JP2016029391A - Granular material particle size distribution measuring method and granular material particle size distribution measuring system - Google Patents

Granular material particle size distribution measuring method and granular material particle size distribution measuring system Download PDF

Info

Publication number
JP2016029391A
JP2016029391A JP2015215351A JP2015215351A JP2016029391A JP 2016029391 A JP2016029391 A JP 2016029391A JP 2015215351 A JP2015215351 A JP 2015215351A JP 2015215351 A JP2015215351 A JP 2015215351A JP 2016029391 A JP2016029391 A JP 2016029391A
Authority
JP
Japan
Prior art keywords
particle size
granular material
fine
accumulation curve
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015215351A
Other languages
Japanese (ja)
Other versions
JP6156852B2 (en
Inventor
健一 川野
Kenichi Kawano
健一 川野
勝利 藤崎
Katsutoshi Fujisaki
勝利 藤崎
出 黒沼
Izuru Kuronuma
出 黒沼
岡本 道孝
Michitaka Okamoto
道孝 岡本
勝広 上本
Katsuhiro Uemoto
勝広 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2015215351A priority Critical patent/JP6156852B2/en
Publication of JP2016029391A publication Critical patent/JP2016029391A/en
Application granted granted Critical
Publication of JP6156852B2 publication Critical patent/JP6156852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To create a particle-size accumulation curve in a wide particle size range from an image of a granular material.SOLUTION: Granular materials S that are a mixture of granular materials having different particle sizes d are scattered, and an overall image G0 and a partial image G1 at a predetermined magnification are photographed. A particle size index Ii that is an area ratio of the detected granular materials at particle sizes equal to or larger than a plurality of predetermined coarse particle sizes di including a predetermined lower limit particle size d1 and equal to or larger than the predetermined lower limit particle size d1 to the overall image is calculated from the overall image G0, and the particle size index Ii is converted to an accumulation passage rate P(di), and a coarse particle-size accumulation curve P (d≥d1) at the particle sizes equal to or larger than d1 is created. The granular materials at the particle sizes equal to or smaller than the lower limit particle size d1 are detected from the partial image G1 for a plurality of predetermined fine particle sizes dj including the lower limit particle size d1 and equal to or smaller than the particle size d1, and a particle size index Ij of the predetermined fine particle sizes dj is calculated, the particle size index Ij is converted to an accumulation passage rate P(dj), and a fine particle-size accumulation curve P (d≤d1) is created. A particle-size accumulation curve P(d) is created by combining the coarse particle-size accumulation curve with the fine particle-size accumulation curve.SELECTED DRAWING: Figure 1

Description

本発明は粒状材料の粒度分布計測方法及びシステムに関し,とくに粒状材料の画像から粒状材料の粒径加積曲線を作成して粒度分布を計測する方法及びシステムに関する。   The present invention relates to a particle size distribution measuring method and system for a granular material, and more particularly to a method and system for measuring a particle size distribution by creating a particle size accumulation curve of a granular material from an image of the granular material.

ダム・堤防・路体・路盤・路床・コンクリート・舗装・植栽基盤等の土木構造物を構築する際に,現場付近の地山等の採取場で調達された地盤材料,原石を破砕装置等で砕いただけの岩砕材料その他の粒状材料S(異なる粒径の粒状材が混合した土木材料)を用いる工法を採用することがある(例えば非特許文献1のCSG工法等)。このような工法では,調達した粒状材料S(例えばCSG材)をそのまま土木構造物の材料(CSG)とすることが多く,構造物の品質を確保するために粒状材料Sの粒度を適宜に確認・管理することが必要となる。   When constructing civil engineering structures such as dams, dikes, road bodies, roadbeds, roadbeds, concrete, pavements, planting bases, etc. A method using a crushed rock material or other granular material S (a civil engineering material in which granular materials having different particle diameters are mixed) may be employed (for example, the CSG method of Non-Patent Document 1). In such a construction method, the procured granular material S (for example, CSG material) is often used as a civil engineering structure material (CSG) as it is, and the particle size of the granular material S is appropriately checked to ensure the quality of the structure.・ It is necessary to manage.

例えば図13は,粒状材料Sを用いて構築する土木構造物の強度管理方法の一例を示す(非特許文献1参照)。先ず,調達可能な粒状材料Sについて多数の粒度試験を行い,粒度が最も粗い標本(最粗粒標本)Trと粒度が最も細かい標本(最細粒標本)Tsとを選定する。次いで,最粗粒標本Tr及び最細粒標本Tsの範囲内の粒状材料Sについて単位水量を変えながら強度試験を行い,強度不足となる下限値と施工に不向きな上限値とを検出する。そのうえで,最粗粒標本Trの粒度−強度曲線(図中の点線)と最細粒標本Tsの粒度−強度曲線(図中の実線)と2本の許容単位水量範囲を示す縦線とで囲まれた「ひし形」(斜線部分)の規定範囲内となるように粒状材料Sの粒度及び単位水量を管理することにより,構造物の強度品質を確保する。   For example, FIG. 13 shows an example of a strength management method for a civil engineering structure constructed using the granular material S (see Non-Patent Document 1). First, a large number of particle size tests are performed on the granular material S that can be procured, and the sample with the coarsest particle size (the coarsest particle sample) Tr and the sample with the finest particle size (the finest particle sample) Ts are selected. Next, a strength test is performed on the granular material S within the range of the coarsest grain sample Tr and the finest grain sample Ts while changing the unit water amount, and a lower limit value that is insufficient in strength and an upper limit value that is unsuitable for construction are detected. In addition, the particle size-intensity curve (dotted line in the figure) of the coarsest grain sample Tr, the particle size-intensity curve (solid line in the figure) of the finest grain sample Ts, and a vertical line indicating two allowable unit water amount ranges are enclosed. By controlling the particle size and unit water volume of the granular material S so as to be within the specified range of the “diamonds” (shaded portions), the strength quality of the structure is ensured.

一般に粒状材料Sの粒度は,混在する各粒状材の粒径dを横軸(対数軸)とし,各粒径d以下の粒状材の全体に対する質量百分率(=その粒径d以下の粒状材の総質量/粒状材全体の総質量×100。以下,加積通過率ということがある)を縦軸(線形軸)とした片対数グラフ,すなわち図12のような粒径加積曲線P(d)によって表すことができる。図12に示すように,粒状材料Sの粒径加積曲線P(d)が最粗粒標本Trの粒径加積曲線Pr(d)と最細粒標本Tsの粒径加積曲線Ps(d)との間(規定範囲内)にあることを確認すれば,図13のような構造物の品質管理が実現できる。ただし,例えばフィルダム工事等では管理すべき1回当たりの粒状材料Sが数百〜数千kgにもなり,そのような大量の粒状材料Sの粒径加積曲線P(d)を従来の篩い分け法によって作成するには何度も篩い分けして通過質量を求める作業が必要であり,多大な労力と時間を要する。手間のかかる作業を頻繁に繰り返すことは工事の進捗上困難であり,篩い分け法では必要最小限の頻度でしか粒状材料Sの粒径加積曲線P(d)を作成することができない。   In general, the granular material S has a particle size d of each mixed granular material as a horizontal axis (logarithmic axis), and a mass percentage with respect to the entire granular material having each particle size d or less (= the granular material having the particle size d or less). Total log / total mass of the whole granular material x 100. Hereinafter, a semi-logarithmic graph with the vertical axis (linear axis) as the vertical axis (linear axis), that is, the particle size accumulation curve P (d ). As shown in FIG. 12, the particle size accumulation curve P (d) of the granular material S is the particle size accumulation curve Pr (d) of the coarsest sample Tr and the particle size accumulation curve Ps ( If it is confirmed that it is between (d) (within the specified range), quality control of the structure as shown in FIG. 13 can be realized. However, for example, in a fill dam construction, the granular material S to be managed is several hundred to several thousand kg, and the particle size accumulation curve P (d) of such a large amount of granular material S is obtained by a conventional sieve. In order to create by the division method, it is necessary to work through sieving many times to find the passing mass, which requires a lot of labor and time. It is difficult to repeat the labor-intensive work frequently due to the progress of the construction, and the sieving method can create the particle size accumulation curve P (d) of the granular material S only with the necessary minimum frequency.

これに対し特許文献1〜3は,コンピュータによる画像解析を用いて粒状材料Sの粒径加積曲線P(d)を迅速に作成できるシステムを開示している。従来から画像解析により粒状材料Sの粒度を求めることは試みられていたが,上述したように粒径加積曲線P(d)を作成するには所要粒径dの加積通過率(粒径d以下の全ての粒状材の全体に対する割合)が必要であるのに対し,例えば図8(A)のような粒状材料Sの撒き出し画像Gから特定の粒径d(例えば100mm)以下の粒状材を全て検出して加積通過率を求めることは困難であり,画像解析では粒径加積曲線P(d)を精度よく作成することは難しいとされていた。しかし,図8(A)のような画像Gにおいて特定の粒径d(例えば100mm)以上の粒状材を全て検出することは比較的容易であり,その画像Gの全体面積Eに対する粒径d以上の粒状材の面積eの総和(Σe)の面積割合Σe/E(以下,粒度インデクスIということがある)は簡単に算出できる。   On the other hand, Patent Documents 1 to 3 disclose a system that can quickly create a particle size accumulation curve P (d) of the granular material S using image analysis by a computer. Conventionally, it has been attempted to obtain the particle size of the granular material S by image analysis. However, as described above, the cumulative passage rate (particle size) of the required particle size d is used to create the particle size accumulation curve P (d). The ratio of all the granular materials less than or equal to d) is necessary, whereas the granular material S having a specific particle diameter d (for example, 100 mm) or less from the rolled-out image G of the granular material S as shown in FIG. It is difficult to detect all the materials and obtain the accumulation passage rate, and it has been difficult to accurately create the particle size accumulation curve P (d) by image analysis. However, it is relatively easy to detect all the granular materials having a specific particle diameter d (for example, 100 mm) or more in the image G as shown in FIG. The area ratio Σe / E (hereinafter sometimes referred to as the particle size index I) of the sum total (Σe) of the areas e of the granular materials can be easily calculated.

図10は,同じ粒状材料Sについて,従来の篩い分け法により粒径d=10mm,20mm,30mm,40mmの加積通過率P(d)を求めると共に,その撒き出し画像Gから各粒径d=10mm,20mm,30mm,40mmの粒度インデクスI(d)を算出し,それらを二次平面にプロットして両者の関係を示したものである。同図は,各粒径dの加積通過率P(d)=yが粒度インデクスI(d)=xの多次元回帰モデル(y=Σa・x)で表せること,すなわち各粒径dの粒度インデクスIを加積通過率Pに変換できることを示している。同図のような変換式(例えば回帰モデル)を利用すれば,粒状材料Sの撒き出し画像Gから複数の粒径dの粒度インデクスIを求めて加積通過率Pに変換することにより,所要粒径範囲の粒径加積曲線P(d)を作成することできる。 FIG. 10 shows the accumulation pass rate P (d) of the particle size d = 10 mm, 20 mm, 30 mm, and 40 mm for the same granular material S by the conventional sieving method, and the particle size d from the spread image G. = 10mm, 20mm, 30mm, 40mm particle size index I (d) is calculated and plotted on the secondary plane to show the relationship between them. The figure, can be expressed in Kakutsubu径d pressurized product passage rates P (d) = y granularity index I (d) = x multidimensional regression model (y = Σa n · x n ), i.e. the particle size It shows that the granularity index I of d can be converted into a product passage rate P. If a conversion formula (for example, a regression model) as shown in the figure is used, a granularity index I of a plurality of particle diameters d is obtained from the rolled-out image G of the granular material S, and converted into a product passage rate P. A particle size accumulation curve P (d) in the particle size range can be created.

図7は,粒度インデクスIを利用して粒状材料Sの粒径加積曲線P(d)を作成する特許文献3の粒度計測システムを示す。図示例のシステムは,粒状材料Sの撒き出し画像G(図8(A)参照)を撮影するデジタルカメラ等の撮像装置5と,その画像Gを入力して粒状材料Sの粒径加積曲線P(d)を作成するコンピュータ10とを有している。また図示例のコンピュータ10は,内蔵プログラムとして,画像Gから粒状材料S中の各粒状材の輪郭を検出する検出手段17と(図8(B)参照),各粒状材の輪郭から粒径d及び面積e(図9参照)を求めて複数の粒径dの粒度インデクスI(粒状材料Sの全体面積Eに対する粒径d以上の全粒状材の合計面積Σeの割合=Σe/E)を算出する算出手段18と,粒状材料Sの標本Tから求めた粒度インデクスIと加積通過率Pとの変換式F(例えば図10の回帰モデル)を記憶する記憶手段16と,算出した粒度インデクスIを変換式Fにより加積通過率Pに変換して粒径加積曲線P(d)を作成する作成手段20とを有している。   FIG. 7 shows a particle size measurement system of Patent Document 3 that creates a particle size accumulation curve P (d) of the granular material S using the particle size index I. The system of the illustrated example includes an imaging device 5 such as a digital camera that captures a rolled-out image G (see FIG. 8A) of the granular material S, and a particle size accumulation curve of the granular material S by inputting the image G. And a computer 10 for creating P (d). Further, the computer 10 in the illustrated example has a detection means 17 for detecting the contour of each granular material in the granular material S from the image G as an internal program (see FIG. 8B), and the particle size d from the contour of each granular material. And the area e (see FIG. 9) is calculated, and the particle size index I of a plurality of particle diameters d (the ratio of the total area Σe of all granular materials having a particle diameter d or larger to the total area E of the granular material S = Σe / E) is calculated. Calculating means 18, storage means 16 for storing a conversion formula F (for example, regression model of FIG. 10) between the particle size index I obtained from the sample T of the granular material S and the product passage rate P, and the calculated particle size index I And a creation means 20 for creating a particle size accumulation curve P (d) by converting into a product passage rate P by the conversion formula F.

図12は,粒状材料Sの撒き出し画像Gからコンピュータ10の検出手段17及び算出手段18により複数の粒径d(5mm,10mm,20mm,40mm,80mm)の粒度インデクスIを算出し,その粒度インデクスIを作成手段20において図10の変換式Fにより加積通過率Pに変換し,変換した加積通過率Pを粒径d別にプロットして連結することにより作成した粒径範囲d=5〜80mmの粒径加積曲線P(d)の一例を示す。図7のシステムによれば,粒状材料Sの撒き出し画像Gから図示例のような粒径加積曲線P(d)を短時間で簡易に作成することができる。また,手間のかかる篩い分け作業等を必要としないので,例えばフィルダム建設工事に適用した場合に粒径加積曲線P(d)の作成頻繁を増やすことで品質管理の高度化を図ることができる。更に,図12に示すように,作成した粒径加積曲線P(d)を粒状材料Sの最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr(d),Ps(d)と比較することにより,粒状材料Sの粒度品質も簡易に判定できる。   FIG. 12 shows the particle size index I of a plurality of particle sizes d (5 mm, 10 mm, 20 mm, 40 mm, 80 mm) calculated from the rolled-out image G of the granular material S by the detection means 17 and the calculation means 18 of the computer 10, Particle size range d = 5 created by converting index I into product passage rate P by conversion formula F in FIG. 10 in plotting means 20 and plotting and connecting the converted product pass rate P by particle size d. An example of a particle size accumulation curve P (d) of ˜80 mm is shown. According to the system shown in FIG. 7, a particle size accumulation curve P (d) as shown in the illustrated example can be easily created in a short time from the rolled-out image G of the granular material S. In addition, since it does not require laborious sieving work, for example, when applied to a fill dam construction work, it is possible to improve quality control by increasing the frequency of creating the particle size accumulation curve P (d). . Further, as shown in FIG. 12, the created particle size accumulation curve P (d) is converted into the particle size accumulation curves Pr (d) and Ps (d) of the coarsest sample Tr and the finest sample Ts of the granular material S. ), The particle quality of the granular material S can be easily determined.

特開2009−036533号公報JP 2009-036533 A 特開2010−249553号公報JP 2010-249553 A 特開2011−163836号公報JP 2011-163836 A

柳川城二「ダム事業における新技術−台形CSGダム−」建設工業調査会出版,ベース設計資料,No.136土木編,2008年3月20日発行,インターネット(URL:http://www.kenkocho.co.jp/html/136/sa_136.html)Jyuji Yanagawa "New technology in dam business-trapezoidal CSG dam" published by Construction Industry Research Committee, Base Design Material, No. 136 Civil Engineering, published on March 20, 2008, Internet (URL: http://www.kenkocho.co.jp/html/136/sa_136.html) 大根義男「実務者のための土質工学」技報堂出版,2006年11月1日発行,pp.34〜36,pp.81〜82Yoshio Daine “Geotechnical Engineering for Practitioners”, published by Gihodo, November 1, 2006, pp. 34-36, pp. 81-82 財団法人ダム技術センター編集・発行「多目的ダムの建設−平成17年度版 第5巻 設計II編」平成17年6月30日発行,pp.100〜101Edited and published by Dam Technology Center "Construction of multipurpose dam-2005 edition Vol.5, Design II", issued June 30, 2005, pp. 100-101

しかし,上述した図7の粒度計測システムは,粒径範囲が広い粒径加積曲線P(d)を作成することが難しい問題点がある。一般にデジタルカメラ等で撮影した粒状材料Sの撒き出し画像Gには検出限界(解像限界,分解限界)があり,例えば粒状材料S中の最大粒径dmに対して3%程度の粒径までしか認識することができない。粒状材料S中の最大粒径と最小粒径との比が検出限界内にあれば全粒径を含む粒径加積曲線P(d)を作成できるが,フィルダム等の土木工事で用いる粒状材料Sは最大粒径(1m程度)が最小粒径(0.1mm以下)の1万倍にも達する粒径範囲の広い場合があり,そのような広い粒径範囲の粒径加積曲線P(d)を図7のシステムで作成することは困難である。例えば粒状材料Sの最大粒径を50cm,画像Gの検出限界を最大粒径に対して3%程度とすると,検出限界粒径d0=15mm(=50cm×3%)未満の細粒径部分の欠けた粒径加積曲線P(d)しか作成することができない(図12も参照)。   However, the particle size measurement system of FIG. 7 described above has a problem that it is difficult to create a particle size accumulation curve P (d) having a wide particle size range. In general, the rolled-out image G of the granular material S photographed with a digital camera or the like has a detection limit (resolution limit, resolution limit), for example, up to about 3% of the maximum particle size dm in the granular material S. Can only recognize. If the ratio between the maximum particle size and the minimum particle size in the granular material S is within the detection limit, a particle size accumulation curve P (d) including the total particle size can be created, but the granular material used in civil works such as fill dams S may have a wide particle size range in which the maximum particle size (about 1 m) reaches 10,000 times the minimum particle size (0.1 mm or less), and the particle size accumulation curve P ( It is difficult to create d) with the system of FIG. For example, when the maximum particle size of the granular material S is 50 cm and the detection limit of the image G is about 3% with respect to the maximum particle size, the detection particle size d0 = 15 mm (= 50 cm × 3%) Only the missing particle size accumulation curve P (d) can be created (see also FIG. 12).

図7のシステムにおいて,粒状材料Sの検出限界粒径d0以下の粒径加積曲線を適当な関数U(Talbot関数等)で近似し,図11のように画像Gから画像解析により作成した粒径d0以上の粒径加積曲線P(d≧d0)と近似関数Uから推定した粒径d0以下の粒径加積曲線P(d≦d0)とを合成すれば,粒径範囲の広い粒径加積曲線P(d)を一応作成することができる(近似関数Uから粒径加積曲線P(d≦d0)を推定する図7の推定手段27及び合成手段22も参照)。しかし,近似関数Uから作成した粒径加積曲線P(d)には実際の粒状材料Sの細粒径含有率(加積通過率)が反映されておらず,細粒径含有率が粒状材料Sの透水係数・透水性・圧縮性等の工学的性質に大きな影響を与えるにも拘らず(非特許文献2,3参照),近似関数Uから作成した粒径加積曲線P(d)によって粒状材料Sの透水係数等を確認・管理することは困難である。例えば最大粒径50cm程度の粒状材料Sを透水材料(ロック材)として用いたフィルダム等の品質を確認・管理するためには,透水係数に大きな影響を与える粒径5mm程度の細粒径(礫材)の含有率を直接把握することが不可欠であり,篩い分け法のような手間をかけずに粒径1mから5mm以下にわたる広い粒径範囲の粒径加積曲線P(d)を画像解析によって作成できる技術の開発が望まれている。   In the system of FIG. 7, a particle size accumulation curve of the granular material S with a detection limit particle size of d0 or less is approximated by an appropriate function U (Talbot function or the like), and a particle created from image G by image analysis as shown in FIG. By combining a particle size accumulation curve P (d ≧ d0) having a diameter d0 or more and a particle size accumulation curve P (d ≦ d0) having a particle size d0 or less estimated from the approximate function U, particles having a wide particle size range can be obtained. A diameter accumulation curve P (d) can be created once (see also the estimation means 27 and the synthesis means 22 in FIG. 7 for estimating the particle diameter accumulation curve P (d ≦ d0) from the approximate function U). However, the particle size accumulation curve P (d) created from the approximate function U does not reflect the actual fine particle size content (addition pass rate) of the granular material S, and the fine particle size content is granular. The particle size accumulation curve P (d) created from the approximate function U in spite of having a great influence on the engineering properties of the material S such as water permeability, water permeability and compressibility (see Non-Patent Documents 2 and 3). Therefore, it is difficult to confirm and manage the water permeability coefficient of the granular material S. For example, in order to confirm and manage the quality of a fill dam or the like using a granular material S having a maximum particle size of about 50 cm as a water permeable material (locking material), a fine particle size of about 5 mm (gravel It is indispensable to directly grasp the content of the material), and image analysis of the particle size accumulation curve P (d) over a wide particle size range from 1m to 5mm in size without the need for sieving methods Development of technology that can be created by this is desired.

そこで本発明の目的は,粒状材料の画像から粒径範囲の広い粒径加積曲線を作成できる粒度分布計測方法及びシステムを提供することにある。   Therefore, an object of the present invention is to provide a particle size distribution measuring method and system capable of creating a particle size accumulation curve having a wide particle size range from an image of a granular material.

図1の実施例及び図3の流れ図を参照するに,本発明による粒状材料の粒度分布計測方法は,異なる粒径dの粒状材が混合した粒状材料Sを撒き出して全体画像G0(図2(A)及び図8(A)参照)及び所定拡大倍率の部分画像G1(図2(A)及び図5(A1)参照)を撮影し,全体画像G0から所定下限粒径d1以上の当該粒径d1を含む複数の所定粗粒径diについてその粒径di以上の粒状材の画像全体に対する面積割合である粒度インデクスIiを算出し且つ粒状材料の標本Tから求めた変換式F(図10参照)により粗粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成し,部分画像G1から下限粒径d1以下の当該粒径d1を含む複数の所定細粒径djについて粒度インデクスIjを算出し且つ変換式Fにより細粒径djの粒度インデクスIjを加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成し,粗粒径加積曲線P(d≧d1)及び細粒径加積曲線P(d≦d1)を合成して粒径加積曲線P(d)を作成してなるものである。   Referring to the embodiment of FIG. 1 and the flow chart of FIG. 3, in the granular material particle size distribution measuring method according to the present invention, a granular material S in which granular materials having different particle diameters d are mixed out and an overall image G0 (FIG. 2) is obtained. (A) and FIG. 8 (A)) and a partial image G1 (see FIG. 2 (A) and FIG. 5 (A1)) with a predetermined magnification are photographed, and the grain having a predetermined lower limit particle diameter d1 or more from the whole image G0 For a plurality of predetermined coarse particle diameters di including the diameter d1, a conversion formula F (see FIG. 10) that calculates a particle size index Ii that is an area ratio of the granular material having the particle size di or larger to the entire image and is obtained from the sample T of the granular material ) To convert the particle size index Ii of the coarse particle diameter di into the accumulation passage rate P (di) to create a coarse particle diameter accumulation curve P (d ≧ d1) of the particle diameter d1 or more, and from the partial image G1, the lower limit particle A plurality of predetermined fine particle diameters dj including the particle diameter d1 of the diameter d1 or less The particle size index Ij is calculated, and the particle size index Ij of the fine particle size dj is converted into an accumulation passage rate P (dj) by the conversion formula F, so that the fine particle size accumulation curve P (d ≦ d1) of the particle size d1 or less. And a coarse particle size accumulation curve P (d ≧ d1) and a fine particle size accumulation curve P (d ≦ d1) are synthesized to create a particle size accumulation curve P (d). .

また図1のブロック図を参照するに,本発明による粒状材料の粒度分布計測システムは,異なる粒径dの粒状材が混合した粒状材料Sを撒き出して全体画像G0(図2(A)及び図8(A)参照)及び所定拡大倍率の部分画像G1(図2(A)及び図5(A1)参照)を撮影する撮影装置5,全体画像G0から所定下限粒径d1以上の当該粒径d1を含む複数の所定粗粒径diについてその粒径di以上の粒状材の画像全体に対する面積割合である粒度インデクスIiを算出し且つ粒状材料の標本Tから求めた変換式F(図10参照)により粗粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成する粗粒径曲線作成手段20,部分画像G1から下限粒径d1の当該粒径d1を含む複数の所定細粒径djについて粒度インデクスIjを算出し且つ変換式Fにより細粒径djの粒度インデクスIjを加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成する細粒径曲線作成手段30,並びに粗粒径加積曲線P(d≧d1)及び細粒径加積曲線P(d≦d1)を合成して粒径加積曲線P(d)を作成する合成手段22を備えてなるものである。   Further, referring to the block diagram of FIG. 1, the granular material particle size distribution measuring system according to the present invention produces a whole image G0 (FIG. 2A) and a granular material S in which granular materials having different particle diameters d are mixed. 8A) and a photographing device 5 for photographing a partial image G1 (see FIG. 2A and FIG. 5A1) having a predetermined enlargement magnification, and the particle size that is equal to or larger than a predetermined lower limit particle size d1 from the entire image G0. For a plurality of predetermined coarse particle diameters di including d1, a conversion formula F (see FIG. 10) that calculates a particle size index Ii that is an area ratio with respect to the entire image of the granular material having the particle size di or more and obtained from the sample T of the granular material The coarse particle size curve creating means 20 for converting the particle size index Ii of the coarse particle size di into the accumulation passage rate P (di) and creating a coarse particle size accumulation curve P (d ≧ d1) of the particle size d1 or more, The particle size d1 of the lower limit particle size d1 from the partial image G1. The particle size index Ij is calculated for a plurality of predetermined fine particle diameters dj, and the particle size index Ij of the fine particle size dj is converted into the product passage rate P (dj) by the conversion formula F, and the fine particle size of the particle size d1 or less is added. Fine particle size curve creation means 30 for creating product curve P (d ≦ d1), coarse particle size accumulation curve P (d ≧ d1) and fine particle size accumulation curve P (d ≦ d1) It comprises synthesis means 22 for creating a radial product curve P (d).

好ましくは,部分画像に,所定拡大倍率の第1部分画像G1とその第1画像G1より大きい所定拡大倍率の第2部分画像G2(図2(A)及び図5(A3)参照)とを含め,細粒径曲線作成手段30に,第1画像G1から下限粒径d1以下でその粒径d1を含み且つ第2下限粒径d2以上の複数の所定細粒径djについて粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下d2以上の第1細粒径加積曲線P(d2≦d≦d1)を作成する手段30aと,第2画像G2から粒径d2以下の所定細粒径dkについて粒度インデクスIkを算出し且つ加積通過率P(dk)に変換して粒径d2以下の第2細粒径加積曲線P(d≦d2)を作成する手段30bとを含め,合成手段22により合成手段により粗粒径加積曲線P(d≧d1),第1細粒径加積曲線P(d2≦d≦d1),及び第2細粒径加積曲線P(d≦d2)を合成する。   Preferably, the partial image includes a first partial image G1 having a predetermined magnification and a second partial image G2 having a predetermined magnification larger than that of the first image G1 (see FIGS. 2A and 5A3). , The fine particle diameter curve creating means 30 calculates the particle size index Ij for a plurality of predetermined fine particle diameters dj including the particle diameter d1 which is not more than the lower limit particle diameter d1 and not less than the second lower limit particle diameter d2 from the first image G1. In addition, a means 30a for converting the product passage rate P (dj) into a first fine particle size accumulation curve P (d2 ≦ d ≦ d1) having a particle size of d1 or less and d2 or more, and a particle size from the second image G2. A particle size index Ik is calculated for a predetermined fine particle size dk of d2 or less and converted into a product passage rate P (dk) to create a second fine particle size accumulation curve P (d ≦ d2) of particle size d2 or less. Including the means 30b, the synthesis means 22 and the coarse means particle size accumulation curve by the synthesis means. (D ≧ d1), first fine size accumulation curve P (d2 ≦ d ≦ d1), and a second fine size accumulation curve P a (d ≦ d2) is synthesized.

或いは,粒状材料の標本Tから求めた第2下限粒径d2以下の粒径加積曲線P(d≦d2)を粒径d2の加積通過率P(d2)の関数Uとして記憶する記憶手段16を設け,細粒径曲線作成手段30により部分画像G1から下限粒径d1以下でその粒径d1を含み且つ第2下限粒径d2以上の複数の所定細粒径djについて粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下d2以上の第1細粒径加積曲線P(d2≦d≦d1)を作成し,その第1細粒径加積曲線の粒径d2の加積通過率P(d2)から関数Uにより粒径d2以下の第2細粒径加積曲線P(d≦d2)を推定する推定手段27を設け合成手段22により合成手段により粗粒径加積曲線P(d≧d1),第1細粒径加積曲線P(d2≦d≦d1),及び第2細粒径加積曲線P(d≦d2)を合成することも可能である。   Alternatively, storage means for storing a particle size accumulation curve P (d ≦ d2) of the second lower limit particle size d2 or less obtained from the sample T of the granular material as a function U of the accumulation passage rate P (d2) of the particle size d2. 16 is calculated from the partial image G1 by the fine particle diameter curve creating means 30 for a plurality of predetermined fine particle diameters dj that are equal to or smaller than the lower limit particle diameter d1 and that are equal to or larger than the second lower limit particle diameter d2 from the partial image G1. Then, a first fine particle size accumulation curve P (d2 ≦ d ≦ d1) having a particle size of d1 or less and d2 or more is prepared by converting into the product passage rate P (dj), and the first fine particle size accumulation curve thereof Is provided with an estimation means 27 for estimating a second fine particle diameter accumulation curve P (d ≦ d2) having a particle diameter d2 or less from the accumulated passage rate P (d2) of the particle diameter d2 of The coarse particle size accumulation curve P (d ≧ d1), the first fine particle size accumulation curve P (d2 ≦ d ≦ d1), It is also possible to synthesize the beauty second fine size accumulation curve P (d ≦ d2).

本発明による粒状材料の粒度分布計測方法及びシステムは,粒状材料Sについて全体画像G0と所定拡大倍率の部分画像G1とを撮影し,全体画像G0から所定下限粒径d1以上の当該粒径d1を含む複数の所定粗粒径diについて粒度インデクスIiを算出し且つ加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成し,部分画像G1から下限粒径d1以下でその粒径d1を含む複数の所定細粒径djの粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成し,粗粒径加積曲線P(d≧d1)と細粒径加積曲線P(d≦d1)とを合成して粒径加積曲線P(d)を作成するので,次の有利な効果を奏する。   The granular material particle size distribution measuring method and system according to the present invention takes a whole image G0 and a partial image G1 with a predetermined magnification for the granular material S, and obtains the particle size d1 of a predetermined lower limit particle size d1 or more from the whole image G0. A particle size index Ii is calculated for a plurality of predetermined coarse particle diameters di and converted into an accumulation passage rate P (di) to create a coarse particle diameter accumulation curve P (d ≧ d1) having a particle diameter d1 or more, The particle size index Ij of a plurality of predetermined fine particle diameters dj that are equal to or smaller than the lower limit particle diameter d1 and calculated from the image G1 is converted into an accumulation passage rate P (dj), and the small particle diameters of the particle diameter d1 or less. An accumulation curve P (d ≦ d1) is prepared, and a coarse particle size accumulation curve P (d ≧ d1) and a fine particle size accumulation curve P (d ≦ d1) are synthesized to obtain a particle size accumulation curve P ( Since d) is created, the following advantageous effects are obtained.

(イ)全体画像G0から作成した粗粒径加積曲線P(d≧d1)と部分画像G1から作成した細粒径加積曲線P(d≦d1)とを合成する謂わば多段階の画像解析により,単独の画像Gからの画像解析に比して粒径範囲が広い粒径加積曲線P(d)を作成することができる。
(ロ)また,全体画像G0及び部分画像G1から算出した粒径インデクスIi,Ijを加積通過率P(di),P(dj)に変換することにより,近似関数U等を用いた場合と異なり,粗粒径di及び細粒径djの実際の含有率が反映された粒状材料Sの粒径加積曲線P(d)を作成できる。
(ハ)全体画像G0は粒状材料Sの全体を対象としているのに対し,部分画像G1は粒状材料Sの一部分しか対象としていないが,細粒径の加積通過率(小さい粒径の含有率)は粒状材料の一部分(小さな試料)からでも精度よく検出できるので,全体として十分な精度の粒径加積曲線P(d)を作成できる。
(ニ)部分画像G1にも検出限界が存在するが,部分画像G1より大きい拡大倍率の第2部分画像G2を撮影し,その第2部分画像G2から検出限界粒径以下の第2細粒径加積曲線P(d≦d2)を合成するサイクルを繰り返すことにより,検出下限粒径を小さくして粒径加積曲線P(d)の粒径範囲を更に広げることができる。
(ホ)篩い分け法のような手間を必要とせず,広い粒径範囲の粒径加積曲線P(d)を短時間で簡単に作成できるので,例えば粒状材料Sを用いた構造物工事(フィルダム等の建設工事)に適用した場合に,粒状材料Sの透水係数・透水性・圧縮性等を含む多様な品質管理作業の容易化・高度化を図ることができる。
(A) A so-called multistage image in which the coarse particle size accumulation curve P (d ≧ d1) created from the entire image G0 and the fine particle size accumulation curve P (d ≦ d1) created from the partial image G1 are synthesized. By the analysis, it is possible to create a particle size accumulation curve P (d) having a wide particle size range as compared with image analysis from a single image G.
(B) Further, by converting the particle size indexes Ii and Ij calculated from the entire image G0 and the partial image G1 into product passage rates P (di) and P (dj), and using an approximate function U or the like Differently, it is possible to create a particle diameter accumulation curve P (d) of the granular material S reflecting the actual content ratios of the coarse particle diameter di and the fine particle diameter dj.
(C) While the entire image G0 covers the entire granular material S, the partial image G1 covers only a part of the granular material S, but the accumulated passage rate of small particles (content ratio of small particle size) ) Can be accurately detected even from a part (small sample) of the granular material, so that a particle size accumulation curve P (d) with sufficient accuracy can be created as a whole.
(D) Although there is a detection limit also in the partial image G1, a second partial image G2 having an enlargement magnification larger than that of the partial image G1 is photographed, and a second fine particle size smaller than or equal to the detection limit particle size is taken from the second partial image G2. By repeating the cycle of synthesizing the accumulation curve P (d ≦ d2), the detection lower limit particle size can be reduced, and the particle size range of the particle size accumulation curve P (d) can be further expanded.
(E) Since a particle size accumulation curve P (d) with a wide particle size range can be easily created in a short time without the need for the sieving method, for example, a construction work using a granular material S ( When applied to construction work such as fill dams, various quality control operations including the permeability coefficient, permeability, compressibility, etc. of the granular material S can be facilitated and advanced.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明による粒度分布計測システムの一実施例のブロック図である。 本発明における粗粒径加積曲線P(d≧d1)及び細粒径加積曲線P(d≦d1)の作成方法,及びそれらを合成して粒径加積曲線P(d)を作成する方法の説明図である。 本発明による粒度分布計測方法を示す流れ図の一例である。 図3のステップS001の詳細を示す流れ図の一例である。 本発明で用いる粒状材料Sの部分画像G1,G2の説明図である。 本発明のシステムで作成した粒状材料の粒径加積曲線の一例である。 粒状材料の撒き出し画像Gから粒径加積曲線dを作成する従来のシステムの一例の説明図である。 粒状材料の撒き出し画像G(全体画像G)の説明図である。 粒状材料の画像Gから各粒状材の粒径及び面積を算出する方法の一例の説明図である。 粒状材料の粒度インデクスIiと加積通過率P(di)との変換式を示すグラフの一例である。 図7のシステムで作成した粒径d1以上の粒径加積曲線P(d≧d1)と近似関数Uから推定した粒径d1以下の粒径加積曲線P(d≦d1)とを合成して作成した粒径加積曲線Pの一例である。 図7のシステムで作成した粒状材料の粒径加積曲線P及びその粒状材料の最粗粒標本Tr,最細粒標本Tsの粒径加積曲線Pr,Psの一例である。 従来のCSG工法における粒度管理方法の一例の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is a block diagram of one Example of the particle size distribution measuring system by this invention. A method for creating the coarse particle size accumulation curve P (d ≧ d1) and the fine particle size accumulation curve P (d ≦ d1) in the present invention, and a synthesis method for producing the particle size accumulation curve P (d) It is explanatory drawing of a method. It is an example of the flowchart which shows the particle size distribution measuring method by this invention. It is an example of the flowchart which shows the detail of step S001 of FIG. It is explanatory drawing of the partial images G1 and G2 of the granular material S used by this invention. It is an example of the particle size accumulation curve of the granular material created with the system of this invention. It is explanatory drawing of an example of the conventional system which produces the particle size accumulation curve d from the rolled-out image G of a granular material. It is explanatory drawing of the rolled-out image G (whole image G) of a granular material. It is explanatory drawing of an example of the method of calculating the particle size and area of each granular material from the image G of granular material. It is an example of the graph which shows the conversion formula of the particle size index Ii of a granular material, and the accumulation passage rate P (di). A particle size accumulation curve P (d ≧ d1) having a particle size of not less than d1 created by the system of FIG. 7 and a particle size accumulation curve P (d ≦ d1) of the particle size d1 or less estimated from the approximate function U are synthesized. FIG. It is an example of the particle size accumulation curve P of the granular material created by the system of FIG. 7 and the particle size accumulation curves Pr and Ps of the coarsest sample Tr and the finest sample Ts of the granular material. It is explanatory drawing of an example of the particle size management method in the conventional CSG construction method.

図1は,本発明の粒度分布計測システムの一実施例のブロック図を示す。例えば現場付近の採取場(地山や地層)1で調達した地盤材料を用いて土木構造物を構築する場合に,ダンプトラック等の運搬機械3で現場へ供給される地盤材料等の全体又は一部を粒状材料Sとし,例えば運搬単位(供給単位)毎に粒状材料Sの粒径加積曲線P(d)を作成して品質を管理する。運搬機械3で搬送する材料が均質とみなせる場合は,運搬機械3上の一部を管理対象とすれば足りる。なお,本発明の適用対象は地盤材料等に限らず,例えば破砕装置2で原石を破砕して現場に供給される岩砕材料等のように,種類や起源に応じてほぼ同様の粒径加積曲線で近似できる粒状材料Sに広く適用可能である。   FIG. 1 shows a block diagram of an embodiment of the particle size distribution measuring system of the present invention. For example, when a civil engineering structure is constructed using ground materials procured at a sampling site (ground or geological layer) 1 near the site, the whole or one part of the ground material supplied to the site by a transporting machine 3 such as a dump truck is used. A part is made into granular material S, for example, the particle size accumulation curve P (d) of granular material S is created for every conveyance unit (supply unit), and quality is managed. If the material transported by the transporting machine 3 can be regarded as homogeneous, it is sufficient that a part of the transporting machine 3 is a management target. Note that the application target of the present invention is not limited to the ground material and the like. For example, the crushing device 2 crushes the rough stone and supplies it to the site. It can be widely applied to the granular material S that can be approximated by a product curve.

図示例の粒度分布計測システムは,例えば地表に敷いたシート上に粒状材料Sを撒き出す装置9(例えばブルドーザ等)と,撒き出した粒状材料Sの画像G0,G1,G2……を撮影するデジタルカメラ等の撮像装置5と,その画像G0,G1,G2……を入力して粒状材料Sの粒径加積曲線P(d)を作成するコンピュータ10とを有する。後述するコンピュータ10の作成手段20,30により算出する粒度インデクスIが粒状材料Sの撒き出し方法によって影響を受けて誤差を生じうるので,粒状材料Sは撒き出し装置9によって常に同じ所定面密度(粒状材料Sの重量/撒き出し面積,例えば10〜400kg/m)で敷き均しつつ撒き出すことが望ましい。また,シート上に撒き出す方法に代えて,撒き出し装置9をベルトコンベア等の移動式搬送装置とし,そのベルトコンベア上に粒状材料Sを所定面密度で敷き均して移動させながら画像Gを撮影してもよい。 The particle size distribution measuring system of the illustrated example takes a device 9 (for example, a bulldozer or the like) that spouts the granular material S on a sheet laid on the ground surface, and images G0, G1, G2,. An imaging device 5 such as a digital camera and a computer 10 that inputs the images G0, G1, G2,... And creates a particle size accumulation curve P (d) of the granular material S are included. Since the particle size index I calculated by the creation means 20 and 30 of the computer 10 to be described later may be affected by the method of squeezing the granular material S, an error may occur, so that the granular material S is always kept at the same predetermined surface density ( It is desirable to spread out the material while leveling with the weight of the granular material S / the surface area (for example, 10 to 400 kg / m 2 ). Further, instead of the method of rolling out on the sheet, the rolling-out device 9 is a mobile transfer device such as a belt conveyor, and the image G is transferred while moving the granular material S on the belt conveyor with a predetermined surface density. You may shoot.

図示例の撮像装置5は,図7の場合のように撒き出した粒状材料Sの全体が写り込む全体画像G0(図8(A)参照)だけでなく,撮影範囲を適宜縮小して(又は撮影距離を適宜近付けて)所定倍率に拡大された部分画像G1を撮影する機能を有している。全体画像G0には粒状材料Sの最大粒径dm以下の全粒状材が写っており,後述する粗粒径曲線作成手段20により全体画像G0から最大粒径dm以下で所定検出下限粒径d1以上の粗粒径粒状材の輪郭を検出することができる。また,部分画像G1には各粒状材が所定拡大倍率で写っており,後述する細粒径曲線作成手段30により部分画像G1から所定検出下限粒径d1以下の細粒径粒状材の輪郭を検出することができる。   The imaging device 5 in the illustrated example not only reduces the entire image G0 (see FIG. 8A) in which the entire granular material S that has been sprinkled is reflected as in the case of FIG. It has a function of photographing a partial image G1 magnified to a predetermined magnification (approaching the photographing distance as appropriate). The whole image G0 shows the whole granular material having the maximum particle diameter dm or less of the granular material S, and the coarse particle diameter curve creating means 20 described later uses the entire image G0 to have a maximum particle diameter dm or less and a predetermined detection lower limit particle diameter d1 or more. It is possible to detect the outline of the coarse-grained granular material. Further, each granular material is shown in the partial image G1 at a predetermined magnification, and the contour of the fine particle granular material having a predetermined detection lower limit particle diameter d1 or less is detected from the partial image G1 by the fine particle curve generating means 30 described later. can do.

例えば,上述した検出下限粒径d1を全体画像G0中の検出限界粒径(例えば最大粒径dmの3%程度の粒径)とし,粗粒径曲線作成手段20によって全体画像G0から検出限界粒径以上の粗粒径粒状材の輪郭を検出し,細粒径曲線作成手段30によって部分画像G1から検出限界粒径以下の細粒径粒状材の輪郭を検出する。ただし,検出下限粒径d1は必ずしも全体画像G0中の検出限界粒径とする必要はなく,その検出限界粒径以上の任意の大きさとすることができる。また,部分画像G1の拡大倍率は,全体画像G0の倍率(=1)より大きい任意の倍率(>1)とすることができるが,例えば全体画像G0中の検出下限粒径(又は検出限界粒径)が最大粒径dmに拡大される倍率(例えば,検出限界が最大粒径dmに対して3%であるときは100/3≒30倍)とすることができる。   For example, the above-described detection lower limit particle diameter d1 is set as a detection limit particle diameter (for example, a particle diameter of about 3% of the maximum particle diameter dm) in the entire image G0. The outline of the coarse particle material having a diameter equal to or larger than the diameter is detected, and the outline of the fine particle material having a particle diameter equal to or smaller than the detection limit particle diameter is detected from the partial image G1 by the fine particle diameter curve creating means 30. However, the detection lower limit particle diameter d1 does not necessarily have to be the detection limit particle diameter in the entire image G0, and can be any size larger than the detection limit particle diameter. The magnification of the partial image G1 can be any magnification (> 1) larger than the magnification (= 1) of the entire image G0. For example, the lower detection limit particle size (or the detection limit particle in the entire image G0) The diameter can be increased to the maximum particle size dm (for example, 100 / 3≈30 times when the detection limit is 3% of the maximum particle size dm).

部分画像G1にも検出限界が存在し,その検出限界粒径以下の細粒径粒状材の輪郭を部分画像G1から検出することは困難であるが,その部分画像G1より大きい拡大倍率の第2部分画像G2を撮影し,その第2部分画像G2から検出限界粒径以下の細粒径粒状材の輪郭を検出するサイクルを繰り返すことができる。第2部分画像G2の拡大倍率も,部分画像G1より大きい任意の倍率とすることができるが,例えば部分画像G1中の検出限界粒径が最大粒径dmに拡大される倍率(例えば部分画像G1の30倍程度)とすることができる。図2(A)は全体画像G0と部分画像G1,G2との関係の一例を表す。例えば粒状材料Sを一辺D0の方形面積に撒き出して全体画像G0を撮影し,その撮影範囲から一辺D1の方形部分を選択して拡大部分画像G1を撮影し(図8(A)も参照),更にその撮影範囲から一辺D2の方形部分を選択して拡大部分画像G2を撮影する(図5(A1)も参照)。   The partial image G1 also has a detection limit, and it is difficult to detect from the partial image G1 the contour of the fine particle size granular material having a particle size equal to or smaller than the detection limit particle size. A cycle in which the partial image G2 is photographed and the outline of a fine particle size granular material having a particle size equal to or smaller than the detection limit particle size is detected from the second partial image G2 can be repeated. The magnification of the second partial image G2 can be any magnification larger than that of the partial image G1, but for example, the magnification at which the detection limit particle size in the partial image G1 is enlarged to the maximum particle size dm (for example, the partial image G1). About 30 times as large as). FIG. 2A shows an example of the relationship between the entire image G0 and the partial images G1 and G2. For example, the granular material S is spread out on the square area of one side D0 and the whole image G0 is photographed, and the rectangular part of one side D1 is selected from the photographing range to photograph the enlarged partial image G1 (see also FIG. 8A). Further, the enlarged portion image G2 is photographed by selecting a square portion of the side D2 from the photographing range (see also FIG. 5 (A1)).

図2(A)において,粗粒径を検出する全体画像G0は粒状材料Sの全体を対象としているのに対し,細粒径を検出する部分画像G1,G2は粒状材料Sの一部分しか対象としていない。しかし,本発明者の実験によれば,大きな粗粒径の含有率(加積通過率)を精度よく検出するには大きな試料(粒状材料全体)が必要であるの対し,小さい細粒径の含有率(加積通過率)は小さな試料(粒状材料の一部分)からでも精度よく検出することができる。また,図示例では部分画像G1中に検出対象外の粒径d1以上の粒状材も写り込むが,コンピュータ10の細粒径曲線作成手段30において検出対象外の粒状材を無視し又は画像G1から取り除いたうえで検出対象の細粒径のみを精度よく検出することが可能である。   In FIG. 2A, the whole image G0 for detecting the coarse particle size is for the entire granular material S, whereas the partial images G1 and G2 for detecting the fine particle size are for only a part of the granular material S. Not in. However, according to the experiments of the present inventor, a large sample (whole granular material) is required to accurately detect the content of large coarse particles (cumulative passage rate), whereas a small fine particle size is required. The content rate (cumulative passage rate) can be accurately detected even from a small sample (a part of the granular material). In the illustrated example, the granular material having a particle size d1 or more that is not detected is also reflected in the partial image G1, but the granular material that is not detected is ignored by the fine particle size curve creating means 30 of the computer 10 or from the image G1. After removal, it is possible to detect only the fine particle size to be detected with high accuracy.

ただし,粒状材料S中に粒径d1以下の細粒径が多量に含まれていると,細粒径が団子状に固まり又は大きな粒状材にこびり付くことによって粒径の検出誤差を生じるおそれがある。そのような場合は,図1に示すように,粒状材料Sから検出下限粒径d1以下の細粒径粒状材を篩い分けする分離装置6をシステムに含め,篩い分け後の細粒径粒状材を撒き出して部分画像G1を撮影することができる。或いは,先ず分離装置6によって粒状材料Sを粒径d1以上の粗粒径粒状材と粒径d1以下の細粒径粒状材とに篩い分けし,篩い分け後の粗粒径粒状材,細粒径粒状材を別々に撒き出して全体画像G0,部分画像G1をそれぞれ撮影してもよい。篩い分け後の細粒径粒状材を対象として部分画像G1を撮影することにより,粒状材の粒径の検出精度,ひいては粒径加積曲線P(d)の作成精度を高めることができる。使用する分離装置6は粒状材料S中の細粒径粒状材の状態に応じて異なりうるが,例えば細粒径粒状材が乾燥している場合は篩い分け装置とし,湿潤して他の粒状材にこびり付いている場合は水洗い装置等とすることができる。   However, if the granular material S contains a large amount of fine particles having a particle size of d1 or less, there is a risk that the detection of particle size may occur due to the fine particles becoming a dumpling or sticking to a large granular material. There is. In such a case, as shown in FIG. 1, the system includes a separation device 6 for sieving the granular material S having a particle size of not more than the detection lower limit particle diameter d1 or less, and the fine-grained granular material after sieving. And the partial image G1 can be taken. Alternatively, the granular material S is first sieved by the separation device 6 into a coarse particle material having a particle size of d1 or more and a fine particle material having a particle size of d1 or less, and the coarse particle material and fine particles after sieving are screened. The whole diameter image G0 and the partial image G1 may be photographed by separately rolling out the diameter granular material. By capturing the partial image G1 for the fine-grained granular material after sieving, the detection accuracy of the particle diameter of the granular material, and hence the preparation accuracy of the particle size accumulation curve P (d) can be improved. The separating device 6 to be used may differ depending on the state of the fine particle granular material in the granular material S. For example, when the fine particle granular material is dry, a sieving device is used, and the other granular material is wetted. If you are stuck, you can use a washing machine.

図示例のコンピュータ10は,キーボード等の入力装置11と,ディスプレイ等の出力装置12と,粒度インデクスIを加積通過率Pに変換する変換式F等を記憶する記憶手段16とを有する。また内蔵プログラムとして,撮像装置5や入力装置11から全体画像G0,部分画像G1その他のデータを入力する入力手段14と,その全体画像G0から粒径d1以上の粗粒径粒状材の輪郭を検出して粗粒径加積曲線P(d≧d1)を作成する粗粒径曲線作成手段20と,部分画像G1から粒径d1以下の細粒径粒状材の輪郭を検出して細粒径加積曲線P(d≦d1)を作成する細粒径曲線作成手段30と,粗粒径加積曲線P(d≧d1)及び細粒径加積曲線P(d≦d1)を合成して粒径加積曲線P(d)を作成する合成手段22と,作成した粒径加積曲線P(d)その他を出力装置12に出力する出力手段13とを有している。図示例のコンピュータ10は,作成した粒径加積曲線P(d)から粒状材料Sの粒度品質を判定する判定手段24を有しているが,判定手段24は本発明に必須のものではない。また,変換式Fを設定する変換式設定手段26を有しているが,本発明において変換式Fが記憶手段16に記憶されていれば足り,変換式設定手段26も本発明に必須のものではない。   The computer 10 in the illustrated example includes an input device 11 such as a keyboard, an output device 12 such as a display, and a storage unit 16 that stores a conversion formula F that converts the granularity index I into a product passage rate P. Also, as an internal program, the input means 14 for inputting the whole image G0, the partial image G1 and other data from the imaging device 5 and the input device 11, and the outline of the coarse particle material having the particle diameter d1 or more are detected from the whole image G0. The coarse particle size curve creation means 20 for creating the coarse particle size accumulation curve P (d ≧ d1) and the contour of the fine particle size material having a particle size of d1 or less are detected from the partial image G1 to add the fine particle size. Fine particle size curve creating means 30 for creating product curve P (d ≦ d1), coarse particle size accumulation curve P (d ≧ d1) and fine particle size accumulation curve P (d ≦ d1) It has a synthesis means 22 for creating a diameter product curve P (d) and an output means 13 for outputting the created particle product curve P (d) and others to the output device 12. The computer 10 in the illustrated example has a determination means 24 for determining the particle quality of the granular material S from the created particle size accumulation curve P (d), but the determination means 24 is not essential to the present invention. . Further, although the conversion formula setting means 26 for setting the conversion formula F is provided, it is sufficient that the conversion formula F is stored in the storage means 16 in the present invention, and the conversion formula setting means 26 is also essential to the present invention. is not.

図3は,図1のシステムを用いて粒状材料Sの粒径加積曲線P(d)を作成する本発明の粒度分布計測方法の流れ図を示す。以下,図3の流れ図を参照して図1のシステムを説明する。図3のステップS001は,図1の変換式設定手段26により,粒状材料S中の複数の粒径dの粒度インデクスIとその粒径d以下の粒状材の加積通過率Pとの変換式Fを求めて記憶手段16に設定する処理を表し,その処理の詳細を図4の流れ図に示す。先ず図4のステップS101において,粒状材料標本Tを用い,その標本Tから篩い分けその他の従来方法によって全体画像G0中の所定検出下限粒径d1(例えば全体画像G0の検出限界粒径)以上の複数の所定粗粒径diの加積通過率P(di),及びその粒径d1以下の複数の所定細粒径djの加積通過率P(dj)をそれぞれ求め,求めた加積通過率P(di),P(dj)を入力装置11からコンピュータ10に入力する。好ましくは,部分画像G1中の所定検出下限粒径d2(例えば部分画像G1の検出限界粒径)以下の複数の所定細粒径dkの加積通過率P(dk)を求め,加積通過率P(di),P(dj)と共に加積通過率P(dk)をコンピュータ10に入力する。   FIG. 3 shows a flow chart of the particle size distribution measuring method of the present invention for creating the particle size accumulation curve P (d) of the granular material S using the system of FIG. The system of FIG. 1 will be described below with reference to the flowchart of FIG. Step S001 in FIG. 3 is a conversion equation between the particle size index I of a plurality of particle diameters d in the granular material S and the cumulative passage rate P of granular materials having the particle diameters d or less by the conversion equation setting means 26 in FIG. The process of obtaining F and setting it in the storage means 16 is shown, and the details of the process are shown in the flowchart of FIG. First, in step S101 of FIG. 4, the granular material specimen T is used, and is screened from the specimen T by the other conventional method or more than a predetermined detection lower limit particle diameter d1 (for example, the detection limit particle diameter of the entire image G0) in the entire image G0. The accumulated passage ratio P (di) of a plurality of predetermined coarse particle diameters di and the accumulated passage ratio P (dj) of a plurality of predetermined fine particle diameters dj that are equal to or smaller than the particle diameter d1 are obtained, and the obtained accumulation passage ratios are obtained. P (di) and P (dj) are input from the input device 11 to the computer 10. Preferably, a product passage rate P (dk) of a plurality of predetermined fine particle diameters dk that is equal to or smaller than a predetermined detection lower limit particle size d2 (for example, the detection limit particle size of the partial image G1) in the partial image G1 is obtained. The product passage rate P (dk) is input to the computer 10 together with P (di) and P (dj).

図4のステップS110〜S114は,粒径d1以上の粗粒径diの変換式Fiを作成する処理を示す。先ずステップS111において粒状材料標本Tの全体画像G0を図1の粗粒径曲線作成手段20へ入力し(図8(A)参照),ステップS112において作成手段20に含まれる検出手段17により,全体画像G0から最大粒径dm以下で所定検出下限粒径d1(例えば全体画像G0の検出限界粒径)以上の各粒状材の輪郭を検出し,その輪郭から各粒状材の粒径di及び面積eを求める(図8(B)参照)。例えば画像G0を画素の明暗に基づいて二値化処理し,その二値化画像からラベリングやパターンマッチング等の手法を用いて各粒状材の輪郭を検出する。図9(A)のように粒状材が球体とみなせる場合は,その粒状材の面積等価径を粒径diとし,その球体の断面積を面積eとすることができる。或いは図9(B)に示すように,各粒状材の輪郭に楕円形を(例えば最小二乗近似により)フィッティングさせて短径a・長径bを求め,その短径aを粒状材の粒径di(篩い径)とし,近似した楕円形の面積を粒状材の面積eとしてもよい。楕円近似に代えて各粒状材の輪郭に外接する最小矩形を求め,その最小矩形の短径aを粒径diとし,その最小矩形の面積を粒状材の面積eとしてもよい。或いは,各粒状材の輪郭内部の画素数を面積に換算して各粒状材の面積eを検出することも可能である。   Steps S110 to S114 in FIG. 4 show processing for creating a conversion formula Fi of a coarse particle diameter di that is equal to or larger than the particle diameter d1. First, in step S111, the entire image G0 of the granular material specimen T is input to the coarse particle diameter curve creating means 20 in FIG. 1 (see FIG. 8A), and in step S112, the entire image G0 is detected by the detecting means 17 included in the creating means 20. The contour of each granular material is detected from the image G0 and is equal to or smaller than the maximum particle size dm and equal to or larger than a predetermined detection lower limit particle size d1 (for example, the detection limit particle size of the entire image G0). Is obtained (see FIG. 8B). For example, the image G0 is binarized based on the brightness of the pixels, and the contour of each granular material is detected from the binarized image using a technique such as labeling or pattern matching. When the granular material can be regarded as a sphere as shown in FIG. 9A, the area equivalent diameter of the granular material can be the particle size di, and the cross-sectional area of the sphere can be the area e. Alternatively, as shown in FIG. 9B, an ellipse is fitted to the outline of each granular material (for example, by least square approximation) to obtain the short diameter a and the long diameter b, and the short diameter a is determined as the particle diameter di of the granular material. (Sieving diameter), and the approximate oval area may be the area e of the granular material. Instead of elliptical approximation, a minimum rectangle circumscribing the contour of each granular material may be obtained, the short axis a of the minimum rectangle may be set as the particle size di, and the area of the minimum rectangle may be set as the area e of the granular material. Alternatively, the area e of each granular material can be detected by converting the number of pixels inside the contour of each granular material into an area.

図4のステップS113において,作成手段20に含まれる算出手段18により,検出下限粒径d1以上の複数の所定粗粒径diの各々について,その粗粒径di以上の粒状材の面積の総和Σeを求めて全体画像G0の撮影領域全体面積Eに対する面積割合(=Σe/E)を各粗粒径diの粒度インデクスIiとして算出する。全体画像G0の撮影領域全体面積Eに代えて,画像G中の輪郭検出対象の全粒状材(検出下限粒径d1以上の全粒状材)の面積の合計を全体面積Eとし,その全体面積Eに対する各粗粒径di以上の粒状材の面積総和Σeの割合(=Σe/E)を算出して粒度インデクスIiとしてもよい。更にステップS114において,算出した粒度インデクスIiを変換式設定手段26に入力し,変換式設定手段26においてステップS101で入力した各粗粒径diの加積通過率P(di)とステップS113で算出した粒度インデクスIiとを対応付けて変換式Fiを設定する。例えば図10を参照して上述したように,各粗粒径diの加積通過率P(di)と粒度インデクスIiとを二次平面にプロットし,加積通過率P(di)を目的変数(従属変数)とし粒度インデクスIiを説明変数(独立変数)とする適切な回帰モデル(例えば多項式,対数関数,べき関数,指数関数等)を設定して変換式Fiとし,設定した変換式Fiを記憶手段16に記憶する。   In step S113 of FIG. 4, the calculation means 18 included in the creation means 20 adds, for each of a plurality of predetermined coarse particle diameters di greater than or equal to the detection lower limit particle diameter d1, the total area Σe of the granular materials greater than or equal to the coarse particle diameter di. And the area ratio (= Σe / E) of the entire image G0 with respect to the entire imaging area E is calculated as the particle size index Ii of each coarse particle size di. Instead of the entire area E of the imaging region of the entire image G0, the total area E is defined as the total area of all the granular materials (all granular materials having a detection lower limit particle diameter d1 or more) to be detected in the image G. It is also possible to calculate the ratio (= Σe / E) of the area sum Σe of the granular materials with each coarse particle diameter di or more to the particle size index Ii. Further, in step S114, the calculated particle size index Ii is input to the conversion equation setting unit 26, and the accumulated passage rate P (di) of each coarse particle diameter di input in step S101 in the conversion equation setting unit 26 is calculated in step S113. The conversion formula Fi is set in association with the granularity index Ii. For example, as described above with reference to FIG. 10, the product passage rate P (di) and the particle size index Ii of each coarse particle size di are plotted on a quadratic plane, and the product pass rate P (di) is set as an objective variable. An appropriate regression model (for example, a polynomial, a logarithmic function, a power function, an exponential function, etc.) having the granularity index Ii as an explanatory variable (independent variable) as a dependent variable is set as a conversion formula Fi, and the set conversion formula Fi is Store in the storage means 16.

図4のステップS120〜S124は,上述したステップS110〜S114と同様にして,検出下限粒径d1以下の細粒径djの変換式Fjを作成する処理を示す。先ずステップS121において粒状材料標本Tの部分画像G1を図1の細粒径曲線作成手段30aへ入力し(図5(A1)参照),ステップS122において作成手段30a中の検出手段31aにより,部分画像G1から粒径d1以下で検出下限粒径d2以上の各粒状材の輪郭を検出して粒径dj及び面積eを求める(図5(B1)参照)。検出下限粒径d2は,例えば部分画像G1中の検出限界粒径とするが,その検出限界粒径以上の任意の大きさとすることもできる。次いで,ステップS123において作成手段30a中の算出手段32aにより,複数の所定細粒径djの各々について,各細粒径dj以上の粒状材の面積総和Σeを求めて部分画像G1の全体面積Eに対する面積割合(=Σe/E)を各細粒径djの粒度インデクスIjとして算出する。更にステップS124において,算出した各細粒径djの粒度インデクスIjを加積通過率P(dj)と対応付けることにより,細粒径djの変換式Fjを設定して記憶手段16に記憶する。   Steps S120 to S124 in FIG. 4 show processing for creating a conversion formula Fj for a fine particle size dj that is equal to or smaller than the detection lower limit particle size d1 in the same manner as steps S110 to S114 described above. First, in step S121, the partial image G1 of the granular material specimen T is input to the fine particle diameter curve creating means 30a in FIG. 1 (see FIG. 5A1), and in step S122, the partial image is obtained by the detecting means 31a in the creating means 30a. The particle diameter dj and the area e are obtained by detecting the contour of each granular material having a particle diameter d1 or less and a detection lower limit particle diameter d2 or more from G1 (see FIG. 5 (B1)). The detection lower limit particle diameter d2 is, for example, the detection limit particle diameter in the partial image G1, but may be any size larger than the detection limit particle diameter. Next, in step S123, the calculation means 32a in the creation means 30a obtains the total area Σe of the granular materials having the respective fine particle diameters dj or more for each of the plurality of predetermined fine particle diameters dj, with respect to the entire area E of the partial image G1. The area ratio (= Σe / E) is calculated as the particle size index Ij of each fine particle size dj. In step S124, the calculated particle size index Ij of each fine particle size dj is associated with the product passage rate P (dj), so that the conversion formula Fj of the fine particle size dj is set and stored in the storage unit 16.

好ましくは,図4のステップS130〜S134において,上述したステップS120〜S124と同様にして,部分画像G1中の検出下限粒径d2以下の細粒径dkの変換式Fkを作成する。すなわち,ステップS131において粒状材料標本Tの部分画像G2を図1の細粒径曲線作成手段30bへ入力し(図5(A2)参照),ステップS132において作成手段30b中の検出手段31bにより部分画像G2から粒径d2以下の各粒状材の輪郭を検出して粒径dk及び面積eを求める(図5(B2)参照)。ステップS123において作成手段30b中の算出手段32bにより,複数の所定細粒径dkの各々について粒度インデクスIkを算出し,ステップS124において算出した各細粒径dkの粒度インデクスIkを加積通過率P(dk)と対応付けることにより,細粒径dkの変換式Fkを設定して記憶手段16に記憶する。   Preferably, in steps S130 to S134 in FIG. 4, a conversion formula Fk of a fine particle diameter dk having a detection lower limit particle diameter d2 or less in the partial image G1 is created in the same manner as in steps S120 to S124 described above. That is, in step S131, the partial image G2 of the granular material specimen T is input to the fine particle diameter curve creating means 30b in FIG. 1 (see FIG. 5 (A2)), and in step S132, the partial image is detected by the detecting means 31b in the creating means 30b. The contour of each granular material having a particle diameter d2 or less is detected from G2 to obtain the particle diameter dk and area e (see FIG. 5 (B2)). In step S123, the calculation means 32b in the creation means 30b calculates the particle size index Ik for each of the plurality of predetermined fine particle diameters dk, and the particle size index Ik of each of the fine particle diameters dk calculated in step S124 is added to the cumulative passage rate P. By associating with (dk), the conversion formula Fk of the fine particle diameter dk is set and stored in the storage means 16.

なお,上述した図4において粗粒径diの変換式Fi,細粒径djの変換式Fj,及び細粒径dkの変換式Fkは,複数の粒状材料標本Tを用いて設定することが望ましい。図10から分かるように,例えば同じ採取場で採取した粒状材料標本Tから求めた加積通過率P及び粒度インデクスIは概ね近似しているものの,標本T毎に多少の変動がみられるので,複数の標本Tに基づき相関係数rのできるだけ大きい変換式Fを設定することにより変換式Fの精度を高めることができる。また,図4における変換式Fi,Fj,Fkの設定処理は必ずしも工事現場で行う必要はなく,予め実験室等において行うことができる。この場合は,図3のステップS001において予め求めた変換式Fi,Fj,Fkを工事現場のコンピュータ10に記憶すれば足り,工事現場のコンピュータ10から変換式設定手段26を省略できる。   In FIG. 4 described above, the conversion formula Fi for the coarse particle diameter di, the conversion formula Fj for the fine particle diameter dj, and the conversion expression Fk for the fine particle diameter dk are preferably set using a plurality of granular material samples T. . As can be seen from FIG. 10, for example, although the accumulated passage rate P and the particle size index I obtained from the granular material sample T collected at the same sampling site are approximately approximate, there are some fluctuations for each sample T. By setting a conversion formula F having a correlation coefficient r as large as possible based on a plurality of samples T, the accuracy of the conversion formula F can be increased. Further, the setting processing of the conversion equations Fi, Fj, and Fk in FIG. 4 is not necessarily performed at the construction site, and can be performed in advance in a laboratory or the like. In this case, it is sufficient to store the conversion formulas Fi, Fj, and Fk obtained in advance in step S001 of FIG. 3 in the computer 10 at the construction site, and the conversion formula setting means 26 can be omitted from the computer 10 at the construction site.

図3のステップS011〜S015は,上述したように粒状材料標本Tから求めた粗粒径diの変換式Fiに基づき,図1の粗粒径曲線作成手段20において,粒状材料Sの全体画像G0から粒径d1以上の粗粒径加積曲線P(d≧d1)を作成する処理を示す。先ずステップS011〜S012において,上述した図4のステップS111〜S112と同様に,粒状材料Sの全体画像G0を粗粒径曲線作成手段20に入力して最大粒径dm以下で所定検出下限粒径d1以上の各粒状材の粒径di及び面積eを求める(図2(A)〜(B)参照)。またステップS013において,上述した図4のステップS113と同様に,各粒状材の粒径di及び面積eから複数の所定粗粒径diの粒度インデクスIiを算出する。ステップS014〜S015において,ステップS001で求めた変換式Fiにより各粗粒径diの粒度インデクスIiを加積通過率P(di)に変換し,粒径d1以上の粗粒径加積曲線P(d≧d1)を作成する。図2(C1)は,作成手段20で作成した粗粒径加積曲線P(d≧d1)の一例を示し,例えばステップS015において変換式Fiによる変換後の加積通過率P(di)を粗粒径di別にプロットして連結することにより粗粒径加積曲線P(d≧d1)が作成できることを示している。   Steps S011 to S015 in FIG. 3 are based on the conversion formula Fi of the coarse particle diameter di obtained from the granular material specimen T as described above, and the coarse particle curve creating means 20 in FIG. A process for creating a coarse particle size accumulation curve P (d ≧ d1) having a particle size of d1 or more is shown. First, in steps S011 to S012, as in steps S111 to S112 of FIG. 4 described above, the entire image G0 of the granular material S is input to the coarse particle diameter curve creating means 20, and the predetermined detection lower limit particle diameter is equal to or less than the maximum particle diameter dm. The particle diameter di and the area e of each granular material equal to or greater than d1 are obtained (see FIGS. 2A to 2B). In step S013, as in step S113 of FIG. 4 described above, a particle size index Ii of a plurality of predetermined coarse particle sizes di is calculated from the particle size di and area e of each granular material. In steps S014 to S015, the particle size index Ii of each coarse particle diameter di is converted into the accumulation passage rate P (di) by the conversion formula Fi obtained in step S001, and the coarse particle diameter accumulation curve P (greater than the particle diameter d1) is obtained. d ≧ d1) is created. FIG. 2 (C1) shows an example of the coarse particle size accumulation curve P (d ≧ d1) created by the creation means 20, for example, the product passage rate P (di) after conversion by the conversion formula Fi in step S015. It is shown that a coarse particle size accumulation curve P (d ≧ d1) can be created by plotting and connecting by coarse particle size di.

また,図3のステップS021〜S025は,上述した細粒径djの変換式Fjに基づき,図1の細粒径曲線作成手段30aにおいて,粒状材料Sの部分画像G1から粒径d1以下の細粒径加積曲線P(d≦d1)を作成する処理を示す。例えばステップS021〜S022において,粒状材料Sの部分画像G1から粒径d1以下の各粒状材の粒径di及び面積eを求め,ステップS023において各粒状材の粒径di及び面積eから所定細粒径djの粒度インデクスIjを算出する(図2(A)〜(B)参照)。ステップS024〜S025において,ステップS001で求めた変換式Fjにより各細粒径djの粒度インデクスIjを加積通過率P(dj)に変換し,変換後の加積通過率P(dj)を細粒径dj別にプロットすることにより,粒径d1以下の細粒径加積曲線P(d≦d1)を作成する。   Further, steps S021 to S025 in FIG. 3 are based on the above-described conversion formula Fj of the fine particle size dj, and the fine particle size curve creating means 30a in FIG. The process which produces the particle size accumulation curve P (d <= d1) is shown. For example, in steps S021 to S022, the particle diameter di and area e of each granular material having a particle diameter d1 or less are obtained from the partial image G1 of the granular material S, and in step S023, predetermined fine particles are obtained from the particle diameter di and area e of each granular material. A particle size index Ij of the diameter dj is calculated (see FIGS. 2A to 2B). In steps S024 to S025, the particle size index Ij of each fine particle size dj is converted into a product passage rate P (dj) by the conversion formula Fj obtained in step S001, and the converted product pass rate P (dj) is subtracted. By plotting by particle size dj, a fine particle size accumulation curve P (d ≦ d1) of particle size d1 or less is created.

ただし,部分画像G1にも検出限界が存在するので,画像G1中に検出限界粒径以下の細粒径粒状材が含まれている場合は,図3のステップS022において部分画像G1から粒径d1以下で且つ検出限界粒径以上の所定検出下限粒径d2以上の各粒状材の粒径di及び面積eを求める。そしてステップS023において,検出した各粒状材の粒径di及び面積eから各細粒径djの粒度インデクスIjを算出し,ステップS024〜S025において,各細粒径djの粒度インデクスIjを加積通過率P(dj)に変換することにより,例えば図2(C2)に示すような粒径d1以下で粒径d2以上の細粒径加積曲線P(d2≦d≦d1)を作成する。   However, since the partial image G1 also has a detection limit, if the image G1 contains a fine particle particle material having a particle size equal to or smaller than the detection limit particle size, the particle size d1 from the partial image G1 in step S022 of FIG. The particle diameter di and the area e of each granular material having a predetermined detection lower limit particle diameter d2 which is equal to or larger than the detection limit particle diameter are obtained below. In step S023, the particle size index Ij of each fine particle size dj is calculated from the detected particle size di and area e of each granular material. In steps S024 to S025, the particle size index Ij of each fine particle size dj is passed through. By converting to the rate P (dj), for example, a fine particle size accumulation curve P (d2 ≦ d ≦ d1) having a particle size d1 or less and a particle size d2 or more as shown in FIG. 2C2 is created.

図2(C2)は,ステップS022〜025において部分画像G1から3種類の細粒径djの粒度インデクスIjを算出し,その3粒径djの加積通過率P(dj)から作成した細粒径加積曲線P(d2≦d≦d1)を示している。ただし,部分画像G1から粒度インデクスIjを算出する細粒径djの数は図示例に限定されず,細粒径djを複数ではなく単数とすることも可能である。細粒径djが単数のときは,ステップS024〜S025において細粒径加積曲線P(d2≦d≦d1)が1点の加積通過率P(dj)のみとなるが,後述するステップ040において,その1点の加積通過率P(dj)を粗粒径加積曲線P(d≧d1)と合成することにより,細粒径djを含む粒径加積曲線P(d)を作成することができる。   FIG. 2 (C2) shows the particle size index Ij of the three types of fine particle size dj calculated from the partial image G1 in steps S022 to 025, and the fine particle created from the cumulative passage rate P (dj) of the three particle size dj. A diameter accumulation curve P (d2 ≦ d ≦ d1) is shown. However, the number of fine particle diameters dj for calculating the particle size index Ij from the partial image G1 is not limited to the illustrated example, and the fine particle diameters dj may be single instead of plural. When the small particle size dj is singular, the fine particle size accumulation curve P (d2 ≦ d ≦ d1) becomes only one point of product passage rate P (dj) in steps S024 to S025. , The particle passing curve P (d) including the fine particle size dj is created by synthesizing the one point accumulation pass rate P (dj) with the coarse particle size adding curve P (d ≧ d1). can do.

好ましくは,図3のステップS031〜S035において,上述した細粒径dkの変換式Fkに基づき,図1の細粒径曲線作成手段30bにおいて,粒状材料Sの部分画像G2から粒径d2以下の細粒径加積曲線P(d≦d2)を作成する。すなわち,ステップS031〜S033において,粒状材料Sの部分画像G2から粒径d2以下の各粒状材の粒径di及び面積eを求め,各粒状材の粒径di及び面積eから所定細粒径dkの粒度インデクスIkを算出する。またステップS034〜S035において,ステップS001で求めた変換式Fkにより各細粒径dkの粒度インデクスIkを加積通過率P(dk)に変換し,例えば図2(C3)に示すような粒径d2以下の細粒径加積曲線P(d2≦d)を作成する。   Preferably, in steps S031 to S035 in FIG. 3, the fine particle diameter curve creating means 30b in FIG. 1 has a particle diameter d2 or less from the partial image G2 of the granular material S based on the conversion equation Fk of the fine particle diameter dk described above. A fine particle size accumulation curve P (d ≦ d2) is created. That is, in steps S031 to S033, the particle diameter di and area e of each granular material having a particle diameter d2 or less are obtained from the partial image G2 of the granular material S, and the predetermined fine particle diameter dk is determined from the particle diameter di and area e of each granular material. The granularity index Ik is calculated. In steps S034 to S035, the particle size index Ik of each fine particle size dk is converted into the product passage rate P (dk) by the conversion formula Fk obtained in step S001. For example, the particle size as shown in FIG. A fine particle size accumulation curve P (d2 ≦ d) of d2 or less is created.

図2(C3)は3種類の細粒径dkの加積通過率P(dk)から作成した細粒径加積曲線P(d≦d2)を示しているが,上述した細粒径djの場合と同様に,細粒径dkの数も図示例に限定されず,細粒径dkを単数とすることも可能である。細粒径dkが単数であっても,後述するステップ040において粗粒径加積曲線P(d≧d1)及び細粒粒径加積曲線P(d2≦d≦d1)と合成することにより,細粒径dkを含む粒径加積曲線P(d)とすることができる。   FIG. 2 (C3) shows a fine particle size accumulation curve P (d ≦ d2) created from the cumulative passage rate P (dk) of three types of fine particle sizes dk. Similarly to the case, the number of fine particle diameters dk is not limited to the illustrated example, and the single small particle diameter dk can be singular. Even if the fine particle diameter dk is singular, by synthesizing with the coarse particle diameter accumulation curve P (d ≧ d1) and the fine particle diameter accumulation curve P (d2 ≦ d ≦ d1) in Step 040 described later, The particle size accumulation curve P (d) including the fine particle size dk can be obtained.

図3のステップS040は,上述したステップS011〜S015で作成した粗粒径加積曲線P(d≧d1)と,ステップS021〜S025で作成した細粒径加積曲線P(d≦d1)(又は細粒粒径加積曲線P(d2≦d≦d1))とを図1の合成手段22へ入力し(図2(D)参照)),合成手段22において粗粒径加積曲線と細粒径加積曲線とを合成することにより,図2(E)に示すような粒径加積曲線P(d)(又は粒径加積曲線P(d≧d2))を作成する処理を示す。例えば,粗粒径加積曲線P(d≧d1)の下端と細粒径加積曲線P(d≦d1)の上端とを直線又は曲線で連結することにより両曲線を合成する。   Step S040 in FIG. 3 includes the coarse particle size accumulation curve P (d ≧ d1) created in steps S011 to S015 and the fine particle size accumulation curve P (d ≦ d1) created in steps S021 to S025. Alternatively, the fine grain size accumulation curve P (d2 ≦ d ≦ d1)) is input to the synthesis means 22 of FIG. 1 (see FIG. 2D)), and the synthesis means 22 uses the coarse grain size accumulation curve and the fine grain size accumulation curve. A process of creating a particle size accumulation curve P (d) (or a particle size accumulation curve P (d ≧ d2)) as shown in FIG. 2E by combining the particle size accumulation curve is shown. . For example, both curves are synthesized by connecting the lower end of the coarse particle size accumulation curve P (d ≧ d1) and the upper end of the fine particle size accumulation curve P (d ≦ d1) with a straight line or a curve.

本発明では,図2(C1)及び(C2)に示すように,粗粒径曲線作成手段20により全体画像G0から検出下限粒径d1を含む複数の所定粗粒径diの粒度インデクスIiを算出し且つ加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成し,細粒径曲線作成手段30により部分画像G1から下限粒径d1を含む複数の所定細粒径djの粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成し,粒径d1において粗粒径加積曲線P(d≧d1)と細粒径加積曲線P(d≦d1)とを重ね合せて合成する。すなわち,粗粒径加積曲線P(d≧d1)の下端の粗粒径diを粒径d1とし,細粒径加積曲線P(d≦d1)の上端の細粒径djも粒径d1とし,粗粒径加積曲線P(d≧d1)の下端と細粒径加積曲線P(d≦d1)の上端とを重ね合せることにより,実際の含有率が反映された粒径加積曲線P(d)を作成することができる。   In the present invention, as shown in FIGS. 2 (C1) and 2 (C2), the coarse particle size curve creating means 20 calculates the particle size index Ii of a plurality of predetermined coarse particle sizes di including the detection lower limit particle size d1 from the entire image G0. Then, the product is converted into a product passage rate P (di) to create a coarse particle size accumulation curve P (d ≧ d1) having a particle size of d1 or more, and the fine particle size curve creation means 30 calculates the lower limit particle size from the partial image G1. A particle size index Ij of a plurality of predetermined fine particle diameters dj including d1 is calculated and converted into an accumulation passage rate P (dj) to create a fine particle diameter accumulation curve P (d ≦ d1) having a particle diameter of d1 or less. , The coarse particle size accumulation curve P (d ≧ d1) and the fine particle size accumulation curve P (d ≦ d1) are superposed on each other at the particle size d1. That is, the coarse particle diameter di at the lower end of the coarse particle diameter accumulation curve P (d ≧ d1) is defined as the particle diameter d1, and the fine particle diameter dj at the upper end of the fine particle accumulation curve P (d ≦ d1) is also defined as the particle diameter d1. The particle size accumulation reflecting the actual content rate is obtained by overlapping the lower end of the coarse particle size accumulation curve P (d ≧ d1) and the upper end of the fine particle size accumulation curve P (d ≦ d1). A curve P (d) can be created.

更に好ましくは,ステップS040において,粗粒径加積曲線P(d≧d1)及び細粒粒径加積曲線P(d2≦d≦d1)と共に,ステップS031〜S035で作成した細粒径加積曲線P(d≦d2)をも合成することにより,例えば図2(E)に示すような粒径加積曲線P(d)を作成する。複数の画像G0,G1,G2から作成した径加積曲線P(d≧d1),P(d2≦d≦d1),P(d≦d2)を合成する謂わば多段階の画像解析によって粒径加積曲線P(d)を作成することにより,図7のように単独の画像Gから作成した粒径加積曲線P(d)に比して,検出限界粒径を小さくできるので,推定できる粒径範囲が広い粒径加積曲線P(d)を作成できる。   More preferably, in step S040, the coarse particle size accumulation curve P (d ≧ d1) and the fine particle size accumulation curve P (d2 ≦ d ≦ d1) together with the fine particle size accumulation created in steps S031 to S035. By synthesizing the curve P (d ≦ d2) as well, for example, a particle size accumulation curve P (d) as shown in FIG. The particle size is obtained by so-called multi-stage image analysis for synthesizing the diameter accumulation curve P (d ≧ d1), P (d2 ≦ d ≦ d1), P (d ≦ d2) created from a plurality of images G0, G1, G2. By creating the accumulation curve P (d), the detection limit particle size can be made smaller than the particle size accumulation curve P (d) created from a single image G as shown in FIG. A particle size accumulation curve P (d) having a wide particle size range can be created.

ステップS040において作成した図2(E)の粒径加積曲線P(d)は,粒状材料Sの全体画像G0及び部分画像G1,G2から算出した粒径インデクスIi,Ij,Ikに対応する加積通過率P(di),P(dj),P(dk)を含んでおり,粒状材料Sの粗粒径di及び細粒径dj,dkの実際の含有率が反映されている。図6は,粒状材料Sの全体画像G0及び部分画像G1からの画像解析(図3のステップS014,ステップS024)により求めた粗粒径di(10〜100mm)及び細粒径dj(0.8〜10mm)の加積通過率P(di),P(dj)と,その粒状材料Sから篩い分け粒度試験により求めた加積通過率P(di),P(dj)とを比較した実験結果を示す。同図から分かるように,図3の流れ図による加積通過率P(di),P(dj)は篩い分け粒度試験結果と精度よく一致しており,図3のような多段階の画像解析によって粒状材料Sの粒径範囲が広い粒径加積曲線P(d)を十分な精度で作成できる。   The particle size accumulation curve P (d) of FIG. 2 (E) created in step S040 is an addition corresponding to the particle size indexes Ii, Ij, and Ik calculated from the entire image G0 and the partial images G1 and G2 of the granular material S. The product passage ratios P (di), P (dj), and P (dk) are included, and the actual contents of the coarse particle diameter di and the fine particle diameters dj and dk of the granular material S are reflected. FIG. 6 shows a coarse particle diameter di (10 to 100 mm) and a fine particle diameter dj (0.8 obtained by image analysis (step S014 and step S024 in FIG. 3) from the entire image G0 and the partial image G1 of the granular material S. 10 mm) of product passage rates P (di), P (dj) and the result of comparison of the product passage rates P (di), P (dj) obtained from the granular material S by sieving particle size test Indicates. As can be seen from the figure, the accumulation passage ratios P (di) and P (dj) in the flowchart of FIG. 3 are in good agreement with the sieving particle size test results, and by multi-stage image analysis as shown in FIG. A particle size accumulation curve P (d) having a wide particle size range of the granular material S can be created with sufficient accuracy.

従って,例えばステップS040で作成した粒径加積曲線P(d)を図1の判定手段24へ入力し,粒径加積曲線P(d)と粒状材料Sの最粗粒標本Tr及び最細粒標本Tsの粒径加積曲線Pr(d),Ps(d)と比較することにより,広い粒径範囲にわたって粒状材料Sの品質を判定することができ,粒状材料Sの透水係数・透水性・圧縮性等を含む多様な品質を確認・管理することができる。このような最粗粒標本Tr及び最細粒標本Tsは,上述したように粒状材料Sの数多くの粒度試験によって予め選定し,その粒径加積曲線Pr(d),Ps(d)を例えば図3のステップS001において記憶手段16に登録しておくことができる。   Therefore, for example, the particle size accumulation curve P (d) created in step S040 is input to the determination means 24 of FIG. 1, and the particle size accumulation curve P (d), the coarsest sample Tr of the granular material S, and the finest sample By comparing with the particle size accumulation curves Pr (d) and Ps (d) of the grain sample Ts, the quality of the granular material S can be determined over a wide particle size range.・ Various quality including compressibility can be confirmed and managed. Such a coarsest grain sample Tr and the finest grain sample Ts are selected in advance by a number of particle size tests of the granular material S as described above, and the particle size accumulation curves Pr (d), Ps (d) are, for example, It can be registered in the storage means 16 in step S001 of FIG.

図3のステップS040において今回の粒状材料Stの粒径加積曲線Ptを作成したのち,ステップS050において粒状材料Sの粒度分布計測を継続するか否かを判断する。継続する場合はステップS011へ戻り,次回の粒状材料St+1について上述したステップS011〜S015,ステップS021〜S025,ステップS031〜S035を繰り返して粒径加積曲線Pt+1を作成する。例えばステップS040において,運搬単位(供給単位)毎に作成した粒状材料Stの粒径加積曲線Ptを記憶手段16に累積記憶しておくことにより,判定手段24において今回供給材料Stの粒径加積曲線Ptと前回供給材料St−1の粒径加積曲線Pt−1とを比較して粒状材料Sの品質の経時的変化を判定することも可能である。   After creating the particle size accumulation curve Pt of the current granular material St in step S040 of FIG. 3, it is determined whether or not to continue the particle size distribution measurement of the granular material S in step S050. When continuing, it returns to step S011, and repeats step S011-S015, step S021-S025, step S031-S035 mentioned above about next granular material St + 1, and produces the particle size accumulation curve Pt + 1. For example, in step S040, the particle size accumulation curve Pt of the granular material St created for each transport unit (supply unit) is accumulated and stored in the storage unit 16, so that the determination unit 24 can increase the particle size of the current supply material St. It is also possible to compare the product curve Pt and the particle size accumulation curve Pt-1 of the previous supply material St-1 to determine the change in quality of the granular material S over time.

こうして本発明の目的である「粒状材料の画像から粒径範囲が広い粒径加積曲線を作成できる粒度分布計測方法及びシステム」の提供を達成できる。   Thus, the provision of “a particle size distribution measuring method and system capable of creating a particle size accumulation curve having a wide particle size range from an image of a granular material”, which is an object of the present invention, can be achieved.

上述した図1及び図2の実施例では,全体画像G0から作成した粒径d1以上の粗粒径加積曲線P(d≧d1)に対して,部分画像G1から作成した粒径d1以下粒径d2以上の細粒径加積曲線P(d2≦d≦d1)を合成すると共に,部分画像G2から作成した粒径d2以下の細粒径加積曲線P(d≦d2)を合成することにより,粒径加積曲線P(d)の粒径範囲を広げている。実際には部分画像G2にも検出限界が存在し,その検出限界粒径以下の粒状材の輪郭は部分画像G2から検出できないので,必要に応じて部分画像G2より大きい拡大倍率の第3部分画像G3を撮影し,その第3部分画像G3から検出限界粒径以下の粒状材の輪郭を検出するサイクルを繰り返すことにより,検出限界粒径を小さくして粒径加積曲線P(d)の粒径範囲を更に広げることは可能である。第3部分画像G3の拡大倍率も,部分画像G2より大きい任意の倍率とすることができるが,例えば部分画像G2中の検出限界粒径が最大粒径dmに拡大される倍率(例えば,検出限界が最大粒径dmに対して3%であるときは部分画像G2の30倍程度)とすることができる。   In the embodiment of FIGS. 1 and 2 described above, the grain size d1 or less created from the partial image G1 with respect to the coarse grain size accumulation curve P (d ≧ d1) greater than the grain size d1 created from the entire image G0. Synthesize a fine particle size accumulation curve P (d2 ≦ d ≦ d1) having a diameter d2 or larger and a fine particle size accumulation curve P (d ≦ d2) smaller than the particle size d2 created from the partial image G2. Thus, the particle size range of the particle size accumulation curve P (d) is expanded. Actually, the partial image G2 also has a detection limit, and the contour of the granular material having a particle size equal to or smaller than the detection limit particle size cannot be detected from the partial image G2. Therefore, if necessary, the third partial image having a larger magnification than the partial image G2. G3 is photographed, and the cycle of detecting the contour of the granular material having a particle size equal to or smaller than the detection limit particle size from the third partial image G3 is repeated, so that the detection limit particle size is reduced and the particles on the particle size accumulation curve P (d) It is possible to further expand the diameter range. The enlargement magnification of the third partial image G3 can also be an arbitrary magnification larger than the partial image G2. For example, the magnification at which the detection limit particle size in the partial image G2 is enlarged to the maximum particle size dm (for example, the detection limit) Is about 30 times as large as the partial image G2).

また,上述したサイクルを繰り返す方法に代えて,例えば部分画像G1中の検出下限粒径d2以下については,予め粒状材料標本Tから求めた篩い分け粒度試験の結果から粒径加積曲線P(d≦d2)を粒径d2の加積通過率P(d2)の関数Uとして求め,部分画像G1から求めた粒径d2の加積通過率P(d2)を関数Uに代入して粒径d2以下の細粒径加積曲線P(d≦d2)を推定し,推定した細粒径加積曲線P(d≦d2)を粗粒径加積曲線P(d≧d1)及び細粒径加積曲線P(d2≦d≦d1)と合成して粒径範囲の広い粒径加積曲線P(d)を作成することも可能である。例えば,篩い分け粒度試験結果の重回帰分析により粒径加積曲線P(d≦d2)の関数Uを設定する。また,図11を参照して上述したように,粒径加積曲線P(d≦d2)をTalbot関数,Gaudin−Meloy関数,Rosin−Rammler関数等で近似した関数Uとすることも可能である。   Further, instead of the above-described method of repeating the cycle, for example, for the detection lower limit particle size d2 or less in the partial image G1, the particle size accumulation curve P (d) is obtained from the result of the sieving particle size test previously obtained from the granular material sample T. ≦ d2) is obtained as a function U of the cumulative passage rate P (d2) of the particle size d2, and the cumulative passage rate P (d2) of the particle size d2 obtained from the partial image G1 is substituted into the function U to obtain the particle size d2 The following fine particle size accumulation curve P (d ≦ d2) is estimated, and the estimated fine particle size accumulation curve P (d ≦ d2) is converted into the coarse particle size accumulation curve P (d ≧ d1) and the fine particle size addition curve P (d ≦ d1). It is also possible to create a particle size accumulation curve P (d) having a wide particle size range by combining with the product curve P (d2 ≦ d ≦ d1). For example, the function U of the particle size accumulation curve P (d ≦ d2) is set by multiple regression analysis of the sieving particle size test results. Further, as described above with reference to FIG. 11, the particle size accumulation curve P (d ≦ d2) may be a function U approximated by a Talbot function, Gaudin-Meloy function, Rosin-Rammler function, or the like. .

1…採取場(地山) 2…破砕装置
3…運搬装置 5…撮像装置
6…分離装置 7…重量計測器
8…含水率計測器 9…撒き出し装置
10…コンピュータ 11…入力装置
12…出力装置 14…入力手段
15…出力手段 16…記憶手段
17…検出手段 18…算出手段
20…粗粒径曲線作成手段 21…調整手段
22…合成手段 24…判定手段
25…演算手段 26…変換式設定手段
27…推定手段
30…細粒径曲線作成手段 31…検出手段
32…算出手段
d…粒径
e…面積
F…変換式
G…画像
I…粒度インデクス
S…粒状材料
T…粒状材料標本
P…加積通過率,粒径加積曲線
DESCRIPTION OF SYMBOLS 1 ... Sampling field (natural ground) 2 ... Crushing device 3 ... Conveying device 5 ... Imaging device 6 ... Separation device 7 ... Weight measuring device 8 ... Moisture content measuring device 9 ... Spreading device 10 ... Computer 11 ... Input device 12 ... Output Apparatus 14 ... Input means 15 ... Output means 16 ... Storage means 17 ... Detection means 18 ... Calculation means 20 ... Coarse particle diameter curve creation means 21 ... Adjustment means 22 ... Synthesis means 24 ... Determination means 25 ... Calculation means 26 ... Conversion formula setting Means 27 ... Estimating means 30 ... Fine particle size curve creating means 31 ... Detection means 32 ... Calculation means d ... Particle size e ... Area F ... Conversion formula G ... Image I ... Particle size index S ... Granular material T ... Granular material specimen P ... Accumulation pass rate, particle size accumulation curve

Claims (6)

異なる粒径の粒状材が混合した粒状材料を撒き出して全体画像及び所定拡大倍率の部分画像を撮影し,前記全体画像から所定下限粒径d1以上の当該粒径d1を含む複数の所定粗粒径diについて当該粗粒径di以上の粒状材の画像全体に対する面積割合である粒度インデクスIiを算出し且つ前記粒状材料の標本から求めた変換式により粗粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成し,前記部分画像から前記下限粒径d1以下の当該粒径d1を含む複数の所定細粒径djについて粒度インデクスIjを算出し且つ前記変換式により細粒径djの粒度インデクスIjを加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成し,前記粗粒径及び細粒径加積曲線を合成して粒径加積曲線P(d)を作成してなる粒状材料の粒度分布計測方法。 A granular material in which granular materials having different particle diameters are mixed is taken out to take an entire image and a partial image at a predetermined magnification, and a plurality of predetermined coarse particles including the particle diameter d1 of a predetermined lower limit particle diameter d1 or more from the entire image. The particle size index Ii, which is the area ratio of the granular material having the coarse particle size di or larger with respect to the entire image, is calculated with respect to the diameter di, and the particle size index Ii of the coarse particle size di is added through the conversion formula obtained from the sample of the granular material. The ratio P (di) is converted into a coarse particle size accumulation curve P (d ≧ d1) having a particle size of d1 or more, and a plurality of predetermined values including the particle size d1 of the lower limit particle size d1 or less from the partial image. The particle size index Ij is calculated for the fine particle size dj, and the particle size index Ij of the fine particle size dj is converted into the accumulation passage rate P (dj) by the above conversion formula, and the fine particle size accumulation curve P ( d ≦ d1) The particle size distribution measuring method of particulate material by combining the particle size and fine size accumulation curve formed by creating a particle size accumulation curve P (d). 請求項1の方法において,前記部分画像に所定拡大倍率の第1部分画像と当該第1画像より大きい所定拡大倍率の第2部分画像とを含め,前記第1画像から前記下限粒径d1以下で当該粒径d1を含み且つ第2下限粒径d2以上の複数の所定細粒径djについて粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下d2以上の第1細粒径加積曲線P(d2≦d≦d1)を作成し,前記第2画像から粒径d2以下の所定細粒径dkについて粒度インデクスIkを算出し且つ加積通過率P(dk)に変換して粒径d2以下の第2細粒径加積曲線P(d≦d2)を作成し,前記粗粒径,第1細粒径及び第2細粒径加積曲線を合成してなる粒状材料の粒度分布計測方法。 2. The method according to claim 1, wherein the partial image includes a first partial image having a predetermined magnification and a second partial image having a predetermined magnification larger than the first image, and is less than the lower limit particle diameter d <b> 1 from the first image. A particle size index Ij is calculated for a plurality of predetermined fine particle sizes dj including the particle size d1 and equal to or greater than the second lower limit particle size d2 and converted into a cumulative passage rate P (dj). One fine particle size accumulation curve P (d2 ≦ d ≦ d1) is created, a particle size index Ik is calculated for a predetermined fine particle size dk less than the particle size d2 from the second image, and the product passage rate P (dk) And a second fine particle size accumulation curve P (d ≦ d2) having a particle size of d2 or less is prepared, and the coarse particle size, the first fine particle size, and the second fine particle size accumulation curve are synthesized. A method for measuring the particle size distribution of a granular material. 請求項1の方法において,前記粒状材料の標本から第2下限粒径d2以下の粒径加積曲線P(d≦d2)を当該粒径d2の加積通過率P(d2)の関数として求め,前記部分画像から前記下限粒径d1以下で当該粒径d1を含み且つ粒径d2以上の複数の所定細粒径djについて粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下d2以上の第1細粒径加積曲線P(d2≦d≦d1)を作成し,当該第1細粒径加積曲線の粒径d2の加積通過率P(d2)から前記関数により粒径d2以下の第2細粒径加積曲線P(d≦d2)を推定し,前記粗粒径,第1細粒径及び第2細粒径加積曲線を合成してなる粒状材料の粒度分布計測方法。 2. The method according to claim 1, wherein a particle size accumulation curve P (d ≦ d2) having a second lower limit particle size d2 or less is obtained from the sample of the granular material as a function of the accumulation passage rate P (d2) of the particle size d2. , A particle size index Ij is calculated for a plurality of predetermined fine particle diameters dj that are equal to or smaller than the lower limit particle diameter d1 and are equal to or larger than the particle diameter d2 from the partial image, and is converted into a product passage rate P (dj). The first fine particle size accumulation curve P (d2 ≦ d ≦ d1) having the particle size d1 or less and d2 or more is prepared, and the accumulation passage rate P (d2) of the particle size d2 of the first fine particle size accumulation curve is created. The second fine particle size accumulation curve P (d ≦ d2) having a particle size of d2 or less is estimated from the above function, and the coarse particle size, the first fine particle size, and the second fine particle size accumulation curve are synthesized. A method for measuring the particle size distribution of a granular material. 異なる粒径の粒状材が混合した粒状材料を撒き出して全体画像及び所定拡大倍率の部分画像を撮影する撮影装置,前記全体画像から所定下限粒径d1以上の当該粒径d1を含む複数の所定粗粒径diについて当該粗粒径di以上の粒状材の画像全体に対する面積割合である粒度インデクスIiを算出し且つ前記粒状材料の標本から求めた変換式により粗粒径diの粒度インデクスIiを加積通過率P(di)に変換して粒径d1以上の粗粒径加積曲線P(d≧d1)を作成する粗粒径曲線作成手段,前記部分画像から前記下限粒径d1以下の当該粒径d1を含む複数の所定細粒径djについて粒度インデクスIjを算出し且つ前記変換式により細粒径djの粒度インデクスIjを加積通過率P(dj)に変換して粒径d1以下の細粒径加積曲線P(d≦d1)を作成する細粒径曲線作成手段,並びに前記粗粒径及び細粒径加積曲線を合成して粒径加積曲線P(d)を作成する合成手段を備えてなる粒状材料の粒度分布計測システム。 A photographing apparatus for taking out a granular material in which granular materials having different particle diameters are mixed to capture an entire image and a partial image having a predetermined magnification, and a plurality of predetermined particles including the particle diameter d1 that is equal to or larger than a predetermined lower limit particle diameter d1 from the entire image. For the coarse particle size di, the particle size index Ii, which is the area ratio of the granular material with the coarse particle size di or larger to the entire image, is calculated, and the particle size index Ii of the coarse particle size di is added by the conversion formula obtained from the sample of the granular material. A coarse particle diameter curve creation means for creating a coarse particle diameter accumulation curve P (d ≧ d1) having a particle diameter d1 or more by converting into a product passage rate P (di), and the partial image having the lower limit particle diameter d1 or less The particle size index Ij is calculated for a plurality of predetermined fine particle sizes dj including the particle size d1, and the particle size index Ij of the fine particle size dj is converted into a product passage rate P (dj) by the above conversion formula, so that the particle size is less than the particle size d1. Fine grain cumulative music Fine particle size curve creation means for creating P (d ≦ d1) and synthesis means for creating the particle size accumulation curve P (d) by synthesizing the coarse particle size and fine particle size accumulation curve. Particle size distribution measurement system for granular materials. 請求項4のシステムにおいて,前記部分画像に所定拡大倍率の第1部分画像と当該第1画像より大きい所定拡大倍率の第2部分画像とを含め,前記細粒径曲線作成手段に,前記第1画像から前記下限粒径d1以下で当該粒径d1を含み且つ第2下限粒径d2以上の複数の所定細粒径djについて粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下d2以上の第1細粒径加積曲線P(d2≦d≦d1)を作成する手段と,前記第2画像から粒径d2以下の所定細粒径dkについて粒度インデクスIkを算出し且つ加積通過率P(dk)に変換して粒径d2以下の第2細粒径加積曲線P(d≦d2)を作成する手段とを含め,前記合成手段により粗粒径,第1細粒径及び第2細粒径加積曲線を合成してなる粒状材料の粒度分布計測システム。 5. The system according to claim 4, wherein the partial image includes a first partial image having a predetermined magnification and a second partial image having a predetermined magnification larger than the first image, and the fine particle size curve creating unit includes the first partial image. A particle size index Ij is calculated for a plurality of predetermined fine particle sizes dj that are equal to or smaller than the lower limit particle size d1 and are equal to or greater than the second lower limit particle size d2 from the image, and are converted into a product passage rate P (dj). Means for generating a first fine particle size accumulation curve P (d2 ≦ d ≦ d1) having a particle size of d1 or less and d2 or more, and a particle size index Ik for a predetermined fine particle size dk of particle size d2 or less from the second image. Including a means for calculating and converting to a product passage rate P (dk) to create a second fine particle size accumulation curve P (d ≦ d2) having a particle size of d2 or less, Of the granular material formed by synthesizing the first fine particle size and second fine particle size accumulation curves Degree distribution measurement system. 請求項4のシステムにおいて,前記粒状材料の標本から求めた第2下限粒径d2以下の粒径加積曲線P(d≦d2)を粒径d2の加積通過率P(d2)の関数として記憶する記憶手段を設け,前記細粒径曲線作成手段により部分画像から前記下限粒径d1以下で当該粒径d1を含み且つ粒径d2以上の複数の所定細粒径djについて粒度インデクスIjを算出し且つ加積通過率P(dj)に変換して粒径d1以下d2以上の第1細粒径加積曲線P(d2≦d≦d1)を作成し,当該第1細粒径加積曲線の粒径d2の加積通過率P(d2)から前記関数により粒径d2以下の第2細粒径加積曲線P(d≦d2)を推定する推定手段を設け,前記合成手段により粗粒径,第1細粒径及び第2細粒径加積曲線を合成してなる粒状材料の粒度分布計測システム。 5. The system according to claim 4, wherein a particle size accumulation curve P (d ≦ d2) equal to or smaller than a second lower limit particle size d2 obtained from the sample of the granular material is a function of an accumulation passage rate P (d2) of the particle size d2. Storage means for storing is provided, and the particle size index Ij is calculated for a plurality of predetermined fine particle diameters dj that include the particle diameter d1 not more than the lower limit particle diameter d1 and not less than the particle diameter d2 from the partial image by the fine particle diameter curve creating means. And a first fine particle size accumulation curve P (d2 ≦ d ≦ d1) having a particle size of d1 or less and d2 or more is prepared by converting into the product passage rate P (dj), and the first fine particle size accumulation curve An estimation means for estimating a second fine particle size accumulation curve P (d ≦ d2) having a particle size of d2 or less from the accumulation pass rate P (d2) of the particle size d2 of the particle size d2 by the function is provided. Measurement of particle size distribution of granular material composed of diameter, first fine particle size and second fine particle size accumulation curve Stem.
JP2015215351A 2015-11-01 2015-11-01 Method and system for measuring particle size distribution of granular material Active JP6156852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015215351A JP6156852B2 (en) 2015-11-01 2015-11-01 Method and system for measuring particle size distribution of granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015215351A JP6156852B2 (en) 2015-11-01 2015-11-01 Method and system for measuring particle size distribution of granular material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012132433A Division JP5896465B2 (en) 2012-06-12 2012-06-12 Method and system for measuring particle size distribution of granular material

Publications (2)

Publication Number Publication Date
JP2016029391A true JP2016029391A (en) 2016-03-03
JP6156852B2 JP6156852B2 (en) 2017-07-05

Family

ID=55435314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015215351A Active JP6156852B2 (en) 2015-11-01 2015-11-01 Method and system for measuring particle size distribution of granular material

Country Status (1)

Country Link
JP (1) JP6156852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11403747B2 (en) * 2016-11-30 2022-08-02 Jfe Steel Corporation Fine ratio measuring device and fine ratio measuring system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143635A (en) * 1990-10-05 1992-05-18 Nakano Vinegar Co Ltd Method and apparatus for measuring minute particles
JPH08136439A (en) * 1994-11-04 1996-05-31 Toa Medical Electronics Co Ltd Grain image analysis device
JPH10104165A (en) * 1996-09-27 1998-04-24 Kubota Corp Image pickup type evaluation apparatus
JPH10185793A (en) * 1996-12-24 1998-07-14 Nippon Mizushiyori Giken:Kk Measuring method for particle size and its distribution state
JPH11258141A (en) * 1998-03-13 1999-09-24 Nikkiso Co Ltd Particle size distribution-measuring apparatus
JP2001337028A (en) * 2000-05-30 2001-12-07 Nikkiso Co Ltd Method and apparatus for measuring particle size distribution
JP2004354174A (en) * 2003-05-28 2004-12-16 Fuji Electric Systems Co Ltd Flock image pickup device
JP2009036533A (en) * 2007-07-31 2009-02-19 Kajima Corp Particle size measuring system and program of ground material
JP2011163836A (en) * 2010-02-06 2011-08-25 Kajima Corp Grain size measuring system for granular material and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143635A (en) * 1990-10-05 1992-05-18 Nakano Vinegar Co Ltd Method and apparatus for measuring minute particles
JPH08136439A (en) * 1994-11-04 1996-05-31 Toa Medical Electronics Co Ltd Grain image analysis device
JPH10104165A (en) * 1996-09-27 1998-04-24 Kubota Corp Image pickup type evaluation apparatus
JPH10185793A (en) * 1996-12-24 1998-07-14 Nippon Mizushiyori Giken:Kk Measuring method for particle size and its distribution state
JPH11258141A (en) * 1998-03-13 1999-09-24 Nikkiso Co Ltd Particle size distribution-measuring apparatus
JP2001337028A (en) * 2000-05-30 2001-12-07 Nikkiso Co Ltd Method and apparatus for measuring particle size distribution
JP2004354174A (en) * 2003-05-28 2004-12-16 Fuji Electric Systems Co Ltd Flock image pickup device
JP2009036533A (en) * 2007-07-31 2009-02-19 Kajima Corp Particle size measuring system and program of ground material
JP2011163836A (en) * 2010-02-06 2011-08-25 Kajima Corp Grain size measuring system for granular material and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11403747B2 (en) * 2016-11-30 2022-08-02 Jfe Steel Corporation Fine ratio measuring device and fine ratio measuring system

Also Published As

Publication number Publication date
JP6156852B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5896465B2 (en) Method and system for measuring particle size distribution of granular material
JP4883799B2 (en) Ground material particle size measurement system and program
JP5582806B2 (en) Granule size measurement system and program
Kwan et al. Particle shape analysis of coarse aggregate using digital image processing
Kumara et al. Image analysis techniques on evaluation of particle size distribution of gravel
JP6173894B2 (en) Surface water volume management method and system for ground material
Stähly et al. Size ratio of fluvial grains’ intermediate axes assessed by image processing and square-hole sieving
Ishutov et al. Resurrection of a reservoir sandstone from tomographic data using three-dimensional printing
Garboczi et al. Particle shape effects on particle size measurement for crushed waste glass
JP5234649B2 (en) Granular quality control system and program for granular materials
JP2012242099A (en) Method and system for measuring grain size of partitioned granular material
Zheng et al. Characterization of two-and three-dimensional morphological properties of fragmented sand grains
Engin et al. Size distribution analysis of aggregates using LiDAR scan data and an alternate algorithm
Aboufoul et al. Virtual porous materials to predict the air void topology and hydraulic conductivity of asphalt roads
Spreitzer et al. Effects of large wood (LW) blockage on bedload connectivity in the presence of a hydraulic structure
Li et al. Investigation on material properties and surface characteristics related to tyre–road noise for thin layer surfacings
Di Stefano et al. Rill flow velocity and resistance law: A review
Jiang et al. Quantifying organic carbon stocks using a stereological profile imaging method to account for rock fragments in stony soils
JP6156852B2 (en) Method and system for measuring particle size distribution of granular material
JP6672823B2 (en) Ground material particle size monitoring method and three-dimensional image processing equipment
Akram et al. Comparison of different hydrograph routing techniques in XPSTORM modelling software: A case study
JP6696290B2 (en) Quality control method of rock zone in rock fill dam
JP2020180835A (en) Grain degree determination method and system for ground material
JP2015179044A (en) Grain size measurement method and system for ground material
McQuaid et al. Use of 3D modeling to assess pothole growth

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6156852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250