JP2016027430A - Light transmissive composition - Google Patents

Light transmissive composition Download PDF

Info

Publication number
JP2016027430A
JP2016027430A JP2015209718A JP2015209718A JP2016027430A JP 2016027430 A JP2016027430 A JP 2016027430A JP 2015209718 A JP2015209718 A JP 2015209718A JP 2015209718 A JP2015209718 A JP 2015209718A JP 2016027430 A JP2016027430 A JP 2016027430A
Authority
JP
Japan
Prior art keywords
light
particles
light transmissive
hollow silica
nano hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015209718A
Other languages
Japanese (ja)
Inventor
小川 修
Osamu Ogawa
修 小川
祥介 木場
Shosuke Koba
祥介 木場
藤本 恭一
Kyoichi Fujimoto
恭一 藤本
林 宏三
Kozo Hayashi
宏三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Tsusho Corp
GRANDEX CO Ltd
Original Assignee
Toyota Tsusho Corp
GRANDEX CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Tsusho Corp, GRANDEX CO Ltd filed Critical Toyota Tsusho Corp
Priority to JP2015209718A priority Critical patent/JP2016027430A/en
Publication of JP2016027430A publication Critical patent/JP2016027430A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light transmissive composition excellent in light transmittance.SOLUTION: A light transmissive composition of the present invention is a light transmissive composition in which nano hollow silica particles are dispersed on a light transmissive matrix, primary particles of the nano hollow silica particles have a three-dimensional shape, and the nano hollow silica particles are agglomerated on the matrix. It is preferable that air is contained in the agglomerated particles, a mean particle size of the primary particles is not more than 500 nm, a wall thickness is not more than 30 nm, a porosity is not less than 40%, and a mean particle size of the agglomerated particles is not more than 1500 nm.SELECTED DRAWING: Figure 3

Description

本発明は光透過性組成物に関する。   The present invention relates to a light transmissive composition.

光透過性組成物は光デバイスの光源等の部材を形成するために用いられる。光源からの光がなるべく減衰しないようにするためには、透光性部材における光透過率を高くする必要がある。一方、光源等の輝度ムラを解消するための光拡散板等に利用しようとする場合には、光拡散機能に優れていることが要求される。
従来より、透光性部材に高い光透過率及び高い光拡散機能を確保すべく種々の検討がなされてきた(特許文献1)。
また、未公開の技術として、本発明者らにより透光性組成物に関する出願がなされている(特願2010-199544)。
The light transmissive composition is used for forming a member such as a light source of an optical device. In order to prevent the light from the light source from being attenuated as much as possible, it is necessary to increase the light transmittance of the translucent member. On the other hand, when it is intended to be used for a light diffusion plate or the like for eliminating luminance unevenness of a light source or the like, it is required to have an excellent light diffusion function.
Conventionally, various studies have been made to ensure a high light transmittance and a high light diffusion function in a light-transmitting member (Patent Document 1).
As an undisclosed technique, an application for a translucent composition has been filed by the present inventors (Japanese Patent Application No. 2010-199544).

特開2006−257299号公報JP 2006-257299 A

光源用の部材に用いられる透光性部材には、さらに高い光透過率及び高い光拡散機能の他、耐光性や耐熱性等の優れた物理特性や機械的強度が要求される。
本発明者らは、上記要求を満足すべく鋭意検討を重ねてきた結果、下記の本発明に想到した。
The translucent member used for the light source member is required to have excellent physical properties such as light resistance and heat resistance and mechanical strength in addition to a higher light transmittance and a higher light diffusion function.
As a result of intensive studies to satisfy the above requirements, the present inventors have arrived at the present invention described below.

すなわち、本発明の光透過性組成物は、光透過性のマトリックスにナノ中空シリカ粒子を分散させてなる、光透過性組成物であって、前記ナノ中空シリカ粒子はその1次粒子径が500nm以下であり、壁厚が30nm以下であり、空隙率が40%以上であり、前記マトリックスにおいて凝集しており、その二次凝集粒子径が1500nm以下である、ことを特徴とする。   That is, the light transmissive composition of the present invention is a light transmissive composition in which nano hollow silica particles are dispersed in a light transmissive matrix, and the primary particle diameter of the nano hollow silica particles is 500 nm. The wall thickness is 30 nm or less, the porosity is 40% or more, aggregated in the matrix, and the secondary aggregated particle diameter is 1500 nm or less.

本発明の光透過性組成物では、ナノ中空シリカ粒子が光透過性のマトリックスに分散されている。そして、ナノ中空シリカ粒子の1次粒子径は500nm以下と極めて小さく、且つその壁厚が30nm以下と極めて薄くされている。このため、ナノ中空シリカ粒子の粒子径及び壁厚が可視光や赤外線の波長と同程度以下であり、可視光や赤外線に対する透明性が失われ難い。さらには、このナノ中空シリカ粒子の空隙率は40%以上と高くされていることも相俟って、高い光透過率を有することとなる。
また、ナノ中空シリカ粒子の散乱は粒子外表面のみならず、粒子内表面でも起こる(図4参照)。さらには、中空構造を有することから、中実粒子とは異なり、粒子内部に入る光のエネルギー減衰も少なく、効率よく散乱が起こる(図4及び図5参照)。このため、本発明の光透過性組成物では、透過性を確保しつつ、なおかつ散乱効果をも有することとなる。つまり透過性(粒子内部を通過する分もある)と散乱性(粒子内壁分もある)のバランスが、中実粒子と異なることで、透過性を確保しつつ均一に散乱するという特徴を有することとなるのである。このような特徴は、可視光下で不透明とならないサイズの凝集塊以下では、ナノ中空シリカ粒子の高透過性・高散乱性が相俟って効率的に均一に起こる。
また、本発明の光透過性組成物中におけるナノ中空シリカ粒子は、光透過性組成物中では凝集塊となるため、空気を内包した凝集粒子としての特性としても、高透過率と高散乱とを両立させるものと考えられる。また、このような特徴を生かし、凝集塊によって透過及び散乱のバランスを調整することもできる。すなわち、散乱に関しては一粒子からの散乱(粒子内壁分もある)と凝集塊外壁の散乱が重なっているので、一次粒子及び二次粒子を調整するのである。具体的には、ナノ中空シリカ粒子における一次粒子の径、シリカセルの壁厚、空隙率及び二次凝集粒子径を調整することによって、透過及び散乱のバランスを調整することができる。
In the light transmissive composition of the present invention, the nano hollow silica particles are dispersed in a light transmissive matrix. And the primary particle diameter of the nano hollow silica particle is as extremely small as 500 nm or less, and the wall thickness is extremely thin as 30 nm or less. For this reason, the particle diameter and wall thickness of the nano hollow silica particles are less than or equal to the wavelength of visible light or infrared light, and transparency to visible light or infrared light is not easily lost. Furthermore, this nano hollow silica particle has a high light transmittance in combination with the porosity of 40% or higher.
Moreover, scattering of the nano hollow silica particles occurs not only on the outer surface of the particle but also on the inner surface of the particle (see FIG. 4). Furthermore, since it has a hollow structure, unlike solid particles, energy attenuation of light entering the particles is small and scattering occurs efficiently (see FIGS. 4 and 5). For this reason, the light-transmitting composition of the present invention has a scattering effect while ensuring transparency. In other words, the balance between permeability (some of which passes through the inside of the particle) and scattering (some of the inner wall of the particle) are different from solid particles, so that it has a characteristic of uniformly scattering while ensuring transparency. It becomes. Such a characteristic occurs efficiently and uniformly in combination with the high permeability and high scattering property of the nano hollow silica particles below the agglomerates of a size that does not become opaque under visible light.
In addition, since the nano hollow silica particles in the light transmissive composition of the present invention are aggregated in the light transmissive composition, high transmittance and high scattering are obtained as characteristics of the aggregated particles enclosing air. It is thought that it balances. Further, taking advantage of such characteristics, the balance between transmission and scattering can be adjusted by the aggregate. That is, with respect to the scattering, since the scattering from one particle (there is also an inner wall part of the particle) and the scattering from the outer wall of the agglomerate overlap, the primary particles and the secondary particles are adjusted. Specifically, the balance between transmission and scattering can be adjusted by adjusting the primary particle diameter, silica cell wall thickness, porosity and secondary aggregate particle diameter in the nano hollow silica particles.

実施形態1のLEDパネルの分解斜視図である。1 is an exploded perspective view of an LED panel according to Embodiment 1. FIG. 実施形態1のLEDパネルの斜視図である。1 is a perspective view of an LED panel according to Embodiment 1. FIG. 実施形態1のLEDパネルの拡大模式断面図である。2 is an enlarged schematic cross-sectional view of the LED panel of Embodiment 1. FIG. 実施例2〜5及び比較例2の光透過性組成物の評価に用いたLEDパネルの斜視図である。It is a perspective view of the LED panel used for evaluation of the light transmissive composition of Examples 2-5 and Comparative Example 2. ナノ中空シリカ粒子による光の散乱及び透過を示す模式図である。It is a schematic diagram which shows scattering and permeation | transmission of the light by a nano hollow silica particle. 中実粒子による光の散乱及び透過を示す模式図である。It is a schematic diagram which shows scattering and permeation | transmission of the light by a solid particle. 実施例2〜5についての膜厚と平均輝度との関係を示すグラフである。It is a graph which shows the relationship between the film thickness about Examples 2-5, and average brightness | luminance.

本発明の光透過性組成物に用いられる光透過性のマトリックスとしては、光を透過する材料であれば特に限定はない。例えば、透明樹脂や無機ガラス等が用いられる。透明樹脂としては、例えばポリカーボネート樹脂、ABS(アクリロニトリル−ブタジエン−スチレン共重合体)樹脂、メタクリル樹脂、メタクリル酸メチル−スチレン共重合体樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体(AS)樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂などが挙げられる。
なお、本明細書において、光とは可視光の他、赤外線や紫外線をも含む。
The light-transmitting matrix used in the light-transmitting composition of the present invention is not particularly limited as long as it is a material that transmits light. For example, transparent resin or inorganic glass is used. Examples of the transparent resin include polycarbonate resin, ABS (acrylonitrile-butadiene-styrene copolymer) resin, methacrylic resin, methyl methacrylate-styrene copolymer resin, polystyrene resin, acrylonitrile-styrene copolymer (AS) resin, polyethylene. Examples thereof include polyolefin resins such as resins and polypropylene resins, acrylic resins, epoxy resins, silicone resins, and polyimide resins.
In this specification, light includes infrared light and ultraviolet light as well as visible light.

また、本発明の光透過性組成物の形態としては、バルク材料として用いられる他、部材表面(例えばLEDパネルの透光板)の表面に付着するコーティング層や、ドットによる印刷層であってもよい。   Moreover, as a form of the light transmissive composition of the present invention, a coating layer that adheres to the surface of a member surface (for example, a light-transmitting plate of an LED panel) or a printed layer using dots can be used as a bulk material Good.

本発明の光透過性組成物に分散させるナノ中空シリカ粒子は、1次粒子径が500nm以下であり、壁厚が30nm以下であり、空隙率が40%以上である。好ましくは1次粒子径が10nm以上450nm以下であり、壁厚が5nm以上30nm以下であり、空隙率が40%以上90%以下である。
ナノ中空シリカ粒子の二次凝集粒子径は1500nm以下であり、好ましいのは500nm以上1500nm以下であり、さらに好ましいのは700nm以上1000nm以下である。二次凝集粒子径が500nm未満では光の散乱や反射が起こり難くなる。また、二次凝集粒子径が1500nmを超えると光の透過性が悪くなり、導光板の光放射面での輝度が低下する。
The nano hollow silica particles dispersed in the light transmissive composition of the present invention have a primary particle diameter of 500 nm or less, a wall thickness of 30 nm or less, and a porosity of 40% or more. Preferably, the primary particle size is 10 nm to 450 nm, the wall thickness is 5 nm to 30 nm, and the porosity is 40% to 90%.
The secondary agglomerated particle diameter of the nano hollow silica particles is 1500 nm or less, preferably 500 nm or more and 1500 nm or less, and more preferably 700 nm or more and 1000 nm or less. When the secondary aggregate particle diameter is less than 500 nm, light scattering and reflection are difficult to occur. On the other hand, if the secondary agglomerated particle diameter exceeds 1500 nm, the light transmittance is deteriorated, and the luminance on the light emitting surface of the light guide plate is lowered.

このような中空ナノ粒子は、例えば、特開2005−263550号公報に記載の方法によって製造することができる。すなわち、炭酸カルシウムを調製する第1工程、炭酸カルシウムにシリカをコーティングする第2工程、及び炭酸カルシウムを溶解させる第3工程により、シリカの殻からなる中空粒子を製造する方法において、
(1)第1工程において、透過型電子顕微鏡法による一次粒子径が20〜200nmの炭酸カルシウムを水系にて調製し、静的光散乱法による粒子径が20〜700nmになるように熟成させた後、脱水して含水ケーキの状態とし、
(2)第2工程において、(1)の含水ケーキをアルコール中に分散させ、アンモニア水、水、シリコンアルコキシドを、シリコンアルコキシド/アルコールの体積比を0.002〜0.1、アンモニア水に含有されるNH3を、シリコンアルコキシド1モルに対して、4〜15モル、水をシリコンアルコキシド1モルに対して、25〜200モルとなるように添加することにより、シリカでコーティングされた炭酸カルシウムを調製した後、アルコール及び水による洗浄を行い、再び含水ケーキとし、
(3)第3工程において、(2)の含水ケーキを水に分散させ、酸を添加して、液の酸濃度を0.1〜3モル/Lとすることにより炭酸カルシウムを溶解させることにより、緻密なシリカ殻からなる高分散の中空状粒子である。
Such hollow nanoparticles can be produced, for example, by the method described in JP-A-2005-263550. That is, in the method for producing hollow particles composed of silica shells by the first step of preparing calcium carbonate, the second step of coating calcium carbonate with silica, and the third step of dissolving calcium carbonate,
(1) In the first step, calcium carbonate having a primary particle size of 20 to 200 nm by transmission electron microscopy was prepared in an aqueous system and aged to have a particle size of 20 to 700 nm by static light scattering. After that, dehydrated to form a water-containing cake,
(2) In the second step, the water-containing cake of (1) is dispersed in alcohol, and ammonia water, water, and silicon alkoxide are contained in the ammonia water in a volume ratio of silicon alkoxide / alcohol of 0.002 to 0.1. NH 3 is added in an amount of 4 to 15 mol with respect to 1 mol of silicon alkoxide, and water is added in an amount of 25 to 200 mol with respect to 1 mol of silicon alkoxide. After preparation, washing with alcohol and water, again as a water-containing cake,
(3) In the third step, by dispersing the water-containing cake of (2) in water, adding an acid, and dissolving the calcium carbonate by adjusting the acid concentration of the liquid to 0.1 to 3 mol / L These are highly dispersed hollow particles composed of a dense silica shell.

この方法によれば、透過型電子顕微鏡法による一次粒子径が30〜300nm、静的光散乱法による粒子径が30〜800nm、壁厚5〜30nm、水銀圧入法により測定される細孔分布において2〜20nmの細孔が検出されない高分散シリカナノ中空粒子を製造することができる。また、上記第1工程において調製される炭酸カルシウムの結晶はカルサイトであり六方晶系であるが、合成条件を制御することにより、あたかも立方晶系であるかのような形状、即ち「立方体状」に成長させることができる。ここで、「立方体状」とは、立方体に限らず面で囲まれた立方体に似た形状も含む意味である。   According to this method, the primary particle size by transmission electron microscopy is 30 to 300 nm, the particle size by static light scattering method is 30 to 800 nm, the wall thickness is 5 to 30 nm, and the pore distribution is measured by mercury porosimetry. Highly dispersed silica nano hollow particles in which pores of 2 to 20 nm are not detected can be produced. Further, the calcium carbonate crystals prepared in the first step are calcite and hexagonal, but by controlling the synthesis conditions, the shape as if it were cubic, that is, “cubic” Can grow. Here, “cubic” means not only a cube but also a shape similar to a cube surrounded by a surface.

発明者らは、この方法に順じ、適宜薬剤濃度や撹拌方法や温度やアルカリの種類等を調整することにより、以下に示す様々な1次粒子径、壁厚、及び空隙率のナノ中空シリカ粒子を製造できることを確認している。   The inventors, following this method, adjust the drug concentration, the stirring method, the temperature, the type of alkali, etc. as appropriate, so that the nano hollow silica has various primary particle diameters, wall thicknesses, and porosity shown below. It has been confirmed that the particles can be produced.

Figure 2016027430
Figure 2016027430

また、ナノ中空シリカ粒子は、透明性マトリックスに分散し易くするために、表面処理剤で疎水性処理がなされていてもよい。   Further, the nano hollow silica particles may be subjected to a hydrophobic treatment with a surface treatment agent in order to facilitate dispersion in the transparent matrix.

以下、本発明をさらに具体化した実施形態について詳細に説明する。
(実施形態1)
実施形態1は、液晶表示パネルや看板などの背面から光を照射するバックライト装置を構成するために、LED光源が端面や背面に配置されるLEDパネルである。
Hereinafter, embodiments that further embody the present invention will be described in detail.
(Embodiment 1)
Embodiment 1 is an LED panel in which an LED light source is disposed on an end surface or the back surface in order to configure a backlight device that irradiates light from the back surface of a liquid crystal display panel or a signboard.

このLEDパネルは、図1及び図2に示すように、光透過性を有する導光板基材1を有し、その一面側にドット状の光分配層2が形成されている。光分配層2は図3に示すように、透光性バインダ3中にナノ中空シリカ粒子4が分散されている。また、導光板基材1の裏側には多数のLED6が縦横に配置された発光板7が設置されており、導光板基材1の裏側(すなわち光分配層2側)から光照射可能とされている。   As shown in FIGS. 1 and 2, this LED panel has a light-transmitting light guide plate substrate 1, and a dot-shaped light distribution layer 2 is formed on one surface side thereof. As shown in FIG. 3, in the light distribution layer 2, nano hollow silica particles 4 are dispersed in a light transmissive binder 3. In addition, a light emitting plate 7 in which a large number of LEDs 6 are arranged vertically and horizontally is installed on the back side of the light guide plate substrate 1, and light can be irradiated from the back side of the light guide plate substrate 1 (that is, the light distribution layer 2 side). ing.

透光性バインダ3としては、例えば溶剤型接着剤、熱硬化性樹脂、紫外線硬化性樹脂などを使用できる。また透光性バインダ3としては、溶剤希釈中は密着せずに溶剤乾燥後に密着力を発現する樹脂成分、例えばアクリル系粘着剤を用いてもよい。   As the translucent binder 3, for example, a solvent-type adhesive, a thermosetting resin, an ultraviolet curable resin, or the like can be used. Moreover, as the translucent binder 3, you may use the resin component which expresses adhesive force after solvent drying, for example, an acrylic adhesive, without adhering during solvent dilution.

また、ナノ中空シリカ粒子4としては、1次粒子径が500nm以下であり、壁厚が30nm以下であり、空隙率が40%以上であるシリカ粒子を用いる。このようなナノ中空シリカ粒子として、例えば、グランデックス株式会社製のナノバルーン(一次粒子径40nmから200nm、壁厚3.5nmから30nm、空隙率40%から70%)を用いることができる。また、このようなナノ中空シリカ粒子の表面を表面処理剤によって処理して、疎水性としたり、官能基を修飾したりして、透光性バインダへの分散性を向上させることもできる。   As the nano hollow silica particles 4, silica particles having a primary particle diameter of 500 nm or less, a wall thickness of 30 nm or less, and a porosity of 40% or more are used. As such nano hollow silica particles, for example, a nanoballoon manufactured by Grandex Co., Ltd. (primary particle diameter of 40 nm to 200 nm, wall thickness of 3.5 nm to 30 nm, porosity 40% to 70%) can be used. Moreover, the dispersibility to a translucent binder can also be improved by processing the surface of such a nano hollow silica particle with a surface treating agent, making it hydrophobic, or modifying a functional group.

また、透光性バインダ3及びナノ中空シリカ粒子4の混合割合としては、光透過率、光散乱性率、導光板の形状や大きさ、LEDの輝度等を勘案して、適宜適切な割合を決定すればよい。   The mixing ratio of the light-transmitting binder 3 and the nano hollow silica particles 4 is appropriately determined in consideration of the light transmittance, the light scattering ratio, the shape and size of the light guide plate, the luminance of the LED, and the like. Just decide.

以上のように構成された実施形態1のLEDパネルでは、LED6に電流を流して発光させると導光板基材1の裏側から光が侵入し、光の一部は光分配層2中の透光性バインダ3を進行し、ナノ中空シリカ粒子4に当たって拡散する。さらに拡散光は導光板基材1の光分配層2と反対側に進行する。こうして導光板基材1の全面が均一に発光することとなる。ここで、ナノ中空シリカ粒子4は1次粒子径が500nm以下と極めて小さく、且つその壁厚が30nm以下と極めて薄くされているため、可視光や赤外線に対する透明性が失われ難い。さらには、ナノ中空シリカ粒子4の空隙率は40%以上と高くされていることから、高い光透過率を有することとなる。また、ナノ中空シリカ粒子4は中実のシリカより光透過性に優れ、シリカの壁の存在によってレンズの役割を果たし拡散する。   In the LED panel of Embodiment 1 configured as described above, when current is passed through the LED 6 to emit light, light enters from the back side of the light guide plate substrate 1, and part of the light is transmitted through the light distribution layer 2. It advances through the binder 3 and hits the nano hollow silica particles 4 and diffuses. Further, the diffused light travels to the side of the light guide plate substrate 1 opposite to the light distribution layer 2. Thus, the entire surface of the light guide plate substrate 1 emits light uniformly. Here, the nano hollow silica particles 4 have an extremely small primary particle diameter of 500 nm or less and an extremely thin wall thickness of 30 nm or less. Therefore, transparency to visible light and infrared rays is hardly lost. Furthermore, since the porosity of the nano hollow silica particle 4 is as high as 40% or more, it has a high light transmittance. Further, the nano hollow silica particles 4 are more light transmissive than solid silica, and diffuse by acting as a lens due to the presence of silica walls.

溶媒に対する透光性バインダ3の混合体の混合比率は、2wt%以上50wt%以下が好ましい。当該混合比率が50wt%より多いと、塗工性に劣る場合がある。また、当該混合比率が2wt%より少ないと、溶媒の使用量増大によるコスト増が問題になる場合がある。特に当該混合比率は3wt%以上30wt%以下が好ましい。また、膜厚は3〜20μm程度が好ましく、さらに好ましくは5〜15μmである。   The mixing ratio of the mixture of the translucent binder 3 to the solvent is preferably 2 wt% or more and 50 wt% or less. If the mixing ratio is more than 50 wt%, the coatability may be inferior. On the other hand, if the mixing ratio is less than 2 wt%, an increase in cost due to an increase in the amount of solvent used may be a problem. In particular, the mixing ratio is preferably 3 wt% or more and 30 wt% or less. The film thickness is preferably about 3 to 20 μm, more preferably 5 to 15 μm.

透光性バインダ3は溶媒によって薄めて、スプレー法等によって導光板基材1上に光分配層2を形成することができる。スプレー塗布した導光板基材1は、当該溶剤を自然風乾や熱風などによって乾燥させる。透光性バインダ3が紫外線硬化樹脂からなる場合は、その後の工程にて紫外線を照射して当該透光性バインダ3を硬化させる。その結果、導光板基材1の塗工面に付着する。   The light transmissive binder 3 can be diluted with a solvent, and the light distribution layer 2 can be formed on the light guide plate substrate 1 by a spray method or the like. The spray-coated light guide plate substrate 1 is dried by natural air drying or hot air. In the case where the translucent binder 3 is made of an ultraviolet curable resin, the translucent binder 3 is cured by irradiating ultraviolet rays in a subsequent process. As a result, it adheres to the coated surface of the light guide plate substrate 1.

(実施例1)
実施例1では、以下の組成からなる塗料を調製し、透明アクリル板の一面側にドット印刷を行い、LEDパネル用の導光パネルを作製した。
有機溶媒のキシレン80重量部にアクリル樹脂を11重量部溶解させて、アクリル樹脂溶液を作製する。このアクリル樹脂溶液中に、グランデックス株式会社製のナノバルーン(一次粒子径90〜110nm、壁厚8〜10nm、空隙率50〜60%、比表面積130〜150nm2/g、粒子密度0.6〜0.7、かさ密度0.06〜0.09g/ml)を5重量部、光拡散微粒子(例えばMBX5:積水化成品工業(株)製、架橋アクリル粒子、XX03BZ:積水化成品 工業(株)製、架橋アクリル粒子、XX02BZ:積水化成品工業(株)製、架橋アクリツ樹脂等))を5重量部混合する。そして、攪拌することによって、ナノ中空シリカ粒子としてのナノバルーンおよび光拡散微粒子がアクリル樹脂溶液中に均一に分散したコーティング剤を得る。
Example 1
In Example 1, a coating material having the following composition was prepared, and dot printing was performed on one side of the transparent acrylic plate to produce a light guide panel for an LED panel.
An acrylic resin solution is prepared by dissolving 11 parts by weight of an acrylic resin in 80 parts by weight of xylene as an organic solvent. In this acrylic resin solution, a nanoballoon manufactured by Grandex Co., Ltd. (primary particle diameter 90 to 110 nm, wall thickness 8 to 10 nm, porosity 50 to 60%, specific surface area 130 to 150 nm 2 / g, particle density 0.6 to 0.7 5 parts by weight of a bulk density of 0.06 to 0.09 g / ml), light diffusing fine particles (for example, MBX5: manufactured by Sekisui Plastics Co., Ltd., crosslinked acrylic particles, XX03BZ: manufactured by Sekisui Plastics Co., Ltd., crosslinked acrylic particles, XX02BZ: Sekisui Plastics Co., Ltd., cross-linked acrylic resin, etc.)) is mixed. Then, by stirring, a nanoballoon as nano hollow silica particles and a light diffusing fine particle are uniformly dispersed in an acrylic resin solution.

所定形状の透明アクリル板を用意し、その一面側に上記コーティング剤をドット状に印刷する。その後、乾燥させてLEDパネルを作製した。   A transparent acrylic plate having a predetermined shape is prepared, and the coating agent is printed in the form of dots on one side thereof. Then, it was made to dry and the LED panel was produced.

(比較例1)
比較例1では、ナノバルーンを添加しなかった。それ以外については実施例1と同様であり、説明を省略する。
(Comparative Example 1)
In Comparative Example 1, no nanoballoon was added. The rest is the same as in the first embodiment, and the description is omitted.

上記実施例1及び比較例1のLEDパネルについて、LEDパネルの背面側あるいは両側面からLED照明を行い、ミノルタ製色彩色差計を用いて輝度を測定した。その結果、実施例1のLEDパネルは比較例1のLEDパネルに比べて、いずれの照明方法においても輝度が15%高かった。   About the LED panel of the said Example 1 and the comparative example 1, LED illumination was performed from the back side or both sides | surfaces of the LED panel, and the brightness | luminance was measured using the Minolta color difference meter. As a result, the brightness of the LED panel of Example 1 was 15% higher than the LED panel of Comparative Example 1 in any lighting method.

上記実施例では、LED用のパネルについて説明したが、同様に光拡散を必要とする用途全てに適用できる。具体的には、導光板(液晶TV用、広告用、看板用、照明用、自動車のメーターパネル用など)やLED透過光による自動車の計器類や家電製品の表示板に用いたり、液晶TV用拡散板や、液晶TV用反射シートや、蛍光灯/ハロゲンランプのレンズ及びその表面コーティングや、LED電球/LED照明や、各種照明・看板機器や、自動車や自転車などのヘッドライト・テールランプに用いることができる。これらの使用には、光透過材料の表面にスクリーン印刷等の方法によってコーティングして用いるほか、バルク材として使用することもできる。   In the above embodiment, the panel for LED has been described, but it can be applied to all uses that require light diffusion. Specifically, it is used for light guide plates (for liquid crystal TVs, advertisements, billboards, lighting, automotive meter panels, etc.), automotive instrumentation using LED transmitted light, and display panels for home appliances, and for liquid crystal TVs. Used for diffuser plates, LCD TV reflective sheets, fluorescent / halogen lamp lenses and surface coatings, LED bulbs / LED lighting, various lighting / signboard equipment, headlights / tail lamps for automobiles and bicycles, etc. Can do. For these uses, the surface of the light-transmitting material can be coated by a method such as screen printing, or can be used as a bulk material.

また、上記実施例では、主に光拡散微粒子5によって光を拡散させたが、光拡散粒子5を添加せずにナノ中空シリカ粒子4によって光を拡散させてもよい。ナノ中空シリカ粒子4の粒子径は光の波長よりも小さいが、光分配層2の中では1500nm以下の凝集塊となり、空気を内包した凝集粒子としての特性では高透過と高散乱を両立させることができるからである。   Moreover, in the said Example, although light was mainly diffused by the light-diffusion fine particle 5, you may diffuse light by the nano hollow silica particle 4 without adding the light-diffusion particle 5. FIG. The nano hollow silica particle 4 has a particle diameter smaller than the wavelength of light, but in the light distribution layer 2, it becomes an agglomerate of 1500 nm or less, and the characteristics as an agglomerated particle enclosing air must achieve both high transmission and high scattering. Because you can.

(実施例2〜5及び比較例2,3)
実施例2〜5は、光拡散粒子を添加しないでナノ中空粒子だけで光を拡散させるための光透過性組成物であり、比較例2,3はナノ中空粒子を含まず、中実SiO2を光拡散粒子とした光透過性組成物である。これらの光透過性組成物を以下のようにして調製した。
すなわち、透明なメジウムとしてのミノグループ製SR930(フィラー等無添加アクリルベース樹脂)と、ナノ中空シリカ粒子として、GRANDEX製NanoBalloon XP200-Methyl(一次粒子径200nm/二次粒子径1μm/壁厚10nm、メチル基修飾品)とを200ccのデスポーザブルカップでそれぞれ計量し、クラボウ製マゼルスターKK-Vにて公転9(950rpm)、自転9(950rpm)、時間(120秒)で混合した。混合後室温で10分間放置した後、増粘材(サンノプコ製SNシックナー4040)を所定量添加し、同じ条件で混合・攪拌した。さらに粘度を微調整する為、各種溶剤(イソホロン、エチレングリコール)を用いた。
実施例2〜5及び比較例2,3の組成を表2に示す。
(Examples 2 to 5 and Comparative Examples 2 and 3)
Examples 2 to 5 are light-transmitting compositions for diffusing light with only nano hollow particles without adding light diffusing particles, and Comparative Examples 2 and 3 do not contain nano hollow particles, and solid SiO 2 is used. It is a light-transmitting composition as light diffusing particles. These light transmissive compositions were prepared as follows.
That is, SR930 made by Mino Group (transparent additive-free acrylic base resin) as a transparent medium, and NanoBalloon XP200-Methyl made by GRANDEX (primary particle diameter 200 nm / secondary particle diameter 1 μm / wall thickness 10 nm, The methyl group-modified product) was weighed with a 200 cc disposable cup, and mixed with Kurabo Industries Mazerustar KK-V at revolution 9 (950 rpm), rotation 9 (950 rpm), and time (120 seconds). After mixing, the mixture was allowed to stand at room temperature for 10 minutes, and then a predetermined amount of a thickener (San Nopco SN thickener 4040) was added and mixed and stirred under the same conditions. Further, various solvents (isophorone, ethylene glycol) were used to finely adjust the viscosity.
Table 2 shows the compositions of Examples 2 to 5 and Comparative Examples 2 and 3.

Figure 2016027430
Figure 2016027430

<評 価>
以上のようにして調製した実施例2〜5及び比較例2の光透過性組成物を無色透明のアクリル板にスクリーン印刷し、図4に示すように、アクリル板100の側面からLED光源101によって投光し、拡散シートは用いることなく導光板正面からの輝度をコニカミノルタセンシンク゛株式会社CA-2000Aを用い測定した。
その結果、表3に示すように、実施例は白色メジウムを用いた比較例1と比べ、透明メジウムを用いた実施例2〜5は、全て輝度が高かった。以上の結果から、本発明の光透過性組成物を用いることにより、ナノ中空シリカと透明系の材料のみで、導光板へのスクリーン印刷が可能で、輝度の高い導光装置を提供できることが分かった。
<Evaluation>
The light-transmitting compositions of Examples 2 to 5 and Comparative Example 2 prepared as described above were screen-printed on a colorless and transparent acrylic plate, and as shown in FIG. The brightness from the front of the light guide plate was measured using Konica Minolta Sensing CA-2000A without using a diffusion sheet.
As a result, as shown in Table 3, all of Examples 2 to 5 using transparent medium had higher luminance than Comparative Example 1 using white medium. From the above results, it can be seen that by using the light-transmitting composition of the present invention, it is possible to provide a light guide device with high brightness that can be screen-printed on a light guide plate only with nano hollow silica and a transparent material. It was.

Figure 2016027430
Figure 2016027430

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of claims.

1…導光板基材
2…拡散層(光透過性組成物)
3…透光性バインダ
4…ナノ中空シリカ粒子
6…LED
7…発光板
DESCRIPTION OF SYMBOLS 1 ... Light-guide plate base material 2 ... Diffusion layer (light transmissive composition)
3 ... Translucent binder 4 ... Nano hollow silica particles 6 ... LED
7 ... Light emitting plate

Claims (3)

光透過性のマトリックスにナノ中空シリカ粒子を分散させてなる、光透過性組成物であって、
前記ナノ中空シリカ粒子は、その1次粒子の形状が立方体状であり、かつ前記マトリックスにおいて凝集している、光透過性組成物。
A light transmissive composition comprising nano hollow silica particles dispersed in a light transmissive matrix,
The nano hollow silica particles are light-transmitting compositions in which the primary particles have a cubic shape and are aggregated in the matrix.
前記凝集した粒子に空気が内包されている、請求項1に記載の光透過性組成物。   The light transmissive composition according to claim 1, wherein air is included in the aggregated particles. 前記1次粒子の平均粒子径は500nm以下であり、壁厚は30nm以下であり、空隙率は40%以上であり、
前記凝集した粒子の平均粒子径は1500nm以下である、
請求項1に記載の光透過性組成物。

The average particle diameter of the primary particles is 500 nm or less, the wall thickness is 30 nm or less, and the porosity is 40% or more,
The average particle diameter of the aggregated particles is 1500 nm or less.
The light transmissive composition according to claim 1.

JP2015209718A 2015-10-26 2015-10-26 Light transmissive composition Pending JP2016027430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209718A JP2016027430A (en) 2015-10-26 2015-10-26 Light transmissive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209718A JP2016027430A (en) 2015-10-26 2015-10-26 Light transmissive composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011290459A Division JP2013140244A (en) 2011-12-30 2011-12-30 Light transmissive composition

Publications (1)

Publication Number Publication Date
JP2016027430A true JP2016027430A (en) 2016-02-18

Family

ID=55352796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209718A Pending JP2016027430A (en) 2015-10-26 2015-10-26 Light transmissive composition

Country Status (1)

Country Link
JP (1) JP2016027430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091990A (en) * 2016-12-02 2018-06-14 三菱瓦斯化学株式会社 Sheet or film for transparent screen and transparent screen provided therewith

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201443A (en) * 2001-10-25 2003-07-18 Matsushita Electric Works Ltd Coating material composition and article bearing coating film formed thereof
JP2006335605A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
US20070190305A1 (en) * 2001-10-25 2007-08-16 Matsushita Electric Works, Ltd. Coating material composition and article having coating film formed therewith
JP2007308584A (en) * 2006-05-18 2007-11-29 Nagoya Institute Of Technology Antireflection coating material, glare-proof coating material, antireflection membrane, antireflection film and glare-proof film
JP2009107857A (en) * 2007-10-26 2009-05-21 Grandex Co Ltd Dispersible silica nano hollow particles and method for producing dispersion liquid of silica nano hollow particles
JP2010084070A (en) * 2008-10-01 2010-04-15 Grandex Co Ltd Hollow particle-containing master batch
WO2011027827A1 (en) * 2009-09-07 2011-03-10 旭硝子株式会社 Article having low-reflection film on surface of base material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201443A (en) * 2001-10-25 2003-07-18 Matsushita Electric Works Ltd Coating material composition and article bearing coating film formed thereof
US20070190305A1 (en) * 2001-10-25 2007-08-16 Matsushita Electric Works, Ltd. Coating material composition and article having coating film formed therewith
JP2006335605A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
US20080241474A1 (en) * 2005-06-02 2008-10-02 Asahi Glass Company Limited Process for producing dispersion of hollow fine sio2 particles, coating composition and substrate with antireflection coating film
JP2007308584A (en) * 2006-05-18 2007-11-29 Nagoya Institute Of Technology Antireflection coating material, glare-proof coating material, antireflection membrane, antireflection film and glare-proof film
JP2009107857A (en) * 2007-10-26 2009-05-21 Grandex Co Ltd Dispersible silica nano hollow particles and method for producing dispersion liquid of silica nano hollow particles
JP2010084070A (en) * 2008-10-01 2010-04-15 Grandex Co Ltd Hollow particle-containing master batch
WO2011027827A1 (en) * 2009-09-07 2011-03-10 旭硝子株式会社 Article having low-reflection film on surface of base material
US20120164415A1 (en) * 2009-09-07 2012-06-28 Asahi Glass Company, Limited Article having low-reflection film on surface of base material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091990A (en) * 2016-12-02 2018-06-14 三菱瓦斯化学株式会社 Sheet or film for transparent screen and transparent screen provided therewith

Similar Documents

Publication Publication Date Title
WO2019146628A1 (en) Film for led lighting equipment, and led lighting equipment
JP5824525B2 (en) Light diffusion film and liquid crystal display backlight using the same
JP5176958B2 (en) Light diffusion layer forming coating solution and light diffusion plate
JP4002320B2 (en) Silica composite resin particles and production method thereof
JP2007206674A (en) Optical thin sheet
JP2004533656A (en) Light diffusion film
WO2011122379A1 (en) Light-diffusing film for led lamp
WO2007081484A9 (en) Optical diffuser having frit based coating with inorganic light diffusing pigments with variable particle size therein
CN103724974B (en) High-light-reflectivity PC (polycarbonate) film material and preparation method thereof
CN109471212B (en) High-brightness optical diffusion film
JP2010281986A (en) Light diffusion film
WO2015099050A1 (en) Light guide plate unit, production method therefor, and light-transmitting composition
JP2012057003A (en) Translucent composition
KR20100015839A (en) Backlight device
JP2013140703A (en) Emission light diffusion layer and light guide device using the same
JP2010211010A (en) Light diffusion film, and backlight unit and liquid crystal display device using the same
JP2016027430A (en) Light transmissive composition
WO2019181368A1 (en) Light-scattering body, composition for forming light-scattering body, sheet-like laminate, projection screen, light-diffusing sheet and lighting device with built-in light enhancer
JP6301576B2 (en) Light diffusion transmission sheet
JP2013140244A (en) Light transmissive composition
JP2013089543A (en) Light guide plate and planar light-emitting device
JP2013140704A (en) Reflected light diffusion layer and light guide device using the same
JP2014228614A (en) Light transmissive composition and optical functional member using the same and method of producing light transmissive composition
JP2011094119A (en) Light diffusible composite resin particle, method for producing the same, light diffusible resin composition, and illumination cover
JP6475849B2 (en) Light diffusing and transmitting sheet and method for producing composite particles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516