JP2016020416A - Molded body for construction - Google Patents

Molded body for construction Download PDF

Info

Publication number
JP2016020416A
JP2016020416A JP2014143865A JP2014143865A JP2016020416A JP 2016020416 A JP2016020416 A JP 2016020416A JP 2014143865 A JP2014143865 A JP 2014143865A JP 2014143865 A JP2014143865 A JP 2014143865A JP 2016020416 A JP2016020416 A JP 2016020416A
Authority
JP
Japan
Prior art keywords
crushed material
crushed
particle size
molded body
friction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014143865A
Other languages
Japanese (ja)
Other versions
JP6429142B2 (en
Inventor
貴志 大市
Takashi Oichi
貴志 大市
博之 中西
Hiroyuki Nakanishi
博之 中西
孝幸 荒
Takayuki Ara
孝幸 荒
弘貴 前田
Hirotaka Maeda
弘貴 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIKI IND
EIKI KOGYO KK
Dynax Corp
Hokkaido Research Organization
Joto Techno Co Ltd
Original Assignee
EIKI IND
EIKI KOGYO KK
Dynax Corp
Hokkaido Research Organization
Joto Techno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIKI IND, EIKI KOGYO KK, Dynax Corp, Hokkaido Research Organization, Joto Techno Co Ltd filed Critical EIKI IND
Priority to JP2014143865A priority Critical patent/JP6429142B2/en
Publication of JP2016020416A publication Critical patent/JP2016020416A/en
Application granted granted Critical
Publication of JP6429142B2 publication Critical patent/JP6429142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve recycling of a waste friction material.SOLUTION: A die-stamping waste material of a sheet-state friction material including a fiber substrate, inorganic filler, and binder used for clutch facing of a vehicle, is crushed, then pieces of crushed waste are bound by thermoplastic resin for obtaining a molded body for construction.SELECTED DRAWING: None

Description

本発明は、建築資材として利用される、摩擦材の破砕物を用いた建築用成形体に関する。   The present invention relates to an architectural molded body using a friction material crushed material, which is used as a building material.

一般に、自動車や産業機械等においてクラッチフェーシング等に使用される摩擦材においては、パルプ等の繊維状材料と無機充填材からなる紙状の基材にフェノール樹脂のような熱硬化性樹脂を含浸した後、加熱硬化してまずシート状材料が調製される。   Generally, in friction materials used for clutch facings in automobiles and industrial machines, a paper-like base material made of a fibrous material such as pulp and an inorganic filler is impregnated with a thermosetting resin such as a phenol resin. Thereafter, the sheet-like material is prepared by heating and curing.

使用される繊維状材料としては、ウッドパルプの他に、アラミド繊維、ナイロン繊維等の有機繊維、ガラス繊維、カーボン繊維等の無機繊維、および銅繊維、スチール繊維等の金属繊維が用いられる。また無機充填材としては、炭酸カルシウム、硫酸バリウム、クレー、アルミナ、珪藻土、タルク、カオリン、雲母、酸化マグネシウム等が用いられる。さらにまた、熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリウレタン樹脂等が用いられる。   As the fibrous material used, in addition to wood pulp, organic fibers such as aramid fibers and nylon fibers, inorganic fibers such as glass fibers and carbon fibers, and metal fibers such as copper fibers and steel fibers are used. As the inorganic filler, calcium carbonate, barium sulfate, clay, alumina, diatomaceous earth, talc, kaolin, mica, magnesium oxide and the like are used. Furthermore, as the thermosetting resin, phenol resin, melamine resin, epoxy resin, polyimide resin, polyester resin, polyurethane resin, or the like is used.

この様にして得られたシート状材料は、厚さ0.4〜2.0mm程度、密度0.5〜1.0g/cm3程度の性状を有している。最終的に、これをリング状などの所望の形状に打ち抜くことによって摩擦材が製造される。 The sheet-like material thus obtained has properties of a thickness of about 0.4 to 2.0 mm and a density of about 0.5 to 1.0 g / cm 3 . Finally, the friction material is manufactured by punching it into a desired shape such as a ring shape.

この摩擦材の製造においては、打ち抜き工程で、シート状材料から所望の形状の摩擦材が打ち抜かれた後に残材が多量に発生する。この残材に、使用済みの摩擦材や、製造時の不良品を含めたいわゆる廃摩擦材は、環境保全や資源の有効活用の観点から、リサイクル利用することが求められている。   In manufacturing the friction material, a large amount of residual material is generated after the friction material having a desired shape is punched from the sheet-like material in the punching process. It is required to recycle the remaining friction materials, including used friction materials and defective products at the time of manufacture, from the viewpoint of environmental conservation and effective use of resources.

そこで、特許文献1〜4では、従来廃棄物としていた廃摩擦材をリサイクル利用することが提案されている。   Therefore, in Patent Documents 1 to 4, it has been proposed to recycle waste friction materials that have been conventionally used as waste.

具体的には、特許文献1には、打ち抜き工程で生じた残材を溶剤に溶解して、摩擦材形成用組成物として再度用いる摩擦材の製造方法が開示されている。   Specifically, Patent Document 1 discloses a method for producing a friction material, in which the remaining material generated in the punching step is dissolved in a solvent and used again as a friction material forming composition.

また、特許文献2には、粉状にされた使用済みクラッチライナー、摩擦ライナー精留ダスト等を含む粒状充填材が混入された、熱硬化性樹脂が含浸されたファイバーのマットからなる摩擦材料が開示されている。   Patent Document 2 discloses a friction material comprising a fiber mat impregnated with a thermosetting resin mixed with a granular filler containing powdered used clutch liner, friction liner rectified dust and the like. It is disclosed.

また、特許文献3には、充填剤の少なくとも一部として、ゴムモールド摩擦材の研磨粉を含有する摩擦材が開示されている。   Patent Document 3 discloses a friction material containing abrasive powder of a rubber mold friction material as at least a part of the filler.

また、特許文献4には、廃摩擦材を粉砕してなる複合材粒子を配合した摩擦材が開示されている。   Further, Patent Document 4 discloses a friction material in which composite particles formed by pulverizing waste friction material are blended.

特開平7−41566号公報JP 7-41566 A 特開平9−118755号公報JP-A-9-118755 特開平9−291954号公報JP-A-9-291554 特開2005−200569号公報Japanese Patent Laying-Open No. 2005-200569

しかしながら、これら従来の手法はいずれも廃摩擦材を再度摩擦材に戻すことを前提とするものであり、このような方法だけでは発生する廃摩擦材のごく一部を利用するに留まらざるを得ず、大部分の摩擦材は有効に利用されることなく埋め立て処分や焼却処分されているのが現状である。そのため摩擦材以外へのリサイクルの路を見出すことが求められている。   However, all of these conventional methods are based on the premise that the waste friction material is returned to the friction material again, and it is necessary to use only a part of the waste friction material generated by such a method alone. However, most of the friction materials are currently landfilled or incinerated without being used effectively. Therefore, it is required to find a recycling path other than friction materials.

本発明の目的は、廃摩擦材をリサイクル利用することが可能な新たな用途として、建築用成形体を提供することである。
また、本発明の別の目的は、木材や既存のボード材に代わる、機械的強度、釘保持性、防蟻性、耐水性および耐燃性に優れた、新規な建築用成形体を提供することである。
The objective of this invention is providing the molded object for construction as a new use which can recycle a waste friction material.
In addition, another object of the present invention is to provide a novel architectural molded article excellent in mechanical strength, nail retention, ant proof, water resistance and flame resistance, replacing wood and existing board materials. It is.

本発明者は、上記目的を達成するために鋭意研究を重ねた結果、クラッチフェーシング等に用いられるシート状の摩擦材の破砕物を熱硬化性樹脂を用いて成形した成形体が、機械的強度、釘保持性、防蟻性、耐水性、耐燃性等に優れた建築用成形体となることを見出した。即ち本発明は、以下の(1)〜(6)の建築用成形体を提供するものである。   As a result of intensive studies to achieve the above object, the present inventor has obtained a molded product obtained by molding a crushed material of a sheet-like friction material used for clutch facing or the like using a thermosetting resin. The present inventors have found that the molded article is excellent in nail retention, ant proof, water resistance, flame resistance and the like. That is, this invention provides the molded object for construction of the following (1)-(6).

(1)繊維基材、無機充填材および結合剤を含むシート状の摩擦材の破砕物と熱硬化性樹脂とを有する板状の建築用成形体であって、前記破砕物の薄片が、前記成形体の板面と略水平となるように分散されていることを特徴とする建築用成形体。
(2)繊維基材、無機充填材および結合剤を含むシート状の摩擦材の破砕物に熱硬化性樹脂を添加撹拌した混合物を熱圧成形してなることを特徴とする建築用成形体。
(3)繊維基材、無機充填材および結合剤を含むシート状の摩擦材の破砕物と熱硬化性樹脂とを有する建築用成形体であって、前記破砕物の平均粒径が0.5〜16.0mm程度であることを特徴とする建築用成形体。
(4)前記破砕物が、前記摩擦材の各成分の結合状態が保持された薄片を含むものであることを特徴とする上記(2)又は(3)に記載の建築用成形体。
(5)前記破砕物が、粒度5.6mm程度以上の前記薄片を25質量%以上含むことを特徴とする上記(1)又は(4)に記載の建築用成形体。
(6)表面に、補強層および化粧層の少なくとも一方が一体的に成形されていることを特徴とする上記(1)〜(5)のいずれかに記載の建築用成形体。
(1) A plate-like architectural molded body having a crushed material of a sheet-like friction material containing a fiber base material, an inorganic filler and a binder, and a thermosetting resin, wherein the flakes of the crushed material are A molded article for building, which is dispersed so as to be substantially horizontal to the plate surface of the molded article.
(2) An architectural molded body obtained by hot-pressing a mixture obtained by adding and stirring a thermosetting resin to a crushed material of a sheet-like friction material containing a fiber base material, an inorganic filler, and a binder.
(3) A building molded body having a crushed material of a sheet-like friction material containing a fiber base material, an inorganic filler and a binder, and a thermosetting resin, wherein the crushed material has an average particle size of 0.5. A molded article for building, which is about ˜16.0 mm.
(4) The molded article for building according to (2) or (3) above, wherein the crushed material includes a thin piece in which the combined state of the components of the friction material is maintained.
(5) The molded article for building according to the above (1) or (4), wherein the crushed material contains 25% by mass or more of the flakes having a particle size of about 5.6 mm or more.
(6) The building molded article according to any one of (1) to (5) above, wherein at least one of the reinforcing layer and the decorative layer is integrally formed on the surface.

本発明における摩擦材としては、繊維状材料(繊維基材)、無機充填材および結合剤を含むシート状のものを用いることができる。例えば、自動車、産業機械等の動力伝達系のクラッチフェーシング、ブレーキパッド、ブレーキライニング等に使用されているシート状の摩擦材、その製造過程で発生する残材等を好ましく用いることができる。   As the friction material in the present invention, a sheet material containing a fibrous material (fiber base material), an inorganic filler and a binder can be used. For example, a sheet-like friction material used for power transmission system clutch facings, brake pads, brake linings, etc. for automobiles, industrial machines, etc., and remaining materials generated in the manufacturing process can be preferably used.

摩擦材に含まれる繊維状材料としては、例えば、ウッドパルプ等の天然繊維、アラミド繊維、ナイロン繊維等の有機繊維、ガラス繊維、カーボン繊維等の無機繊維、および銅繊維、スチール繊維等の金属繊維を用いることができる。   Examples of the fibrous material contained in the friction material include natural fibers such as wood pulp, organic fibers such as aramid fibers and nylon fibers, inorganic fibers such as glass fibers and carbon fibers, and metal fibers such as copper fibers and steel fibers. Can be used.

また、無機充填材としては、例えば、炭酸カルシウム、硫酸バリウム、クレー、アルミナ、珪藻土、タルク、カオリン、雲母、酸化マグネシウム等を用いることができる。   Examples of the inorganic filler that can be used include calcium carbonate, barium sulfate, clay, alumina, diatomaceous earth, talc, kaolin, mica, and magnesium oxide.

さらに、結合剤としては、例えば、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ポリイミド系樹脂、ポリエステル系樹脂、ポリウレタン樹脂等の熱硬化性樹脂を用いることができる。   Furthermore, as the binder, for example, a thermosetting resin such as a phenol resin, a melamine resin, an epoxy resin, a polyimide resin, a polyester resin, or a polyurethane resin can be used.

本発明で用いる摩擦材における繊維状材料と無機充填材と結合剤との配合比は、特に限定されず、摩擦材として機能する程度の割合で含めばよい。   The blending ratio of the fibrous material, the inorganic filler, and the binder in the friction material used in the present invention is not particularly limited, and may be included in a ratio that functions as a friction material.

また、本発明において破砕物を結合するバインダーとして用いる熱硬化性樹脂としては、特に限定されず用いることができる。具体的には、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリステル樹脂、ポリウレタン樹脂等の耐水性の大きい樹脂を好ましく使用することができ、なかでも熱的性能の高いフェノール樹脂を特に好ましく用いることができる。   Moreover, it does not specifically limit as a thermosetting resin used as a binder which couple | bonds a crushed material in this invention, It can use. Specifically, for example, a resin having high water resistance such as a phenol resin, an epoxy resin, an unsaturated polyester resin, and a polyurethane resin can be preferably used, and a phenol resin having a high thermal performance is particularly preferably used. it can.

本発明において、熱硬化性樹脂の配合量は、破砕物100質量部に対して、5〜40質量部程度とするのが好ましく、より好ましくは7〜30質量部程度である。熱硬化性樹脂の配合量が多すぎると、成形体のコストが高くなり、また、硬度が高くなりすぎて釘を打ち込み難くなる。一方、熱硬化性樹脂の配合量が少なすぎると、建築資材として必要な強度が得られなくなる場合がある。   In this invention, it is preferable that the compounding quantity of a thermosetting resin shall be about 5-40 mass parts with respect to 100 mass parts of crushed materials, More preferably, it is about 7-30 mass parts. When the amount of the thermosetting resin is too large, the cost of the molded body increases, and the hardness becomes too high, making it difficult to drive the nail. On the other hand, if the amount of the thermosetting resin is too small, the strength required as a building material may not be obtained.

破砕物は、公知の粉砕機、例えば自由粉砕機、二軸粉砕機、カッターミル等で摩擦材を破砕することにより得ることができる。また破砕物は、必要に応じて、公知の振動篩、回転篩等の分級装置で所望の粒径に篩分けられたものが使用される。破砕物はその粒径(粒度)によって性状を大きく異にする。例えば、クラッチフェーシング等に用いられるシート状の摩擦材又はその残材を破砕した場合には、JIS標準篩を用いて篩分けた粒径4.0mm以上の破砕物は、元の摩擦材の厚さと密度、並びに繊維基材及び無機充填材が結合剤(熱硬化性樹脂)で結合された構造を保持した厚さ0.4〜2.0mm程度の薄片状の破砕物(薄片)として得られる。一方、粒径2.0mm程度以下に破砕した破砕物は、大部分が摩擦材の細かい破片と粉体、及び摩擦材から分離してきた繊維片やその小凝集塊から構成されている。また、粒径2.0〜4.0mm程度の範囲の破砕物は、これら両者の混合物からなっている。   The crushed material can be obtained by crushing the friction material with a known pulverizer such as a free pulverizer, a biaxial pulverizer, or a cutter mill. As the crushed material, a material that is sieved to a desired particle size by a known classifier such as a vibration sieve or a rotary sieve is used as necessary. The properties of the crushed material vary greatly depending on the particle size (particle size). For example, when a sheet-like friction material used for clutch facing or the like or a residual material thereof is crushed, a crushed material having a particle size of 4.0 mm or more screened using a JIS standard sieve is the thickness of the original friction material. And density, and a flake-like crushed material (flakes) having a thickness of about 0.4 to 2.0 mm retaining a structure in which the fiber base material and the inorganic filler are bonded with a binder (thermosetting resin). . On the other hand, the crushed material crushed to a particle size of about 2.0 mm or less is mainly composed of fine fragments and powder of the friction material, fiber pieces separated from the friction material, and small aggregates thereof. Further, the crushed material having a particle size of about 2.0 to 4.0 mm is composed of a mixture of both.

このようにシート状の摩擦材を破砕した場合、薄片状の破砕物及びその破片や粉体、及び繊維片や繊維片の凝集物等の混合物となっており、本発明における破砕物としては、薄片だけのもの、また、薄片を含まず、破片や粉体、及び繊維片や繊維片の凝集物だけからなっているものでもよい。   Thus, when the sheet-like friction material is crushed, it has become a mixture of flaky crushed material and fragments and powder thereof, and aggregates of fiber pieces and fiber pieces, and as crushed material in the present invention, It may be only a thin piece, or may be composed of only fragments, powders, fiber pieces, and aggregates of fiber pieces without including the thin pieces.

本発明における破砕物の平均粒径としては、0.5〜16.0mm程度とするのが好ましい。また、最大粒径としては、30.0mm程度以下とするのが好ましい。なかでも、平均粒径0.5〜10.0mm程度で且つ最大粒径16.0mm程度以下のものが特に好ましい。なお、本発明における平均粒径とは、JIS標準篩で篩った通過分から積算重量百分率を求め、その積算値の50%の粒度を指す。   The average particle size of the crushed material in the present invention is preferably about 0.5 to 16.0 mm. The maximum particle size is preferably about 30.0 mm or less. Among these, those having an average particle size of about 0.5 to 10.0 mm and a maximum particle size of about 16.0 mm or less are particularly preferable. In addition, the average particle diameter in this invention calculates | requires an integrated weight percentage from the passage part sieved with the JIS standard sieve, and points out the particle size of 50% of the integrated value.

平均粒径が0.4mm以下の破砕物は、微粉体が多くなるため、この粉体同士を結合するためのバインダー(熱硬化性樹脂)を多量に必要とし、バインダー量が少ない場合には成形体に十分な強度を与えられない場合が生じる。また、破砕物の粒径が30mmより大きい場合には、成形時に粒子間の間隙をコントロールすることが困難となり、均一な成形体が得られなくなる虞がある。   The crushed material having an average particle size of 0.4 mm or less requires a large amount of fine powder, so a large amount of binder (thermosetting resin) is required to bond the powders together. There are cases where the body is not given sufficient strength. In addition, when the particle size of the crushed material is larger than 30 mm, it is difficult to control the gap between the particles during molding, and there is a possibility that a uniform molded body cannot be obtained.

また、本発明において、破砕物は、元の摩擦材の構造を保った粒径5.6mm程度以上の薄片状の破砕物を25質量%程度以上含む粒度構成とするのが好ましい。この粒度構成により、成形体の強度物性をさらに高めることができる。   In the present invention, it is preferable that the crushed material has a particle size configuration including about 25% by mass or more of flaky crushed material having a particle size of about 5.6 mm or more while maintaining the structure of the original friction material. With this particle size configuration, the strength properties of the molded body can be further enhanced.

また、本発明においては、成形体の表面、板状の場合には両面の少なくとも一方に補強層及び/又は化粧層を一体的に成形するようにしてもよい。補強層は、摩擦材破砕物からなる成形体の曲げ物性を改善するために形成されるもので、熱硬化性樹脂をバインダーとする繊維補強された無機質硬化体を好適に用いることができる。この補強層は同時に化粧層も兼ねているが、化粧だけを目的とする場合には、例えば、繊維補強なしの無機質硬化体とすればよい。補強層及び/又は化粧層の成形体に対する厚さの割合は、特に限定されるものではないが、5〜20%程度とするのが好ましい。5%より薄い場合には、補強層や化粧層の役割を果たさず、20%を超えると建築材料としての本質を損なう虞がある。   In the present invention, a reinforcing layer and / or a decorative layer may be integrally formed on at least one of both surfaces of the molded body, in the case of a plate shape. The reinforcing layer is formed in order to improve the bending property of the molded body made of the friction material crushed material, and a fiber reinforced inorganic cured body using a thermosetting resin as a binder can be suitably used. This reinforcing layer also serves as a decorative layer. However, when only the cosmetic is intended, for example, an inorganic cured body without fiber reinforcement may be used. The ratio of the thickness of the reinforcing layer and / or the decorative layer to the molded body is not particularly limited, but is preferably about 5 to 20%. If it is thinner than 5%, it does not serve as a reinforcing layer or a decorative layer, and if it exceeds 20%, the essence as a building material may be impaired.

補強層及び化粧層に用いられる熱硬化性樹脂としては、例えば本発明の成形体において破砕物を結合するためのバインダーとして用いたものと同じものを用いることができる。熱硬化性樹脂の含有量としては補強層の5〜40質量%程度とすることが好ましく、10〜30質量%程度とすることがさらに好ましい。化粧層に用いる場合には、大きな強度を要求されないので熱硬化性樹脂の含有量は5〜20質量%程度とより少なくすることができる。   As the thermosetting resin used for the reinforcing layer and the decorative layer, for example, the same resin as that used as a binder for binding the crushed material in the molded article of the present invention can be used. The content of the thermosetting resin is preferably about 5 to 40% by mass of the reinforcing layer, and more preferably about 10 to 30% by mass. When used in a decorative layer, since a high strength is not required, the content of the thermosetting resin can be reduced to about 5 to 20% by mass.

また、補強層の繊維補強として用いられる繊維材料としては、例えば、ガラス繊維、鉱物繊維等を挙げることができる。特にガラス繊維は強度が大きく形状が均一なので好適である。繊維材料の含有量は補強層の3〜20質量%程度とすることが好ましく、3〜10質量%程度がより好ましい。   Examples of the fiber material used for reinforcing the fiber of the reinforcing layer include glass fiber and mineral fiber. In particular, glass fiber is suitable because of its high strength and uniform shape. The content of the fiber material is preferably about 3 to 20% by mass of the reinforcing layer, and more preferably about 3 to 10% by mass.

補強層の無機質材料としては、例えば、炭酸カルシウム、珪石粉、クレー、水酸化アルミニウム等の無機質フィラー及びパーライト、バーミキュライト、シラスバルーン、アルミノシリケートバルーン(ASB)等の軽量フィラーが挙げられる。これらのフィラーは1種類のみで用いることもできるし、2種類以上の混合物として用いることもできる。無機質材料の含有率は補強層に対して60〜90質量%程度とすることが好ましい。   Examples of the inorganic material for the reinforcing layer include inorganic fillers such as calcium carbonate, silica stone powder, clay, and aluminum hydroxide, and lightweight fillers such as perlite, vermiculite, shirasu balloon, and aluminosilicate balloon (ASB). These fillers can be used alone or in a mixture of two or more. The content of the inorganic material is preferably about 60 to 90% by mass with respect to the reinforcing layer.

本発明における成形体を製造する方法としては、特に限定されず、公知の方法を広く採用することができる。具体的には、例えば、まず、摩擦材を粉砕し、必要があれば分級して所定の粒度構成の破砕物にする。この破砕物に熱硬化性樹脂を加えて混合物とする。この混合物をパーティクルボードのフォーミング装置やベルトフィダー装置等の散布装置によって、ベルト上やコール板上に散布してマット状堆積物を形成し、熱圧成形(熱圧締)する。   It does not specifically limit as a method to manufacture the molded object in this invention, A well-known method is employable widely. Specifically, for example, first, the friction material is pulverized and classified if necessary to obtain a crushed material having a predetermined particle size configuration. A thermosetting resin is added to the crushed material to obtain a mixture. This mixture is sprayed onto a belt or a coal plate by a spraying device such as a particle board forming device or a belt feeder device to form a mat-like deposit, and hot pressing (hot pressing).

ここで、熱圧成形は、例えば、平板プレス、連続プレスなどのプレス機を用いて、加熱、加圧することにより行うことができる。熱圧成形において、加熱と加圧とは、同時に行ってもよいし、加圧をした後に加熱をしてもよい。温度、圧力、時間等の条件については、バインダーとしての熱硬化性樹脂が完全に硬化するように行えば特に限定されず、適宜設定することができる。また、加熱方法としては、特に限定されないが、例えば、熱盤のように表面から伝熱により内部に熱を伝える方法や、蒸気噴射や高周波加熱等のように内部を直接加熱する方法が挙げられる。   Here, the hot press molding can be performed by heating and pressurizing using a press such as a flat plate press and a continuous press. In the hot pressing, heating and pressurization may be performed simultaneously, or may be performed after pressurization. The conditions such as temperature, pressure, and time are not particularly limited as long as the thermosetting resin as the binder is completely cured, and can be set as appropriate. The heating method is not particularly limited, and examples thereof include a method of transferring heat from the surface to the inside by heat transfer like a hot plate, and a method of directly heating the inside such as steam injection or high frequency heating. .

また、表面に補強層及び/又は化粧層を形成した成形体を製造する方法は、例えば、始めに、無機質フィラー、繊維基材及び熱硬化性樹脂からなる補強層及び/又は化粧層用の原料混合物を調製し、その混合物をベルトフィダー等の散布装置によって、ベルト上やコール板上に散布して堆積物を形成し、その上に摩擦材の破砕物と熱硬化性樹脂の混合物を散布積層し、さらに必要に応じてその上に再度補強層及びまた化粧層用の原料混合物を散布して堆積物を形成した3段重ねのマット状堆積物とした後、熱圧成形してサンドイッチ構造の一体成形体とすればよい。   The method for producing a molded body having a reinforcing layer and / or a decorative layer formed on the surface is, for example, first of all, a raw material for a reinforcing layer and / or a decorative layer comprising an inorganic filler, a fiber base material and a thermosetting resin. A mixture is prepared, and the mixture is spread on a belt or a coal board by a spreading device such as a belt feeder to form a deposit, on which a mixture of a crushed friction material and a thermosetting resin is spread and laminated. Further, if necessary, a raw material mixture for the reinforcing layer and / or the decorative layer is again sprayed thereon to form a three-layered mat-like deposit in which a deposit is formed, and then hot pressing is performed to form a sandwich structure. What is necessary is just to set it as an integral molded object.

このように、破砕物と熱硬化性樹脂の混合物を熱圧成形(熱圧締)して得られた成形体において、上記破砕物に薄片を含めたときには、加圧により薄片が熱硬化性樹脂層の中で加圧方向に対して垂直となる方向に分散(配向)されやすくなる。すなわち、破砕物の薄片は、成形体の板面と略水平方向となるように層状となって熱硬化性樹脂で結合されることになる。このように、摩擦材の破砕物の薄片が、成形体の板面と略水平となるように分散されていると、柔軟性及び靭性、さらには釘保持性がより向上し、しかも破砕物が微粉砕物ばかりのときよりも破砕物を結合して成形するためのバインダーとして用いる熱硬化性樹脂の使用量を少なくすることができる。なお、本発明において、この破砕物の薄片は、その全てが成形体の板面と略水平となるように熱硬化性樹脂中に分散されている必要はなく、破砕物の薄片が全体に亘って水平方向に配向分散されていればよい。   Thus, in a molded body obtained by hot pressing (hot pressing) a mixture of a crushed material and a thermosetting resin, when the crushed material includes a thin piece, the thin piece is formed by the pressurization. It tends to be dispersed (oriented) in a direction perpendicular to the pressing direction in the layer. That is, the crushed flakes are layered so as to be in a substantially horizontal direction with the plate surface of the molded body and bonded with the thermosetting resin. Thus, when the flakes of the crushed material of the friction material are dispersed so as to be substantially horizontal to the plate surface of the molded body, the flexibility and toughness, and also the nail retention, are improved, and the crushed material is The amount of the thermosetting resin used as a binder for binding and molding the crushed material can be reduced as compared with the case of only the finely pulverized material. In the present invention, it is not necessary that the crushed flakes are dispersed in the thermosetting resin so that all of the flakes are substantially horizontal to the plate surface of the molded body. In other words, it is only necessary to be oriented and dispersed in the horizontal direction.

また、本発明で使用する摩擦材は、結合剤を含んでなるために、成形体を所望のサイズに切断して使用する場合に、切断面に摩擦材の破砕物の断面が露出したとしても、破砕物の露出面には結合剤が存在し、切断面全体には破砕物のバインダーとしての熱硬化性樹脂が露出することとなる。このような結合剤や熱硬化性樹脂は、白蟻による食害を受け難いものであり、なかでもフェノール樹脂は蟻害防止に優れたものである。したがって、本発明の成形体において、クラッチフェーシング等に用いられる摩擦材の結合剤として一般的に用いられているフェノール樹脂を含む摩擦材の破砕物を用い、熱硬化性樹脂に同じフェノール樹脂を用い、必要に応じて補強層及び/又は化粧層にフェノール樹脂を用いたときには、より強固に結合でき、しかも防蟻性に一段と優れた成形体とし得る。   In addition, since the friction material used in the present invention includes a binder, even if the cross-section of the crushed material of the friction material is exposed on the cut surface when the molded body is cut into a desired size and used. The binder is present on the exposed surface of the crushed material, and the thermosetting resin as the binder of the crushed material is exposed on the entire cut surface. Such binders and thermosetting resins are not easily damaged by white ants, and among them, the phenol resin is excellent in preventing ant damage. Therefore, in the molded body of the present invention, a crushed material of a friction material containing a phenol resin generally used as a binder for a friction material used for clutch facing or the like is used, and the same phenol resin is used as a thermosetting resin. If necessary, when a phenol resin is used for the reinforcing layer and / or the decorative layer, the molded body can be more firmly bonded and more excellent in ant-proofing properties.

このように、本発明の成形体は、切断面であっても白蟻の食害を受け難く、本発明の成形体は防蟻材として有効な建築材料と成り得る。   Thus, even if it is a cut surface, the molded object of this invention is hard to receive the damage of a white ant, and the molded object of this invention can become an effective building material as an ant-proof material.

なお、本発明の成形体において、軽量化、釘打ち易さなど各特性の向上、調整を図る目的で、他種の添加材を含有させてもよい。   In addition, in the molded object of this invention, you may contain another kind of additive for the purpose of aiming at the improvement and adjustment of each characteristic, such as weight reduction and easiness of nailing.

本発明によれば、摩擦材からなる破砕物を使用することで、従来廃棄していた廃摩擦材をリサイクル利用することができるので、環境への負荷を低減させることができる。また、木材や既存のボード材に代わる、機械的強度、釘保持性、防蟻性、耐水性および耐燃性に優れた建築用成形体を提供することができる。   According to the present invention, by using a crushed material made of a friction material, it is possible to recycle the waste friction material that has been disposed of in the past, thereby reducing the burden on the environment. In addition, it is possible to provide an architectural molded body excellent in mechanical strength, nail retention, ant-repellency, water resistance and flame resistance in place of wood and existing board materials.

破砕物の平均粒径と曲げ強さとの関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a crushed material, and bending strength. 破砕物の平均粒径と釘引き抜き抵抗との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of a crushed material, and a nail pull-out resistance. 粒度が5.6mm以上の破砕物の配合割合と曲げ強さとの関係を示す図である。It is a figure which shows the relationship between the mixture ratio of a crushed material with a particle size of 5.6 mm or more, and bending strength. 粒度が5.6mm以上の破砕物の配合割合と釘引き抜き抵抗との関係を示す図である。It is a figure which shows the relationship between the mixture ratio of the crushed material with a particle size of 5.6 mm or more, and a nail pulling resistance. 粒度が4.0mm以上の破砕物の配合割合と曲げ強さとの関係を示す図である。It is a figure which shows the relationship between the mixture ratio of a crushed material with a particle size of 4.0 mm or more, and bending strength. 粒度が4.0mm以上の破砕物の配合割合と釘引き抜き抵抗との関係を示す図である。It is a figure which shows the relationship between the mixture ratio of the crushed material with a particle size of 4.0 mm or more, and nail pulling resistance.

以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

摩擦材は、以下のようにして製造される。まず、繊維基材と無機充填材とを混合してシート状に抄造する。次に、これに熱硬化性樹脂結合剤を含浸させて熱硬化させることにより製造することができる。   The friction material is manufactured as follows. First, a fiber base material and an inorganic filler are mixed and formed into a sheet. Next, it can be produced by impregnating it with a thermosetting resin binder and thermosetting it.

以下、本実施例等において使用するシート状の摩擦材としては、上記のようにして製造されるクラッチフェーシング用の摩擦材の製造工程で発生した打ち抜き残材(廃摩擦材)を用いている。   Hereinafter, as a sheet-like friction material used in the present embodiment and the like, a punching residual material (waste friction material) generated in the manufacturing process of the friction material for clutch facing manufactured as described above is used.

(実施例1)
厚さが0.5〜0.7mmのクラッチフェーシング用摩擦材の打ち抜き残材を自由粉砕ミルで破砕して、平均粒度5.5mmで、且つ、粒度5.6mm以上の薄片状破砕物の含有量が49質量%となる破砕物を調製した。この破砕物100質量部に粉末フェノール樹脂14質量部を添加してよく撹拌した混合物513gを26cm×30cmの木枠内に手撒きで散布充填して積層マットを調製した。この積層マットを木枠から取り出して、厚さ10mmのストッパーの付いた熱プレスに挿入し、温度180℃、圧力15kgf/cm2の条件で10分間熱圧締し、厚さが10.1mmで、密度が0.66g/cm3の試験体を作製した。
Example 1
Punched residue of friction material for clutch facing with a thickness of 0.5 to 0.7 mm is crushed with a free crushing mill, and contains flaky crushed material with an average particle size of 5.5 mm and a particle size of 5.6 mm or more A crushed product having an amount of 49% by mass was prepared. A laminated mat was prepared by adding 14 parts by mass of powdered phenolic resin to 100 parts by mass of the crushed material and spraying and filling 513 g of a well-stirred mixture in a wooden frame of 26 cm × 30 cm. The laminated mat is taken out of the wooden frame, inserted into a hot press with a stopper having a thickness of 10 mm, and hot-pressed for 10 minutes under conditions of a temperature of 180 ° C. and a pressure of 15 kgf / cm 2 , and the thickness is 10.1 mm. A specimen having a density of 0.66 g / cm 3 was produced.

(実施例2)
厚さが0.5〜0.7mmのクラッチフェーシング用摩擦材の打ち抜き残材を自由粉砕ミルで破砕して、平均粒度3.0mmで、且つ、粒度5.6mm以上の薄片状破砕物の含有量が11質量%となる破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、同一の条件で熱プレスを行って、厚さが9.9mmで、密度が0.66g/cm3の試験体を作製した。
(Example 2)
Punched residual material of friction material for clutch facing having a thickness of 0.5 to 0.7 mm is crushed by a free crushing mill, and contains flaky crushed material having an average particle size of 3.0 mm and a particle size of 5.6 mm or more A crushed product having an amount of 11% by mass was prepared. After this powdered pulverized resin was mixed with this crushed material under the same conditions as in Example 1, heat pressing was performed under the same conditions to obtain a specimen having a thickness of 9.9 mm and a density of 0.66 g / cm 3 . Was made.

(実施例3)
実施例2で調製した破砕物を2.0mmのメッシュで篩分けして、2.0mm以下の粒度の破砕物を除去した、平均粒度が4.0mmで、且つ、粒度5.6mm以上の薄片状破砕物の含有量が17質量%となる破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが10.0mmで、密度が0.65g/cm3の試験体を作製した。
(Example 3)
The crushed material prepared in Example 2 was sieved with a 2.0 mm mesh to remove crushed material having a particle size of 2.0 mm or less, and a flake having an average particle size of 4.0 mm and a particle size of 5.6 mm or more A crushed product having a crushed content of 17% by mass was prepared. After this powdered pulverized resin was mixed with this crushed material under the same conditions as in Example 1, it was hot-pressed under the same conditions as in Example 1 to obtain a thickness of 10.0 mm and a density of 0.65 g / cm. Three specimens were prepared.

(実施例4)
実施例2で調製した破砕物を2.0mmの篩で篩分けして、粒度が2mm以下(したがって、粒度が5.6mm以上のものの含有量は0質量%)で、平均粒径0.5mmの破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが9.8mmで、密度が0.65g/cm3の試験体を作製した。
Example 4
The crushed material prepared in Example 2 is sieved with a 2.0 mm sieve, the particle size is 2 mm or less (therefore, the content of particles having a particle size of 5.6 mm or more is 0% by mass), and the average particle size is 0.5 mm. The crushed material was prepared. After this powdered pulverized resin was mixed with this crushed material under the same conditions as in Example 1, hot pressing was performed under the same conditions as in Example 1, and the thickness was 9.8 mm and the density was 0.65 g / cm. Three specimens were prepared.

(実施例5)
実施例1及び実施例4で調製した、粒度の異なる破砕物を混合して、平均粒度4.7mmで、且つ、粒度5.6mm以上の薄片状破砕物の含有量が40質量%の破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが10.0mmで、密度が0.67g/cm3の試験体を作製した。
(Example 5)
The crushed material prepared in Example 1 and Example 4 and mixed with crushed materials having different particle sizes, the average particle size is 4.7 mm, and the content of the flaky crushed material having a particle size of 5.6 mm or more is 40% by mass. Was prepared. After this powdered pulverized resin was mixed with this crushed material under the same conditions as in Example 1, it was hot-pressed under the same conditions as in Example 1 to obtain a thickness of 10.0 mm and a density of 0.67 g / cm. Three specimens were prepared.

(実施例6)
実施例1及び実施例4で調製した、粒度の異なる破砕物を混合して、平均粒度4.0mmで、粒度5.6mm以上の薄片状破砕物の含有量が34質量%の破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが9.9mmで、密度が0.66g/cm3の試験体を作製した。
(Example 6)
By mixing the crushed materials having different particle sizes prepared in Example 1 and Example 4, a crushed material having an average particle size of 4.0 mm and a flaky crushed material content of 5.6 mm or more is prepared. did. After this powdered pulverized resin was mixed with this crushed material under the same conditions as in Example 1, it was hot-pressed under the same conditions as in Example 1 to obtain a thickness of 9.9 mm and a density of 0.66 g / cm. Three specimens were prepared.

(実施例7)
実施例1及び実施例4で調製した、粒度の異なる破砕物を混合して、平均粒度2.2mm、粒度5.6mm以上の薄片状破砕物の含有量が28質量%の破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが9.9mmで、密度が0.66g/cm3の試験体を作製した。
(Example 7)
The crushed materials having different particle sizes prepared in Example 1 and Example 4 were mixed to prepare a crushed material having an average particle size of 2.2 mm and a flaky crushed material content of 5.6 mm or more having a content of 28% by mass. . After this powdered pulverized resin was mixed with this crushed material under the same conditions as in Example 1, it was hot-pressed under the same conditions as in Example 1 to obtain a thickness of 9.9 mm and a density of 0.66 g / cm. Three specimens were prepared.

(比較例1)
実施例2で調製した破砕物を1.0mmのメッシュで篩分けして、粒度が1.0mm以下(したがって、粒度5.6mm以上のものの含有量は0質量%)で、平均粒径0.3mmの破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが9.9mmで、密度が0.65g/cm3の試験体を作製した。
(Comparative Example 1)
The crushed material prepared in Example 2 was sieved with a 1.0 mm mesh, the particle size was 1.0 mm or less (therefore, the content of particles having a particle size of 5.6 mm or more was 0% by mass), and the average particle size was 0.00. A 3 mm crushed material was prepared. This crushed material was mixed with powdered phenolic resin under the same conditions as in Example 1, and then hot pressed under the same conditions as in Example 1. The thickness was 9.9 mm and the density was 0.65 g / cm. Three specimens were prepared.

(比較例2)
実施例2で調製した破砕物を0.5mmのメッシュで篩分けして、粒度が0.5mm以下(したがって、粒度5.6mm以上のものの含有量は0質量%)で、平均粒径0.2mmの破砕物を調製した。この破砕物に、実施例1と同一の条件で粉末フェノール樹脂を混合した後、実施例1と同一の条件で熱プレスを行って、厚さが9.8mmで、密度が0.64g/cm3の試験体を作製した。
(Comparative Example 2)
The crushed material prepared in Example 2 was sieved with a 0.5 mm mesh, the particle size was 0.5 mm or less (therefore, the content of particles having a particle size of 5.6 mm or more was 0% by mass), and the average particle size was 0.00. A 2 mm crushed material was prepared. The pulverized material was mixed with a powdered phenol resin under the same conditions as in Example 1, and then hot pressed under the same conditions as in Example 1. The thickness was 9.8 mm and the density was 0.64 g / cm. Three specimens were prepared.

(比較例3)
建築廃材から調製した、粒度が4.0mm以下のパーティクルボード表層原料用の木質チップ100質量部に粉末フェノール樹脂14質量部を添加してよく撹拌した混合物533gを、26cm×30cmの木枠内に散布積層充填して積層マットを調製した。この積層マットを木枠から取り出して、厚さ10mmのストッパーの付いた熱プレスに挿入し、温度180℃、圧力15kgf/cm2の条件で10分間熱圧締し、厚さが10.2mmで、密度が0.67g/cm3の試験体を作製した。
(Comparative Example 3)
In a 26 cm × 30 cm wooden frame, 533 g of a mixture prepared by adding 14 parts by weight of a powdered phenol resin to 100 parts by weight of a wood chip for particle board surface layer raw material having a particle size of 4.0 mm or less, which was prepared from building waste, was stirred well. A laminated mat was prepared by spray lamination filling. The laminated mat is taken out from the wooden frame, inserted into a hot press with a stopper having a thickness of 10 mm, and hot-pressed for 10 minutes under the conditions of a temperature of 180 ° C. and a pressure of 15 kgf / cm 2 , and the thickness is 10.2 mm. A specimen having a density of 0.67 g / cm 3 was produced.

(実施例8)
26cm×30cmの木枠内に、初めに補強層として、炭酸カルシウム50質量%、パーライト25質量%、および、粉末フェノール樹脂25質量%からなる混合物121g、および、繊維長が25mmのガラス繊維チョッブドストランド10gを手撒きで散布し、ガラス繊維が該混合物中に分散した積層マットを調製した。次に、実施例1で調製した、クラッチフェーシング用摩擦材の打ち抜き残材を自由粉砕ミルで破砕して、平均粒度5.5mmで、且つ、粒度5.6mm以上の薄片状破砕物の含有量が49質量%となる破砕物100質量部に、粉末フェノール樹脂13質量部を添加撹拌した混合物796gを、最初の散布層の上に手撒きで散布した。最後に、最初に散布した補強層と同じ混合物をもう一度散布して、サンドイッチ構成の積層マットを調製した。この散布積層物を木枠から出して、熱プレスに挿入し、180℃、15kgf/cm2、15分の条件で熱圧締し、厚さが17.4mmで、密度が0.78g/cm3の試験体を作製した。
(Example 8)
In a wooden frame of 26 cm × 30 cm, as a reinforcing layer, 121 g of a mixture composed of 50% by weight of calcium carbonate, 25% by weight of pearlite, and 25% by weight of powdered phenol resin, and a glass fiber chopped fiber having a fiber length of 25 mm 10 g of strands were spread by hand to prepare a laminated mat in which glass fibers were dispersed in the mixture. Next, the punching residual material of the friction material for clutch facing prepared in Example 1 was crushed with a free crushing mill, and the content of flaky crushed material having an average particle size of 5.5 mm and a particle size of 5.6 mm or more was obtained. 796 g of a mixture obtained by adding 13 parts by mass of powdered phenol resin to 100 parts by mass of the crushed material having a mass of 49% by mass was dispersed by hand onto the first application layer. Finally, the same mixture as the first spread reinforcing layer was sprayed once more to prepare a laminated mat in a sandwich configuration. This spread laminate is taken out of the wooden frame, inserted into a hot press, and heat-pressed under conditions of 180 ° C., 15 kgf / cm 2 , 15 minutes, thickness is 17.4 mm, and density is 0.78 g / cm. Three specimens were prepared.

(比較例3)
市販の無機質ボードを試験体に供した。
(Comparative Example 3)
A commercially available inorganic board was used for the specimen.

(比較例4)
市販パーティクルボードを試験体に供した。
(Comparative Example 4)
A commercially available particle board was used as a specimen.

(比較例5)
木(杉)を試験体に供した。
(Comparative Example 5)
Wood (cedar) was used as a specimen.

(評価)
次に、実施例及び比較例で作製した試験体の曲げ強さ、釘保持力(釘引き抜き抵抗性)および吸水膨張率を評価した。釘保持力(釘引き抜き抵抗性)の評価は、JIS Z 2101(木材の試験方法)15に記載の釘引き抜き抵抗試験に準拠して行った。また、曲げ強さおよび吸水膨張率の評価は、JIS A 5908(パーティクルボード)に準拠して行った。
(Evaluation)
Next, the bending strength, the nail holding force (nail pulling resistance) and the water absorption expansion rate of the specimens produced in the examples and comparative examples were evaluated. The nail holding force (nail pulling resistance) was evaluated according to the nail pulling resistance test described in JIS Z 2101 (wood testing method) 15. Moreover, evaluation of bending strength and a water absorption expansion coefficient was performed based on JISA5908 (particle board).

なお、実施例1〜3、5〜8で得られた試験体は、その切断面から、破砕物の薄片が板面に対して略水平方向に層状に分散された状態となっていることがわかった。   In addition, the specimens obtained in Examples 1 to 3 and 5 to 8 are in a state in which thin pieces of crushed material are dispersed in layers in a substantially horizontal direction with respect to the plate surface from the cut surface. all right.

また、実施例8で得られた試験体については、防蟻試験を行い白蟻による食害について評価した。防蟻試験の方法および結果は、以下のとおりである。
防蟻試験方法:京都大学生存圏研究所において、白蟻のいる室内に、試験体(18×45×200mm)14本と無処理試験体の杉(50×50×300mm)14本を、それぞれ横に寝かせて交互に並べて3段積み上げて3.5ヵ月放置した。
防蟻試験結果:試験体には食害は全く認められなかった。無処理試験体の杉は表面及び内部の広い範囲に食害が認められた。
Moreover, about the test body obtained in Example 8, the ant prevention test was done and the food damage by the white ant was evaluated. The method and result of the ant protection test are as follows.
Ant protection test method: In the laboratory of survival sphere, Kyoto University, 14 specimens (18 x 45 x 200 mm) and 14 untreated specimen cedars (50 x 50 x 300 mm) were placed horizontally in the white ants room. They were laid on top of each other, stacked in three layers, and left for 3.5 months.
Anti-ant test results: No damage to the specimen was observed. The cedars of the untreated specimens were found to be damaged by a wide area on the surface and inside.

曲げ強さ、釘保持力(釘引き抜き抵抗性)および吸水膨張率に関する評価結果を表1および表2に示す。なお、実施例1〜7および比較例1、2は、粒度構成による影響を比較しやすくするために、廃摩擦材100質量部に対して結合材料添加量を14質量部に固定し、厚さが約10mm、密度が約0.65g/cm3となる様に成形した。 Tables 1 and 2 show the evaluation results regarding the bending strength, the nail holding force (nail pulling resistance) and the water absorption expansion coefficient. In Examples 1 to 7 and Comparative Examples 1 and 2, in order to make it easier to compare the influence of the particle size configuration, the amount of the binder added is fixed to 14 parts by mass with respect to 100 parts by mass of the waste friction material. Was about 10 mm and the density was about 0.65 g / cm 3 .

(曲げ強さ)
実施例1〜7および比較例1、2の試験体の評価結果を用いた、廃摩擦材の破砕物の平均粒径と曲げ強さとの関係のグラフを図1に示す。なお、図1では対数近似で近似曲線を当てはめている。この図から、平均粒径が0.4mm以下の比較例1、2のものに比して0.5mm以上とされた実施例1〜7のものの方が曲げ強さが一段と高く安定した値となっていることが解る。そのなかでも、破砕物の薄片が板面に対して略水平方向に層状に分散された状態となっている実施例1〜3、5〜7のものが、そのような状態になっていない実施例4のものに比して、より高い曲げ強さを備えていることが解る。
(Bending strength)
The graph of the relationship between the average particle diameter of the crushed material of a waste friction material and bending strength using the evaluation result of the test body of Examples 1-7 and Comparative Examples 1 and 2 is shown in FIG. In FIG. 1, an approximate curve is applied by logarithmic approximation. From this figure, the values of Examples 1 to 7 in which the average particle diameter was 0.5 mm or more compared to those of Comparative Examples 1 and 2 having a diameter of 0.4 mm or less were much higher in bending strength and stable values. I understand that it is. Among them, Examples 1 to 3 and 5 to 7 in which thin pieces of crushed material are dispersed in layers in a substantially horizontal direction with respect to the plate surface are not in such a state. It can be seen that it has a higher bending strength than that of Example 4.

また、表1から、実施例1〜7のものが、木質チップを用いた比較例3のものと同等程度の曲げ強さを有していることが解る。
さらに、表2から、実施例8の表層に補強層を形成してサンドイッチ構造としたものが、比較例4、5の市販の無機質ボードやパーティクルボードと同等程度の曲げ強さを備えていることが解る。
Moreover, it turns out that the thing of Examples 1-7 has a bending strength comparable as the thing of the comparative example 3 using a wood chip from Table 1.
Further, from Table 2, the sandwich layer structure in which the reinforcing layer is formed on the surface layer of Example 8 has a bending strength equivalent to that of the commercially available inorganic boards and particle boards of Comparative Examples 4 and 5. I understand.

以上のことから、実施例1〜8のものが建築用材料として良好な強度を備えていることが解る。   From the above, it can be seen that Examples 1 to 8 have good strength as a building material.

次に、実施例1〜7の試験体の評価結果をさらに詳しく見るために、廃摩擦材の粒径5.6mm以上の薄片状の破砕物、及び粒径4.0mm以上の薄片状の破砕物の配合割合と曲げ強さとの関係をグラフ化して、それぞれ図3と図5に示す。   Next, in order to see the evaluation results of the specimens of Examples 1 to 7 in more detail, the flaky crushed material having a particle size of 5.6 mm or more and the flaky crushed material having a particle size of 4.0 mm or more of the waste friction material. The relationship between the blending ratio of the product and the bending strength is graphed and shown in FIGS. 3 and 5, respectively.

図3からは、粒径5.6mm以上の薄片状破砕物の配合割合と曲げ強さには高い相関が有り、実施例1、5、6及び7の、この薄片状破砕物の配合割合が25質量%以上含む試験体では、曲げ強さは一段と高く、且つ一定の値に収斂する傾向にあることがわかる。   From FIG. 3, there is a high correlation between the blending ratio of the flaky crushed material having a particle size of 5.6 mm or more and the bending strength, and the blending ratio of this flaky crushed material in Examples 1, 5, 6 and 7 is It can be seen that the specimen containing 25% by mass or more has a higher bending strength and tends to converge to a certain value.

一方、図5からは、同じ薄片状の破砕物ではあっても、粒径4.0mm以上の破砕物では、その配合割合と曲げ強さにはこの様な明白な相関は見られない。ただ、先に記載した、薄片状の破砕物が略水平方向に層状に配置されている効果のみが示された結果となった。   On the other hand, from FIG. 5, even in the same flaky crushed material, such a clear correlation between the blending ratio and the bending strength is not observed in the crushed material having a particle size of 4.0 mm or more. However, only the effect that the flaky crushed material described above was arranged in layers in a substantially horizontal direction was shown.

以上のことから、粒径5.6mm以上の薄片状の破砕物を25質量%以上含む破砕物からなる建築材料はさらに良好な強度を備えていることがわかる。   From the above, it can be seen that a building material made of a crushed material containing 25% by mass or more of a flaky crushed material having a particle size of 5.6 mm or more has even better strength.

(釘引き抜き抵抗)
実施例1〜7および比較例1、2の試験体の評価結果を用いた、廃摩擦材の破砕物の平均粒径と釘引き抜き抵抗との関係のグラフを図2に示す。なお、図2では対数近似で近似曲線を当てはめている。この図から、平均粒径が0.4mm以下の比較例1、2のものに比して0.5mm以上とされた実施例1〜7のものの釘引き抜き抵抗が一段と高く安定した値となっていることが解る。そのなかでも、破砕物の薄片が板面に対して略水平方向に層状に分散された状態となっている実施例1〜3、5〜7のものが、そのような状態になっていない実施例4のものに比して、より高い釘引き抜き抵抗を備えていることが解る。
(Nail pulling resistance)
The graph of the relationship between the average particle diameter of the crushed material of the waste friction material and the nail pulling resistance using the evaluation results of the test bodies of Examples 1 to 7 and Comparative Examples 1 and 2 is shown in FIG. In FIG. 2, an approximate curve is applied by logarithmic approximation. From this figure, the nail pull-out resistance of Examples 1 to 7 having an average particle diameter of 0.5 mm or more compared to those of Comparative Examples 1 and 2 having a diameter of 0.4 mm or less is a much higher and stable value. I understand that Among them, Examples 1 to 3 and 5 to 7 in which thin pieces of crushed material are dispersed in layers in a substantially horizontal direction with respect to the plate surface are not in such a state. It can be seen that it has a higher resistance to nail pulling than that of Example 4.

また、表1から、実施例1〜7のものが、木質チップを用いた比較例3のものと同等程度の釘引き抜き抵抗を有していることが解る。
さらに、表2から、実施例8のサンドイッチ構造としたものが、比較例4〜6の市販の無機質ボードやパーティクルボードや木(杉)に比して高い釘引き抜き抵抗を備えていることが解る。
In addition, it can be seen from Table 1 that Examples 1 to 7 have nail pulling resistance equivalent to that of Comparative Example 3 using wood chips.
Furthermore, it can be seen from Table 2 that the sandwich structure of Example 8 has higher nail pulling resistance than the commercially available inorganic boards, particle boards, and wood (cedar) of Comparative Examples 4-6. .

以上のことから、実施例1〜8のものが建築用材料として良好な釘保持性を備えていることが解る。   From the above, it can be seen that Examples 1 to 8 have good nail retention as a building material.

次に、実施例1〜7の試験体の評価結果をさらに詳しく見るために、廃摩擦材の粒径5.6mm以上の薄片状の破砕物、及び粒径4.0mm以上の薄片状の破砕物の配合割合と釘引き抜き抵抗との関係をグラフ化して、それぞれ図4と図6に示す。   Next, in order to see the evaluation results of the specimens of Examples 1 to 7 in more detail, the flaky crushed material having a particle size of 5.6 mm or more and the flaky crushed material having a particle size of 4.0 mm or more of the waste friction material. FIG. 4 and FIG. 6 show the relationship between the blending ratio of objects and the resistance to pulling out nails, respectively.

図4からは、粒径5.6mm以上の薄片状破砕物の配合割合と釘引き抜き抵抗には高い相関が有り、実施例1、5、6及び7の、この薄片状破砕物の配合割合が25質量%以上含む試験体では、釘引き抜き抵抗は一段と高く、且つ一定の値に収斂する傾向にあることがわかる。   From FIG. 4, there is a high correlation between the blending ratio of the flaky crushed material having a particle size of 5.6 mm or more and the nail pulling resistance, and the blending ratio of the flaky crushed material in Examples 1, 5, 6 and 7 is It can be seen that in the specimen containing 25% by mass or more, the nail pulling resistance is much higher and tends to converge to a certain value.

一方、図6からは、同じ薄片状の破砕物ではあっても、粒径4.0mm以上の破砕物では、その配合割合と釘引き抜きにはこの様な明白な相関は見られない。ただ、先に記載した、薄片状の破砕物が略水平方向に層状に配置されている効果のみが示された結果となった。   On the other hand, from FIG. 6, even in the same flaky crushed material, such a clear correlation is not found in the blending ratio and nail extraction in the crushed material having a particle size of 4.0 mm or more. However, only the effect that the flaky crushed material described above was arranged in layers in a substantially horizontal direction was shown.

以上のことから、粒径5.6mm以上の薄片状の破砕物を25質量%以上含む破砕物からなる建築材料はさらに良好な釘保持性を備えていることがわかる。   From the above, it can be seen that a building material made of crushed material containing 25% by mass or more of flaky crushed material having a particle size of 5.6 mm or more has better nail retention.

(吸水膨張率)
表1および表2から、実施例1〜8のものが、比較例4と同等の吸水膨張率となっており、また比較例5、6の市販の無機質ボードやパーティクルボード、或いは木(杉)に比して明らかに優れた吸水膨張率になっていることが解る。このことから、実施例1〜8のものが建築用材料として良好な耐水性を備えていることが解る。
(Water absorption expansion coefficient)
From Table 1 and Table 2, those of Examples 1 to 8 have a water absorption expansion coefficient equivalent to that of Comparative Example 4, and commercially available inorganic boards and particle boards of Comparative Examples 5 and 6 or wood (cedar). It can be seen that the water absorption expansion coefficient is clearly superior to that of. From this, it can be seen that Examples 1 to 8 have good water resistance as a building material.

(作用・効果)
以上述べたように、本実施例で得られた成形体(試験体)は、シート状の摩擦材の破砕物を熱硬化性樹脂で結合したものである。
摩擦材は、繊維基材を含む無機充填材をやや多量の熱硬化性樹脂を含浸し熱硬化して製造したものであり、繊維基材を含むことによって、それ自体が、軽量で柔軟性及び靱性に富み、機械的強度も大きい材料である。
(Action / Effect)
As described above, the molded body (test body) obtained in this example is obtained by bonding crushed pieces of a sheet-like friction material with a thermosetting resin.
The friction material is manufactured by impregnating a slightly large amount of a thermosetting resin and thermosetting an inorganic filler containing a fiber base material. By including the fiber base material, the friction material itself is lightweight, flexible, and flexible. It is a material with high toughness and high mechanical strength.

したがって、この摩擦材を平均粒径0.5mm程度以上の破砕物として用いることにより、摩擦材の元々の厚さと密度、さらに繊維基材と無機充填材が熱硬化性樹脂で結合された構造を残した薄片状の破砕物が少なからず含まれることになり、摩擦材が持っている軽量さや機械的強度を活かした成形体とできたものと考えられる。
また、摩擦材を5.6mm以上の薄片状破砕物が25質量%以上含む破砕物として用いることにより、薄片が接着補強材の役目を効果的に果たし、さらに合理的に軽量で、機械的強度の優れた成形体を得ることができる。
しかも破砕物の薄片が板状の成形体の面方向に層状に分散(配向)されていることから、柔軟性及び靱性に富んだ機械的強度の高い成形体を得ることができたと考えられる。
Therefore, by using this friction material as a crushed material having an average particle size of about 0.5 mm or more, the original thickness and density of the friction material, and a structure in which the fiber base material and the inorganic filler are combined with a thermosetting resin. The remaining flaky crushed material is contained in a small amount, which is considered to be a molded body utilizing the light weight and mechanical strength of the friction material.
In addition, by using the friction material as a crushed material containing 25 mass% or more of a flaky crushed material of 5.6 mm or more, the flake effectively plays the role of an adhesive reinforcing material, and is further reasonably lightweight and has a mechanical strength. Can be obtained.
Moreover, since the flakes of crushed material are dispersed (orientated) in a layered manner in the plane direction of the plate-shaped molded body, it is considered that a molded body having high flexibility and toughness and high mechanical strength could be obtained.

一方、見掛け上、このような薄片が含まれない破砕物であっても、摩擦材の小破砕片や、また破砕処理の過程で分離してきた繊維片やその軽凝集物が含まれており、平均粒径0.5mm以上であれば、これらの小破砕片による細密充填効果や、繊維片による繊維補強効果によって、やはり優れた物性が発現したものと考えられる。当然、平均粒径0.5mm未満の破砕物の場合は、破砕過程で発生した微細な粉体の割合が多くなり、繊維片も破砕され粒子状になっているために、このような効果は発現しなかったものと考えられる。   On the other hand, even if it is a crushed material that does not contain such flakes, it contains small crushed pieces of friction material, fiber pieces that have been separated during the crushing process, and light agglomerates thereof, If the average particle size is 0.5 mm or more, it is considered that excellent physical properties are also exhibited by the fine packing effect by these small crushed pieces and the fiber reinforcing effect by the fiber pieces. Naturally, in the case of a crushed material having an average particle size of less than 0.5 mm, the proportion of fine powder generated in the crushing process is increased, and the fiber pieces are also crushed into particles. It is thought that it was not expressed.

また、摩擦材にはパルプ等の吸水性素材を用いられているが、熱硬化性樹脂が含浸されていることによって、得られた成形体の耐水性(耐吸水膨張性)は、木質材料を原料とする成形体と比べて大きく改善される。さらに、無機充填材が含まれることによって有機物単体の材料と比べて耐燃性の大きい成形体が得られる。   In addition, a water-absorbing material such as pulp is used for the friction material, but the water resistance (water-absorbing expansion resistance) of the resulting molded body is impregnated with a wooden material by being impregnated with a thermosetting resin. This is a significant improvement compared to the molded body as a raw material. Furthermore, the inclusion of the inorganic filler makes it possible to obtain a molded body having greater flame resistance than the material of the organic substance alone.

また、建築用成形体の両面の少なくとも一方に、無機繊維を含む補強層および化粧層の少なくとも一方を一体的に成形した場合には、建築用成形体の機械的強度、特に曲げ強度を向上させることができる。加えて、建築用成形体の耐熱性も向上させることができる。   In addition, when at least one of the reinforcing layer and the decorative layer containing inorganic fibers is integrally formed on at least one of both surfaces of the building molded body, the mechanical strength, particularly the bending strength, of the building molded body is improved. be able to. In addition, the heat resistance of the molded article for building can be improved.

さらに、成形体の切断面には白蟻に対する抵抗力の弱いウッドパルプ等を含む破砕物の断面が層状に露出しているものの、破砕物自体が結合剤(フェノール樹脂)を含んでいるために、白蟻の食害を受けなかったものと考えられる。   Furthermore, although the cross section of the crushed material including wood pulp having a low resistance to white ants is exposed in layers on the cut surface of the molded body, the crushed material itself contains a binder (phenolic resin). It is thought that the white ants were not damaged.

(本実施形態の変形例)
以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
(Modification of this embodiment)
The embodiment of the present invention has been described above, but only specific examples are illustrated, and the present invention is not particularly limited, and the specific configuration and the like can be appropriately changed in design. Further, the actions and effects described in the embodiments of the invention only list the most preferable actions and effects resulting from the present invention, and the actions and effects according to the present invention are described in the embodiments of the present invention. It is not limited to what was done.

Claims (6)

繊維基材、無機充填材および結合剤を含むシート状の摩擦材の破砕物と熱硬化性樹脂とを有する板状の建築用成形体であって、前記破砕物の薄片が、前記成形体の板面と略水平となるように分散されていることを特徴とする建築用成形体。   A sheet-like building molded body having a crushed material of a sheet-like friction material containing a fiber base material, an inorganic filler, and a binder, and a thermosetting resin, and the flakes of the crushed material are A molded article for building, which is dispersed so as to be substantially horizontal to the plate surface. 繊維基材、無機充填材および結合剤を含むシート状の摩擦材の破砕物に熱硬化性樹脂を添加撹拌した混合物を熱圧成形してなることを特徴とする建築用成形体。   A molded article for building, which is obtained by hot-pressing a mixture obtained by adding and stirring a thermosetting resin to a crushed material of a sheet-like friction material containing a fiber base material, an inorganic filler, and a binder. 繊維基材、無機充填材および結合剤を含むシート状の摩擦材の破砕物と熱硬化性樹脂とを有する建築用成形体であって、前記破砕物の平均粒径が0.5〜16.0mm程度であることを特徴とする建築用成形体。   An architectural molded body having a crushed material of a sheet-like friction material containing a fiber base material, an inorganic filler and a binder, and a thermosetting resin, wherein the crushed material has an average particle size of 0.5 to 16. A molded article for building, which is about 0 mm. 前記破砕物が、前記摩擦材の各成分の結合状態が保持された薄片を含むものであることを特徴とする請求項2又は3に記載の建築用成形体。   4. The architectural molded body according to claim 2, wherein the crushed material includes a thin piece in which a combined state of each component of the friction material is maintained. 5. 前記破砕物が、粒度5.6mm程度以上の前記薄片を25質量%以上含むことを特徴とする請求項1又は4に記載の建築用成形体。   5. The architectural molded body according to claim 1, wherein the crushed material contains 25% by mass or more of the flakes having a particle size of about 5.6 mm or more. 表面に、補強層および化粧層の少なくとも一方が一体的に成形されていることを特徴とする請求項1〜5のいずれか1項に記載の建築用成形体。   The architectural molded body according to any one of claims 1 to 5, wherein at least one of the reinforcing layer and the decorative layer is integrally formed on the surface.
JP2014143865A 2014-07-14 2014-07-14 Architectural molded body Expired - Fee Related JP6429142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143865A JP6429142B2 (en) 2014-07-14 2014-07-14 Architectural molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143865A JP6429142B2 (en) 2014-07-14 2014-07-14 Architectural molded body

Publications (2)

Publication Number Publication Date
JP2016020416A true JP2016020416A (en) 2016-02-04
JP6429142B2 JP6429142B2 (en) 2018-11-28

Family

ID=55265466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143865A Expired - Fee Related JP6429142B2 (en) 2014-07-14 2014-07-14 Architectural molded body

Country Status (1)

Country Link
JP (1) JP6429142B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665394A (en) * 1992-08-24 1994-03-08 Mitsubishi Materials Corp Production of friction material
JP2002294614A (en) * 2001-03-29 2002-10-09 Dainippon Ink & Chem Inc Floor material or pavement material and its molding method
JP2003082608A (en) * 2001-06-27 2003-03-19 Dainippon Ink & Chem Inc Paving material for pedestrian way and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665394A (en) * 1992-08-24 1994-03-08 Mitsubishi Materials Corp Production of friction material
JP2002294614A (en) * 2001-03-29 2002-10-09 Dainippon Ink & Chem Inc Floor material or pavement material and its molding method
JP2003082608A (en) * 2001-06-27 2003-03-19 Dainippon Ink & Chem Inc Paving material for pedestrian way and its manufacturing method

Also Published As

Publication number Publication date
JP6429142B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
EP2281962B1 (en) Aerogel containing Composite Material
Blanchet et al. Particleboard made from hammer milled black spruce bark residues
US7816001B2 (en) Insulation board made of a mixture of wood base material and binding fibers
EP2875924B1 (en) Wood-based panels, method for manufacturing them and their use
CA2415929A1 (en) Wood-based composite board and method of manufacture
JP6663750B2 (en) Particle board
WO2012171208A1 (en) Circuit-board powder made eco-friendly panel free from aldehyde and carbon emission and production method
RU2607554C2 (en) Binder for manufacturing concrete or laminated products
JP6429142B2 (en) Architectural molded body
US20170173917A1 (en) Compression Molded Composites from Unshredded Carpets
JP4478801B2 (en) Brake pad and manufacturing method thereof
JP3641246B2 (en) Method for producing fire retardant waste paper board and fire retardant waste paper board
JPH04284242A (en) Light-weight composite panel
JP5137364B2 (en) Inorganic board and method for producing the same
JPH073250A (en) Friction material composition
KR100201866B1 (en) Flooring materials and production thereof
JP5137353B2 (en) Inorganic board and method for producing the same
CA2437617A1 (en) Process for joining solid-state compositions
CN112384666B (en) Method for producing mineral wool boards
Birawidha et al. Potential of basalt rock as a filler in polymer composite through the process of melting basalt combined with slow cooling
Bootkul et al. Fire retardation mechanism of PVC composite filled with white rice husk ash for ceiling board applications
JP2001138429A (en) Inorganic molded article and method of manufacturing the same
KR20150065314A (en) Decorative plywood mosaicfloor board and method thereof
JP2008068566A (en) Inorganic plate and its manufacturing method
KR20200136525A (en) Composite material preform board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6429142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees