JP2016023552A - Exhaust heat recovery system using combined rankine cycle - Google Patents

Exhaust heat recovery system using combined rankine cycle Download PDF

Info

Publication number
JP2016023552A
JP2016023552A JP2014146260A JP2014146260A JP2016023552A JP 2016023552 A JP2016023552 A JP 2016023552A JP 2014146260 A JP2014146260 A JP 2014146260A JP 2014146260 A JP2014146260 A JP 2014146260A JP 2016023552 A JP2016023552 A JP 2016023552A
Authority
JP
Japan
Prior art keywords
water
rankine cycle
steam
heat
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014146260A
Other languages
Japanese (ja)
Inventor
紀治 玉田
Noriji Tamada
紀治 玉田
敏朗 服部
Toshiro Hattori
敏朗 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2014146260A priority Critical patent/JP2016023552A/en
Publication of JP2016023552A publication Critical patent/JP2016023552A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a high efficiency exhaust heat recovery system using a Rankine cycle and eliminate the risk of NHthat is explosive and toxic.SOLUTION: A primary circuit 12 in which water circulates includes a Rankine cycle constituent apparatus that includes: low-temperature-heat collection portions 22, 24 and 26 transforming water to steam by a low-temperature heat source; a heat exchanger 28 vaporizing a low-boiling point medium by the steam; a steam turbine with a generator 30 driven by the steam; and a hermetic vessel 36 storing wet steam and provided downstream of the steam turbine with the generator 30. A secondary circuit 14 in which NHcirculates includes a Rankine cycle constituent apparatus that includes a turbine with a generator 52 driven by the low-boiling point medium vaporized by the heat exchanger 28. A wet-steam-retaining-heat recovery unit 16 includes: a water storage tank 62 storing water; a communication passage 60 connected to bottoms of the hermetic vessel 36 and the water storage tank 62; and a water turbine with a generator 64 provided in the communication passage 60.SELECTED DRAWING: Figure 1

Description

本発明は、太陽熱、工場排熱、地熱等の低温熱源から高効率で熱回収を可能にした排熱回収装置に関する。   The present invention relates to an exhaust heat recovery apparatus that enables heat recovery with high efficiency from low-temperature heat sources such as solar heat, factory exhaust heat, and geothermal heat.

太陽熱や地熱等の自然エネルギの有効利用や、工場排熱のように廃棄されている熱エネルギの回収利用は、今後我が国が持続的に発展するために必要不可欠な技術である。
一般的に、太陽熱や地熱等の自然エネルギや工場排熱のような100℃程度の低温度の熱エネルギは、大量に存在していても温度差が小さいため高効率の熱回収機関を実現できていないのが現状である。そのため、回収できる電力が少なく、経済的に採算が取れていないのが現状である。
Effective use of natural energy such as solar heat and geothermal heat, and recovery and use of waste heat energy such as factory waste heat are indispensable technologies for the future development of Japan.
Generally, natural energy such as solar heat and geothermal heat, and low-temperature heat energy of about 100 ° C, such as factory exhaust heat, can realize a highly efficient heat recovery engine because the temperature difference is small even if it exists in large quantities. The current situation is not. For this reason, there is little power that can be recovered, and the current situation is that it is not economically profitable.

通常、このような低温度落差の熱エネルギを電力回収するにはランキンサイクルを構成する熱回収装置を用いている。作動流体には、低温度落差でも体積が大きく変化できるNHやR123、R245f等のフロン系の作動流体が使われている。
しかし、フロン系作動流体は地球温暖化ガスとされ、その使用は今後大きく制限される可能性がある。また、NHや炭化水素系等の作動流体は、爆発性や人体に対する毒性があるため、大規模システムに適用するためには保守管理が非常に大変である。
In general, a heat recovery device that constitutes a Rankine cycle is used to recover power from such low temperature drop thermal energy. As the working fluid, a fluorocarbon working fluid such as NH 3 , R123, and R245f whose volume can be changed greatly even at a low temperature drop is used.
However, chlorofluorocarbon working fluid is regarded as a global warming gas, and its use may be greatly restricted in the future. In addition, since working fluids such as NH 3 and hydrocarbons are explosive and toxic to the human body, maintenance management is very difficult to apply to large-scale systems.

特許文献1には、ボイラ、タービン、給液加熱器、凝縮器等を備え、高温側ランキンサイクルと低温側ランキンサイクルとを組み合わせた複合ランキンサイクルを用いたタービンプラントが開示されている。このタービンプラントは、高温側ランキンサイクルに水などの作動流体を用い、低温側ランキンサイクルに臨界温度が高温側作動流体より低い作動流体を使用している。   Patent Document 1 discloses a turbine plant using a combined Rankine cycle that includes a boiler, a turbine, a feed heater, a condenser, and the like, and combines a high temperature side Rankine cycle and a low temperature side Rankine cycle. This turbine plant uses a working fluid such as water for the high temperature side Rankine cycle, and uses a working fluid whose critical temperature is lower than that of the high temperature side working fluid for the low temperature side Rankine cycle.

また、タービンを使わない低温度差用のスターリングエンジンを使って、低温度エネルギから熱回収を行う方法も考えられる。
さらに、機械的な駆動部分であるタービンやピストンを使わない排熱回収技術として、ビスマス・テルルなど電気的な特性が異なる二種類の導体(又は半導体)を接触させ、接点に温度差を与え電位差を発生させるゼーベック効果を利用した熱電発電素子による排熱回収手段も検討されている。
A method of recovering heat from low temperature energy using a low temperature difference Stirling engine that does not use a turbine is also conceivable.
In addition, as a waste heat recovery technology that does not use a turbine or piston that is a mechanical drive part, two types of conductors (or semiconductors) such as bismuth and tellurium with different electrical characteristics are brought into contact with each other, giving a temperature difference to the contact point and providing a potential difference. Exhaust heat recovery means using a thermoelectric power generation element utilizing the Seebeck effect that generates heat is also being studied.

特開平05−280303号公報JP 05-280303 A

特許文献1に開示されたタービンプラントは、ボイラで得られた高温ガスを熱源とするもので、低温度の熱エネルギから熱回収を行うものではない。そのため、低温熱源から高効率で熱回収を行うことはできない。また、低温側作動流体を加熱した後の高温側作動流体の保有熱を有効利用していないので、高効率な熱回収ができない。
また、スターリングエンジンは、作動流体に理想気体と見なせる高圧のヘリウムガスを必要とする。このように、高価な希ガスを大量に必要とすると共に、大量の熱を処理するために巨大ピストンや蓄熱器が必要となり現実的ではない。膨大な数の小型スターリングエンジンを並列配置すれば技術的に実現できるが、経済的に採算が全く取れないという問題がある。
The turbine plant disclosed in Patent Document 1 uses a high-temperature gas obtained by a boiler as a heat source, and does not recover heat from low-temperature heat energy. Therefore, heat recovery cannot be performed with high efficiency from a low-temperature heat source. Moreover, since the retained heat of the high temperature side working fluid after heating the low temperature side working fluid is not effectively used, highly efficient heat recovery cannot be performed.
In addition, the Stirling engine requires high-pressure helium gas that can be regarded as an ideal gas as a working fluid. Thus, a large amount of expensive noble gas is required, and a huge piston and a heat accumulator are required to process a large amount of heat, which is not realistic. Although it can be technically realized by arranging a huge number of small Stirling engines in parallel, there is a problem that it is not economically profitable.

さらに、ゼーベック効果を利用した熱電発電素子は、超小型で構造も簡単なので使いやすく、実験室レベルで様々な試作例がある。しかし、変換効率が約10%と低く、素子が高価である上に、比較的安価なビスマス・テルル系の熱電発電素子ではテルルに毒性が確認されており、大規模な排熱回収装置として適切でない。   Furthermore, thermoelectric power generation elements using the Seebeck effect are easy to use because they are ultra-compact and simple in structure, and there are various prototypes at the laboratory level. However, the conversion efficiency is as low as about 10%, the element is expensive, and the relatively inexpensive bismuth-tellurium-based thermoelectric power generation element has been confirmed to be toxic to tellurium and is suitable as a large-scale exhaust heat recovery device. Not.

本発明の少なくとも一態様は、かかる従来技術の課題に鑑みなされたものであり、ランキンサイクルを利用した高効率な排熱回収装置を実現すると共に、作動流体としてNHを用いる場合、爆発性や毒性があるNHの危険性を解消することを目的とする。 At least one aspect of the present invention has been made in view of the problems of the prior art. In addition to realizing a highly efficient exhaust heat recovery device using a Rankine cycle, and using NH 3 as a working fluid, The aim is to eliminate the danger of toxic NH 3 .

本発明の少なくとも一態様に係る複合ランキンサイクルを用いた排熱回収装置は、作動流体として水が循環する一次回路と、作動流体として水より低沸点を有する低沸点媒体が循環する二次回路とを備えている。
そのため、二次回路を循環する低沸点媒体として、例えばNHなどを使用する場合でも、低温熱源から熱回収を行う一次回路の作動流体として水を用い、NHなどを使用する二次回路を低温熱源から隔離できるので、NHを使用する危険性を解消できる。
An exhaust heat recovery apparatus using a combined Rankine cycle according to at least one aspect of the present invention includes a primary circuit in which water circulates as a working fluid, and a secondary circuit in which a low-boiling medium having a lower boiling point than water is circulated as a working fluid. It has.
Therefore, even when NH 3 or the like is used as a low boiling point medium circulating in the secondary circuit, water is used as a working fluid of the primary circuit that performs heat recovery from a low-temperature heat source, and a secondary circuit that uses NH 3 or the like is used. Since it can be isolated from a low-temperature heat source, the danger of using NH 3 can be eliminated.

前記一次回路は、低温熱源と水とを熱交換させ水を蒸気に変える低温熱採取部と、この低温熱採取部の下流側で蒸気と低沸点媒体とを熱交換させ、低沸点媒体を気化させる熱交換器と、この熱交換器の下流側で前記蒸気で駆動される発電機付き蒸気タービンと、この発電機付き蒸気タービンの下流側で湿り蒸気を貯留し、気相形成域に大気開放弁を有する密閉容器とを含むランキンサイクル構成機器を有している。
また、前記二次回路は、前記熱交換器で加熱され気化した低沸点媒体で駆動される発電機付きタービンを含むランキンサイクル構成機器を有している。
こうして、二次回路で低沸点媒体を循環させ、第2の熱交換器で蒸気によって低沸点媒体を加熱し気化させることで、低温熱源からの熱回収効率を向上できる。
The primary circuit heat-exchanges the low-temperature heat source and water to convert the water into steam, and heat-exchanges the steam and the low-boiling medium downstream of the low-temperature heat sampling section to vaporize the low-boiling medium. A heat exchanger to be operated, a steam turbine with a generator driven by the steam on the downstream side of the heat exchanger, and wet steam is stored on the downstream side of the steam turbine with the generator, and the atmosphere is opened to the gas phase formation region A Rankine cycle component including a sealed container having a valve.
Moreover, the said secondary circuit has a Rankine-cycle structure apparatus containing the turbine with a generator driven with the low boiling-point medium heated and vaporized by the said heat exchanger.
Thus, the efficiency of heat recovery from the low temperature heat source can be improved by circulating the low boiling point medium in the secondary circuit and heating and vaporizing the low boiling point medium with steam in the second heat exchanger.

さらに、本発明の少なくとも一態様は、上部が開放された水貯留槽と、該密閉容器の凝縮水貯留域と前記水貯留槽の水貯留域とを連通する連通路と、該連通路に設けられた発電機付き水タービンとで構成された湿り蒸気保有熱回収部を備えている。
一次回路で蒸気タービンを作動させた後の湿り蒸気は密閉容器に貯留され、該密閉容器の内部では気相域と液相域とが形成される。気相域は未だ高温を有する湿り蒸気が導入されるため高圧となる。そのため、密閉容器と連通路を介して連通している水貯留槽内の貯留水の水面と比べて密閉容器の凝縮水の水面は低下する。
密閉容器内の水面が十分低下した後、密閉容器の気相域に設けられた大気開放弁を開放すると、気相域が減圧されるので、水貯留槽の貯留水が連通路を介して密閉容器に流れ、発電機付き水タービンを駆動する。
Furthermore, at least one aspect of the present invention includes a water storage tank having an open top, a communication path that connects the condensed water storage area of the sealed container and the water storage area of the water storage tank, and the communication path. And a wet steam-retaining heat recovery unit composed of a water turbine with a generator.
The wet steam after operating the steam turbine in the primary circuit is stored in a sealed container, and a gas phase region and a liquid phase region are formed inside the sealed container. The gas phase region becomes high pressure because wet steam having a high temperature is still introduced. Therefore, the water level of the condensed water in the sealed container is lower than that of the stored water in the water storage tank communicating with the sealed container via the communication path.
After the water level in the airtight container has dropped sufficiently, opening the air release valve provided in the gas phase area of the airtight container will depressurize the gas phase area, so the stored water in the water storage tank will be sealed via the communication path. Flows into the vessel and drives a water turbine with a generator.

こうして、最終的に未利用だった湿り蒸気の熱エネルギを水貯留槽に貯留された貯留水の位置エネルギに変換することで、熱回収効率を向上できると共に、貯留水の位置エネルギによる電力貯蔵も可能になる。
このように、低沸点媒体を加熱した後の湿り蒸気の保有熱を利用して発電できるので、高効率な熱回収が可能になる。
Thus, by converting the heat energy of the wet steam that was finally unused to the potential energy of the stored water stored in the water storage tank, the heat recovery efficiency can be improved, and power storage by the potential energy of the stored water is also possible. It becomes possible.
As described above, since the power can be generated using the retained heat of the wet steam after heating the low boiling point medium, highly efficient heat recovery can be performed.

本発明の一態様は、密閉容器に貯留された凝縮水の表面全域に浮遊するフロート式断熱材を有している。この明細書において「フロート式断熱材」とは、例えば発泡性樹脂のように、比重が水より軽く水に浮く材質でできた断熱材を言う。この断熱材によって気相域の保有熱が水側に伝達するのを抑制できるので、気相域の温度降下を抑制でき、気相域の保有熱による熱回収効率を高く維持できる。   One embodiment of the present invention includes a float-type heat insulating material that floats over the entire surface of condensed water stored in a sealed container. In this specification, the “float type heat insulating material” refers to a heat insulating material made of a material that has a specific gravity lighter than water and floats in water, such as foamable resin. Since this heat insulating material can suppress the heat retained in the gas phase region from being transmitted to the water side, the temperature drop in the gas phase region can be suppressed, and the heat recovery efficiency due to the heat retained in the gas phase region can be maintained high.

本発明の別な一態様は、密閉容器と水タービンとの間の連通路に熱対流防止手段が設けられている。この熱対流防止手段によって気相形成域の保有熱が連通路を介して水貯留槽に伝達するのを抑制できるので、気相形成域の保有熱の有効効率を高く維持できる。
前記熱対流防止手段は、例えば、連通路が他の連通路の領域より上方に立ち上げられた逆U字路で構成されている。気相形成域の保有熱で加熱され重量が軽くなった水は逆U字路の頂部から水貯留槽側の連通路に下降しないので、密閉容器の保有熱が水貯留槽側へ放散されるのを抑制できる。
In another aspect of the present invention, thermal convection prevention means is provided in the communication path between the sealed container and the water turbine. Since this heat convection preventing means can suppress the heat held in the gas phase formation zone from being transmitted to the water storage tank via the communication path, the effective efficiency of the heat held in the gas phase formation zone can be maintained high.
The thermal convection prevention means is constituted by, for example, an inverted U-shaped path in which the communication path is raised above the area of the other communication path. Water that has been heated by the heat held in the gas phase formation zone and lightened does not descend from the top of the reverse U-shaped path to the communication path on the water storage tank side, so the heat held in the sealed container is dissipated to the water storage tank side. Can be suppressed.

本発明のさらに別な一態様では、前記水貯留槽は、例えば自然界に形成された池や湖のような地形であって、水を貯留可能なものをそのまま利用したものであってもよい。これによって、水貯留槽の建設費を削減できる。さらに、防火用水池やプールなどの既存の水貯留槽を利用してもよい。   In still another aspect of the present invention, the water storage tank may be a terrain such as a pond or a lake formed in nature, and may be one that uses water as it is. Thereby, the construction cost of the water storage tank can be reduced. Furthermore, you may utilize the existing water storage tanks, such as a fire prevention pond and a pool.

本発明のさらに別な一態様は、安価な夜間電力を用いて一次回路及び二次回路のランキンサイクル構成機器を稼働させると共に、水貯留槽の貯留水の位置エネルギを蓄えるものである。
これによって、蒸気タービンで回収した電力と、水貯留槽の貯留水の位置エネルギで回収した電力とを合わせて、短時間だが大きな電力を得ることができる。例えば、この電力を電力需要が多くなる昼間に利用できる。
Still another aspect of the present invention is to operate the Rankine cycle constituent devices of the primary circuit and the secondary circuit using inexpensive nighttime power and store the potential energy of the stored water in the water storage tank.
Thus, a large amount of electric power can be obtained in a short time by combining the electric power recovered by the steam turbine and the electric power recovered by the potential energy of the water stored in the water storage tank. For example, this power can be used in the daytime when the power demand increases.

本発明によれば、水が循環する一次回路と、水より沸点が低い低沸点媒体が循環する二次回路とを備え、さらに、湿り蒸気保有熱回収部を備えているので、低温熱源からの高効率な熱回収が可能になると共に、低沸点媒体の使用範囲を低温熱源から隔離したことで、低沸点媒体としてNHを用いた場合でも、NHの危険性に係る問題を解消できる。 According to the present invention, a primary circuit in which water circulates and a secondary circuit in which a low boiling point medium having a lower boiling point than water circulates, and further includes a wet steam holding heat recovery unit, High efficiency heat recovery is possible, and the use range of the low boiling point medium is isolated from the low temperature heat source, so that the problem relating to the danger of NH 3 can be solved even when NH 3 is used as the low boiling point medium.

本発明の一実施形態に係る排熱回収装置のブロック線図である。It is a block diagram of the exhaust heat recovery apparatus which concerns on one Embodiment of this invention. 前記排熱回収装置の一次回路のみを抜き出したブロック線図である。It is the block diagram which extracted only the primary circuit of the said waste heat recovery apparatus. 前記一次回路のT−S線図である。It is a TS diagram of the primary circuit. 前記排熱回収装置の二次回路のみを抜き出したブロック線図である。It is the block diagram which extracted only the secondary circuit of the said waste heat recovery apparatus. 前記二次回路のT−S線図である。It is a TS diagram of the secondary circuit.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明の一実施形態に係る排熱回収装置を図1〜図5に基づいて説明する。
図1において、本実施形態に係る排熱回収装置10は、作動流体として水が循環する一次回路12と、低沸点の作動流体としてNHが循環する二次回路14と、湿り蒸気保有熱回収部16とで構成されている。
An exhaust heat recovery apparatus according to an embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, an exhaust heat recovery apparatus 10 according to the present embodiment includes a primary circuit 12 in which water circulates as a working fluid, a secondary circuit 14 in which NH 3 circulates as a low boiling point working fluid, and wet steam-retaining heat recovery. Part 16.

一次回路12は、太陽熱を吸収する熱交換器22と、工場排熱を吸収する熱交換器24と、地熱を吸収する熱交換器26を有しており、これらの熱交換器22、24及び26で低温熱採取部20を構成している。熱交換器22、24及び26で低温熱源から熱を吸収した水は蒸気に変わり、熱交換器28で二次回路14を循環するNHと熱交換し、NHを気化させる。
熱交換器28の下流側の一次回路12に、回転軸が発電機32と連結した蒸気タービン30が設けられている。熱交換器28を出た蒸気は蒸気タービン30及び蒸気タービン30と回転軸を共有する発電機32を作動させ、電力を発生させることができる。
The primary circuit 12 includes a heat exchanger 22 that absorbs solar heat, a heat exchanger 24 that absorbs factory exhaust heat, and a heat exchanger 26 that absorbs geothermal heat. 26 constitutes the low-temperature heat collection unit 20. The water that has absorbed heat from the low-temperature heat source in the heat exchangers 22, 24, and 26 is converted into steam, and the heat exchanger 28 exchanges heat with NH 3 circulating in the secondary circuit 14 to vaporize NH 3 .
A steam turbine 30 having a rotating shaft connected to a generator 32 is provided in the primary circuit 12 on the downstream side of the heat exchanger 28. The steam exiting the heat exchanger 28 can operate the steam turbine 30 and the generator 32 sharing the rotating shaft with the steam turbine 30 to generate electric power.

蒸気タービン30を作動させた蒸気は湿り蒸気となり、この湿り蒸気は凝縮器34において冷却水で冷却され、さらに一部が凝縮する。その後、湿り蒸気は密閉容器36に貯留される。
密閉容器36は頂部に大気開放弁38を有している。密閉容器36の内部で、湿り蒸気は気相域gと液相域(凝縮水cの貯留域)とに別れる。一次回路12は気相域g及び液相域に夫々接続されている。気相域gでは凝縮器34を経た温度の高い湿り蒸気が密閉容器36内に供給されることで、該密閉容器内の空気を暖め、圧力を高める。
水面には板状の断熱材(例えば、ポリスチレン樹脂などの発泡性樹脂又は硬質ウレタンフォームのように、比重が1未満の断熱材)からなるフロート式断熱材40が水面のほぼ全域を覆うように浮いている。これによって、気相域gの保有熱が凝縮水cが貯留した液相域に伝達するのを抑制できる。
The steam that has actuated the steam turbine 30 becomes wet steam, and this wet steam is cooled by the cooling water in the condenser 34 and further partially condensed. Thereafter, the wet steam is stored in the sealed container 36.
The sealed container 36 has an air release valve 38 at the top. Inside the sealed container 36, the wet steam is divided into a gas phase region g and a liquid phase region (condensate c storage region). The primary circuit 12 is connected to the gas phase region g and the liquid phase region, respectively. In the gas phase region g, wet steam having a high temperature that has passed through the condenser 34 is supplied into the sealed container 36, thereby warming the air in the sealed container and increasing the pressure.
A float-type heat insulating material 40 made of a plate-shaped heat insulating material (for example, a heat insulating material having a specific gravity of less than 1 such as a foamable resin such as polystyrene resin or rigid urethane foam) covers almost the entire surface of the water surface. Floating. Thereby, it is possible to suppress the retained heat of the gas phase region g from being transmitted to the liquid phase region where the condensed water c is stored.

密閉容器36の液相域に接続された一次回路12には水ポンプ42が設けられ、水ポンプ42の下流側で熱交換器22、24及び26に分岐し、これら熱交換器の入口に夫々開閉弁44、46及び48が設けられている。水ポンプ42によって密閉容器36内の凝縮水が熱交換器22、24及び26に送られる。開閉弁44、46及び48の開閉操作によって、熱交換器22、24又は26に選択的に凝縮水cを送ることができる。   The primary circuit 12 connected to the liquid phase region of the hermetic vessel 36 is provided with a water pump 42, branching to the heat exchangers 22, 24 and 26 on the downstream side of the water pump 42, and entering the inlets of these heat exchangers, respectively. On-off valves 44, 46 and 48 are provided. Condensed water in the sealed container 36 is sent to the heat exchangers 22, 24 and 26 by the water pump 42. The condensed water c can be selectively sent to the heat exchanger 22, 24 or 26 by opening / closing the on-off valves 44, 46 and 48.

二次回路14にはNHポンプ50が設けられ、NHポンプ50によって二次回路14をNHが循環する。熱交換器28で気化したNHはNHタービン52に送られ、NHタービン52を作動させると共に、NH3タービン52と回転軸を共有する発電機54を作動させ発電が行われる。
NHタービン52を作動させた後気液二相流となったNHは、凝縮器56で冷却され液化してNHポンプ50に戻り再循環される。
The secondary circuit 14 is provided with NH 3 pump 50, NH 3 circulates secondary circuit 14 by the NH 3 pump 50. NH 3 was vaporized in the heat exchanger 28 is sent to the NH 3 turbine 52, it actuates the NH 3 turbine 52, power to operate the generator 54 to share the shaft with NH3 turbine 52 is performed.
After the NH 3 turbine 52 is operated, the NH 3 that has become a gas-liquid two-phase flow is cooled and liquefied by the condenser 56, returned to the NH 3 pump 50, and recirculated.

密閉容器36の底部に連通管60が接続され、連通管60の他端は水貯留槽62の底部に接続されている。水貯留槽62には予め貯留水wが貯留され、水貯留槽62の上部は大気に開放されている。連通管60には水タービン64が設けられ、水タービン64には回転軸を共有する発電機66が設けられている。
また、密閉容器36と水タービン64との間の連通管60には上方に立ち上がった逆U字管68が形成され、逆U字管68の頂部には空気抜き弁70が設けられている。また、密閉容器36と逆U字管68との間の連通管60には水遮断弁72が設けられている。
A communication pipe 60 is connected to the bottom of the sealed container 36, and the other end of the communication pipe 60 is connected to the bottom of the water storage tank 62. The water storage tank 62 stores the stored water w in advance, and the upper part of the water storage tank 62 is open to the atmosphere. The communication pipe 60 is provided with a water turbine 64, and the water turbine 64 is provided with a generator 66 sharing a rotating shaft.
A reverse U-shaped pipe 68 rising upward is formed in the communication pipe 60 between the sealed container 36 and the water turbine 64, and an air vent valve 70 is provided on the top of the reverse U-shaped pipe 68. A water shutoff valve 72 is provided in the communication pipe 60 between the sealed container 36 and the inverted U-shaped pipe 68.

図2は排熱回収装置10のうち一次回路12のみを抽出したものであり、図3は一次回路12のT(絶対温度)−S(エントロピ)線図を示している。図2及び図3に付された番号は、同一の部位を同一の番号で示している。図3中、Swは飽和水線であり、Svは飽和蒸気線である。
密閉容器36内の水は水ポンプ42によって等エントロピで加圧され、熱交換器22、24又は26に導かれる(1→2)。熱交換器22、24又は26で低温熱源によって加熱された水は、等圧線に沿って状態変化して蒸発し、さらに高温の過熱蒸気となる(2→3)。
FIG. 2 shows only the primary circuit 12 extracted from the exhaust heat recovery apparatus 10, and FIG. 3 shows a T (absolute temperature) -S (entropy) diagram of the primary circuit 12. 2 and 3 indicate the same parts with the same numbers. In FIG. 3, Sw is a saturated water line, and Sv is a saturated vapor line.
The water in the sealed container 36 is pressurized with isentropy by the water pump 42 and guided to the heat exchanger 22, 24 or 26 (1 → 2). The water heated by the low-temperature heat source in the heat exchanger 22, 24 or 26 changes its state along the isobaric line, evaporates, and becomes high-temperature superheated steam (2 → 3).

過熱蒸気は熱交換器22、24又は26を出て熱交換器28に入り、熱交換器28でNHを加熱する(3→4)。次に、過熱蒸気は等エントロピ膨張を行って蒸気タービン30を作動し、圧力が下がり湿り蒸気となる(4→5)。湿り蒸気は凝縮器34において等圧冷却で放熱して液化する(5→1)。こうして、一次回路12はランキンサイクルを構成する。 The superheated steam leaves the heat exchanger 22, 24 or 26 and enters the heat exchanger 28, which heats NH 3 in the heat exchanger 28 (3 → 4). Next, the superheated steam performs isentropic expansion to operate the steam turbine 30 and the pressure decreases to become wet steam (4 → 5). The wet steam is liquefied by radiating heat in the condenser 34 by isobaric cooling (5 → 1). Thus, the primary circuit 12 constitutes a Rankine cycle.

図4は排熱回収装置10のうち二次回路14のみを抽出したものであり、図5は二次回路14のT−S線図を示している。図4及び図5に付された番号は、同一の部位を同一の番号で示している。
二次回路14を循環するNHも一次回路12を循環する水とほぼ同様の挙動を示し、ランキンサイクルを構成する。
FIG. 4 shows only the secondary circuit 14 extracted from the exhaust heat recovery apparatus 10, and FIG. 5 shows a TS diagram of the secondary circuit 14. The numbers assigned to FIGS. 4 and 5 indicate the same parts with the same numbers.
NH 3 circulating in the secondary circuit 14 also exhibits substantially the same behavior as water circulating in the primary circuit 12, and constitutes a Rankine cycle.

凝縮器34で冷却された湿り蒸気は密閉容器36に送られる。このとき、大気開放弁38及び空気抜き弁70は閉状態、水遮断弁72は開状態となっている。密閉容器36に送られた湿り蒸気は未だ高温状態にあるため、密閉容器36内の空気を暖め、密閉容器36内の圧力を高める。この圧力により密閉容器36内の凝縮水cは、連通管60を介して水貯留槽62に移動する。そのため、水貯留槽62の水面は上昇する。
密閉容器36及び水貯留槽62に大きな水面差が形成された時点で、大気開放弁38を開放する。これによって、密閉容器36内の圧力が低下するため、水貯留槽62の水が連通管60を介して密閉容器36に流れ込む。そのため、水タービン64が回転し、発電機66で発電が行われる。
The wet steam cooled by the condenser 34 is sent to the sealed container 36. At this time, the air release valve 38 and the air vent valve 70 are closed, and the water shutoff valve 72 is open. Since the wet steam sent to the sealed container 36 is still in a high temperature state, the air in the sealed container 36 is warmed and the pressure in the sealed container 36 is increased. Due to this pressure, the condensed water c in the sealed container 36 moves to the water storage tank 62 through the communication pipe 60. Therefore, the water surface of the water storage tank 62 rises.
When a large water level difference is formed in the sealed container 36 and the water storage tank 62, the air release valve 38 is opened. As a result, the pressure in the sealed container 36 decreases, so that the water in the water storage tank 62 flows into the sealed container 36 through the communication pipe 60. Therefore, the water turbine 64 rotates and power is generated by the generator 66.

密閉容器36には水面のほぼ全域にフロート式断熱材40を浮かせてあるので、気相域gの保有熱が液相域wに伝わるのを抑制できる。また、連通管60に逆U字管68を設けているので、密閉容器36側の高温で重量が軽くなった凝縮水cは逆U字管68の頂部から水貯留槽62側の連通管60に下降しない。そのため、密閉容器36の保有熱が水貯留槽62側へ伝達するのを抑制でき、気相域gの圧力低下を抑制できる。   Since the float-type heat insulating material 40 is floated on almost the entire surface of the water in the sealed container 36, it is possible to suppress the heat retained in the gas phase region g from being transmitted to the liquid phase region w. Further, since the reverse U-shaped pipe 68 is provided in the communication pipe 60, the condensed water c whose weight has been reduced by the high temperature on the closed container 36 side is connected to the communication pipe 60 on the water storage tank 62 side from the top of the reverse U-shaped pipe 68. Does not descend. Therefore, it can suppress that the heat | fever retained of the airtight container 36 is transmitted to the water storage tank 62 side, and can suppress the pressure fall of the gaseous-phase area | region g.

本実施形態によれば、低温熱源から熱回収を行う一次回路12の作動流体として水を用い、NHが循環する二次回路14を低温熱源から隔離することで、NHを使用する危険性を解消できる。
また、二次回路14で水より低沸点を有するNHを使用し、一次回路12を循環する蒸気でNHを加熱し気化させることで、低温熱源からの熱回収効率を向上できる。
According to the present embodiment, the risk of using NH 3 by using water as the working fluid of the primary circuit 12 that recovers heat from the low-temperature heat source and isolating the secondary circuit 14 in which NH 3 circulates from the low-temperature heat source. Can be eliminated.
Further, by using NH 3 having a boiling point lower than that of water in the secondary circuit 14 and heating and vaporizing NH 3 with steam circulating through the primary circuit 12, the efficiency of heat recovery from the low-temperature heat source can be improved.

また、一次回路12を循環するNHを加熱し、蒸気タービン30を駆動した後の湿り蒸気の保有熱を利用し、水タービン64を駆動し発電するので、高効率な熱回収が可能になる。
また、フロート式断熱材40で気相域gの保有熱が凝縮水cに放散するのを抑制できるので、気相域gの圧力低下を抑制でき、熱回収効率を高く維持できる。
さらに、連通管60に設けられ、逆U字管68で構成された熱対流防止手段によって、密閉容器36の保有熱が水貯留槽62側へ放散されるのを抑制でき、気相域gの圧力低下を抑制でき、これによっても熱回収効率を高く維持できる。
Further, the NH 3 circulating in the primary circuit 12 is heated and the retained heat of the wet steam after driving the steam turbine 30 is used to drive the water turbine 64 to generate electricity, so that highly efficient heat recovery can be achieved. .
Moreover, since it can suppress that the heat | fever retained in the gaseous-phase area | region g dissipates in the condensed water c with the float type heat insulating material 40, the pressure fall of the gaseous-phase area | region g can be suppressed and heat recovery efficiency can be maintained highly.
Further, the heat convection prevention means provided in the communication pipe 60 and constituted by the inverted U-shaped pipe 68 can suppress the heat held in the sealed container 36 from being dissipated to the water storage tank 62 side. The pressure drop can be suppressed, and the heat recovery efficiency can be maintained high.

なお、本実施形態では、太陽熱、工場排熱、地熱等を低温熱源としているが、低温熱源として、市町村の清掃センタでの廃棄物焼却で発生した排熱や、高温を発生できる太陽光集熱装置で得られる熱源に適用してもよい。
また、熱交換器22、24及び26を並列に配置しているが、これらの熱交換器を直列に配置してもよい。
また、湿り蒸気保有熱回収部16において、夜間の割安な電力を用いて水タービン64を駆動し、水貯留槽62の貯留水の水面を上昇させ、昼間の電力需要が大きくなる時、上昇した貯留水で水タービン64を駆動し、電力を得るようにしてもよい。
In this embodiment, solar heat, factory exhaust heat, geothermal heat, etc. are used as low-temperature heat sources. However, as low-temperature heat sources, exhaust heat generated by waste incineration at municipal cleaning centers and solar heat collection that can generate high temperatures. You may apply to the heat source obtained with an apparatus.
Moreover, although the heat exchangers 22, 24, and 26 are arrange | positioned in parallel, you may arrange | position these heat exchangers in series.
Further, in the wet steam holding heat recovery unit 16, the water turbine 64 is driven using cheap electricity at night, the water level of the water stored in the water storage tank 62 is raised, and the daytime power demand increases. The water turbine 64 may be driven with the stored water to obtain electric power.

さらに、水貯留槽62は、例えば自然界に形成された池や湖沼のような地形であって、水を貯留可能なものをそのまま利用したものであってもよい。この場合、池や湖沼の推移上昇はほとんど無く、反対に密閉容器36内の水面が低下することで、水の位置エネルギが蓄えられる。
これによって、水貯留槽の建設費を削減できる。さらに、防火用水池やプールなどの既存の水貯留槽を利用するようにしてもよい。
Furthermore, the water storage tank 62 may be a terrain such as a pond or a lake formed in nature, and the one that can store water may be used as it is. In this case, there is almost no transition increase of a pond or a lake, and conversely the water surface energy in the sealed container 36 is reduced, so that the potential energy of water is stored.
Thereby, the construction cost of the water storage tank can be reduced. Furthermore, you may make it utilize the existing water storage tanks, such as a fire prevention pond and a pool.

本発明によれば、複合ランキンサイクルを用い、NHなどを使用する場合の問題点を解消できると共に、低沸点媒体から高効率な熱回収を可能にした排熱回収装置を実現できる。 According to the present invention, using a composite Rankine cycle, it is possible to solve the problem of using such NH 3, it can be realized exhaust heat recovery apparatus capable of highly efficient heat recovery from the low boiling point medium.

10 排熱回収装置
12 一次回路
14 二次回路
16 湿り蒸気保有熱回収部
20 低温熱採取部
22、24、26、28 熱交換器
30 蒸気タービン
32、54、66 発電機
34、56 凝縮器
36 密閉容器
38 大気開放弁
40 フロート式断熱材
42 水ポンプ
44、46、48 開閉弁
50 NHポンプ
52 NHタービン
60 連通管
62 水貯留槽
64 水タービン
68 逆U字管(熱対流防止手段)
70 空気抜き弁
72 水遮断弁
Sv 飽和蒸気線
Sw 飽和水線
c 凝縮水
g 気相域
w 貯留水
DESCRIPTION OF SYMBOLS 10 Waste heat recovery apparatus 12 Primary circuit 14 Secondary circuit 16 Wet steam retention heat recovery part 20 Low-temperature heat collection part 22, 24, 26, 28 Heat exchanger 30 Steam turbine 32, 54, 66 Generator 34, 56 Condenser 36 Sealed container 38 Atmospheric release valve 40 Float type heat insulating material 42 Water pump 44, 46, 48 On-off valve 50 NH 3 pump 52 NH 3 turbine 60 Communication pipe 62 Water storage tank 64 Water turbine 68 Reverse U-shaped pipe (heat convection prevention means)
70 Air vent valve 72 Water shut-off valve Sv Saturated steam line Sw Saturated water line c Condensed water g Gas phase zone w Reserved water

Claims (7)

作動流体として水が循環する一次回路と、作動流体として水より沸点が低い低沸点媒体が循環する二次回路とを備え、
前記一次回路は、低温熱源と前記水とを熱交換させ前記水を蒸気に変える低温熱採取部と、前記低温熱採取部の下流側で前記蒸気と前記低沸点媒体とを熱交換させ前記低沸点媒体を気化させる熱交換器と、前記熱交換器の下流側で前記蒸気で駆動される発電機付き蒸気タービンと、前記発電機付き蒸気タービンの下流側で気液二相水を貯留し、気相形成域に大気開放弁を有する密閉容器とを含むランキンサイクル構成機器を有し、
前記二次回路は、前記熱交換器で加熱され気化した低沸点媒体で駆動される発電機付きタービンを含むランキンサイクル構成機器を有し、
さらに、上部が開放された水貯留槽と、前記密閉容器の凝縮水貯留域と前記水貯留槽の水貯留域とを連通する連通路と、前記連通路に設けられた発電機付き水タービンとで構成された湿り蒸気保有熱回収部を備えていることを特徴とする複合ランキンサイクルを用いた排熱回収装置。
A primary circuit in which water circulates as a working fluid, and a secondary circuit in which a low boiling point medium having a boiling point lower than that of water circulates as a working fluid;
The primary circuit includes a low-temperature heat collection unit that exchanges heat between the low-temperature heat source and the water to convert the water into steam, and heat exchange between the steam and the low-boiling-point medium on the downstream side of the low-temperature heat collection unit. A heat exchanger for vaporizing a boiling point medium, a steam turbine with a generator driven by the steam on the downstream side of the heat exchanger, and gas-liquid two-phase water stored on the downstream side of the steam turbine with a generator, Having a Rankine cycle component including a sealed container having an air release valve in a gas phase formation region,
The secondary circuit has Rankine cycle components including a turbine with a generator driven by a low boiling point medium heated and vaporized by the heat exchanger,
Furthermore, a water storage tank with an open top, a communication path that connects the condensed water storage area of the sealed container and the water storage area of the water storage tank, and a water turbine with a generator provided in the communication path; An exhaust heat recovery device using a combined Rankine cycle, characterized in that it comprises a wet steam-retaining heat recovery unit composed of
前記密閉容器に貯留された凝縮水の表面全域に浮かんだフロート式断熱材を有していることを特徴とする請求項1に記載の複合ランキンサイクルを用いた排熱回収装置。   The exhaust heat recovery apparatus using a combined Rankine cycle according to claim 1, further comprising a float-type heat insulating material that floats over the entire surface of the condensed water stored in the sealed container. 前記密閉容器と前記水タービンとの間の前記連通路に熱対流防止手段が設けられていることを特徴とする請求項1又は2に記載の複合ランキンサイクルを用いた排熱回収装置。   3. The exhaust heat recovery apparatus using a combined Rankine cycle according to claim 1, wherein a thermal convection prevention means is provided in the communication path between the sealed container and the water turbine. 前記熱対流防止手段は、前記連通路が他の連通路の領域に対して上方に立ち上げられた逆U字路で構成されていることを特徴とする請求項3に記載の複合ランキンサイクルを用いた排熱回収装置。   The composite Rankine cycle according to claim 3, wherein the thermal convection prevention means is configured by an inverted U-shaped path in which the communication path is raised upward with respect to a region of another communication path. Waste heat recovery device used. 前記水貯留槽は、自然界に形成され水を貯留可能な地形を利用したものであることを特徴とする請求項1に記載の複合ランキンサイクルを用いた排熱回収装置。   2. The exhaust heat recovery apparatus using a combined Rankine cycle according to claim 1, wherein the water storage tank uses a landform formed in nature and capable of storing water. 前記低沸点媒体がNHであることを特徴とする請求項1に記載の複合ランキンサイクルを用いた排熱回収装置。 The exhaust heat recovery apparatus using a combined Rankine cycle according to claim 1, wherein the low boiling point medium is NH 3 . 夜間電力を用いて前記一次回路及び前記二次回路が有するランキンサイクル構成機器を稼働させると共に、前記水貯留槽の貯留水の位置エネルギを蓄えることを特徴とする請求項1に記載の複合ランキンサイクルを用いた排熱回収装置。   2. The combined Rankine cycle according to claim 1, wherein the Rankine cycle constituent devices of the primary circuit and the secondary circuit are operated using nighttime power and the potential energy of the stored water in the water storage tank is stored. Waste heat recovery device using
JP2014146260A 2014-07-16 2014-07-16 Exhaust heat recovery system using combined rankine cycle Ceased JP2016023552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146260A JP2016023552A (en) 2014-07-16 2014-07-16 Exhaust heat recovery system using combined rankine cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146260A JP2016023552A (en) 2014-07-16 2014-07-16 Exhaust heat recovery system using combined rankine cycle

Publications (1)

Publication Number Publication Date
JP2016023552A true JP2016023552A (en) 2016-02-08

Family

ID=55270569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146260A Ceased JP2016023552A (en) 2014-07-16 2014-07-16 Exhaust heat recovery system using combined rankine cycle

Country Status (1)

Country Link
JP (1) JP2016023552A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124411A (en) * 1990-09-17 1992-04-24 Toshiba Corp Steam turbine combine generator equipment
JPH0466364U (en) * 1990-10-22 1992-06-11
JPH08177415A (en) * 1994-12-26 1996-07-09 Kawasaki Steel Corp Motive power converting facility using liquefied gas
JP2010501776A (en) * 2006-08-21 2010-01-21 韓国機械研究院 Compressed air storage power generation system and power generation method using compressed air storage power generation system
WO2014094079A1 (en) * 2012-12-21 2014-06-26 Rutten New Energy System Sa Concentrating thermodynamic solar or conventional thermal power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04124411A (en) * 1990-09-17 1992-04-24 Toshiba Corp Steam turbine combine generator equipment
JPH0466364U (en) * 1990-10-22 1992-06-11
JPH08177415A (en) * 1994-12-26 1996-07-09 Kawasaki Steel Corp Motive power converting facility using liquefied gas
JP2010501776A (en) * 2006-08-21 2010-01-21 韓国機械研究院 Compressed air storage power generation system and power generation method using compressed air storage power generation system
WO2014094079A1 (en) * 2012-12-21 2014-06-26 Rutten New Energy System Sa Concentrating thermodynamic solar or conventional thermal power plant

Similar Documents

Publication Publication Date Title
DeLovato et al. A review of heat recovery applications for solar and geothermal power plants
US9500185B2 (en) System and method using solar thermal energy for power, cogeneration and/or poly-generation using supercritical brayton cycles
ES2849436T3 (en) Enhanced Organic Rankine Cycle Decompression Heat Engine
US11079184B2 (en) Methods, systems, and devices for thermal enhancement
US9297366B2 (en) Thermal energy conversion to electricity
MX2013002944A (en) A system and method for storing energy and purifying fluid.
US20140060050A1 (en) Organic rankine cycle for concentrated solar power system
US20140345276A1 (en) Organic rankine cycle for concentrated solar power system with saturated liquid storage and method
CA2736418A1 (en) A low temperature solar power system
WO2010045341A2 (en) Vapor powered engine/electric generator
JP2009022123A (en) Power generation method using heat collection by heat pump
JP2008095673A (en) Hot water thermal power generator
Lee et al. Heat energy harvesting by utilizing waste heat with small temperature differences between heat source and sink
US20180003084A9 (en) Thermo-elevation plant and method
JP2016023552A (en) Exhaust heat recovery system using combined rankine cycle
ES2919173T3 (en) Energy storage method
JP2022537062A (en) Binary cycle power generation system
WO2007052268A2 (en) Power generation by hydrothermal means
EP2492627B1 (en) Cooling system for a solar thermal Rankine cycle
WO1999024766A1 (en) Systems and methods for converting thermal energy
US10424416B2 (en) Low temperature thermal energy converter for use with spent nuclear fuel rods
JP5847387B2 (en) Active condenser
BR102019020092A2 (en) production of mechanical and / or electrical energy from thermal energy, by means of, and using, the buoyancy factor, in evaporation or sublimation and condensation
Palenzuela et al. Combined Fresh Water and Power Production: State of the Art
JP6739766B2 (en) Power generation system and power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180706

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20181122