ10及びレンズ鏡筒15における消費電力が低い状態を指す。ステップS01、S10はカメラボディ側でのエコモードへの移行処理であり、ステップS02〜S09は、レンズ鏡筒15でのエコモードへの移行処理である。   FIG. 7 shows a transition process from the normal mode to the eco mode with low power consumption. When the camera body 10 (see FIG. 1) and the lens barrel 15 are not operated for a certain time, for example, about 10 seconds, the transition to the eco mode is started. The eco mode refers to a state where the power consumption in the camera body 10 and the lens barrel 15 is low. Steps S01 and S10 are processing for shifting to the eco mode on the camera body side, and steps S02 to S09 are processing for shifting to the eco mode in the lens barrel 15.

ステップS01において、カメラボディ10の消費電力を下げるために、カメラプロセッサ20の演算速度が落とされ、フレームレート及びモニタの輝度が落とされる。ステップS02において、絞り44(図1参照)の位置すなわち絞りこみ量(開度)がレンズ鏡筒15内に備えられたメモリ(図示せず)へ記録される。次のステップS03において、AFレンズ34の光軸方向位置がメモリへ記録される。   In step S01, in order to reduce the power consumption of the camera body 10, the calculation speed of the camera processor 20 is reduced, and the frame rate and the brightness of the monitor are reduced. In step S02, the position of the diaphragm 44 (see FIG. 1), that is, the amount of aperture (opening) is recorded in a memory (not shown) provided in the lens barrel 15. In the next step S03, the position of the AF lens 34 in the optical axis direction is recorded in the memory.

次に、ステップS04において、後述するように、現在の合焦位置からのAFレンズ34の許容レンズ移動量とF値(絞り値)との関係が記録された図8に示すテーブルを参照することにより、像のぼけが小さくなるような絞り値が決定される。すなわちAFレンズ34の移動による焦点位置が焦点深度内に収まる絞り値を設定する。そして、ステップS05において、設定された絞り値となるように減速駆動機構43を介して絞り44が駆動される。なお、絞りモータ42は、絞り駆動が完了した後に通電が遮断されるが、減速駆動機構43の減速比は比較的大きいため、絞り44が動くことはなく、設定された絞り値が正しく維持される。   Next, in step S04, as will be described later, refer to the table shown in FIG. 8 in which the relationship between the allowable lens movement amount of the AF lens 34 from the current in-focus position and the F value (aperture value) is recorded. Thus, an aperture value that reduces the blur of the image is determined. That is, an aperture value is set so that the focal position due to the movement of the AF lens 34 falls within the focal depth. In step S05, the diaphragm 44 is driven via the deceleration drive mechanism 43 so that the set diaphragm value is obtained. The diaphragm motor 42 is deenergized after the diaphragm drive is completed. However, since the reduction ratio of the deceleration drive mechanism 43 is relatively large, the diaphragm 44 does not move and the set diaphragm value is correctly maintained. The

AFレンズ34は、磁極60の回転によって、光軸方向に移動される。つまり、AFレンズ34の許容移動量(焦点深度)は、磁極60の許容回転角度Zとして表すことが出来る。図9、図10は、磁極60の位相と消費電力との関係を表している。図9の横軸は、磁極60の位相、縦軸はステッピングモータ50の消費電力を表す。また、焦点深度、すなわち、AFレンズ34の許容移動量は、磁極60の回転角度に換算されて許容回転角度Zとして横軸上に図示されている。   The AF lens 34 is moved in the optical axis direction by the rotation of the magnetic pole 60. That is, the allowable movement amount (depth of focus) of the AF lens 34 can be expressed as the allowable rotation angle Z of the magnetic pole 60. 9 and 10 show the relationship between the phase of the magnetic pole 60 and the power consumption. In FIG. 9, the horizontal axis represents the phase of the magnetic pole 60, and the vertical axis represents the power consumption of the stepping motor 50. Further, the depth of focus, that is, the allowable movement amount of the AF lens 34 is converted into the rotation angle of the magnetic pole 60 and is shown on the horizontal axis as the allowable rotation angle Z.

図9において、ステップS04における判断時に、磁極60が位置Xにあり、合焦状態であると仮定する。許容回転角度Zは、1相位置である0度及び90度を含まない。したがって、現在の絞り値で、磁極60が1相位置である0度及び90度へ移動されると、すなわち、現在の絞り値でAFレンズ34が1相位置へ移動されると、像のぼけは認識できる程度に大きくなる。   In FIG. 9, it is assumed that the magnetic pole 60 is at the position X and in a focused state at the time of determination in step S04. The allowable rotation angle Z does not include 0 degrees and 90 degrees that are the one-phase positions. Therefore, if the magnetic pole 60 is moved to the 1-phase position 0 degrees and 90 degrees with the current aperture value, that is, if the AF lens 34 is moved to the 1-phase position with the current aperture value, the image blurs. Is large enough to be recognized.

このとき、図8に示すテーブルが参照されることにより、AFレンズ34の許容移動量から換算された磁極60における許容回転角度Zが現在の停止位置Xから最も近い1相位置を含むようにF値、すなわち、絞りの開口量が調整され設定される(絞り駆動手段)。設定後の許容回転角度Zは、図10に示すように、位置Xから最も近い1相位置である位置Yすなわち90度を含む。換言すれば、F値がより大きく設定されることにより、焦点深度は設定前よりも深くなり、AFレンズ34の許容移動量が増加されるので、磁極60を設定前よりも大きく回転させることができる。   At this time, by referring to the table shown in FIG. 8, the allowable rotation angle Z of the magnetic pole 60 converted from the allowable movement amount of the AF lens 34 includes the one-phase position closest to the current stop position X. The value, that is, the aperture amount of the aperture is adjusted and set (aperture driving means). The allowable rotation angle Z after setting includes a position Y that is the one-phase position closest to the position X, that is, 90 degrees, as shown in FIG. In other words, when the F value is set to be larger, the depth of focus becomes deeper than before setting, and the allowable movement amount of the AF lens 34 is increased, so that the magnetic pole 60 can be rotated more than before setting. it can.

ステップS06において、磁極60は位置Yへ移動される。位置Yでは、AFモータ36が、結像面が焦点深度に収まる位置にAFレンズ34を停止させ、かつ、1相駆動する状態である。このように、ステップS04、S06では、F値を調整するとともに1相位置にAFレンズ34を停止させることが出来る(レンズ位置制御手段)。このとき、モニタには像のぼけが認識できない程度に小さい画像が映し出されつつ、消費電力が最小限に抑えられる。   In step S06, the magnetic pole 60 is moved to the position Y. At the position Y, the AF motor 36 is in a state where the AF lens 34 is stopped at a position where the imaging plane is within the depth of focus and is driven in one phase. Thus, in steps S04 and S06, the F value can be adjusted and the AF lens 34 can be stopped at the one-phase position (lens position control means). At this time, the monitor displays a small image that does not allow image blurring to be recognized, while minimizing power consumption.

このときの磁極60の位置すなわちAFレンズ34の位置は、レンズ位置センサ40によって検知されてレンズCPU30へ伝達される(図3参照)。レンズCPU30において、最少消費電力状態にあることが認識されると、ステップS07において、励磁電圧が下げられる。励磁電圧は、レンズCPU30からモータドライバ38へ電圧制御信号が伝達されると、モータドライバ38によって下げられる(励磁制御手段)。これにより、磁極60は最低限の静止トルクを維持しつつ低消費電力の状態で停止される。   The position of the magnetic pole 60 at this time, that is, the position of the AF lens 34 is detected by the lens position sensor 40 and transmitted to the lens CPU 30 (see FIG. 3). When the lens CPU 30 recognizes that it is in the minimum power consumption state, the excitation voltage is lowered in step S07. When the voltage control signal is transmitted from the lens CPU 30 to the motor driver 38, the excitation voltage is lowered by the motor driver 38 (excitation control means). Thereby, the magnetic pole 60 is stopped in a low power consumption state while maintaining a minimum static torque.

その後、ステップS08において、レンズCPU30の演算速度が下げられる。レンズCPU30の演算速度を落とすことによってレンズCPU30の消費電力を下げることが可能となる(CPU電力制御手段)。そして、ステップS09において、エコモードへの移行が完了する。   Thereafter, in step S08, the calculation speed of the lens CPU 30 is reduced. The power consumption of the lens CPU 30 can be reduced by reducing the calculation speed of the lens CPU 30 (CPU power control means). In step S09, the transition to the eco mode is completed.

レンズ鏡筒15においてエコモードへの移行が完了した後の一定時間、カメラボディ10及びレンズ鏡筒15が操作されないとき、ステップS10において、モニタの電源が落とされる。モニタの電源が落とされることによって、さらに消費電力が削減される。   When the camera body 10 and the lens barrel 15 are not operated for a certain time after the transition to the eco mode in the lens barrel 15 is completed, the power of the monitor is turned off in step S10. The power consumption is further reduced by turning off the monitor.

以上のように、ステップS01〜S10の処理によって、像のぼけが生じることがなく、かつ、電力の消費が少ない位置にAFレンズ34すなわち磁極60を停止させることが出来る。   As described above, the AF lens 34, that is, the magnetic pole 60 can be stopped at a position where image blurring does not occur and power consumption is small by the processing in steps S01 to S10.

図11において、エコモードが解除される処理を表す。ステップS20において、カメラボディ10(図1参照)又はレンズ鏡筒15が操作されると、エコモードの解除動作が開始される。カメラプロセッサ20の演算速度が元に戻され、フレームレート及びモニタの輝度が元に戻される。ステップS21において、レンズCPU30は通常状態の演算速度に戻されるとともに、AFモータ36への励磁電圧は通常状態に戻される。   FIG. 11 shows processing for canceling the eco mode. In step S20, when the camera body 10 (see FIG. 1) or the lens barrel 15 is operated, the eco-mode canceling operation is started. The computation speed of the camera processor 20 is restored, and the frame rate and the monitor brightness are restored. In step S21, the lens CPU 30 is returned to the normal operation speed, and the excitation voltage to the AF motor 36 is returned to the normal state.

ステップS22において、絞り44は、ステップS02において記録された位置へ戻される。ステップS23において、ステップS03において記録されたAFレンズ34の位置へ戻される。ステップS20からステップS23において、AFレンズ34及び絞り44は通常モード時の状態に戻される。ステップS24において、カメラボディ10及びレンズ鏡筒15は通常モードに復帰する。   In step S22, the aperture 44 is returned to the position recorded in step S02. In step S23, the position is returned to the position of the AF lens 34 recorded in step S03. In steps S20 to S23, the AF lens 34 and the aperture 44 are returned to the normal mode. In step S24, the camera body 10 and the lens barrel 15 return to the normal mode.

なお、この機構は、本実施形態にかかるデジタルカメラだけではなく、電子双眼鏡等の合焦が必要な光学機器に適用可能である。また、ステッピングモータは、ハーフステップ及びマイクロステップ駆動等が行えて、コイルを備えるモータであれば、種類は問わない。本実施形態のステッピングモータでは、16ステップで360度回転するが、ステップ数は任意である。さらに、図7のステップS07において、モータドライバ38に電圧を制御する機能が備えられていない場合は、レンズCPU30からAFモータ36への供給電圧を下げることにより励磁電圧が下げられる。   This mechanism can be applied not only to the digital camera according to the present embodiment but also to an optical apparatus such as an electronic binocular that requires focusing. The stepping motor can be of any type as long as it can perform half-step and micro-step drive and includes a coil. The stepping motor of this embodiment rotates 360 degrees in 16 steps, but the number of steps is arbitrary. Further, in step S07 in FIG. 7, if the motor driver 38 does not have a function of controlling the voltage, the excitation voltage is lowered by lowering the supply voltage from the lens CPU 30 to the AF motor 36.

上記実施形態においては、本発明をデジタルカメラに適用した例を説明したが、これに限らず、オートフォーカス機能付望遠鏡や双眼鏡などの焦点調整レンズを具備する光学機器にも適用できる。   In the above embodiment, an example in which the present invention is applied to a digital camera has been described. However, the present invention is not limited to this, and the present invention can also be applied to an optical apparatus including a focus adjustment lens such as a telescope with an autofocus function or binoculars.

10 カメラボディ
15 レンズ鏡筒
30 レンズCPU
32 レンズ側レンズ電源
34 AFレンズ
36 AFモータ(レンズ駆動手段)
38 モータドライバ(励磁制御手段)
40 レンズ位置センサ
42 絞りモータ(絞り駆動手段)
43 減速駆動機構(絞り駆動制御手段)
44 絞り
50 ステッピングモータ
S04〜S06 レンズ位置制御装置(レンズ位置制御手段)
Y 位置(1相位置)
Z 許容回転角度
10 camera body 15 lens barrel 30 lens CPU
32 Lens-side lens power supply 34 AF lens 36 AF motor (lens driving means)
38 Motor driver (excitation control means)
40 Lens position sensor 42 Aperture motor (aperture drive means)
43 Deceleration drive mechanism (aperture drive control means)
44 Aperture 50 Stepping motor S04 to S06 Lens position control device (lens position control means)
Y position (1-phase position)
Z allowable rotation angle

Claims (4)

電力を供給されるステッピングモータで焦点調節レンズを駆動するレンズ駆動手段と、
絞りを駆動する絞り駆動手段と、
前記焦点調節レンズを低消費電力で保持可能な1相位置に停止させて消費電力を制御するレンズ位置制御手段と、
前記焦点調節レンズによる焦点位置が焦点深度に収まるように前記絞りの開口量を調整する前記絞り駆動手段を制御する絞り駆動制御手段とを備え、
前記1相位置は、前記ステッピングモータが最低消費電力で前記焦点調節レンズを保持可能な1相駆動状態となる位置であって、
前記消費電力の制御開始時、前記絞り駆動手段が前記絞りの開口量を元の開口量から調整したのちに、前記レンズ駆動手段が前記焦点調節レンズを元の位置から前記1相位置へ移動させることを特徴とする光学機器。
Lens driving means for driving the focus adjustment lens with a stepping motor to which power is supplied;
Diaphragm driving means for driving the diaphragm;
Lens position control means for controlling the power consumption by stopping the focus adjustment lens at a one-phase position where the power can be held with low power consumption;
A diaphragm drive control means for controlling the diaphragm drive means for adjusting the aperture amount of the diaphragm so that the focal position by the focus adjustment lens is within the depth of focus;
The one-phase position is a position where the stepping motor is in a one-phase driving state in which the focus adjustment lens can be held with the lowest power consumption,
At the start of the power consumption control, after the aperture driving unit adjusts the aperture amount of the aperture from the original aperture amount, the lens driving unit moves the focus adjustment lens from the original position to the one-phase position. An optical apparatus characterized by that.
前記消費電力の制御終了時、前記絞り駆動手段が前記絞りの開口量を前記元の開口量に戻したのちに、前記レンズ駆動手段が前記焦点調節レンズを前記元の位置へ移動させることを特徴とする請求項1に記載の光学機器。   At the end of control of the power consumption, the lens driving unit moves the focus adjustment lens to the original position after the aperture driving unit returns the aperture amount of the aperture to the original aperture amount. The optical apparatus according to claim 1. 前記レンズ駆動手段を制御するCPUと、
前記消費電力の制御開始時、前記CPUの演算速度を落とすことによって前記CPUの消費電力を下げるCPU電力制御手段と、
前記消費電力の制御開始時、前記レンズ駆動手段への励磁電圧を下げることによって前記レンズ駆動手段の消費電力を下げる励磁制御手段と
をさらに備えることを特徴とする請求項1に記載の光学機器。
A CPU for controlling the lens driving means;
CPU power control means for reducing the power consumption of the CPU by reducing the calculation speed of the CPU at the start of the control of the power consumption;
2. The optical apparatus according to claim 1, further comprising excitation control means for reducing power consumption of the lens driving means by lowering an excitation voltage to the lens driving means at the start of control of the power consumption.
カメラボディと、
前記カメラボディに装着されるレンズ鏡筒と、
前記レンズ鏡筒に設けられ、前記カメラボディから電力を供給されるステッピングモータで焦点調節レンズを駆動するレンズ駆動手段と、
絞りを駆動する絞り駆動手段と、
前記焦点調節レンズを低消費電力で保持可能な1相位置に停止させて消費電力を制御するレンズ位置制御手段と、
前記焦点調節レンズによる焦点位置が焦点深度に収まるように前記絞りの開口量を調整する前記絞り駆動手段を制御する絞り駆動制御手段とを備え、
前記1相位置は、前記ステッピングモータが最低消費電力で前記焦点調節レンズを保持可能な1相駆動状態となる位置であって、
前記消費電力の制御開始時、前記絞り駆動手段が前記絞りの開口量を元の開口量から調整したのちに、前記レンズ駆動手段が前記焦点調節レンズを元の位置から前記1相位置へ移動させることを特徴とするカメラ。
A camera body,
A lens barrel attached to the camera body;
A lens driving unit that is provided in the lens barrel and drives a focus adjustment lens with a stepping motor that is supplied with electric power from the camera body;
Diaphragm driving means for driving the diaphragm;
Lens position control means for controlling the power consumption by stopping the focus adjustment lens at a one-phase position where the power can be held with low power consumption;
A diaphragm drive control means for controlling the diaphragm drive means for adjusting the aperture amount of the diaphragm so that the focal position by the focus adjustment lens is within the depth of focus;
The one-phase position is a position where the stepping motor is in a one-phase driving state in which the focus adjustment lens can be held with the lowest power consumption,
At the start of the power consumption control, after the aperture driving unit adjusts the aperture amount of the aperture from the original aperture amount, the lens driving unit moves the focus adjustment lens from the original position to the one-phase position. A camera characterized by that.
JP2015219302A 2015-11-09 2015-11-09 Optical equipment Active JP6008035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015219302A JP6008035B2 (en) 2015-11-09 2015-11-09 Optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015219302A JP6008035B2 (en) 2015-11-09 2015-11-09 Optical equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011166954A Division JP2013031327A (en) 2011-07-29 2011-07-29 Optical instrument

Publications (2)

Publication Number Publication Date
JP2016033679A true JP2016033679A (en) 2016-03-10
JP6008035B2 JP6008035B2 (en) 2016-10-19

Family

ID=55452568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015219302A Active JP6008035B2 (en) 2015-11-09 2015-11-09 Optical equipment

Country Status (1)

Country Link
JP (1) JP6008035B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103296U (en) * 1983-12-15 1985-07-13 横河電機株式会社 Step motor drive circuit
JPH0777648A (en) * 1993-06-30 1995-03-20 Canon Inc Lens controller
US5594311A (en) * 1993-06-15 1997-01-14 Canon Kabushiki Kaisha Lens controlling apparatus
JPH10224680A (en) * 1997-02-12 1998-08-21 Asahi Optical Co Ltd Focus adjustment device for camera
JPH10282395A (en) * 1997-02-10 1998-10-23 Asahi Optical Co Ltd Pulse motor drive device of camera
JPH11127598A (en) * 1997-10-23 1999-05-11 Pfu Ltd Control device for hold of stepping motor
US6040677A (en) * 1997-02-10 2000-03-21 Asahi Kogaku Kogyo Kabushiki Kaisha Apparatus for driving stepper motor of camera
JP2001245494A (en) * 2000-02-29 2001-09-07 Casio Comput Co Ltd Device and method for controlling stepping motor
JP2003066313A (en) * 2001-08-29 2003-03-05 Nikon Corp Optical device
JP2004312432A (en) * 2003-04-08 2004-11-04 Canon Inc Electronic camera
JP2004354581A (en) * 2003-05-28 2004-12-16 Minolta Co Ltd Imaging apparatus
JP2008109193A (en) * 2006-10-23 2008-05-08 Victor Co Of Japan Ltd Imaging apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103296U (en) * 1983-12-15 1985-07-13 横河電機株式会社 Step motor drive circuit
US5594311A (en) * 1993-06-15 1997-01-14 Canon Kabushiki Kaisha Lens controlling apparatus
JPH0777648A (en) * 1993-06-30 1995-03-20 Canon Inc Lens controller
US6040677A (en) * 1997-02-10 2000-03-21 Asahi Kogaku Kogyo Kabushiki Kaisha Apparatus for driving stepper motor of camera
JPH10282395A (en) * 1997-02-10 1998-10-23 Asahi Optical Co Ltd Pulse motor drive device of camera
JPH10224680A (en) * 1997-02-12 1998-08-21 Asahi Optical Co Ltd Focus adjustment device for camera
US6055378A (en) * 1997-02-12 2000-04-25 Asahi Kogaku Kogyo Kabushiki Kaisha Motor-driven auto-focusing system
JPH11127598A (en) * 1997-10-23 1999-05-11 Pfu Ltd Control device for hold of stepping motor
JP2001245494A (en) * 2000-02-29 2001-09-07 Casio Comput Co Ltd Device and method for controlling stepping motor
JP2003066313A (en) * 2001-08-29 2003-03-05 Nikon Corp Optical device
JP2004312432A (en) * 2003-04-08 2004-11-04 Canon Inc Electronic camera
JP2004354581A (en) * 2003-05-28 2004-12-16 Minolta Co Ltd Imaging apparatus
JP2008109193A (en) * 2006-10-23 2008-05-08 Victor Co Of Japan Ltd Imaging apparatus

Also Published As

Publication number Publication date
JP6008035B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US8724012B2 (en) Camera body and camera system using driving method information indicating capability of controlling focus lens
WO2009139192A1 (en) Camera system
US8909036B2 (en) Optical device
WO2018173902A1 (en) Interchangeable lens and method for controlling same, imaging device, and camera system
EP2664954A2 (en) Interchangeable lens, interchangeable lens control method, camera and camera control method
US20170324902A1 (en) Interchangeable lens operable in reduced power modes, image capturing apparatus and storage medium storing control program
JP6350539B2 (en) Imaging apparatus and control method thereof
US9509891B2 (en) Controlling focus lens assembly
KR20110074412A (en) Cellular phone with a camera having linear driving led light-emitting apparatus
JP5803390B2 (en) Optical equipment
JP2013031327A (en) Optical instrument
JP5264394B2 (en) Optical equipment
JP6008035B2 (en) Optical equipment
JP5241396B2 (en) Optical member control device and control method, lens barrel, imaging device, and control method
JP2009169010A (en) Imaging device, portable terminal and af control method
JP6349754B2 (en) Blur correction device, camera, optical equipment, interchangeable lens and camera body
JP2011043638A (en) Lens-driving device and image pickup device
JP6815742B2 (en) Lens device and imaging device
JP2019020669A (en) Control device, lens device, imaging device and control method
JP6350540B2 (en) Imaging apparatus and control method thereof
JP2024006319A (en) Imaging apparatus, accessory device, and method for controlling these
JP2015215430A (en) Image blurring correction device, optical instrument, and image blurring correction method
JP2018142026A (en) Shake correction device, camera, optical apparatus, interchangeable lens, and camera body
JP2017122798A (en) Accessory, optical instrument, optical instrument system, imaging system
JP2013167834A (en) Optical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6008035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250