JP2016028865A - Method for producing pneumatic tire and method for producing tire member - Google Patents

Method for producing pneumatic tire and method for producing tire member Download PDF

Info

Publication number
JP2016028865A
JP2016028865A JP2014151697A JP2014151697A JP2016028865A JP 2016028865 A JP2016028865 A JP 2016028865A JP 2014151697 A JP2014151697 A JP 2014151697A JP 2014151697 A JP2014151697 A JP 2014151697A JP 2016028865 A JP2016028865 A JP 2016028865A
Authority
JP
Japan
Prior art keywords
tire
rubber
ionic liquid
mass
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014151697A
Other languages
Japanese (ja)
Other versions
JP6449580B2 (en
Inventor
祐樹 込谷
Yuki Komiya
祐樹 込谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2014151697A priority Critical patent/JP6449580B2/en
Publication of JP2016028865A publication Critical patent/JP2016028865A/en
Application granted granted Critical
Publication of JP6449580B2 publication Critical patent/JP6449580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method which makes it possible to efficiently produce a pneumatic tire comprising a tire member that is excellent in low heat build-up properties, and also provide a method which makes it possible to efficiently produce a tire member that is excellent in low heat build-up properties.SOLUTION: A green tire that comprises an unvulcanized member comprising a rubber composition comprising an ionic liquid is vulcanized at 100-140°C, thus efficiently producing a pneumatic tire comprising a tire member that is excellent in low heat build-up properties. An unvulcanized member that comprises a rubber composition comprising an ionic liquid is vulcanized at 100-140°C, thus efficiently producing a tire member that is excellent in low heat build-up properties.SELECTED DRAWING: Figure 1

Description

本発明は、空気入りタイヤの製造方法及びタイヤ部材の製造方法に関する。   The present invention relates to a method for manufacturing a pneumatic tire and a method for manufacturing a tire member.

近年、省エネルギーの観点から、低燃費タイヤの開発が盛んにおこなわれている。低燃費タイヤの開発には、加硫して得られたタイヤ部材の低発熱性能を向上させることが必要不可欠と言われている。   In recent years, fuel efficient tires have been actively developed from the viewpoint of energy saving. It is said that in order to develop a low fuel consumption tire, it is indispensable to improve the low heat generation performance of a tire member obtained by vulcanization.

低発熱性に優れた加硫ゴムを得る技術として、低温で未加硫ゴムを加硫する技術が知られている。   As a technique for obtaining a vulcanized rubber excellent in low heat buildup, a technique for vulcanizing an unvulcanized rubber at a low temperature is known.

また、タイヤ用ゴム組成物に関する技術として、イオン液体を配合する技術が知られている(例えば、特許文献1〜2参照)。   Moreover, the technique which mix | blends an ionic liquid is known as a technique regarding the rubber composition for tires (for example, refer patent documents 1-2).

WO2011/045944WO2011 / 045944 特開2013−67706号公報JP 2013-67706 A

低温で未加硫ゴムを加硫する技術は、一般的な加硫温度(160℃〜190℃)で加硫する場合に比べて、加硫に要する時間がかかるため、生産性が著しく悪い。   The technology for vulcanizing unvulcanized rubber at a low temperature takes significantly longer to vulcanize than the case of vulcanizing at a general vulcanization temperature (160 ° C. to 190 ° C.), and thus the productivity is extremely poor.

本発明は上記実情に鑑みてなされたものであり、その目的は、低発熱性に優れたタイヤ部材を備える空気入りタイヤを効率よく製造できる方法を提供することにある。本発明の目的はまた、低発熱性に優れたタイヤ部材を効率よく製造できる方法を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the method which can manufacture a pneumatic tire provided with the tire member excellent in the low heat_generation | fever efficiently. Another object of the present invention is to provide a method capable of efficiently producing a tire member excellent in low heat build-up.

上記課題を解決するために、本発明は以下の構成を備える。即ち本発明は、イオン液体を含むゴム組成物を含む未加硫部材を備える生タイヤを100〜140℃で加硫する工程を含む空気入りタイヤの製造方法、に関する。   In order to solve the above problems, the present invention comprises the following arrangement. That is, this invention relates to the manufacturing method of a pneumatic tire including the process of vulcanizing a raw tire provided with the unvulcanized member containing the rubber composition containing an ionic liquid at 100-140 degreeC.

本発明に係る製造方法では、ゴム組成物にイオン液体を配合するため、加硫速度を速めることが可能で、空気入りタイヤを効率よく製造できる。ゴム組成物にイオン液体を配合することによりかかる効果が得られる理由は明らかではないが、ゴム組成物中にわずかに存在する水分とイオン液体により加硫促進剤の分解が促進され、この結果として加硫速度が速くなると推測される。また、本発明に係る製造方法では、100〜140℃で加硫するため、低発熱性に優れたタイヤ部材を備える空気入りタイヤを得ることができる。   In the production method according to the present invention, since the ionic liquid is blended with the rubber composition, the vulcanization speed can be increased and a pneumatic tire can be produced efficiently. The reason why such an effect can be obtained by adding an ionic liquid to the rubber composition is not clear, but the decomposition of the vulcanization accelerator is promoted by the water and the ionic liquid that are slightly present in the rubber composition. It is presumed that the vulcanization speed will increase. Moreover, in the manufacturing method which concerns on this invention, since it vulcanizes | cure at 100-140 degreeC, a pneumatic tire provided with the tire member excellent in the low heat generation property can be obtained.

未加硫部材の具体例としては、例えば、未加硫トレッド、未加硫サイドウォール、未加硫ビードフィラーなどが挙げられる。   Specific examples of the unvulcanized member include, for example, an unvulcanized tread, an unvulcanized sidewall, an unvulcanized bead filler, and the like.

ゴム組成物は、通常、ジエン系ゴムをさらに含む。ゴム組成物は、ジエン系ゴム100質量部に対してイオン液体を1〜40質量部含むことが好ましい。1質量部未満であると、加硫速度を速めることが困難なことがある。一方、40質量部を越えると、加硫ゴムの硬度が低下する。   The rubber composition usually further contains a diene rubber. The rubber composition preferably contains 1 to 40 parts by mass of an ionic liquid with respect to 100 parts by mass of the diene rubber. If it is less than 1 part by mass, it may be difficult to increase the vulcanization rate. On the other hand, when it exceeds 40 parts by mass, the hardness of the vulcanized rubber is lowered.

イオン液体のカチオン構造が、アンモニウム塩、イミダゾリウム塩、ピリジウム塩、ピロリジニウム塩、ホスホニウム塩及びスルホニウム塩からなる群より選択される少なくとも1種であることが好ましい。イオン液体が、1−エチル−3−メチルイミダゾリウム メチルホスホネート又はN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミドであることも好ましい。   The cation structure of the ionic liquid is preferably at least one selected from the group consisting of an ammonium salt, an imidazolium salt, a pyridium salt, a pyrrolidinium salt, a phosphonium salt, and a sulfonium salt. It is also preferred that the ionic liquid is 1-ethyl-3-methylimidazolium methylphosphonate or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide.

本発明はまた、イオン液体を含むゴム組成物を含む未加硫部材を100〜140℃で加硫する工程を含むタイヤ部材の製造方法、に関する。   The present invention also relates to a method for manufacturing a tire member including a step of vulcanizing an unvulcanized member containing a rubber composition containing an ionic liquid at 100 to 140 ° C.

本発明に係る製造方法では、ゴム組成物にイオン液体を配合するため、加硫速度を速めることが可能で、タイヤ部材を効率よく製造できる。また、本発明に係る製造方法では、未加硫部材を100〜140℃で加硫するため、低発熱性に優れたタイヤ部材を得ることができる。   In the production method according to the present invention, since the ionic liquid is blended with the rubber composition, the vulcanization speed can be increased and the tire member can be produced efficiently. Moreover, in the manufacturing method which concerns on this invention, since an unvulcanized member is vulcanized at 100-140 degreeC, the tire member excellent in the low heat generation property can be obtained.

生タイヤの子午線断面図である。It is meridian sectional drawing of a raw tire. 空気入りタイヤの子午線断面図である。It is meridian sectional drawing of a pneumatic tire.

[実施形態1]
実施形態1に係る製造方法は、生タイヤ10を100〜140℃で加硫することにより空気入りタイヤ20を得る工程を含む。
[Embodiment 1]
The manufacturing method according to Embodiment 1 includes a step of obtaining the pneumatic tire 20 by vulcanizing the raw tire 10 at 100 to 140 ° C.

図1に示すように、生タイヤ10は未加硫トレッド104を備える。生タイヤ10は、例えば、一対のビードワイヤー101と、ビードワイヤー101のタイヤ径方向外側に配された未加硫ビードフィラー102と、ビードワイヤー101及び未加硫ビードフィラー102から各々タイヤ径方向外側に延びる未加硫サイドウォール103と、未加硫サイドウォール103の各々のタイヤ径方向外側端に連なる未加硫トレッド104と、一対のビードワイヤー101で端部側がタイヤ幅方向内側から外側に巻き上げられたカーカスプライ105と、カーカスプライ105の外周側(タイヤ径方向外側)に配された複数のベルトプライからなるベルト106と、を備える。   As shown in FIG. 1, the green tire 10 includes an unvulcanized tread 104. The raw tire 10 includes, for example, a pair of bead wires 101, an unvulcanized bead filler 102 disposed on the outer side in the tire radial direction of the bead wire 101, and an outer side in the tire radial direction from the bead wire 101 and the unvulcanized bead filler 102, respectively. The unvulcanized sidewall 103 extending in the direction of the tire, the unvulcanized tread 104 connected to the respective tire radial direction outer ends of the unvulcanized sidewall 103, and the pair of bead wires 101 are wound up from the inner side to the outer side in the tire width direction. A carcass ply 105, and a belt 106 formed of a plurality of belt plies arranged on the outer peripheral side (tire radial direction outer side) of the carcass ply 105.

未加硫トレッド104はゴム組成物からなる。   The unvulcanized tread 104 is made of a rubber composition.

ゴム組成物はイオン液体を含む。本明細書において、イオン液体とは、カチオンとアニオンからなり、常温(23〜25℃)において液体状態であるものを意味する。   The rubber composition includes an ionic liquid. In the present specification, the ionic liquid means a liquid consisting of a cation and an anion and in a liquid state at normal temperature (23 to 25 ° C.).

イオン液体のカチオン構造としては、例えば、アンモニウム塩、イミダゾリウム塩、ピリジウム塩、ピロリジニウム塩、ホスホニウム塩、スルホニウム塩などが挙げられる。イオン液体の具体例としては、例えば、1−エチル−3−メチルイミダゾリウム メチルホスホネート、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミドなどが挙げられる。   Examples of the cation structure of the ionic liquid include ammonium salt, imidazolium salt, pyridium salt, pyrrolidinium salt, phosphonium salt, sulfonium salt and the like. Specific examples of the ionic liquid include, for example, 1-ethyl-3-methylimidazolium methylphosphonate, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, and the like. Can be mentioned.

イオン液体は親水性のものであってもよく、疎水性のものでもよい。加硫速度を速める効果が高いという観点では、親水性が好ましい。   The ionic liquid may be hydrophilic or hydrophobic. From the viewpoint that the effect of increasing the vulcanization speed is high, hydrophilicity is preferable.

イオン液体の含有量は、ジエン系ゴム100質量部に対し、1質量部以上、好ましくは2質量部以上、より好ましくは3質量部以上である。1質量部未満であると、加硫速度を速めることが困難なことがある。一方、イオン液体の含有量は、ジエン系ゴム100質量部に対し、40質量部以下、好ましくは35質量部以下である。40質量部を越えると、加硫ゴムの硬度が低下する。   The content of the ionic liquid is 1 part by mass or more, preferably 2 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the diene rubber. If it is less than 1 part by mass, it may be difficult to increase the vulcanization rate. On the other hand, the content of the ionic liquid is 40 parts by mass or less, preferably 35 parts by mass or less with respect to 100 parts by mass of the diene rubber. If it exceeds 40 parts by mass, the hardness of the vulcanized rubber will decrease.

ゴム組成物は、通常、ジエン系ゴムを含む。   The rubber composition usually contains a diene rubber.

ジエン系ゴムとしては、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリスチレンブタジエンゴム(SBR)、ポリブタジエンゴム(BR)、クロロプレンゴム(CR)、ニトリルゴム(NBR)などが挙げられる。必要に応じて、末端を変性したもの(例えば、末端変性BR、末端変性SBRなど)、あるいは所望の特性を付与すべく改質したもの(例えば、改質NR)も好適に使用可能である。また、ポリブタジエンゴム(BR)については、コバルト(Co)触媒、ネオジム(Nd)触媒、ニッケル(Ni)触媒、チタン(Ti)触媒、リチウム(Li)触媒を用いて合成したものに加えて、WO2007−129670に記載のメタロセン錯体を含む重合触媒組成物を用いて合成したもの、あるいはシンジオタクティック結晶を含むポリブタジエンゴムも使用可能である。なかでも、天然ゴム、ポリスチレンブタジエンゴムが好ましい。   Examples of the diene rubber include natural rubber (NR), polyisoprene rubber (IR), polystyrene butadiene rubber (SBR), polybutadiene rubber (BR), chloroprene rubber (CR), and nitrile rubber (NBR). If necessary, a terminal-modified one (for example, terminal-modified BR, terminal-modified SBR, etc.) or a substance modified to give a desired property (for example, a modified NR) can be suitably used. Regarding polybutadiene rubber (BR), in addition to those synthesized using a cobalt (Co) catalyst, a neodymium (Nd) catalyst, a nickel (Ni) catalyst, a titanium (Ti) catalyst, and a lithium (Li) catalyst, WO2007 A polybutadiene rubber synthesized using a polymerization catalyst composition containing a metallocene complex described in 129670 or a syndiotactic crystal can also be used. Of these, natural rubber and polystyrene butadiene rubber are preferable.

ジエン系ゴムを100質量部としたとき、天然ゴムの含有量は50質量部以上が好ましく、60質量部以上がより好ましい。   When the diene rubber is 100 parts by mass, the content of natural rubber is preferably 50 parts by mass or more, and more preferably 60 parts by mass or more.

ゴム組成物は、カーボンブラック、オイル、亜鉛華、ステアリン酸、加硫系配合剤、老化防止剤、シリカ、シランカップリング剤などを適宜配合できる。   In the rubber composition, carbon black, oil, zinc white, stearic acid, vulcanizing compounding agent, anti-aging agent, silica, silane coupling agent, and the like can be appropriately compounded.

カーボンブラックは、例えばSAF、ISAF、HAF、FEF、GPFなど、通常のゴム工業で使用されるカーボンブラックの他、アセチレンブラックやケッチェンブラックなどの導電性カーボンブラックを使用することができる。   As the carbon black, for example, conductive carbon black such as acetylene black and ketjen black can be used in addition to carbon black used in normal rubber industry such as SAF, ISAF, HAF, FEF, and GPF.

カーボンブラックの含有量は、ジエン系ゴム100質量部に対し、好ましくは20質量部以上、より好ましくは50質量部以上である。一方、カーボンブラックの含有量は、ジエン系ゴム100質量部に対し、好ましくは120質量部以下、より好ましくは100質量部以下である。   The content of carbon black is preferably 20 parts by mass or more, more preferably 50 parts by mass or more with respect to 100 parts by mass of the diene rubber. On the other hand, the content of carbon black is preferably 120 parts by mass or less, more preferably 100 parts by mass or less, with respect to 100 parts by mass of the diene rubber.

オイルとしては、例えば、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどを好適に使用できる。   As the oil, for example, paraffinic process oil, naphthenic process oil, aromatic process oil and the like can be suitably used.

オイルの含有量は、ジエン系ゴム100質量部に対し、好ましくは30質量部以下、より好ましくは20質量部以下である。   The oil content is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, with respect to 100 parts by mass of the diene rubber.

加硫系配合剤としては、硫黄、有機過酸化物などの加硫剤、加硫促進剤、加硫促進助剤、加硫遅延剤などが挙げられる。   Examples of the vulcanizing compounding agent include vulcanizing agents such as sulfur and organic peroxides, vulcanization accelerators, vulcanization acceleration aids, vulcanization retarders and the like.

加硫系配合剤としての硫黄は通常のゴム用硫黄であればよく、例えば粉末硫黄、沈降硫黄、不溶性硫黄、高分散性硫黄などを用いることができる。加硫後のゴム物性や耐久性などを考慮した場合、ジエン系ゴム100質量部に対する硫黄の配合量は、硫黄分換算で0.5〜5.0質量部が好ましい。   Sulfur as the vulcanizing compounding agent may be normal sulfur for rubber. For example, powdered sulfur, precipitated sulfur, insoluble sulfur, highly dispersible sulfur and the like can be used. When the rubber physical properties and durability after vulcanization are taken into consideration, the sulfur content relative to 100 parts by mass of the diene rubber is preferably 0.5 to 5.0 parts by mass in terms of sulfur content.

加硫促進剤としては、ゴム加硫用として通常用いられる、スルフェンアミド系加硫促進剤、チウラム系加硫促進剤、チアゾール系加硫促進剤、チオウレア系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤などが挙げられる。ジエン系ゴム100質量部に対する加硫促進剤の配合量は、0.1〜5.0質量部が好ましい。   As the vulcanization accelerator, sulfenamide vulcanization accelerator, thiuram vulcanization accelerator, thiazole vulcanization accelerator, thiourea vulcanization accelerator, guanidine vulcanization, which are usually used for rubber vulcanization. Examples thereof include accelerators and dithiocarbamate vulcanization accelerators. The blending amount of the vulcanization accelerator with respect to 100 parts by mass of the diene rubber is preferably 0.1 to 5.0 parts by mass.

老化防止剤としては、ゴム用として通常用いられる、芳香族アミン系老化防止剤、アミン−ケトン系老化防止剤、モノフェノール系老化防止剤、ビスフェノール系老化防止剤、ポリフェノール系老化防止剤、ジチオカルバミン酸塩系老化防止剤、チオウレア系老化防止剤などの老化防止剤を単独、または適宜混合して使用しても良い。老化防止剤の含有量は、ジエン系ゴム100質量部に対して0〜5.0質量部であることがより好ましく、0.5〜3.0質量部であることがさらに好ましい。   As an anti-aging agent, an aromatic amine-based anti-aging agent, an amine-ketone anti-aging agent, a monophenol anti-aging agent, a bisphenol anti-aging agent, a polyphenol anti-aging agent, dithiocarbamic acid, which are usually used for rubber Anti-aging agents such as a salt-based anti-aging agent and a thiourea-based anti-aging agent may be used alone or in an appropriate mixture. The content of the anti-aging agent is more preferably 0 to 5.0 parts by mass and further preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the diene rubber.

ゴム組成物は、例えば、ジエン系ゴム、イオン液体に加えて、必要に応じて、カーボンブラック、オイル、亜鉛華、ステアリン酸、加硫系配合剤、老化防止剤、シリカ、シランカップリング剤などを、バンバリーミキサー、ニーダー、ロールなどの通常のゴム工業において使用される混練機を用いて混練りすることにより得られる。   The rubber composition is, for example, carbon black, oil, zinc white, stearic acid, vulcanizing compound, anti-aging agent, silica, silane coupling agent, etc. Can be obtained by kneading using a kneader used in a normal rubber industry such as a Banbury mixer, a kneader, or a roll.

また、各成分の配合方法は特に限定されず、加硫系配合剤以外の配合成分を予め混練してマスターバッチとし、残りの成分を添加してさらに混練する方法、各成分を任意の順序で添加し混練する方法、全成分を同時に添加して混練する方法などのいずれでもよい。   In addition, the blending method of each component is not particularly limited, and a blending component other than the vulcanizing compounding agent is kneaded in advance to form a master batch, the remaining components are added and further kneaded, and the components are in any order. Any of a method of adding and kneading, a method of adding all components simultaneously and kneading may be used.

実施形態1に係る製造方法では、生タイヤ10を100〜140℃で加硫することにより空気入りタイヤ20を得る。加硫温度が100℃未満であると、タイヤ部材の硬度が低下し、低発熱性も悪化する。また、空気入りタイヤを効率よく製造できない。加硫温度が140℃を越えると、低発熱性が悪化する。   In the manufacturing method according to Embodiment 1, the pneumatic tire 20 is obtained by vulcanizing the raw tire 10 at 100 to 140 ° C. When the vulcanization temperature is less than 100 ° C., the hardness of the tire member is lowered and the low heat build-up is also deteriorated. Moreover, a pneumatic tire cannot be manufactured efficiently. When the vulcanization temperature exceeds 140 ° C., the low exothermic property deteriorates.

タイヤ部材の低発熱性と空気入りタイヤの生産性のバランスがよいという理由から、生タイヤ10を110℃以上で加硫することが好ましく、120℃以上で加硫することがより好ましい。生タイヤ10を135℃以下で加硫することが好ましい。   The raw tire 10 is preferably vulcanized at 110 ° C. or higher, more preferably 120 ° C. or higher, because the tire member has a good balance between the low heat build-up and the pneumatic tire productivity. It is preferable to vulcanize the raw tire 10 at 135 ° C. or lower.

図2に示すように、空気入りタイヤ20は、未加硫トレッド104を加硫して得られたトレッド204を備える。空気入りタイヤ20は、例えば、一対のビードワイヤー101と、ビードワイヤー101のタイヤ径方向外側に配されたビードフィラー202と、ビードワイヤー101及びビードフィラー202から各々タイヤ径方向外側に延びるサイドウォール203と、サイドウォール203の各々のタイヤ径方向外側端に連なるトレッド204と、一対のビードワイヤー101で端部側がタイヤ幅方向内側から外側に巻き上げられたカーカスプライ105と、カーカスプライ105の外周側(タイヤ径方向外側)に配された複数のベルトプライからなるベルト106と、を備える。   As shown in FIG. 2, the pneumatic tire 20 includes a tread 204 obtained by vulcanizing an unvulcanized tread 104. The pneumatic tire 20 includes, for example, a pair of bead wires 101, a bead filler 202 disposed on the outer side in the tire radial direction of the bead wire 101, and sidewalls 203 that extend outward from the bead wire 101 and the bead filler 202 in the tire radial direction. A tread 204 connected to each tire radial direction outer end of the sidewall 203, a carcass ply 105 whose end side is wound up from the inner side in the tire width direction by a pair of bead wires 101, and an outer peripheral side of the carcass ply 105 ( A belt 106 made of a plurality of belt plies arranged on the outer side in the tire radial direction.

(変形例)
変形例1では、未加硫ビードフィラー102がイオン液体を含むゴム組成物からなる。変形例2では、未加硫サイドウォール103がイオン液体を含むゴム組成物からなる。
(Modification)
In Modification 1, the unvulcanized bead filler 102 is made of a rubber composition containing an ionic liquid. In Modification 2, the unvulcanized sidewall 103 is made of a rubber composition containing an ionic liquid.

[実施形態2]
実施形態2に係る製造方法は、未加硫トレッドを100〜140℃で加硫することによりトレッドを得る工程を含む。未加硫トレッドはゴム組成物からなる。ゴム組成物はイオン液体を含む。好適なゴム組成物は、実施形態1の未加硫トレッド104と同様である。好適な加硫温度は、実施形態1と同様である。実施形態2に係る製造方法により得られたトレッドは、例えば、更生タイヤのプレキュアトレッドとして好適に使用できる。
[Embodiment 2]
The manufacturing method according to Embodiment 2 includes a step of obtaining a tread by vulcanizing an unvulcanized tread at 100 to 140 ° C. Unvulcanized tread consists of a rubber composition. The rubber composition includes an ionic liquid. A suitable rubber composition is the same as that of the unvulcanized tread 104 of the first embodiment. A suitable vulcanization temperature is the same as in the first embodiment. The tread obtained by the manufacturing method according to Embodiment 2 can be suitably used, for example, as a precure tread for a retread tire.

以下、本発明の構成と効果を具体的に示す実施例などについて説明する。   Hereinafter, examples and the like specifically showing the configuration and effects of the present invention will be described.

表1において、各配合剤の配合量を、ゴム成分100質量部に対する質量部数で示す。   In Table 1, the compounding quantity of each compounding agent is shown by the mass part number with respect to 100 mass parts of rubber components.

[ゴム組成物の調製]
表1の配合処方に従い、各配合剤を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表1に記載の配合剤を以下に示す。
a)天然ゴム 「RSS#3」
b)ブタジエンゴム 「BR150B」、宇部興産社製
c)カーボンブラック 「シースト6」、東海カーボン社製
d)亜鉛華 「亜鉛華1号」、三井金属工業社製
e)ステアリン酸 「ステアリン酸」、日本油脂社製
f)老化防止剤 「アンチゲン6C」、住友化学社製
g)硫黄 「粉末硫黄」、鶴見化学社製
h)加硫促進剤 「サンセラーCM−G」(N−シクロヘキシル−2−ベンゾチアジル−スルフェンアミド)、三新化学工業社製
i)イオン液体
イオン液体1 「1−エチル−3−メチルイミダゾリウム メチルホスホネート」(親水性)、関東化学社製
イオン液体2 「N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド」(疎水性)、関東化学社製
[Preparation of rubber composition]
According to the formulation of Table 1, each compounding agent was compounded and kneaded using a normal Banbury mixer to prepare a rubber composition. The compounding agents described in Table 1 are shown below.
a) Natural rubber “RSS # 3”
b) Butadiene rubber “BR150B”, Ube Industries Co., Ltd. c) Carbon black “Seast 6”, Tokai Carbon Co., Ltd. d) Zinc Hana “Zinc Hua 1”, Mitsui Kinzoku Kogyo Co., Ltd.) Stearic acid “Stearic acid”, F) Anti-aging agent “Antigen 6C”, manufactured by Sumitomo Chemical Co., Ltd. g) Sulfur “Powder sulfur”, Tsurumi Chemical Co., Ltd. h) Vulcanization accelerator “Sunseller CM-G” (N-cyclohexyl-2-benzothiazyl) -Sulfenamide), Sanshin Chemical Co., Ltd. i) Ionic liquid Ionic liquid 1 “1-ethyl-3-methylimidazolium methylphosphonate” (hydrophilic), Kanto Chemical Co., Ltd. Ionic liquid 2 “N, N-diethyl” -N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide "(hydrophobic), manufactured by Kanto Chemical Co., Inc.

[評価]
ゴム組成物を表1に示す温度にてT90の時間で加硫して加硫ゴムを得た。ゴム組成物、加硫ゴムについて、下記の評価条件に基づいて評価を行った。結果を表1に示す。
[Evaluation]
The rubber composition was vulcanized at the temperature shown in Table 1 for a time of T90 to obtain a vulcanized rubber. The rubber composition and vulcanized rubber were evaluated based on the following evaluation conditions. The results are shown in Table 1.

(1)加硫速度
ゴム組成物について、JIS K6300−2に準拠し、試験振動数毎分100±6回、振幅角±1°、表1に示す加硫温度にて、加硫速度(T90)を測定した。加硫速度の評価結果は、比較例1を100とした指数で示した。数値が小さいほど加硫速度が速く、生産性が良好であることを意味する。
(1) Vulcanization rate The rubber composition was vulcanized at a test frequency of 100 ± 6 times per minute, amplitude angle ± 1 °, vulcanization temperature shown in Table 1 according to JIS K6300-2 (T90). ) Was measured. The evaluation results of the vulcanization rate are shown as an index with Comparative Example 1 as 100. The smaller the value, the faster the vulcanization speed and the better the productivity.

(2)硬度
JIS K6253−1に準拠し、スプリング式硬さ試験機 タイプAデュロメータと恒温槽を使用し、加硫ゴムの硬度(Hs)を求めた。
(2) Hardness Based on JIS K6253-1, the hardness (Hs) of the vulcanized rubber was determined using a spring type hardness tester type A durometer and a thermostatic bath.

(3)Hs許容範囲判定
比較例1の硬度と比べて硬度が±3ポイント未満の加硫ゴムを許容範囲内と判定し、表1に○で示した。比較例1の硬度と比べて硬度が±3ポイント以上の加硫ゴムを許容範囲外と判定し、表1に×で示した。
(3) Determination of Hs allowable range A vulcanized rubber having a hardness of less than ± 3 points compared to the hardness of Comparative Example 1 was determined to be within the allowable range, and indicated by ○ in Table 1. Vulcanized rubber having a hardness of ± 3 points or more compared to the hardness of Comparative Example 1 was determined to be out of the allowable range, and is indicated by x in Table 1.

(4)発熱性
東洋精機製スペクトロメーターを用いて、温度60℃、周波数50Hz、初期歪み10%、動的歪み2%でtanδを測定した。tanδの評価結果は、比較例1を100とした指数で示した。数値が小さいほど低発熱性であることを意味する。
(4) Exothermicity Using a Toyo Seiki spectrometer, tan δ was measured at a temperature of 60 ° C., a frequency of 50 Hz, an initial strain of 10%, and a dynamic strain of 2%. The evaluation result of tan δ was shown as an index with Comparative Example 1 as 100. The smaller the value, the lower the heat generation.

Figure 2016028865
Figure 2016028865

表1から実施例1〜4のゴム組成物の加硫速度が、イオン液体を含まない点以外は実施例1〜4と同様の比較例1のゴム組成物の加硫速度に比べて速いことがわかる。また、実施例1〜4の加硫ゴムの低発熱性が、比較例1の加硫ゴムの低発熱性に比べて優れることがわかる。   From Table 1, the vulcanization rate of the rubber compositions of Examples 1 to 4 is faster than the vulcanization rate of the rubber composition of Comparative Example 1 similar to Examples 1 to 4 except that the ionic liquid is not included. I understand. It can also be seen that the low exothermic properties of the vulcanized rubbers of Examples 1 to 4 are superior to the low exothermic property of the vulcanized rubber of Comparative Example 1.

また、加硫温度を140℃に変更した点以外は実施例1と同様の実施例5の加硫速度、低発熱性も良好であることがわかる。   Moreover, it turns out that the vulcanization | cure speed | velocity of Example 5 similar to Example 1 and the low exothermic property are also favorable except the point which changed the vulcanization temperature to 140 degreeC.

一方、加硫温度を90℃に変更した点以外は実施例1と同様の比較例2の加硫ゴムの硬度が、実施例1に比べて低いことがわかる。また、比較例2の加硫ゴムの低発熱性が、実施例1に比べて劣ることがわかる。   On the other hand, it can be seen that the hardness of the vulcanized rubber of Comparative Example 2 similar to Example 1 is lower than that of Example 1 except that the vulcanization temperature was changed to 90 ° C. Further, it can be seen that the low exothermic property of the vulcanized rubber of Comparative Example 2 is inferior to that of Example 1.

加硫温度を一般的な160℃に変更した点以外は実施例1と同様の比較例3の加硫ゴムの低発熱性が、実施例1に比べて劣ることがわかる。
It can be seen that the low heat build-up of the vulcanized rubber of Comparative Example 3 similar to Example 1 is inferior to that of Example 1 except that the vulcanization temperature is changed to the general 160 ° C.

Claims (7)

イオン液体を含むゴム組成物を含む未加硫部材を備える生タイヤを100〜140℃で加硫する工程を含むことを特徴とする空気入りタイヤの製造方法。   The manufacturing method of a pneumatic tire characterized by including the process of vulcanizing a raw tire provided with the unvulcanized member containing the rubber composition containing an ionic liquid at 100-140 degreeC. 前記ゴム組成物がジエン系ゴムをさらに含み、
前記ゴム組成物が前記ジエン系ゴム100質量部に対して前記イオン液体を1〜40質量部含む請求項1に記載の空気入りタイヤの製造方法。
The rubber composition further includes a diene rubber,
The method for producing a pneumatic tire according to claim 1, wherein the rubber composition contains 1 to 40 parts by mass of the ionic liquid with respect to 100 parts by mass of the diene rubber.
前記イオン液体のカチオン構造がアンモニウム塩、イミダゾリウム塩、ピリジウム塩、ピロリジニウム塩、ホスホニウム塩及びスルホニウム塩からなる群より選択される少なくとも1種である請求項1又は2に記載の空気入りタイヤの製造方法。   The pneumatic tire production according to claim 1 or 2, wherein the cation structure of the ionic liquid is at least one selected from the group consisting of an ammonium salt, an imidazolium salt, a pyridium salt, a pyrrolidinium salt, a phosphonium salt, and a sulfonium salt. Method. 前記イオン液体が、1−エチル−3−メチルイミダゾリウム メチルホスホネート又はN,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミドである請求項1又は2に記載の空気入りタイヤの製造方法。   The ionic liquid is 1-ethyl-3-methylimidazolium methylphosphonate or N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide. The manufacturing method of the pneumatic tire of description. 請求項1〜4のいずれかに記載の製造方法により得られた空気入りタイヤ。   The pneumatic tire obtained by the manufacturing method in any one of Claims 1-4. イオン液体を含むゴム組成物を含む未加硫部材を100〜140℃で加硫する工程を含むことを特徴とするタイヤ部材の製造方法。   The manufacturing method of the tire member characterized by including the process of vulcanizing the unvulcanized member containing the rubber composition containing an ionic liquid at 100-140 degreeC. 請求項6に記載の製造方法により得られたタイヤ部材。
A tire member obtained by the manufacturing method according to claim 6.
JP2014151697A 2014-07-25 2014-07-25 Pneumatic tire manufacturing method and tire member manufacturing method Active JP6449580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151697A JP6449580B2 (en) 2014-07-25 2014-07-25 Pneumatic tire manufacturing method and tire member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151697A JP6449580B2 (en) 2014-07-25 2014-07-25 Pneumatic tire manufacturing method and tire member manufacturing method

Publications (2)

Publication Number Publication Date
JP2016028865A true JP2016028865A (en) 2016-03-03
JP6449580B2 JP6449580B2 (en) 2019-01-09

Family

ID=55435054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151697A Active JP6449580B2 (en) 2014-07-25 2014-07-25 Pneumatic tire manufacturing method and tire member manufacturing method

Country Status (1)

Country Link
JP (1) JP6449580B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535452A (en) * 2018-10-11 2019-03-29 华南理工大学 A kind of sulfur vulcanized rubber and preparation method thereof of repeatable processing
JP2021501244A (en) * 2017-10-31 2021-01-14 株式会社ブリヂストン Rubber vulcanization process using eutectic mixture
CN113840877A (en) * 2019-04-29 2021-12-24 株式会社普利司通 Sidewall support for a pneumatic tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045944A1 (en) * 2009-10-15 2011-04-21 株式会社ブリヂストン Rubber composition for tire tread and pneumatic tire
JP2013067706A (en) * 2011-09-21 2013-04-18 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
WO2014031672A2 (en) * 2012-08-20 2014-02-27 Celanese International Corporation Methods for removing hemicellulose
CN103627055A (en) * 2013-11-08 2014-03-12 青岛科技大学 Method for preparing tire tread rubber by use of modified microcrystalline cellulose
JP2014217984A (en) * 2013-05-07 2014-11-20 東洋ゴム工業株式会社 Pneumatic tire for heavy load and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045944A1 (en) * 2009-10-15 2011-04-21 株式会社ブリヂストン Rubber composition for tire tread and pneumatic tire
JP2013067706A (en) * 2011-09-21 2013-04-18 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
WO2014031672A2 (en) * 2012-08-20 2014-02-27 Celanese International Corporation Methods for removing hemicellulose
JP2014217984A (en) * 2013-05-07 2014-11-20 東洋ゴム工業株式会社 Pneumatic tire for heavy load and production method thereof
CN103627055A (en) * 2013-11-08 2014-03-12 青岛科技大学 Method for preparing tire tread rubber by use of modified microcrystalline cellulose

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
松平信孝: "自動車タイヤの適正加硫について", 日本ゴム協会誌, vol. 第39巻第5号, JPN6018000795, 1966, JP, pages 336 - 339, ISSN: 0003816438 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501244A (en) * 2017-10-31 2021-01-14 株式会社ブリヂストン Rubber vulcanization process using eutectic mixture
JP7011710B2 (en) 2017-10-31 2022-01-27 株式会社ブリヂストン Rubber vulcanization process using eutectic mixture
JP2022027843A (en) * 2017-10-31 2022-02-14 株式会社ブリヂストン Rubber vulcanization processes employing eutectic mixture
US11667774B2 (en) 2017-10-31 2023-06-06 Bridgestone Corporation Rubber vulcanization processes employing an eutectic mixture
CN109535452A (en) * 2018-10-11 2019-03-29 华南理工大学 A kind of sulfur vulcanized rubber and preparation method thereof of repeatable processing
CN109535452B (en) * 2018-10-11 2021-09-28 华南理工大学 Sulfur vulcanized rubber capable of being repeatedly processed and preparation method thereof
CN113840877A (en) * 2019-04-29 2021-12-24 株式会社普利司通 Sidewall support for a pneumatic tire
JP2022531133A (en) * 2019-04-29 2022-07-06 株式会社ブリヂストン Side wall support for pneumatic tires
US11926179B2 (en) 2019-04-29 2024-03-12 Bridgestone Corporation Sidewall supports for pneumatic tires

Also Published As

Publication number Publication date
JP6449580B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP5495151B2 (en) Run flat tire
JP6532736B2 (en) Method for producing rubber composition, rubber composition and pneumatic tire
JP2014095013A (en) Rubber composition and pneumatic tire
CN107001706A (en) Outer tire layer rubber composition and pneumatic tire
JP2018002137A (en) Pneumatic tire
JP6449580B2 (en) Pneumatic tire manufacturing method and tire member manufacturing method
CN108349311B (en) Pneumatic tire and crosslinked rubber composition
JP6116439B2 (en) Method for producing rubber composition
JP6248004B2 (en) Cushion rubber for retreaded tires and retreaded tires
JPWO2019017449A1 (en) Pneumatic tire
JP2016194018A (en) Production method of rubber composition
JP2015034196A (en) Rubber composition for tire tread
WO2019111818A1 (en) Tire rubber composition and tire
JP2021107506A (en) Method for producing rubber composition
JP2013112732A (en) Rubber composition for tire base tread and pneumatic tire
JP2015093880A (en) Method for producing rubber composition for re-tread-tire tread
JP7138006B2 (en) Method for producing rubber composition and method for producing tire
JP6278847B2 (en) Method for producing rubber composition, rubber composition, cushion rubber and retreaded tire
JP2015071708A (en) Tread rubber composition for high-performance tire, high-performance tire, and high-performance dry tire
JP6107252B2 (en) Method for producing rubber composition for tire
JP6701671B2 (en) Rubber composition for tires
JP2015071707A (en) Tread rubber composition for high-performance tire, high-performance tire, and high-performance dry tire
JP2014218544A (en) Method of manufacturing rubber composition for tire
JP5549498B2 (en) Rubber composition and pneumatic tire
JP2011225697A (en) Rubber composition and pneumatic tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181206

R150 Certificate of patent or registration of utility model

Ref document number: 6449580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250