JP2016019361A - Manufacturing method of auxiliary core member, and manufacturing method of stator - Google Patents

Manufacturing method of auxiliary core member, and manufacturing method of stator Download PDF

Info

Publication number
JP2016019361A
JP2016019361A JP2014140557A JP2014140557A JP2016019361A JP 2016019361 A JP2016019361 A JP 2016019361A JP 2014140557 A JP2014140557 A JP 2014140557A JP 2014140557 A JP2014140557 A JP 2014140557A JP 2016019361 A JP2016019361 A JP 2016019361A
Authority
JP
Japan
Prior art keywords
manufacturing
circumferential
die
bent
core member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014140557A
Other languages
Japanese (ja)
Other versions
JP6330223B2 (en
Inventor
小幡 健治
Kenji Obata
健治 小幡
孝志 永冶
Takashi Nagaya
孝志 永冶
宏史 片井
Hiroshi Katai
宏史 片井
良将 金原
Yoshimasa Kanehara
良将 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2014140557A priority Critical patent/JP6330223B2/en
Publication of JP2016019361A publication Critical patent/JP2016019361A/en
Application granted granted Critical
Publication of JP6330223B2 publication Critical patent/JP6330223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an auxiliary core member by which bent parts can be thickened while suppressing the variation in an interval between the bend parts in a circumferential direction.SOLUTION: The manufacturing method includes: a punching step of punching a steel plate to form a rotor opposing part 44 before bending; a bending step of bending the rotor opposing part 44 in an axial direction to form a bent part at the root of the rotor opposing part 44; and a restricting and fixing step of restricting both side portions of the bent part in a circumferential direction with a circumferential restriction part 78a and pressing the rotor opposing part 44 to the side of the bent part 45 in the axial direction with a fixing punch 74 in such a restriction state.SELECTED DRAWING: Figure 10

Description

本発明は、補助コア部材の製造方法及びステータの製造方法に関するものである。   The present invention relates to a method for manufacturing an auxiliary core member and a method for manufacturing a stator.

従来、例えば特許文献1に示すように、コアの軸方向端面において、コアに積層される積層部と、この積層部から軸方向外側に延びて磁石と径方向において対向する軸方向延出部を有する板材よりなる補助コア部材を備えたモータが知られている。この補助コア部材の軸方向延出部は、コアに設けられる複数のティース部にそれぞれ対応して周方向に沿って複数設けられる。このように磁石と径方向において対向する軸方向延出部を設けることで、ステータの軸方向の大型化を抑えつつも、磁気取り込み量を増やすことが可能となる。   Conventionally, for example, as shown in Patent Document 1, on the axial end surface of the core, a laminated portion laminated on the core, and an axially extending portion extending radially outward from the laminated portion and facing the magnet in the radial direction are provided. There is known a motor including an auxiliary core member made of a plate material. A plurality of axially extending portions of the auxiliary core member are provided along the circumferential direction respectively corresponding to the plurality of teeth portions provided on the core. Thus, by providing the axially extending portion facing the magnet in the radial direction, it is possible to increase the amount of magnetic capture while suppressing an increase in the axial size of the stator.

特開平5−284679号公報JP-A-5-284679

しかしながら、上記のようなモータでは、補助コア部材の軸方向延出部を単に折り曲げて成形した場合、その折曲部(積層部と軸方向延出部のなす角部)の肉厚が薄くなってしまう。それにより、折曲部で磁束飽和が生じやすくなり、その結果、所望の出力向上効果を得ることが難しかった。   However, in the motor as described above, when the axially extending portion of the auxiliary core member is simply bent, the thickness of the bent portion (the corner portion formed by the laminated portion and the axially extending portion) becomes thin. End up. Thereby, magnetic flux saturation is likely to occur at the bent portion, and as a result, it has been difficult to obtain a desired output improvement effect.

そこで、この問題を解決する製法として、補助コア部材の軸方向延出部を軸方向(軸方向延出部の長手方向)に沿って折曲部側に据え込み加工(押圧)することが考えられる。この製法によれば、折曲部の外側面を略直角(ピン角)に成形することができるため、折曲部の肉厚化が可能となる。しかしながら、この製法では、据え込み加工の際に、各軸方向延出部の根元の折曲部の肉が周方向に流れて各折曲部同士の周方向の間隔にばらつきが生じ、それによってモータの回転性能が悪化するおそれがあった。   Therefore, as a manufacturing method for solving this problem, it is considered to upset (press) the axially extending portion of the auxiliary core member on the bent portion side along the axial direction (longitudinal direction of the axially extending portion). It is done. According to this manufacturing method, since the outer surface of the bent portion can be formed at a substantially right angle (pin angle), the bent portion can be thickened. However, in this manufacturing method, during the upsetting process, the meat of the bent portion at the base of each axially extending portion flows in the circumferential direction, resulting in variations in the circumferential interval between the bent portions, thereby The rotational performance of the motor may be deteriorated.

本発明は、上記課題を解決するためになされたものであって、その目的は、各折曲部の周方向の間隔のばらつきを抑えつつ折曲部を肉厚化することができる補助コア部材の製造方法及びステータの製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide an auxiliary core member that can increase the thickness of the bent portion while suppressing variation in the circumferential interval between the bent portions. And a stator manufacturing method.

上記課題を解決する補助コア部材の製造方法は、ステータコアのメインコア部の軸方向端面に積層される積層部と、該積層部のロータ側の端部で折り曲げられて前記ステータコアの軸方向に延出された軸方向延出部とを有する補助コア部材の製造方法であって、前記積層部及び折り曲げ前の前記軸方向延出部を板材から打ち抜く打ち抜き工程と、前記打ち抜き工程後、前記軸方向延出部を前記軸方向に折り曲げる折り曲げ工程と、前記折り曲げ工程によって前記軸方向延出部の根元に形成された折曲部の周方向両側部を周方向拘束部によって拘束し、その拘束状態で据え込みパンチにて前記軸方向延出部を前記軸方向の前記折曲部側に押圧する拘束据え込み工程とを有する。   A manufacturing method of an auxiliary core member that solves the above problems includes a laminated portion that is laminated on an axial end surface of a main core portion of a stator core, and a bending portion that is bent at a rotor-side end portion of the laminated portion and extends in the axial direction of the stator core. A method for manufacturing an auxiliary core member having an extended axially extending portion, the punching step of punching the laminated portion and the axially extending portion before bending from a plate material, and the axial direction after the punching step A bending step of bending the extending portion in the axial direction; and both circumferential sides of the bent portion formed at the root of the axial extending portion by the bending step are restrained by a circumferential restraining portion; A restraining upsetting step of pressing the axially extending portion toward the bent portion in the axial direction with an upsetting punch.

この方法によれば、据え込みパンチの押圧によって軸方向延出部根元の折曲部が変形して肉厚となる。このとき、折曲部の周方向両側部が周方向拘束部にて拘束されているため、押圧時に折曲部の肉が周方向に逃げず、該折曲部の周方向幅が周方向拘束部によって設定される幅で形成される。このため、周方向に沿って設けられる各折曲部間の間隔のばらつきを抑えつつ折曲部を肉厚化することができる。また、押圧時において折曲部の肉が周方向拘束部によって周方向に流れないことから、折曲部を肉厚化する点においてより好ましい。   According to this method, the bent portion at the base of the axially extending portion is deformed and thickened by pressing of the upsetting punch. At this time, since both sides in the circumferential direction of the bent portion are restrained by the circumferential restraint portion, the meat of the bent portion does not escape in the circumferential direction when pressed, and the circumferential width of the bent portion is restricted in the circumferential direction. The width is set by the part. For this reason, a bending part can be thickened, suppressing the dispersion | variation in the space | interval between each bending part provided along the circumferential direction. Moreover, since the thickness of a bending part does not flow to the circumferential direction by the circumferential direction restraint part at the time of a press, it is more preferable at the point which thickens a bending part.

上記補助コア部材の製造方法において、前記拘束据え込み工程において、前記積層部を支持するコア装着ダイと、前記周方向拘束部を有し前記コア装着ダイと分離可能な周方向拘束ダイとを用いることが好ましい。   In the manufacturing method of the auxiliary core member, in the restraining upsetting process, a core mounting die that supports the stacked portion and a circumferential restraining die that has the circumferential restraining portion and is separable from the core mounting die are used. It is preferable.

この方法によれば、拘束据え込み工程の後、コア装着ダイと周方向拘束ダイとを分離させるだけで、軸方向延出部の根元の各折曲部を周方向拘束ダイの各周方向拘束部間から容易に抜くことが可能となる。   According to this method, after the restraining upsetting process, the core-attached die and the circumferential restraining die are separated from each other, and the bent portions at the base of the axially extending portion are restrained in the circumferential restraining die. It can be easily removed from between the parts.

上記補助コア部材の製造方法において、前記据え込みパンチは、前記軸方向延出部の軸方向先端面と当接する軸方向当接部と、前記軸方向延出部の周方向両側面と当接する周方向当接部とを備えることが好ましい。   In the method for manufacturing an auxiliary core member, the upsetting punch contacts an axial contact portion that contacts an axial front end surface of the axial extension portion, and both circumferential side surfaces of the axial extension portion. It is preferable to provide a circumferential contact portion.

この方法によれば、軸方向延出部の周方向への変形を抑えつつ、据え込みパンチの押圧によって折曲部を肉厚化させることが可能となる。
上記補助コア部材の製造方法において、前記拘束据え込み工程において、前記折曲部の外側面における前記積層部寄りの一部である被拘束面を径方向に拘束する径方向拘束ダイにて拘束し、その拘束状態で前記軸方向延出部を前記据え込みパンチにて前記軸方向の前記折曲部側に押圧することが好ましい。
According to this method, the bent portion can be thickened by pressing the upsetting punch while suppressing deformation of the axially extending portion in the circumferential direction.
In the method for manufacturing the auxiliary core member, in the restraining upsetting step, the restrained surface that is a part of the outer surface of the bent portion that is close to the laminated portion is restrained by a radially restraining die that restrains in the radial direction. In this constrained state, it is preferable that the axially extending portion is pressed toward the bent portion side in the axial direction by the upsetting punch.

この方法によれば、据え込みパンチによる据え込み加工の際に、折曲部の外側面における積層部寄りの一部を径方向拘束ダイにて拘束するため、径方向拘束ダイの拘束(押さえ)によって折曲部の内側の変形量が抑えられ、折曲部の内側における巻き込みの発生が抑えられる。また、径方向拘束ダイの拘束によって、据え込みパンチの押圧時に積層部に対して板厚方向に加わる破断力(剪断力)が小さく抑えられる。そして、据え込みパンチによる押圧によって、折曲部の径方向拘束ダイにて拘束されていない部位(軸方向延出部寄りの部位)が、据え込みパンチの押圧によって変形して肉厚となる。このように、本製造方法によれば、折曲部の損傷を抑えつつ肉厚化することができる。   According to this method, in the upsetting process by the upsetting punch, since a part of the outer surface of the bent portion near the laminated portion is restrained by the radially restraining die, the restraining (pressing) of the radially restraining die is performed. Thus, the amount of deformation inside the bent portion is suppressed, and the occurrence of entrainment inside the bent portion is suppressed. Further, by the restraint of the radial restraint die, the breaking force (shearing force) applied to the laminated portion in the plate thickness direction when the upsetting punch is pressed can be kept small. And the part (part near the axial extension part) which is not restrained by the radial direction restraint die of the bent part is deformed and thickened by the pressing of the upsetting punch by the pressing by the upsetting punch. Thus, according to this manufacturing method, it can thicken, suppressing the damage of a bending part.

上記補助コア部材の製造方法において、前記径方向拘束ダイは、前記積層部の反軸方向延出部側の板面と当接する平坦面と、該平坦面と連なり前記折曲部の前記被拘束面を拘束する拘束円弧面とを備えることが好ましい。   In the method for manufacturing an auxiliary core member, the radially restricting die includes a flat surface that comes into contact with a plate surface on the side opposite to the axially extending portion of the stacked portion, and the constrained portion of the bent portion that is connected to the flat surface. It is preferable to provide a constraining arc surface that constrains the surface.

この方法によれば、拘束円弧面によって折曲部の被拘束面を隙間なく拘束することが可能となるため、折曲部の損傷をより確実に抑えることができる。
上記補助コア部材の製造方法において、前記拘束据え込み工程後、前記折曲部の周方向両側部を周方向拘束部によって拘束し、前記積層部の反軸方向延出部側の板面と当接するダイと前記折曲部の前記被拘束面との間に隙間が存在する状態で、前記軸方向延出部を据え込みパンチにて前記軸方向の前記折曲部側に押圧する本据え込み工程を有することが好ましい。
According to this method, the constrained surface of the bent portion can be constrained without any gap by the constraining arc surface, and thus damage to the bent portion can be more reliably suppressed.
In the manufacturing method of the auxiliary core member, after the restraining upsetting process, both sides in the circumferential direction of the bent portion are restrained by a circumferential restraining portion, and the plate surface on the side opposite to the axial extension portion of the stacked portion is contacted. This upsetting that presses the axially extending portion toward the bent portion in the axial direction with an upsetting punch in a state where a gap exists between the die that comes into contact with the constrained surface of the bent portion. It is preferable to have a process.

この方法によれば、拘束据え込み工程の後に、折曲部の被拘束面を拘束しない状態で本据え込み工程を行うため、折曲部のより広範囲を肉厚化することが可能となる。なお、拘束据え込み工程で折曲部の一部(軸方向延出部寄りの部位)を肉厚としているため、その後の本据え込み工程での折曲部とダイとの間の隙間は小さくなる。このため、本据え込み工程での折曲部の変形量が少なくなるため、折曲部の損傷が抑えられる。また、本据え込み工程においても、折曲部の周方向両側部を周方向拘束部にて拘束するため、押圧時に折曲部の肉が周方向に逃げず、各折曲部間の間隔のばらつきが抑えられるとともに、折曲部の更なる肉厚化に寄与できる。   According to this method, after the restraining upsetting process, the main upsetting process is performed without restraining the constrained surface of the bent part, so that a wider range of the bent part can be thickened. In addition, since a part of the bent portion (site near the axially extending portion) is thickened in the restraining upsetting process, the gap between the bent portion and the die in the subsequent upsetting process is small. Become. For this reason, since the amount of deformation of the bent portion in the upsetting process is reduced, damage to the bent portion can be suppressed. Also, in this upsetting process, both sides in the circumferential direction of the bent portion are restrained by the circumferential restraint portion, so that the meat of the bent portion does not escape in the circumferential direction when pressed, and the interval between the bent portions is not increased. The variation can be suppressed and it can contribute to further thickening of the bent portion.

上記補助コア部材の製造方法において、前記本据え込み工程に用いる前記ダイにおける前記折曲部の外側面と対向する面が平面であることが好ましい。
この方法によれば、本据え込み工程によって折曲部の外側面を略直角に成形することが可能となるため、折曲部のより一層の肉厚化が可能となる。
In the manufacturing method of the auxiliary core member, it is preferable that a surface of the die used for the main upsetting process that faces the outer surface of the bent portion is a flat surface.
According to this method, the outer surface of the bent portion can be formed at a substantially right angle by this upsetting process, so that the thickness of the bent portion can be further increased.

上記補助コア部材の製造方法において、前記本据え込み工程で用いる前記ダイは、前記積層部の反軸方向延出部側の板面と当接する平坦面と、該平坦面と連なり前記折曲部の外側面と隙間を介して対向するとともに反折曲部側に凹となる円弧面とを備え、該円弧面の曲率半径は、前記拘束ダイの前記拘束円弧面の曲率半径よりも大きく設定されていることが好ましい。   In the manufacturing method of the auxiliary core member, the die used in the main upsetting step includes a flat surface that is in contact with a plate surface on the side opposite to the axially extending portion of the stacked portion, and the bent portion that is continuous with the flat surface. And an arc surface that is concave on the side of the bent portion, and the radius of curvature of the arc surface is set larger than the radius of curvature of the constraining arc surface of the constraining die. It is preferable.

この方法によれば、本据え込み工程において、折曲部の外側面をダイの円弧面に沿った円弧形状に成形しつつ折曲部が肉厚化されるため、折曲部の損傷をより抑えることが可能となる。   According to this method, in this upsetting process, the bent portion is thickened while forming the outer surface of the bent portion into an arc shape along the arc surface of the die. It becomes possible to suppress.

上記補助コア部材の製造方法において、前記ダイの前記円弧面の円弧中心は、前記補助コア部材の前記折曲部の二等分線に対して前記軸方向延出部側の位置に設定されていることが好ましい。   In the method for manufacturing an auxiliary core member, an arc center of the arc surface of the die is set at a position on the axially extending portion side with respect to a bisector of the bent portion of the auxiliary core member. Preferably it is.

この方法によれば、軸方向延出部におけるロータとの対向面の軸方向長さを確保しつつ、折曲部を肉厚とすることが可能となる。これにより、ロータからの磁気取り込み量を増加させることができる補助コア部材を成形することが可能となる。   According to this method, the bent portion can be made thick while ensuring the axial length of the surface facing the rotor in the axially extending portion. Thereby, it becomes possible to shape | mold the auxiliary | assistant core member which can increase the magnetic uptake | capture amount from a rotor.

上記課題を解決するステータの製造方法は、上記の製造方法にて製造した補助コア部材を、ステータコアのメインコア部の軸方向端面に設ける設置工程を有する。
この方法によれば、補助コア部材の各折曲部の周方向の間隔のばらつきを抑えつつ該折曲部を肉厚化することで、回転性能の向上が図られたステータを提供できる。
The stator manufacturing method that solves the above-described problems includes an installation step in which the auxiliary core member manufactured by the above manufacturing method is provided on the axial end surface of the main core portion of the stator core.
According to this method, it is possible to provide a stator in which the rotational performance is improved by increasing the thickness of the bent portion while suppressing variations in the circumferential interval between the bent portions of the auxiliary core member.

本発明の補助コア部材の製造方法及びステータの製造方法によれば、各折曲部の周方向の間隔のばらつきを抑えつつ折曲部を肉厚化することができる。   According to the method for manufacturing an auxiliary core member and the method for manufacturing a stator of the present invention, it is possible to increase the thickness of the bent portion while suppressing variations in the circumferential interval between the bent portions.

モータの模式断面図である。It is a schematic cross section of a motor. ステータの平面図である。It is a top view of a stator. ステータコアの分解斜視図である。It is a disassembled perspective view of a stator core. ステータを部分的に拡大して示す平面図である。It is a top view which expands and shows a stator partially. (a)は実施形態の磁性板のロータ対向部を説明するための正面図であり、(b)は同形態の磁性板の断面図である。(A) is a front view for demonstrating the rotor opposing part of the magnetic board of embodiment, (b) is sectional drawing of the magnetic board of the same form. モータを部分的に拡大して示す模式断面図である。It is a schematic cross section which expands and shows a motor partially. 同形態のセグメント導体の屈曲部位を示す模式断面図である。It is a schematic cross section which shows the bending part of the segment conductor of the same form. (a)(b)折り曲げ工程後の磁性板を示す平面図である。(A) (b) It is a top view which shows the magnetic board after a bending process. 同形態の磁性板の製造方法における折り曲げ工程を説明するための模式図である。It is a schematic diagram for demonstrating the bending process in the manufacturing method of the magnetic board of the same form. 同形態の磁性板の製造方法における拘束据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating the restraining upsetting process in the manufacturing method of the magnetic board of the same form. (a)図10におけるA−A線断面図であり、(b)図10におけるB−B線断面図である。(A) It is the sectional view on the AA line in FIG. 10, (b) It is a sectional view on the BB line in FIG. 同形態の磁性板の製造方法における拘束据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating the restraining upsetting process in the manufacturing method of the magnetic board of the same form. 同形態の磁性板の製造方法における本据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating this upsetting process in the manufacturing method of the magnetic plate of the same form. 同形態の磁性板の製造方法における本据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating this upsetting process in the manufacturing method of the magnetic plate of the same form. 別例の据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating the upsetting process of another example. 別例の据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating the upsetting process of another example. 別例の据え込み工程によって成形された磁性板を示す断面図である。It is sectional drawing which shows the magnetic board shape | molded by the upsetting process of another example. 別例の据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating the upsetting process of another example. 別例の据え込み工程を説明するための模式図である。It is a schematic diagram for demonstrating the upsetting process of another example.

以下、補助コア部材の製造方法及びステータの製造方法の一実施形態について説明する。
図1に示すように、モータ10は、リヤフレーム11とフロントフレーム12によってモータ10の軸方向に挟持された環状のステータ13の内側にロータ14が配置されて構成されている。なお、モータ10の軸方向出力側(後述するジョイント63側)を保持するフレームをフロントフレーム12とし、軸方向反出力側を保持するフレームをリヤフレーム11としている。各フレーム11,12は、互いに離間しないようにステータ13の外周側の位置でスルーボルト15にて締結固定されている。
Hereinafter, an embodiment of a method for manufacturing an auxiliary core member and a method for manufacturing a stator will be described.
As shown in FIG. 1, the motor 10 includes a rotor 14 disposed inside an annular stator 13 that is sandwiched between a rear frame 11 and a front frame 12 in the axial direction of the motor 10. A frame that holds the axial output side (a joint 63 side described later) of the motor 10 is a front frame 12, and a frame that holds an axially opposite output side is a rear frame 11. The frames 11 and 12 are fastened and fixed by through bolts 15 at positions on the outer peripheral side of the stator 13 so as not to be separated from each other.

[フレーム]
リヤフレーム11及びフロントフレーム12は、アルミニウムや鋼鉄等の金属材料にて形成されている。リヤフレーム11は、略円盤状の本体部11aと、本体部11aの外周縁からモータ10の軸方向に延出された円筒状のステータ保持部11bとを備えている。一方のフロントフレーム12も略同様の構成であり、略円盤状の本体部12aと、本体部12aの外周縁からモータ10の軸方向に延出された円環状のステータ保持部12bとを備えている。各フレーム11,12の本体部11a,12aの径方向中央には、同軸上に配置された軸受16,17が保持され、その軸受16,17には、ロータ14の回転軸18が軸支されている。
[flame]
The rear frame 11 and the front frame 12 are formed of a metal material such as aluminum or steel. The rear frame 11 includes a substantially disc-shaped main body portion 11a, and a cylindrical stator holding portion 11b extending in the axial direction of the motor 10 from the outer peripheral edge of the main body portion 11a. One of the front frames 12 has a substantially similar configuration, and includes a substantially disc-shaped main body 12a and an annular stator holding portion 12b extending in the axial direction of the motor 10 from the outer peripheral edge of the main body 12a. Yes. Bearings 16 and 17 arranged coaxially are held at the radial center of the main body portions 11a and 12a of the respective frames 11 and 12, and a rotating shaft 18 of the rotor 14 is pivotally supported by the bearings 16 and 17. ing.

各フレーム11,12の本体部11a,12aには、その外周縁の複数箇所(例えば2箇所)から径方向外側に延びる締結固定部11c,12cが形成されている。なお、図1では、周方向に複数設けられた締結固定部11c,12cをそれぞれ1つのみ図示している。リヤフレーム11側の締結固定部11cとフロントフレーム12側の締結固定部12cは互いに同数設けられるとともに、回転軸18の軸方向に互いに対向している。そして、それぞれ対をなす締結固定部11c,12cがスルーボルト15によって締結固定されることで、各フレーム11,12がステータ13を挟持する状態で互いに固定されるようになっている。   Fastening and fixing portions 11c and 12c extending outward in the radial direction from a plurality of locations (for example, two locations) on the outer peripheral edge are formed on the main body portions 11a and 12a of the frames 11 and 12, respectively. In FIG. 1, only one fastening fixing portion 11c, 12c provided in the circumferential direction is illustrated. The same number of fastening fixing portions 11c on the rear frame 11 side and fastening fixing portions 12c on the front frame 12 side are provided, and are opposed to each other in the axial direction of the rotary shaft 18. Then, the fastening fixing portions 11 c and 12 c that make a pair are fastened and fixed by the through bolts 15, so that the frames 11 and 12 are fixed to each other with the stator 13 sandwiched therebetween.

[ステータ]
ステータ13は、各フレーム11,12のステータ保持部11b,12bに挟持された円環状のステータコア21と、そのステータコア21に装着された電機子巻線22とを備える。
[Stator]
The stator 13 includes an annular stator core 21 sandwiched between the stator holding portions 11 b and 12 b of the frames 11 and 12, and an armature winding 22 attached to the stator core 21.

図2及び図4に示すように、ステータコア21は、その外周を構成する円筒部23と、その円筒部23から径方向内側に延出された複数(本実施形態では60個)のティース24とからなる。各ティース24には、径方向内側に向かうにつれて周方向幅が狭くなるテーパ状をなす径方向延出部24aが形成され、その各径方向延出部24aの先端部(径方向内側端部)には、該径方向延出部24aよりも周方向幅が広い幅広部24bが形成されている。径方向延出部24aの周方向両端面は、回転軸18の軸線と平行な平面状をなすとともに、周方向に隣り合う周方向端面同士が平行をなしている。   As shown in FIGS. 2 and 4, the stator core 21 includes a cylindrical portion 23 that forms the outer periphery thereof, and a plurality (60 in the present embodiment) of teeth 24 that extend radially inward from the cylindrical portion 23. Consists of. Each tooth 24 is formed with a radially extending portion 24a having a tapered shape whose width in the circumferential direction becomes narrower toward the inner side in the radial direction, and the distal end portion (the radially inner end portion) of each radially extending portion 24a. A wide portion 24b having a wider width in the circumferential direction than the radially extending portion 24a is formed. Both end surfaces in the circumferential direction of the radially extending portion 24a have a planar shape parallel to the axis of the rotary shaft 18, and circumferential end surfaces adjacent to each other in the circumferential direction are parallel to each other.

各ティース24の間の空間は、電機子巻線22を構成するセグメント導体25を収容する部位であるスロットSとして構成される。つまり、スロットSは、ティース24の周方向側面とティース24間における円筒部23の内周面とから構成されている。本実施形態では、ティース24は、周方向に隣り合う径方向延出部24aの周方向端面同士が平行となるように形成されるため、各スロットSが軸方向視で略矩形状をなすように構成されている。また、各スロットSは、ステータコア21を軸方向に沿って貫通するとともに、径方向内側に開口する形状をなしている。なお、ステータコア21に形成されたスロットSの個数は、ティース24と同数(本実施形態では60個)である。   A space between the teeth 24 is configured as a slot S that is a part that accommodates the segment conductor 25 that constitutes the armature winding 22. That is, the slot S is configured by the circumferential side surface of the tooth 24 and the inner circumferential surface of the cylindrical portion 23 between the teeth 24. In the present embodiment, the teeth 24 are formed so that the circumferential end surfaces of the radially extending portions 24a adjacent to each other in the circumferential direction are parallel to each other, so that each slot S has a substantially rectangular shape when viewed in the axial direction. It is configured. Each slot S has a shape that penetrates the stator core 21 along the axial direction and opens radially inward. The number of slots S formed in the stator core 21 is the same as that of the teeth 24 (60 in this embodiment).

[ステータコア]
上記のような形状を有するステータコア21は、複数の鋼板を積層して一体化することによって成形されている。
[Stator core]
The stator core 21 having the above shape is formed by stacking and integrating a plurality of steel plates.

詳述すると、図3に示すように、ステータコア21は、鋼板をプレス加工により打ち抜いて形成した複数枚のコアシート30を軸方向に積層してかしめて一体化することにより形成されたメインコア部31と、メインコア部31の軸方向両端部にそれぞれ固定された磁性板40(補助コア部材)とから構成されている。なお、本実施形態では、磁性板40は、同形状のものがメインコア部31の軸方向両側に1枚ずつ設けられている。   More specifically, as shown in FIG. 3, the stator core 21 is a main core portion formed by laminating a plurality of core sheets 30 formed by stamping a steel plate by press working in the axial direction and caulking and integrating them. 31 and a magnetic plate 40 (auxiliary core member) fixed to both ends of the main core portion 31 in the axial direction. In the present embodiment, one magnetic plate 40 having the same shape is provided on each side of the main core portion 31 in the axial direction.

メインコア部31の各コアシート30は同一形状をなし、板面が軸方向と直交するように配置されている。この各コアシート30は、円環状をなす環状部32と、その環状部32から径方向内側に延びる複数のティース構成部33を有している。また、各コアシート30は、ティース構成部33が軸方向沿って重なるように積層されている。   Each core sheet 30 of the main core portion 31 has the same shape and is disposed so that the plate surface is orthogonal to the axial direction. Each core sheet 30 has an annular portion 32 having an annular shape and a plurality of teeth constituting portions 33 extending radially inward from the annular portion 32. Moreover, each core sheet 30 is laminated | stacked so that the teeth structure part 33 may overlap along an axial direction.

図2〜図4に示すように、磁性板40は、プレス加工により成形されるものであり、メインコア部31の軸方向両端のコアシート30に積層された板状の積層部41を有している。積層部41は、メインコア部31のコアシート30に対して平行且つ同軸となるように積層されている。また、磁性板40は、その板厚T1がメインコア部31のコアシート30の板厚T2よりも厚く設定されている(図1参照)。   As shown in FIGS. 2 to 4, the magnetic plate 40 is formed by press working and has a plate-like laminated portion 41 laminated on the core sheet 30 at both axial ends of the main core portion 31. ing. The laminated portion 41 is laminated so as to be parallel and coaxial with the core sheet 30 of the main core portion 31. Further, the magnetic plate 40 is set such that the plate thickness T1 is thicker than the plate thickness T2 of the core sheet 30 of the main core portion 31 (see FIG. 1).

積層部41には、コアシート30の環状部32と軸方向に重なる円環状をなす環状部42と、その環状部42から径方向内側に延びる複数のティース構成部43とが形成されている。積層部41のティース構成部43は、軸方向視においてコアシート30のティース構成部33と同形状をなしている。磁性板40は、積層部41の環状部42及びティース構成部43が、コアシート30の環状部32及びティース構成部33とそれぞれ軸方向に重なるように設けられている。このコアシート30と磁性板40の各環状部32,42がステータコア21の円筒部23を構成し、各ティース構成部33,43がステータコア21のティース24を構成している。また、積層部41の環状部42の外径は、コアシート30の環状部32の外径よりも小さく形成されている(図2参照)。これにより、軸方向視においてコアシート30の環状部32の外周縁全体が露出するように構成されている。また、各コアシート30と各磁性板40は、それらの各環状部32,42に設けられたかしめ部21aにて積層状態で一体に固定(ダボかしめ)されている。   The laminated portion 41 is formed with an annular portion 42 that forms an annular shape that overlaps the annular portion 32 of the core sheet 30 in the axial direction, and a plurality of teeth constituent portions 43 that extend radially inward from the annular portion 42. The teeth constituting portion 43 of the laminated portion 41 has the same shape as the teeth constituting portion 33 of the core sheet 30 in the axial direction view. The magnetic plate 40 is provided such that the annular portion 42 and the tooth constituent portion 43 of the laminated portion 41 overlap the annular portion 32 and the tooth constituent portion 33 of the core sheet 30 in the axial direction. The annular portions 32 and 42 of the core sheet 30 and the magnetic plate 40 constitute a cylindrical portion 23 of the stator core 21, and the tooth constituent portions 33 and 43 constitute a tooth 24 of the stator core 21. Moreover, the outer diameter of the annular part 42 of the laminated part 41 is formed smaller than the outer diameter of the annular part 32 of the core sheet 30 (see FIG. 2). Thereby, it is comprised so that the whole outer periphery of the annular part 32 of the core sheet 30 may be exposed in an axial view. In addition, each core sheet 30 and each magnetic plate 40 are integrally fixed (doweled) in a stacked state by caulking portions 21 a provided in the respective annular portions 32 and 42.

磁性板40のティース構成部43の径方向内側端部(ロータ14側端部)には、軸方向外側(反メインコア部側)に延出されたロータ対向部44が形成されている。ロータ対向部44は、ティース構成部43の径方向内側端部を軸方向外側に直角に屈曲することで形成されている。つまり、磁性板40は、軸方向外側に屈曲形成されたロータ対向部44で板面が径方向を向くように形成されている。なお、ロータ対向部44の内径面は、メインコア部31(コアシート30)の内径と同径となるように曲面形成されている。また、積層部41の軸方向厚みとロータ対向部44の径方向厚みは、磁性板40の板厚T1によって決まり、それらは互いに等しい厚みとなっている。また、ロータ対向部44とティース構成部43との間の折曲部位(ティース構成部43とロータ対向部44のなす角部)の肉厚は、ロータ対向部44の板厚(つまり、磁性板40の板厚T1)よりも厚くなるように形成されている。   A rotor facing portion 44 extending outward in the axial direction (on the side opposite to the main core portion) is formed on the radially inner end portion (rotor 14 side end portion) of the teeth constituting portion 43 of the magnetic plate 40. The rotor facing portion 44 is formed by bending the radially inner end portion of the tooth constituting portion 43 at a right angle outward in the axial direction. That is, the magnetic plate 40 is formed such that the plate surface faces the radial direction by the rotor facing portion 44 that is bent outward in the axial direction. Note that the inner diameter surface of the rotor facing portion 44 is curved so as to have the same diameter as the inner diameter of the main core portion 31 (core sheet 30). Further, the axial thickness of the laminated portion 41 and the radial thickness of the rotor facing portion 44 are determined by the plate thickness T1 of the magnetic plate 40, which are equal to each other. Further, the thickness of the bent portion between the rotor facing portion 44 and the tooth constituting portion 43 (the corner portion formed by the tooth constituting portion 43 and the rotor facing portion 44) is the plate thickness (that is, the magnetic plate) of the rotor facing portion 44. It is formed to be thicker than the plate thickness T1) of 40.

図5(a)に示すように、ロータ対向部44は、周方向両側に周方向側部としての側縁部44aを有する。この側縁部44aは、回転軸18の軸線方向に対して周方向に傾斜する形状とされる。側縁部44aは、先端側(反メインコア部側)ほどロータ対向部44の周方向中央側に近づくように傾斜されている。また、各側縁部44aは、ロータ対向部44を径方向から見たときに、ロータ対向部44の周方向の中心線に対して左右対称となるように形成されている。このため、ロータ対向部44は、軸方向基端側(軸方向内側)の周方向幅がティース構成部43の先端部(幅広部24b)の周方向幅と等しく形成されるとともに、軸方向先端側(軸方向外側)ほど周方向幅が狭く、径方向視で台形形状をなすように形成される。なお、本実施形態の各ロータ対向部44は全て同形状をなすように形成される。   As shown to Fig.5 (a), the rotor opposing part 44 has the side edge part 44a as a circumferential direction side part in the circumferential direction both sides. The side edge portion 44 a is shaped to be inclined in the circumferential direction with respect to the axial direction of the rotating shaft 18. The side edge portion 44a is inclined so as to be closer to the center side in the circumferential direction of the rotor facing portion 44 toward the distal end side (on the side opposite to the main core portion). Further, each side edge portion 44 a is formed so as to be bilaterally symmetric with respect to the center line in the circumferential direction of the rotor facing portion 44 when the rotor facing portion 44 is viewed from the radial direction. For this reason, the rotor facing portion 44 is formed such that the circumferential width on the axial base end side (axial inner side) is equal to the circumferential width of the distal end portion (wide portion 24b) of the tooth constituent portion 43, and the axial distal end. The circumferential width is narrower toward the side (outer in the axial direction), and is formed to have a trapezoidal shape when viewed in the radial direction. In addition, each rotor opposing part 44 of this embodiment is formed so that all may make the same shape.

図5(b)に示すように、磁性板40において、ティース構成部43とロータ対向部44との間の折曲部45(ティース構成部43とロータ対向部44のなす角部)は直角に形成されている。この折曲部45の肉厚T3(折曲部45の二等分線Lに沿った厚みであって、折曲部45の内側角部の中心から外側角部の中心までの長さ)は、積層部41及びロータ対向部44の板厚(つまり、磁性板40の板厚T1)よりも厚く形成されている。これにより、折曲部45での磁気飽和が生じにくくなっている。   As shown in FIG. 5B, in the magnetic plate 40, the bent portion 45 (the corner portion formed between the teeth constituting portion 43 and the rotor facing portion 44) between the teeth constituting portion 43 and the rotor facing portion 44 is at a right angle. Is formed. The thickness T3 of the bent portion 45 (the thickness along the bisector L of the bent portion 45 and the length from the center of the inner corner to the center of the outer corner of the bent portion 45) is The thickness of the laminated portion 41 and the rotor facing portion 44 (that is, the thickness T1 of the magnetic plate 40) is larger. As a result, magnetic saturation at the bent portion 45 is less likely to occur.

図4に示すように、ステータコア21の各スロットS内には、絶縁性の樹脂材料から形成されたシート状の絶縁部材47が装着されている。各絶縁部材47は、スロットSの径方向外側端部で折り返された状態で設けられ、スロットSの内周面に沿うように形成されている。また、各絶縁部材47はスロットSに軸方向に挿入されるものであり、絶縁部材47の軸方向長さは、スロットSの軸方向長さよりも長く設定されている。つまり、絶縁部材47の軸方向両端部は、スロットSの軸方向両端部から外部に突出している。   As shown in FIG. 4, in each slot S of the stator core 21, a sheet-like insulating member 47 made of an insulating resin material is mounted. Each insulating member 47 is provided in a state of being folded back at the radially outer end of the slot S, and is formed along the inner peripheral surface of the slot S. Each insulating member 47 is inserted into the slot S in the axial direction, and the axial length of the insulating member 47 is set longer than the axial length of the slot S. That is, both end portions in the axial direction of the insulating member 47 protrude outward from both end portions in the axial direction of the slot S.

[電機子巻線]
図4及び図6に示すように、上記したステータコア21に装着された電機子巻線22は、複数のセグメント導体25(セグメントコンダクタ)にて構成されている。各セグメント導体25は、所定のもの同士で接続されて、3相(U相、V相、W相)Y結線の電機子巻線22を構成している。また、各セグメント導体25は、同一断面形状(断面矩形状)の線材から形成されるものである。
[Armature winding]
As shown in FIGS. 4 and 6, the armature winding 22 mounted on the stator core 21 is composed of a plurality of segment conductors 25 (segment conductors). The segment conductors 25 are connected with predetermined ones to form a three-phase (U-phase, V-phase, W-phase) Y-connected armature winding 22. Each segment conductor 25 is formed from a wire having the same cross-sectional shape (rectangular cross-section).

各セグメント導体25は、スロットS内に挿通される部位である一対の直線部51と、スロットSから軸方向一方側(リヤフレーム11側)に突出する第1突出部52と、スロットSから軸方向他方側(フロントフレーム12側)に突出する第2突出部53とを有し、第1突出部52側で折り返される略U字状をなしている。第1及び第2突出部52,53は、軸方向両側のロータ対向部44と径方向に間隙を介してそれぞれ対向している。   Each segment conductor 25 includes a pair of straight portions 51 that are portions inserted into the slot S, a first protruding portion 52 that protrudes from the slot S in one axial direction (rear frame 11 side), and a shaft that extends from the slot S. It has the 2nd protrusion part 53 which protrudes to a direction other side (front frame 12 side), and has comprised the substantially U shape folded by the 1st protrusion part 52 side. The first and second projecting portions 52 and 53 are opposed to the rotor facing portions 44 on both sides in the axial direction with a gap therebetween in the radial direction.

一対の直線部51は、径方向位置が互いにずれるように形成されるとともに、周方向位置の異なるスロットSにそれぞれ挿入される。また、直線部51はスロットS内において絶縁部材47の内側に配置されている(図4参照)。この絶縁部材47によってセグメント導体25とステータコア21とが電気的に絶縁されている。   The pair of linear portions 51 are formed so that their radial positions are shifted from each other, and are inserted into slots S having different circumferential positions. The straight portion 51 is disposed inside the insulating member 47 in the slot S (see FIG. 4). The segment conductor 25 and the stator core 21 are electrically insulated by the insulating member 47.

セグメント導体25は、各スロットS内において直線部51が径方向に4つ並ぶように配置されている。そして、セグメント導体25には、2つの直線部51が径方向内側から1つ目と4つ目に配置されるもの(図6において外側に図示されたセグメント導体25x)と、2つの直線部51が径方向内側から2つ目と3つ目に配置されるもの(図6において内側に図示されたセグメント導体25y)の2種類が用いられている。なお、主にこの2種類のセグメント導体25x,25yから電機子巻線22が構成されるが、例えば電機子巻線22の端部(電源接続端子や中性点接続端子等)を構成するセグメント導体には、別種類のもの(例えば、直線部が1つだけのセグメント導体)が用いられる。   The segment conductors 25 are arranged so that four straight portions 51 are arranged in the radial direction in each slot S. In the segment conductor 25, two linear portions 51 are arranged at the first and fourth from the inner side in the radial direction (the segment conductor 25x illustrated on the outer side in FIG. 6), and the two linear portions 51. Are used, which are arranged second and third from the inside in the radial direction (segment conductor 25y shown inside in FIG. 6). The armature winding 22 is mainly composed of the two types of segment conductors 25x and 25y. For example, the segments constituting the end of the armature winding 22 (power supply connection terminal, neutral point connection terminal, etc.) Another type of conductor (for example, a segment conductor having only one straight portion) is used.

各直線部51は、スロットSを軸方向に貫通してフロントフレーム12側に突出した第2突出部53が、周方向に屈曲されて他のセグメント導体25の第2突出部53や、特殊な種類のセグメント導体と溶接等により電気的に接続され、これにより、各セグメント導体25によって電機子巻線22が構成される。   Each straight portion 51 includes a second protrusion 53 that protrudes toward the front frame 12 through the slot S in the axial direction, and is bent in the circumferential direction to form a second protrusion 53 of another segment conductor 25 or a special portion. The segment conductors are electrically connected to each other by welding or the like, whereby the segment conductors 25 constitute the armature windings 22.

また、セグメント導体25の第1及び第2突出部52,53は、スロットSの軸方向両端で直線部51に対して周方向に屈曲されている。ここで、第1突出部52が周方向に屈曲されたスロットSの軸方向端部付近の拡大図を図7に示す。同図に示すように、スロットSの軸方向一端を構成する磁性板40(積層部41)のティース構成部43の角部には、円弧状に面取りされた面取り部43aが形成されている。また、第2突出部53側の磁性板40にも同様に、スロットSの軸方向他端を構成するティース構成部43の角部に面取り部43aが形成されている。面取り部43aは、第1及び第2突出部52,53の周方向への屈曲形状に沿う円弧状をなし、その屈曲部位に対して広い面積で接触するようになっている。これにより、第1及び第2突出部52,53の周方向の屈曲部位に対して、ティース構成部43の角部から局所的に力が加わることが抑制され、その屈曲部位の損傷が抑制されるようになっている。また同様に、第1及び第2突出部52,53の屈曲部位と面取り部43aとに挟まれた絶縁部材47の損傷も抑制されている。また、本実施形態では、磁性板40の板厚T1(ティース構成部43の板厚)がコアシート30の板厚T2よりも厚いため、面取り部43aの曲率半径Rmをコアシート30の板厚T2よりも大きく設定可能となっている。これにより、曲率半径Rmが大きい面取り部43aによってセグメント導体25の屈曲部位の損傷がより好適に抑制されるようになっている。   Further, the first and second projecting portions 52 and 53 of the segment conductor 25 are bent in the circumferential direction with respect to the linear portion 51 at both axial ends of the slot S. Here, FIG. 7 shows an enlarged view of the vicinity of the end portion in the axial direction of the slot S where the first protrusion 52 is bent in the circumferential direction. As shown in the drawing, a chamfered portion 43a that is chamfered in an arc shape is formed at a corner portion of the teeth constituting portion 43 of the magnetic plate 40 (laminated portion 41) constituting one end of the slot S in the axial direction. Similarly, the chamfered portion 43 a is formed at the corner of the tooth constituting portion 43 that constitutes the other axial end of the slot S in the magnetic plate 40 on the second projecting portion 53 side. The chamfered portion 43a has an arc shape along the circumferentially bent shape of the first and second projecting portions 52 and 53, and comes into contact with the bent portion over a wide area. Thereby, it is suppressed that force is locally applied from the corner portion of the tooth constituent portion 43 to the bent portions in the circumferential direction of the first and second projecting portions 52 and 53, and damage to the bent portions is suppressed. It has become so. Similarly, damage to the insulating member 47 sandwiched between the bent portions of the first and second projecting portions 52 and 53 and the chamfered portion 43a is also suppressed. In this embodiment, since the plate thickness T1 of the magnetic plate 40 (plate thickness of the teeth constituting portion 43) is thicker than the plate thickness T2 of the core sheet 30, the curvature radius Rm of the chamfered portion 43a is set to the plate thickness of the core sheet 30. It can be set larger than T2. Thereby, damage to the bent part of the segment conductor 25 is more suitably suppressed by the chamfered portion 43a having a large curvature radius Rm.

また、図6に示すように、セグメント導体25の折り返し部25aが形成された第1突出部52は、径方向外側に傾く(膨らむ)ように形成されている。これにより、折り返し部25aがスロットSの径方向中央よりも径方向外側に偏倚するとともに、第1突出部52の径方向内側端部52aがスロットSの径方向内側端部Saよりも径方向外側に位置するように構成される。これにより、第1突出部52と磁性板40のロータ対向部44との径方向間の間隙が広く構成されるため、第1突出部52とロータ対向部44との干渉がより好適に抑制されている。その結果、セグメント導体25とロータ対向部44との絶縁性がより好適に確保されるだけでなく、第1突出部52との干渉によってロータ対向部44が変形することによるコギングトルクの増大や出力の低下が抑制されている。   Moreover, as shown in FIG. 6, the 1st protrusion part 52 in which the folding | returning part 25a of the segment conductor 25 was formed is formed so that it may incline (expand) radially outward. Thus, the folded portion 25a is biased radially outward from the radial center of the slot S, and the radial inner end 52a of the first protrusion 52 is radially outer than the radial inner end Sa of the slot S. It is comprised so that it may be located in. Thereby, since the gap between the radial direction of the 1st protrusion part 52 and the rotor opposing part 44 of the magnetic board 40 is comprised widely, interference with the 1st protrusion part 52 and the rotor opposing part 44 is suppressed more suitably. ing. As a result, not only the insulation between the segment conductor 25 and the rotor facing portion 44 is more preferably ensured, but also the cogging torque is increased and output due to the deformation of the rotor facing portion 44 due to the interference with the first protrusion 52. The decline of the is suppressed.

一方、セグメント導体25の第2突出部53には、折り返し部が形成されず、その第2突出部53同士が溶接接合される構成のため、第2突出部53とロータ対向部44との間隙を容易に確保できるようになっている。また、第2突出部53の溶接部位は、フロントフレーム12側のロータ対向部44の軸方向先端部よりも軸方向外側(反メインコア部側)に形成されている。これにより、第2突出部53の溶接作業においてロータ対向部44が邪魔になりにくく、作業性が向上されるとともに、第2突出部53とロータ対向部44との絶縁性をより確実に確保することが可能となっている。なお、第2突出部53の溶接部位を、フロントフレーム12側のロータ対向部44の軸方向先端部よりも軸方向内側(メインコア部31側)に設定してもよく、この場合には、第2突出部53がロータ対向部44よりも軸方向外側に突出しないように構成できるため、ステータ13の軸方向の小型化に寄与できる。   On the other hand, the second projecting portion 53 of the segment conductor 25 is not formed with a folded portion, and the second projecting portions 53 are welded to each other, so that a gap between the second projecting portion 53 and the rotor facing portion 44 is obtained. Can be secured easily. Further, the welded portion of the second projecting portion 53 is formed on the outer side in the axial direction (on the side opposite to the main core portion) of the front end portion of the rotor facing portion 44 on the front frame 12 side. Thereby, in the welding operation of the second projecting portion 53, the rotor facing portion 44 is less likely to become an obstacle, and workability is improved, and insulation between the second projecting portion 53 and the rotor facing portion 44 is more reliably ensured. It is possible. The welding portion of the second protrusion 53 may be set on the axially inner side (the main core portion 31 side) of the front end portion of the rotor facing portion 44 on the front frame 12 side, in this case, Since the 2nd protrusion part 53 can be comprised so that it may not protrude outside an axial direction rather than the rotor opposing part 44, it can contribute to size reduction of the stator 13 in the axial direction.

[ステータコアの保持構成]
図1に示すように、上記構成のステータ13を保持する各フレーム11,12のステータ保持部11b,12bは、各フレーム11,12の本体部11a,12aから軸方向に延出する円筒状をなしている。ステータ保持部11b,12bの外径は、ステータ保持部11b,12bのメインコア部31の外径よりも大きく形成されている。また、ステータ保持部11b,12bの内径は、メインコア部31の外径よりも小さく、且つ、磁性板40(積層部41)の外径よりも大きく形成されている。
[Stator core retention structure]
As shown in FIG. 1, the stator holding portions 11 b and 12 b of the frames 11 and 12 holding the stator 13 having the above-described configuration have a cylindrical shape extending in the axial direction from the main body portions 11 a and 12 a of the frames 11 and 12. There is no. The outer diameters of the stator holding portions 11b and 12b are formed larger than the outer diameter of the main core portion 31 of the stator holding portions 11b and 12b. The inner diameters of the stator holding portions 11b and 12b are smaller than the outer diameter of the main core portion 31 and larger than the outer diameter of the magnetic plate 40 (laminated portion 41).

図6に示すように、ステータ保持部11b,12bの先端部(軸方向内側端部)には、外嵌部11d,12dがそれぞれ形成されている。各外嵌部11d,12dは、ステータ保持部11b,12bの内径を大きくすることにより径方向の厚さが薄く形成された部分であり、円環状をなしている。外嵌部11d,12dの内径は、メインコア部31の外径と略等しく形成されており、外嵌部11d,12dの径方向内側には、軸方向と直交する平面状をなす当接面11e,12eがそれぞれ形成されている。   As shown in FIG. 6, outer fitting portions 11d and 12d are formed at the tip portions (inner ends in the axial direction) of the stator holding portions 11b and 12b, respectively. Each of the outer fitting portions 11d and 12d is a portion where the radial thickness is reduced by increasing the inner diameter of the stator holding portions 11b and 12b, and has an annular shape. The inner diameters of the outer fitting portions 11d and 12d are formed to be substantially equal to the outer diameter of the main core portion 31, and a contact surface having a planar shape perpendicular to the axial direction is formed on the radially inner side of the outer fitting portions 11d and 12d. 11e and 12e are formed.

ステータコア21において、磁性板40の積層部41の外周側でメインコア部31の外周縁が軸方向両側に露出された部位(露出面31a)が各フレーム11,12のステータ保持部11b,12bに挟持されている。詳しくは、ステータ保持部11b,12bは、外嵌部11d,12dがメインコア部31の軸方向両端の外周縁にそれぞれ外嵌されるとともに、当接面11e,12eがメインコア部31の軸方向両側の露出面31aにそれぞれ軸方向に当接している。この状態で、各フレーム11,12が前記スルーボルト15によって互いに連結固定されることで、メインコア部31がステータ保持部11b,12bによって軸方向に挟持される。また、ステータ保持部11b,12bの先端部の間からは、ステータコア21のメインコア部31の外周面が外部に露出されている。   In the stator core 21, portions (exposed surfaces 31 a) where the outer peripheral edge of the main core portion 31 is exposed on both sides in the axial direction on the outer peripheral side of the laminated portion 41 of the magnetic plate 40 are formed on the stator holding portions 11 b and 12 b of the frames 11 and 12. It is pinched. Specifically, the stator holding portions 11 b and 12 b have outer fitting portions 11 d and 12 d that are fitted on outer peripheral edges at both axial ends of the main core portion 31, and the contact surfaces 11 e and 12 e are shafts of the main core portion 31. It is in contact with the exposed surfaces 31a on both sides in the axial direction. In this state, the frames 11 and 12 are connected and fixed to each other by the through bolts 15, whereby the main core portion 31 is held in the axial direction by the stator holding portions 11b and 12b. Further, the outer peripheral surface of the main core portion 31 of the stator core 21 is exposed to the outside from between the front end portions of the stator holding portions 11b and 12b.

[ロータ]
図1に示すように、ロータ14は、軸受16,17に軸支された回転軸18と、回転軸18に一体回転可能に固定された円筒状のロータコア61と、ロータコア61の外周面に固着された複数(本実施形態では10個)の界磁磁石62とから構成されている。各界磁磁石62は、フェライト磁石よりなり、磁極(N極とS極)が周方向で交互に異なるように配置されている。ロータコア61及びロータ14の界磁磁石62の軸方向長さは、ステータコア21の内周端部の軸方向長さ(即ち、一方の磁性板40のロータ対向部44の先端から他方の磁性板40のロータ対向部44の先端までの長さ)と略等しく設定されている。即ち、界磁磁石62は、ステータコア21のメインコア部31の内周面と各磁性板40のロータ対向部44に対して径方向に対向している。
[Rotor]
As shown in FIG. 1, the rotor 14 is fixed to a rotary shaft 18 supported by bearings 16 and 17, a cylindrical rotor core 61 fixed to the rotary shaft 18 so as to be integrally rotatable, and an outer peripheral surface of the rotor core 61. And a plurality of (10 in this embodiment) field magnets 62. Each field magnet 62 is made of a ferrite magnet, and is arranged such that magnetic poles (N pole and S pole) are alternately different in the circumferential direction. The axial length of the rotor core 61 and the field magnet 62 of the rotor 14 is the axial length of the inner peripheral end of the stator core 21 (that is, from the tip of the rotor facing portion 44 of the one magnetic plate 40 to the other magnetic plate 40). The length of the rotor facing portion 44 to the tip of the rotor facing portion 44). That is, the field magnet 62 is opposed to the inner peripheral surface of the main core portion 31 of the stator core 21 and the rotor facing portion 44 of each magnetic plate 40 in the radial direction.

回転軸18の先端部(図1において左側の端部)は、フロントフレーム12を貫通してモータ10の外部に突出している。そして、この回転軸18の先端部には、該回転軸18と一体回転するジョイント63が設けられている。このジョイント63は図示しない外部装置に連結され、その外部装置に回転軸18の回転を伝達する。   A front end portion (left end portion in FIG. 1) of the rotating shaft 18 passes through the front frame 12 and protrudes outside the motor 10. A joint 63 that rotates integrally with the rotary shaft 18 is provided at the tip of the rotary shaft 18. The joint 63 is connected to an external device (not shown) and transmits the rotation of the rotary shaft 18 to the external device.

次に、本実施形態の作用について説明する。
ステータ13の電機子巻線22への通電により発生した磁界とロータ14の界磁磁石62の磁界とが、メインコア部31の内周面と各磁性板40のロータ対向部44を介して作用し合い、ロータ14が回転する。このロータ対向部44は、ステータコア21のティース24のロータ14側端部(径方向内側端部)から軸方向に延びるように形成されているため、ステータコア21のロータ14との対向面(ステータコア21の内周面)の軸方向長さを確保して高出力化を図ることが可能となっている。そして、各ロータ対向部44の外周側の空間には、スロットSから軸方向両側に突出するセグメント導体25の第1及び第2突出部52,53が配置されており、その第1及び第2突出部52,53が軸方向両側のロータ対向部44と径方向にそれぞれ対向するように構成されている。このため、磁性板40のロータ対向部44によって出力を確保しつつも、ステータ13の軸方向長さ(本実施形態では、第1突出部52の軸端から第2突出部53までの長さ)を抑えることが可能となっている。
Next, the operation of this embodiment will be described.
The magnetic field generated by energizing the armature winding 22 of the stator 13 and the magnetic field of the field magnet 62 of the rotor 14 act via the inner peripheral surface of the main core portion 31 and the rotor facing portion 44 of each magnetic plate 40. As a result, the rotor 14 rotates. Since the rotor facing portion 44 is formed so as to extend in the axial direction from the rotor 14 side end portion (radially inner end portion) of the teeth 24 of the stator core 21, the surface of the stator core 21 facing the rotor 14 (stator core 21). It is possible to increase the output by securing the axial length of the inner peripheral surface of the inner surface. In the space on the outer peripheral side of each rotor facing portion 44, the first and second projecting portions 52 and 53 of the segment conductor 25 projecting axially from the slot S are disposed. The projecting portions 52 and 53 are configured to face the rotor facing portions 44 on both sides in the axial direction in the radial direction. For this reason, the axial length of the stator 13 (in this embodiment, the length from the axial end of the first protrusion 52 to the second protrusion 53) while ensuring output by the rotor facing portion 44 of the magnetic plate 40. ) Can be suppressed.

更に、本実施形態では、磁性板40の折曲部45の肉厚T3が、積層部41及びロータ対向部44の板厚(磁性板40の板厚T1と同等)よりも厚く形成されているため、折曲部45での磁気飽和が生じにくくなっている。また、磁性板40の板厚T1がコアシート30の板厚T2よりも厚く設定されているため、磁性板40での磁気飽和が更に生じにくく、磁性板40を介して磁気を取り込みやすくなっている。また、ロータ対向部44は、径方向視で台形形状をなすため、周方向に磁気的にスキューされた形状とされる。これにより、コギングトルクを低減されるようになっている。   Further, in the present embodiment, the thickness T3 of the bent portion 45 of the magnetic plate 40 is formed to be thicker than the thickness of the laminated portion 41 and the rotor facing portion 44 (equivalent to the plate thickness T1 of the magnetic plate 40). Therefore, magnetic saturation at the bent portion 45 is less likely to occur. Further, since the plate thickness T1 of the magnetic plate 40 is set to be thicker than the plate thickness T2 of the core sheet 30, magnetic saturation in the magnetic plate 40 is less likely to occur, and it is easier to capture magnetism through the magnetic plate 40. Yes. Further, since the rotor facing portion 44 has a trapezoidal shape when viewed in the radial direction, the rotor facing portion 44 has a shape that is magnetically skewed in the circumferential direction. Thereby, the cogging torque is reduced.

また、本実施形態では、ロータ対向部44によって出力を確保しつつも、ステータコア21のメインコア部31の積厚が抑えられるため、メインコア部31の積厚の変動(公差)が少なく抑えられる。これにより、メインコア部31を挟む各フレーム11,12の軸方向の間隔の変動が抑えられ、ひいては、モータ10全体の軸方向寸法の変動が抑えられるようになっている。なお、磁性板40は、その板厚T1が厚いほどその変動(公差)が大きくなるが、本実施形態のように、各フレーム11,12がメインコア部31のみを挟持して磁性板40とは軸方向に当接しないように構成することで、モータ10全体の軸方向寸法の変動がより抑えられるようになっている。   Further, in the present embodiment, the output of the rotor facing portion 44 is ensured, and the thickness of the main core portion 31 of the stator core 21 is suppressed, so that the variation (tolerance) of the thickness of the main core portion 31 can be reduced. . Thereby, the fluctuation | variation of the space | interval of the axial direction of each flame | frame 11 and 12 which pinches | interposes the main core part 31 is suppressed, and the fluctuation | variation of the axial direction dimension of the motor 10 whole is suppressed by extension. Note that the variation (tolerance) of the magnetic plate 40 increases as the plate thickness T1 increases. However, as in the present embodiment, the frames 11 and 12 sandwich only the main core portion 31 and the magnetic plate 40. Is configured so as not to abut in the axial direction, so that fluctuations in the axial dimension of the entire motor 10 can be further suppressed.

また、セグメント導体25は、溶接接合された第2突出部53だけでなく、湾曲成形された折り返し部25aを有する第1突出部52も、スロットSの径方向内側端部Saよりも径方向外側(反ロータ対向部側)に位置するように構成されている。このため、スロットSをロータ対向部44から径方向外側に離した構成としなくても、セグメント導体25の第1及び第2突出部52,53とロータ対向部44との間隙を確保することができるようになっている。これにより、ステータコア21の径方向への大型化を抑えつつも、セグメント導体25の第1及び第2突出部52,53とロータ対向部44との干渉を抑えることが可能となっている。   In addition, the segment conductor 25 includes not only the second protrusion 53 that is welded but also the first protrusion 52 having a bent portion 25a that is curved and formed on the radially outer side of the radially inner end Sa of the slot S. It is comprised so that it may be located on the (opposite rotor opposing part side). Therefore, it is possible to secure a gap between the first and second projecting portions 52 and 53 of the segment conductor 25 and the rotor facing portion 44 without having to configure the slot S to be radially outward from the rotor facing portion 44. It can be done. Accordingly, it is possible to suppress interference between the first and second projecting portions 52 and 53 of the segment conductor 25 and the rotor facing portion 44 while suppressing an increase in size of the stator core 21 in the radial direction.

また、電機子巻線22にセグメント導体25を用いた構成では、セグメント導体25を収容するスロットSの数(ティース24の数)が多く、ティース24の周方向幅が狭くなる傾向がある。このため、ティース24におけるロータ14との対向面(径方向内側端面)の面積を広くして出力を向上させるためには、本実施形態のように、ロータ対向部44によってティース24の径方向内側端面を軸方向に延ばす構成が適している。   Further, in the configuration in which the segment conductor 25 is used for the armature winding 22, the number of slots S (the number of teeth 24) that accommodate the segment conductor 25 is large, and the circumferential width of the teeth 24 tends to be narrowed. For this reason, in order to increase the area of the surface (radial inner end surface) facing the rotor 14 in the teeth 24 to improve the output, the rotor facing portion 44 is used to increase the output in the radial direction of the teeth 24 as in the present embodiment. A configuration in which the end face extends in the axial direction is suitable.

[磁性板(補助コア部材)の製造方法]
次に、本実施形態の磁性板40の製造方法について説明する。
まず、ロータ対向部44を折曲成形する前の磁性板40を鋼板から打ち抜く(打ち抜き工程)。
[Method of manufacturing magnetic plate (auxiliary core member)]
Next, the manufacturing method of the magnetic plate 40 of this embodiment is demonstrated.
First, the magnetic plate 40 before bending the rotor facing portion 44 is punched from the steel plate (punching step).

次に、図8(a)(b)及び図9に示すように、前記打ち抜き工程で打ち抜いた磁性板40のロータ対向部44を、積層部41に対して直角(90度)に折り曲げる(折り曲げ工程)。このとき、ロータ対向部44と積層部41との間の折曲部45の肉厚は、ロータ対向部44の板厚(つまり、磁性板40の板厚T1)に比べて若干薄くなる。   Next, as shown in FIGS. 8A, 8B, and 9, the rotor facing portion 44 of the magnetic plate 40 punched in the punching step is bent at a right angle (90 degrees) with respect to the laminated portion 41 (bending). Process). At this time, the thickness of the bent portion 45 between the rotor facing portion 44 and the stacked portion 41 is slightly smaller than the plate thickness of the rotor facing portion 44 (that is, the plate thickness T1 of the magnetic plate 40).

なお、この時点で、図8(b)に示すように、磁性板40の積層部41には、各ティース構成部43の先端部(幅広部24bに対応する部位)を周方向に分離するスリット40aが形成されているが、ティース構成部43の先端部以外の部位(径方向延出部24aに対応する部位)はまだ打ち抜き成形されていない。つまり、この時点ではまだ、積層部41には、各ティース構成部43の周方向間の前記各スロットSに対応する部位(スロット形成部位Sb)が打ち抜かれていない状態となっている。   At this time, as shown in FIG. 8 (b), the laminated portion 41 of the magnetic plate 40 has a slit that separates the tip end portion (the portion corresponding to the wide portion 24b) of each tooth constituent portion 43 in the circumferential direction. Although 40a is formed, the site | parts (site corresponding to the radial direction extension part 24a) other than the front-end | tip part of the teeth structure part 43 are not stamped yet. In other words, at this time, the layered portion 41 is not yet punched out at sites (slot forming sites Sb) corresponding to the slots S between the circumferential directions of the tooth components 43.

[拘束据え込み工程]
次に、図10、図11(a)(b)及び図12に示すように、第1の金型71を用いて拘束据え込み工程を行う。
[Restraining process]
Next, as shown in FIGS. 10, 11 (a), 11 (b), and 12, a restraining upsetting process is performed using the first mold 71.

第1の金型71は、コア装着ダイとしての径方向拘束ダイ72と、ワーククランプ73と、据え込みパンチ74と、複数の周方向拘束部78aを有する周方向拘束ダイ78と、径方向拘束ダイ72と周方向拘束ダイ78との間に配置された付勢部材としての圧縮コイルばね79とを備えている。   The first mold 71 includes a radial constraint die 72 as a core mounting die, a work clamp 73, an upsetting punch 74, a circumferential constraint die 78 having a plurality of circumferential constraint portions 78a, and a radial constraint. A compression coil spring 79 is provided as a biasing member disposed between the die 72 and the circumferential restraint die 78.

図11(a)に示すように、径方向拘束ダイ72は、磁性板40の積層部41の反ロータ対向部側を支持する。ワーククランプ73は、径方向拘束ダイ72とで積層部41を板面方向(ロータ対向部44の延出方向)に挟むように配置される。据え込みパンチ74は、ワーククランプ73とでロータ対向部44を板面方向(磁性板40の径方向)に挟むように、ワーククランプ73及び径方向拘束ダイ72の側方に配置される。   As shown in FIG. 11A, the radial direction restriction die 72 supports the side opposite to the rotor of the laminated portion 41 of the magnetic plate 40. The work clamp 73 is arranged so as to sandwich the laminated portion 41 in the plate surface direction (extending direction of the rotor facing portion 44) with the radial direction constraining die 72. The upsetting punch 74 is disposed on the side of the work clamp 73 and the radial direction constraining die 72 so as to sandwich the rotor facing portion 44 with the work clamp 73 in the plate surface direction (the radial direction of the magnetic plate 40).

径方向拘束ダイ72は、磁性板40の積層部41が載置される平坦面75と、その平坦面75から上方(ワーククランプ73側)に突出する第1拘束部76及び第2拘束部77とを有している。第1拘束部76は、平坦面75の径方向外側端部に形成されている。平坦面75に磁性板40の積層部41が載置された状態において、第1拘束部76は、積層部41の外周面に対して径方向に当接される。   The radial direction restraint die 72 includes a flat surface 75 on which the laminated portion 41 of the magnetic plate 40 is placed, and a first restraint portion 76 and a second restraint portion 77 that protrude upward (from the work clamp 73 side) from the flat surface 75. And have. The first restraining portion 76 is formed at the radially outer end of the flat surface 75. In a state where the laminated portion 41 of the magnetic plate 40 is placed on the flat surface 75, the first restraining portion 76 is brought into contact with the outer peripheral surface of the laminated portion 41 in the radial direction.

第2拘束部77は、平坦面75の径方向内側端部に形成されている。第2拘束部77には、平坦面75と連なる拘束円弧面77aが形成されている。拘束円弧面77aの円弧中心P1は、平坦面75に載置された磁性板40の折曲部45の二等分線L上に位置している。また、拘束円弧面77aの曲率半径R1は、拘束円弧面77aの最下点が平坦面75上に位置し、かつ、拘束円弧面77aが折曲部45の外側面の一部に沿うように設定されている。   The second restricting portion 77 is formed at the radially inner end of the flat surface 75. The second restricting portion 77 is formed with a constraining arc surface 77 a that is continuous with the flat surface 75. The arc center P <b> 1 of the constraining arc surface 77 a is located on the bisector L of the bent portion 45 of the magnetic plate 40 placed on the flat surface 75. The radius of curvature R1 of the constraining arc surface 77a is such that the lowest point of the constraining arc surface 77a is located on the flat surface 75 and the constraining arc surface 77a is along a part of the outer surface of the bent portion 45. Is set.

また、第2拘束部77の上面には、平坦面75と平行をなす平行面77bが形成されている。平行面77bは、拘束円弧面77aと連なるように形成されるとともに、径方向拘束ダイ72の径方向内側端面72aまで延びている。なお、平行面77bと拘束円弧面77aとのなす角部は、円弧状に面取りされている。   A parallel surface 77 b that is parallel to the flat surface 75 is formed on the upper surface of the second restraining portion 77. The parallel surface 77 b is formed so as to be continuous with the constraining arc surface 77 a and extends to the radially inner end surface 72 a of the radial constraining die 72. The corner formed by the parallel surface 77b and the constraining arc surface 77a is chamfered in an arc shape.

周方向拘束ダイ78は、径方向拘束ダイ72の下部(磁性板40が配置される側とは反対側)に配置されるとともに、図示しない固定台に移動不能に設けられている。径方向拘束ダイ72と周方向拘束ダイ78との間に配置された圧縮コイルばね79は、磁性板40の軸方向に沿った方向であって径方向拘束ダイ72と周方向拘束ダイ78とを離間させる方向に付勢している。   The circumferential restraint die 78 is disposed below the radial restraint die 72 (on the side opposite to the side on which the magnetic plate 40 is disposed) and is provided on a fixed base (not shown) so as not to move. A compression coil spring 79 disposed between the radial direction restraint die 72 and the circumferential direction restraint die 78 is a direction along the axial direction of the magnetic plate 40, and the radial direction restraint die 72 and the circumferential direction restraint die 78. It is energized in the direction of separating.

図10及び図11(b)に示すように、周方向拘束ダイ78には、磁性板40の軸方向に沿って延びる複数の周方向拘束部78aが形成されている。各周方向拘束部78aは、磁性板40の周方向に沿って並設されている。各周方向拘束部78aは、径方向拘束ダイ72の各第2拘束部77の周方向間に形成された挿通溝72bに軸方向に挿通されるとともに、積層部41の各スリット40aに挿入される。そして、各周方向拘束部78aは、各ロータ対向部44の根元の折曲部45の周方向間に挿入されるとともに、各ロータ対向部44の軸方向中間位置まで延びている。なお、各周方向拘束部78aの径方向内側端面78bは、径方向拘束ダイ72の径方向内側端面72a(図11(a)参照)と面一となるように形成されている。   As shown in FIGS. 10 and 11B, the circumferential restraint die 78 is formed with a plurality of circumferential restraints 78 a extending along the axial direction of the magnetic plate 40. The circumferential direction restraining portions 78 a are arranged in parallel along the circumferential direction of the magnetic plate 40. Each circumferential direction restraint portion 78 a is inserted in the axial direction into an insertion groove 72 b formed between the circumferential directions of each second restraint portion 77 of the radial direction restraint die 72 and is inserted into each slit 40 a of the stacked portion 41. The Each circumferential direction restraining portion 78 a is inserted between the circumferential directions of the bent portion 45 at the base of each rotor facing portion 44 and extends to an intermediate position in the axial direction of each rotor facing portion 44. The radially inner end face 78b of each circumferential restraint portion 78a is formed to be flush with the radially inner end face 72a (see FIG. 11A) of the radial restraint die 72.

据え込みパンチ74は、磁性板40のロータ対向部44の折曲外側端面(径方向内側面)と当接する内側面74aと、該内側面74aに対して垂直をなすとともに磁性板40の軸方向と直交する平面状をなす押圧面74b(軸方向当接部)とを有している。また、据え込みパンチ74には、押圧面74bから軸方向に突出するとともに、磁性板40の各ロータ対向部44の周方向間に挿入される各押圧凸部74cが一体形成されている。各押圧凸部74cは、径方向においては据え込みパンチ74の内側面74aと一体に繋がっている(図11(b)参照)。   The upsetting punch 74 has an inner surface 74a that contacts the bent outer end surface (radial inner surface) of the rotor facing portion 44 of the magnetic plate 40, and is perpendicular to the inner side surface 74a and is axial with respect to the magnetic plate 40. And a pressing surface 74b (axial contact portion) having a planar shape perpendicular to the surface. The upset punch 74 is integrally formed with pressing convex portions 74 c that protrude in the axial direction from the pressing surface 74 b and are inserted between the circumferential directions of the rotor facing portions 44 of the magnetic plate 40. Each pressing convex portion 74c is integrally connected to the inner side surface 74a of the upsetting punch 74 in the radial direction (see FIG. 11B).

図10に示すように、押圧面74bと押圧凸部74cの周方向両側面74d(周方向当接部)とのなす形状は、磁性板40のロータ対向部44の径方向視における台形形状に倣って形成されている。つまり、押圧凸部74cの周方向両側面74dは、磁性板40の軸方向と直交する押圧面74bに対して周方向に傾斜している。そして、据え込みパンチ74の押圧面74bはロータ対向部44の先端面44bと軸方向に当接し、押圧凸部74cの周方向両側面74dはロータ対向部44の周方向両側の側縁部44aと周方向に当接する。   As shown in FIG. 10, the shape formed by the pressing surface 74 b and the circumferential side surfaces 74 d (circumferential contact portions) of the pressing convex portion 74 c is a trapezoidal shape in the radial direction of the rotor facing portion 44 of the magnetic plate 40. It is imitated. That is, both side surfaces 74d in the circumferential direction of the pressing convex portion 74c are inclined in the circumferential direction with respect to the pressing surface 74b orthogonal to the axial direction of the magnetic plate 40. The pressing surface 74b of the upsetting punch 74 abuts the tip surface 44b of the rotor facing portion 44 in the axial direction, and both circumferential side surfaces 74d of the pressing convex portion 74c are side edge portions 44a on both circumferential sides of the rotor facing portion 44. And abut in the circumferential direction.

図11(a)に示すように、第1の金型71を用いた拘束据え込み工程では、まず、前記折り曲げ工程でロータ対向部44を直角に屈曲した磁性板40の積層部41を、径方向拘束ダイ72の平坦面75に載置し、ワーククランプ73及び据え込みパンチ74を所定位置に配置する。このとき、ワーククランプ73は、積層部41の折曲内側端面(軸方向におけるロータ対向部44側の板面)と、ロータ対向部44の折曲内側端面(積層部41側の板面)と、折曲部45の内側面とに密着する。また、据え込みパンチ74の内側面74aは、ロータ対向部44の折曲外側端面と、径方向拘束ダイ72の径方向内側端面72aと、各周方向拘束部78aの径方向内側端面78bとに密着する(図11(b)参照)。   As shown in FIG. 11A, in the restraining upsetting process using the first mold 71, first, the laminated portion 41 of the magnetic plate 40 in which the rotor facing portion 44 is bent at a right angle in the bending step, The work clamp 73 and the upsetting punch 74 are placed at predetermined positions on the flat surface 75 of the direction restricting die 72. At this time, the work clamp 73 includes a bent inner end surface (plate surface on the rotor facing portion 44 side in the axial direction) of the stacked portion 41 and a bent inner end surface (plate surface on the stacked portion 41 side) of the rotor facing portion 44. It adheres closely to the inner surface of the bent portion 45. Further, the inner side surface 74a of the upsetting punch 74 is formed on a bent outer end surface of the rotor facing portion 44, a radially inner end surface 72a of the radial constraint die 72, and a radially inner end surface 78b of each circumferential constraint portion 78a. Adhere closely (see FIG. 11B).

また、このとき、径方向拘束ダイ72の第1拘束部76は、平坦面75に載置された積層部41の外周面に対して径方向に密着する。そして、平坦面75と連なる拘束円弧面77aは、折曲部45の外側面における積層部41寄りの一部である被拘束面45aに対して隙間なく密着されている。この被拘束面45aは、折曲部45の外側面において、前記二等分線Lから積層部41側の範囲に設定されている。つまり、拘束円弧面77aは、折曲部45の積層部41側の半分を拘束する。また、据え込みパンチ74の加圧前の状態では、第2拘束部77の平行面77b及び据え込みパンチ74の内側面74aで構成される角部と、折曲部45の外側面における被拘束面45a以外の箇所(拘束円弧面77aによって拘束されていない非拘束部45b)との間には隙間G1が存在する。つまり、第2拘束部77の平行面77bは、折曲部45の非拘束部45bと隙間G1を介して対向している。   At this time, the first restraining portion 76 of the radially restraining die 72 is in close contact with the outer peripheral surface of the stacked portion 41 placed on the flat surface 75 in the radial direction. The constraining circular arc surface 77 a that is continuous with the flat surface 75 is in close contact with the constrained surface 45 a that is a part of the outer surface of the bent portion 45 near the laminated portion 41 without any gap. The constrained surface 45 a is set in a range from the bisector L to the laminated portion 41 side on the outer surface of the bent portion 45. That is, the constraining arc surface 77a constrains the half of the bent portion 45 on the laminated portion 41 side. Further, in the state before pressurization of the upsetting punch 74, the corner portion constituted by the parallel surface 77 b of the second constraining portion 77 and the inner side surface 74 a of the upsetting punch 74 and the constrained portion on the outer surface of the bent portion 45. There is a gap G1 between a portion other than the surface 45a (an unconstrained portion 45b not constrained by the constraining arc surface 77a). That is, the parallel surface 77b of the second restricting portion 77 faces the non-restraining portion 45b of the bent portion 45 via the gap G1.

そして、図10に示すように、各第2拘束部77の周方向間の挿通溝72bに挿通された周方向拘束ダイ78の各周方向拘束部78aは、積層部41の各スリット40aに挿入される。このとき、各周方向拘束部78aは、各ロータ対向部44の折曲部45を含む根元部位の周方向両側部に対して当接又は僅かな隙間を介して対向する。   And as shown in FIG. 10, each circumferential direction restraint part 78a of the circumferential direction restraint die | dye 78 inserted in the insertion groove 72b between the circumferential directions of each 2nd restraint part 77 is inserted in each slit 40a of the lamination | stacking part 41. As shown in FIG. Is done. At this time, each circumferential direction restraint part 78a is opposed to both side parts in the circumferential direction of the root portion including the bent part 45 of each rotor facing part 44 through a slight gap.

上記のように、拘束円弧面77aで折曲部45の折曲外側面の一部(被拘束面45a)を径方向に拘束するとともに、周方向拘束部78aで折曲部45の周方向両側部を周方向に拘束した状態で、据え込みパンチ74を下方(径方向拘束ダイ72側)に加圧する。このとき、ロータ対向部44は、その先端面44b及び周方向両側の側縁部44aがそれぞれ、据え込みパンチ74の押圧面74b及び押圧凸部74cの周方向両側面74dによってロータ対向部44の長手方向(磁性板40の軸方向)の折曲部45側に押圧される。   As described above, a part of the outer side surface of the bent portion 45 (the constrained surface 45a) is constrained in the radial direction by the constraining arc surface 77a, and both circumferential directions of the bent portion 45 are confined by the circumferential direction constraining portion 78a. With the part constrained in the circumferential direction, the upsetting punch 74 is pressed downward (in the radial direction constraining die 72 side). At this time, the rotor facing portion 44 has a tip surface 44b and side edge portions 44a on both sides in the circumferential direction of the rotor facing portion 44 due to the pressing surface 74b of the upsetting punch 74 and the circumferential side surfaces 74d of the pressing convex portion 74c, respectively. It is pressed to the bent portion 45 side in the longitudinal direction (the axial direction of the magnetic plate 40).

すると、図12に示すように、ロータ対向部44が折曲部45側にスライドするように変形するとともに、折曲部45の非拘束部45bの肉が前記隙間G1に流れ込んで、第2拘束部77の平行面77b及び据え込みパンチ74の内側面74aで構成される角部の直角形状に略倣った形状に変形する。このとき、折曲部45の被拘束面45aが拘束円弧面77aにて隙間なく拘束されているため、折曲部45の変形はロータ対向部44側の約半分に留まる。そして、折曲部45には、非拘束部45bの変形によって肉厚部45cが形成され、その肉厚部45cの肉厚T4は、ロータ対向部44の板厚(つまり、磁性板40の板厚T1)よりも厚くなっている。また、ロータ対向部44の折曲外側端面(ロータ14との対向面)における軸方向に沿う部位の長さが長くなる。   Then, as shown in FIG. 12, the rotor facing portion 44 is deformed so as to slide toward the bent portion 45, and the meat of the unconstrained portion 45 b of the bent portion 45 flows into the gap G <b> 1, thereby It deforms into a shape that substantially follows the right-angled shape of the corner formed by the parallel surface 77 b of the portion 77 and the inner surface 74 a of the upsetting punch 74. At this time, since the constrained surface 45a of the bent portion 45 is constrained by the constraining arc surface 77a without any gap, the deformation of the bent portion 45 remains about half of the rotor facing portion 44 side. The bent portion 45 is formed with a thick portion 45c by deformation of the non-restraining portion 45b, and the thickness T4 of the thick portion 45c is the thickness of the rotor facing portion 44 (that is, the plate of the magnetic plate 40). It is thicker than the thickness T1). Moreover, the length of the site | part along the axial direction in the bending outer side end surface (opposite surface with the rotor 14) of the rotor opposing part 44 becomes long.

また、このとき、折曲部45の周方向両側部は、周方向拘束ダイ78の周方向拘束部78aによって周方向に拘束されているため、折曲部45の肉は周方向拘束部78aに対して周方向に圧接する。つまり、周方向拘束部78aの拘束によって折曲部45の肉が周方向に流れず、該折曲部45の周方向幅が各周方向拘束部78aの周方向間隔によって設定される幅で形成される。また、折曲部45の肉が周方向拘束部78aによって周方向に流れないため、折曲部45の肉厚部45cがより好適に形成される。   At this time, since both sides in the circumferential direction of the bent portion 45 are restrained in the circumferential direction by the circumferential restraint portion 78a of the circumferential restraint die 78, the flesh of the bent portion 45 becomes the circumferential restraint portion 78a. Press against the circumferential direction. That is, the meat of the bent portion 45 does not flow in the circumferential direction due to the restraint of the circumferential restraint portion 78a, and the circumferential width of the bent portion 45 is formed with a width set by the circumferential interval of each circumferential restraint portion 78a. Is done. Moreover, since the thickness of the bent part 45 does not flow in the circumferential direction by the circumferential direction restricting part 78a, the thick part 45c of the bent part 45 is more suitably formed.

上記の拘束据え込み加工が完了したら、据え込みパンチ74及びワーククランプ73を上方に移動した後、磁性板40を径方向拘束ダイ72から取り出す。ここで、径方向拘束ダイ72は、圧縮コイルばね79によって周方向拘束ダイ78から磁性板40の軸方向に離間する方向に付勢されているため、据え込みパンチ74及びワーククランプ73を上方に移動させたときに、径方向拘束ダイ72が磁性板40を軸方向上方(反周方向拘束ダイ側)に押し上げるように移動する。このとき、周方向に隣接する周方向拘束部78aと圧接する各折曲部45が、その周方向拘束部78aの間から軸方向に抜かれる。これにより、磁性板40を第1の金型71から容易に取り出すことが可能となっている。   When the restraining upsetting process is completed, the upsetting punch 74 and the work clamp 73 are moved upward, and then the magnetic plate 40 is taken out from the radial direction restraining die 72. Here, since the radial restraint die 72 is biased by the compression coil spring 79 in a direction away from the circumferential restraint die 78 in the axial direction of the magnetic plate 40, the upsetting punch 74 and the work clamp 73 are moved upward. When moved, the radial constraint die 72 moves to push the magnetic plate 40 upward in the axial direction (on the anti-circumferential constraint die side). At this time, the bent portions 45 that are in pressure contact with the circumferential direction restraining portions 78a adjacent in the circumferential direction are pulled out in the axial direction from between the circumferential direction restraining portions 78a. Thereby, the magnetic plate 40 can be easily taken out from the first mold 71.

[本据え込み工程]
次に、図13に示すように、第2の金型81を用いて本据え込み工程を行う。
第2の金型81は、ダイ82、ワーククランプ83、据え込みパンチ84、周方向拘束ダイ88及び圧縮コイルばね89を備えており、それらは前記第1の金型71の径方向拘束ダイ72、ワーククランプ73、据え込みパンチ74、周方向拘束ダイ78及び圧縮コイルばね79と同様の位置に配置される。また、ワーククランプ83、据え込みパンチ84及び周方向拘束ダイ88は、前記第1の金型71のワーククランプ73、据え込みパンチ84及び周方向拘束ダイ78と同様の構成である。つまり、第2の金型81の周方向拘束ダイ88は、第1の金型71の周方向拘束ダイ78の各周方向拘束部78aと同様の複数の周方向拘束部(図示略)を有している。また、第2の金型81の据え込みパンチ84は、第1の金型71の据え込みパンチ74の押圧凸部74cと同様の押圧凸部(図示略)を有している。
[This upsetting process]
Next, as shown in FIG. 13, the main upsetting process is performed using the second mold 81.
The second die 81 includes a die 82, a work clamp 83, an upsetting punch 84, a circumferential restraint die 88, and a compression coil spring 89, which are radial restraint dies 72 of the first die 71. The work clamp 73, the upsetting punch 74, the circumferential restraint die 78, and the compression coil spring 79 are disposed at the same positions. The work clamp 83, the upsetting punch 84, and the circumferential direction restricting die 88 have the same configuration as the work clamp 73, the upsetting punch 84, and the circumferential direction restricting die 78 of the first mold 71. That is, the circumferential restraint die 88 of the second mold 81 has a plurality of circumferential restraints (not shown) similar to the circumferential restraints 78a of the circumferential restraint die 78 of the first mold 71. doing. The upsetting punch 84 of the second mold 81 has a pressing projection (not shown) similar to the pressing projection 74 c of the upsetting punch 74 of the first mold 71.

ダイ82は、磁性板40の積層部41が載置される平坦面85と、その平坦面85から上方に突出する外周拘束部86とを有している。外周拘束部86は、上記径方向拘束ダイ72の第1拘束部76と同様の構成であり、平坦面85の径方向外側端部に形成されている。平坦面85に磁性板40の積層部41が載置された状態において、外周拘束部86は、積層部41の外周面に対して径方向に密着する。また、ダイ82の平坦面85の径方向内周側には、上記径方向拘束ダイ72の第2拘束部77のような凸部が形成されておらず、平坦面85の平面形状は、外周拘束部86の内周側からダイ82の径方向内側端面82aまで続いている。   The die 82 has a flat surface 85 on which the laminated portion 41 of the magnetic plate 40 is placed, and an outer peripheral restraining portion 86 protruding upward from the flat surface 85. The outer periphery restraint portion 86 has the same configuration as the first restraint portion 76 of the radial restraint die 72 and is formed at the radially outer end of the flat surface 85. In a state where the laminated portion 41 of the magnetic plate 40 is placed on the flat surface 85, the outer peripheral restraining portion 86 is in close contact with the outer peripheral surface of the laminated portion 41 in the radial direction. Further, on the radially inner peripheral side of the flat surface 85 of the die 82, a convex portion like the second restraining portion 77 of the radial restraining die 72 is not formed, and the planar shape of the flat surface 85 is the outer periphery. It continues from the inner peripheral side of the restraining portion 86 to the radially inner end face 82a of the die 82.

また、ダイ82と周方向拘束ダイ88との間に配置された圧縮コイルばね89は、磁性板40の軸方向に沿った方向であってダイ82と周方向拘束ダイ88とを離間させる方向に付勢している。   Further, the compression coil spring 89 disposed between the die 82 and the circumferential restraint die 88 is a direction along the axial direction of the magnetic plate 40 and in a direction separating the die 82 and the circumferential restraint die 88. Energized.

第2の金型81を用いた本据え込み工程では、まず、前述の拘束据え込み加工を施した磁性板40の積層部41を、ダイ82の平坦面85に載置し、ワーククランプ83及び据え込みパンチ84を所定位置に配置する。このとき、ワーククランプ83は、積層部41の折曲内側端面(軸方向におけるロータ対向部44側の板面)と、ロータ対向部44の折曲内側端面(積層部41側の板面)と、折曲部45の内側面とに密着する。また、据え込みパンチ84は、その内側面84aでロータ対向部44の折曲外側端面及びダイ82の径方向内側端面82aと密着する。また、このとき、ダイ82の平坦面85と、折曲部45(肉厚部45c及び前記拘束据え込み工程で拘束円弧面77aに拘束されていた被拘束面45a)との間に隙間G2が存在している。   In the main upsetting process using the second mold 81, first, the laminated portion 41 of the magnetic plate 40 subjected to the restraining upsetting described above is placed on the flat surface 85 of the die 82, and the work clamp 83 and The upsetting punch 84 is arranged at a predetermined position. At this time, the work clamp 83 includes a bent inner end surface (plate surface on the rotor facing portion 44 side in the axial direction) of the stacked portion 41 and a bent inner end surface (plate surface on the stacked portion 41 side) of the rotor facing portion 44. It adheres closely to the inner surface of the bent portion 45. Further, the upsetting punch 84 is in close contact with the bent outer end face of the rotor facing portion 44 and the radially inner end face 82a of the die 82 at its inner side face 84a. At this time, there is a gap G2 between the flat surface 85 of the die 82 and the bent portion 45 (the thick portion 45c and the constrained surface 45a constrained by the constraining arc surface 77a in the constraining upsetting process). Existing.

上記のように第2の金型81に磁性板40を配置した後、据え込みパンチ84を下方(拘束ダイ82側)に加圧する。すると、ロータ対向部44は、その先端面44b及び周方向両側の側縁部44aがそれぞれ、据え込みパンチ84の押圧面84b及び押圧凸部(図示略)の周方向両側面によってロータ対向部44の長手方向(磁性板40の軸方向)の折曲部45側に押圧される。   After placing the magnetic plate 40 on the second mold 81 as described above, the upsetting punch 84 is pressed downward (toward the constraining die 82). Then, the rotor facing portion 44 has a tip surface 44b and side edge portions 44a on both sides in the circumferential direction, respectively, with the pressing surface 84b of the upsetting punch 84 and the circumferential side surfaces of the pressing convex portion (not shown). Is pressed toward the bent portion 45 in the longitudinal direction (the axial direction of the magnetic plate 40).

すると、図14に示すように、ロータ対向部44が折曲部45側にスライドするように変形するとともに、折曲部45全体の肉が前記隙間G2に流れ込んで、ダイ82の平坦面85と据え込みパンチ84の内側面84aとで構成される角部の直角形状に略倣った形状に変形する。この本据え込み工程によって、折曲部45の外側面が略直角に成形され、折曲部45の肉厚T3が、前記肉厚部45cの肉厚T4よりも厚く成形される(図5(b)参照)。   Then, as shown in FIG. 14, the rotor facing portion 44 is deformed so as to slide toward the bent portion 45, and the whole meat of the bent portion 45 flows into the gap G <b> 2. It is deformed into a shape that substantially follows the right-angle shape of the corner formed by the inner side surface 84 a of the upsetting punch 84. Through this upsetting process, the outer surface of the bent portion 45 is formed at a substantially right angle, and the thickness T3 of the bent portion 45 is formed to be thicker than the thickness T4 of the thick portion 45c (FIG. 5 ( b)).

また、このとき、各折曲部45の周方向両側部は、周方向拘束ダイ88の各周方向拘束部によって周方向に拘束している。この周方向拘束ダイ88の各周方向拘束部による作用は、前述した前記第1の金型71の各周方向拘束部78aの作用と同様である。つまり、据え込みパンチ84による押圧の際に、周方向拘束ダイ88の各周方向拘束部の拘束によって各折曲部45の肉が周方向に流れないため、各折曲部45の周方向幅が各周方向拘束部の周方向間隔によって設定される幅で形成され、また、折曲部45をより好適に肉厚化できるようになっている。   At this time, both side portions in the circumferential direction of the bent portions 45 are restrained in the circumferential direction by the circumferential restraints of the circumferential restraint die 88. The operation of each circumferential restraint portion of the circumferential restraint die 88 is the same as the operation of each circumferential restraint portion 78a of the first mold 71 described above. That is, when pressed by the upsetting punch 84, the meat of each bent portion 45 does not flow in the circumferential direction due to the restraint of each circumferential restraint portion of the circumferential restraint die 88. Is formed with a width set by the circumferential interval of each circumferential restraint portion, and the bent portion 45 can be more suitably thickened.

上記の本据え込み工程が完了したら、据え込みパンチ84及びワーククランプ83を上方に移動した後、磁性板40をダイ82から取り出す。ここで、ダイ82は、圧縮コイルばね89によって周方向拘束ダイ88から磁性板40の軸方向に離間する方向に付勢されているため、据え込みパンチ84及びワーククランプ83を上方に移動させたときに、ダイ82が磁性板40を軸方向上方(反周方向拘束ダイ側)に押し上げるように移動する。このとき、周方向に隣接する周方向拘束ダイ88の周方向拘束部と圧接する各折曲部45が、その周方向拘束部の間から軸方向に抜かれる。これにより、磁性板40を第2の金型81から容易に取り出すことが可能となっている。   When the main upsetting process is completed, the upsetting punch 84 and the work clamp 83 are moved upward, and then the magnetic plate 40 is taken out of the die 82. Here, since the die 82 is urged by the compression coil spring 89 in a direction away from the circumferential restraint die 88 in the axial direction of the magnetic plate 40, the upsetting punch 84 and the work clamp 83 are moved upward. At this time, the die 82 moves so as to push the magnetic plate 40 upward in the axial direction (on the anti-circumferential constraint die side). At this time, the bent portions 45 that are in pressure contact with the circumferential direction restraining portions of the circumferential direction restraining die 88 adjacent in the circumferential direction are pulled out from between the circumferential direction restraining portions in the axial direction. Thereby, the magnetic plate 40 can be easily taken out from the second mold 81.

磁性板40を第2の金型81から取り出した後、磁性板40の各スロット形成部位Sb(図8(b)参照)をプレスにより打ち抜き、各スロットS及び各ティース構成部43を形成する。これにより、磁性板40が完成する。   After the magnetic plate 40 is taken out from the second mold 81, each slot forming portion Sb (see FIG. 8B) of the magnetic plate 40 is punched out by pressing to form each slot S and each tooth component 43. Thereby, the magnetic plate 40 is completed.

その後、上記製造方法によって製造した磁性板40を、メインコア部31の軸方向両端部にそれぞれ設置する(設置工程)。これにより、ステータコア21が完成する。
以上のような製造方法によれば、2回の据え込み加工(拘束据え込み工程と本据え込み工程)を経て、折曲部45の外側面が略直角となるように成形されるため、それぞれの据え込み加工による折曲部45の変形量(つまり、隙間G1,G2)が小さくなる。
Thereafter, the magnetic plates 40 manufactured by the above manufacturing method are respectively installed at both axial end portions of the main core portion 31 (installation step). Thereby, the stator core 21 is completed.
According to the manufacturing method as described above, the outer surface of the bent portion 45 is formed so as to be substantially at right angles after two upsetting processes (constrained upsetting process and main upsetting process). The amount of deformation of the bent portion 45 (that is, the gaps G1 and G2) due to the upsetting process is reduced.

ここで、1回の据え込み加工によって折曲部45の外側面を略直角とすることを考えると、ロータ対向部44の前記折り曲げ工程後、第1の金型71による拘束据え込み工程を経ずに第2の金型81による本据え込み工程を行うこととなる。この場合、前記折り曲げ工程直後の磁性板40の折曲部45とダイ82の平坦面85との間の隙間が大きく、その隙間に依存する折曲部45の変形量が大きくなる。このため、折曲部45に無理な変形(内側部位での巻き込み等)が生じて亀裂が生じやすい。   Here, considering that the outer surface of the bent portion 45 is made substantially right-angled by one upsetting process, after the bending process of the rotor facing portion 44, a constrained upsetting process by the first mold 71 is performed. Without this, the main upsetting process by the second mold 81 is performed. In this case, the gap between the bent portion 45 of the magnetic plate 40 immediately after the bending step and the flat surface 85 of the die 82 is large, and the deformation amount of the bent portion 45 depending on the gap is increased. For this reason, unreasonable deformation | transformation (winding in an inner side part etc.) arises in the bending part 45, and a crack tends to arise.

その点、本実施形態の製造方法では、径方向拘束ダイ72の第2拘束部77によって隙間G1が小さくなっており、この拘束据え込み工程で折曲部45に肉厚部45cが形成されるため、その後の本据え込み工程においても前記隙間G2は小さい。このため、各据え込み加工(拘束据え込み工程及び本据え込み工程)において折曲部45に無理な変形が生じず、亀裂の発生等が抑えられている。   In that regard, in the manufacturing method of the present embodiment, the gap G1 is reduced by the second restraining portion 77 of the radial restraining die 72, and the thick portion 45c is formed in the bent portion 45 by this restraining upsetting process. Therefore, the gap G2 is small in the subsequent main upsetting process. For this reason, in each upsetting process (restraining upsetting process and main upsetting process), the bending portion 45 is not deformed excessively, and the occurrence of cracks or the like is suppressed.

次に、本実施形態の特徴的な効果を記載する。
(1)拘束据え込み工程において、ロータ対向部44根元の折曲部45の周方向両側部を周方向拘束ダイ78の周方向拘束部78aによって拘束し、その拘束状態で据え込みパンチ74にてロータ対向部44を軸方向の折曲部45側に押圧する。これにより、折曲部45が変形して肉厚となる。このとき、折曲部45の周方向両側部が周方向拘束部78aにて拘束されているため、押圧時に折曲部45の肉が周方向に逃げず、該折曲部45の周方向幅が周方向拘束部78aによって設定される幅で形成される。このため、周方向に沿って設けられる各折曲部45間の間隔のばらつきを抑えつつ折曲部45を肉厚化することができる。また、押圧時において折曲部45の肉が周方向拘束部78aによって周方向に流れないことから、折曲部45を肉厚化する点においてより好ましい。
Next, characteristic effects of the present embodiment will be described.
(1) In the restraining upsetting process, both circumferential sides of the bent portion 45 at the root of the rotor facing portion 44 are restrained by the circumferential restraining portion 78a of the circumferential restraining die 78, and in the restrained state, the upsetting punch 74 The rotor facing portion 44 is pressed toward the bent portion 45 in the axial direction. Thereby, the bending part 45 deform | transforms and becomes thick. At this time, since both sides in the circumferential direction of the bent portion 45 are restrained by the circumferential restraint portion 78a, the meat of the bent portion 45 does not escape in the circumferential direction when pressed, and the circumferential width of the bent portion 45 Is formed with a width set by the circumferential direction restricting portion 78a. For this reason, the bending part 45 can be thickened, suppressing the dispersion | variation in the space | interval between each bending part 45 provided along the circumferential direction. Moreover, since the thickness of the bending part 45 does not flow to the circumferential direction by the circumferential direction restraint part 78a at the time of a press, it is more preferable at the point which thickens the bending part 45.

また、本据え込み工程においても、ロータ対向部44根元の折曲部45の周方向両側部を周方向拘束ダイ88の周方向拘束部によって拘束し、その拘束状態で据え込みパンチ84にてロータ対向部44を軸方向の折曲部45側に押圧する。このため、上記拘束据え込み工程のときと同様に、各折曲部45間の間隔のばらつきを抑えつつ折曲部45を肉厚化することができる。   Also in this upsetting process, both circumferential sides of the bent portion 45 at the root of the rotor facing portion 44 are restrained by the circumferential restraining portion of the circumferential restraining die 88, and the rotor is moved by the upsetting punch 84 in the restrained state. The facing portion 44 is pressed toward the bent portion 45 in the axial direction. For this reason, the bent part 45 can be thickened, suppressing the dispersion | variation in the space | interval between each bent part 45 similarly to the time of the said restraint upsetting process.

(2)第1の金型71及び第2の金型81において、周方向拘束ダイ78,88は径方向拘束ダイ72又はダイ82に対して分離可能に構成される。このため、ダイ72,82と周方向拘束ダイ78,88とを分離させるだけで、各折曲部45を周方向拘束ダイ78,88の各周方向拘束部78a間から容易に抜くことが可能となる。   (2) In the first mold 71 and the second mold 81, the circumferential direction constraint dies 78 and 88 are configured to be separable from the radial direction constraint die 72 or the die 82. For this reason, each bending part 45 can be easily extracted from between each circumferential direction restraint part 78a of the circumferential direction restraint dies 78 and 88 only by separating dies 72 and 82 and circumferential direction restraint dies 78 and 88. It becomes.

また、本実施形態では、周方向拘束ダイ78,88とダイ72,82とを離間させる付勢部材としての圧縮コイルばね79,89を備えるため、磁性板40をより容易に取り出し可能となる。   Moreover, in this embodiment, since the compression coil springs 79 and 89 are provided as urging members that separate the circumferential constraint dies 78 and 88 and the dies 72 and 82, the magnetic plate 40 can be taken out more easily.

(3)据え込みパンチ74,84はそれぞれ、ロータ対向部44の軸方向の先端面44bと当接する押圧面74b,84bと、ロータ対向部44の周方向両側の側縁部44aと当接する押圧凸部74cの周方向両側面74dとを有する。このため、ロータ対向部44の周方向への変形を抑えつつ、据え込みパンチ74,84の押圧によって折曲部45を肉厚化させることが可能となる。   (3) The upsetting punches 74 and 84 are respectively pressed against the pressing surfaces 74b and 84b contacting the axial front end surface 44b of the rotor facing portion 44 and the side edges 44a on both sides in the circumferential direction of the rotor facing portion 44. And both circumferential side surfaces 74d of the convex portion 74c. Therefore, it is possible to increase the thickness of the bent portion 45 by pressing the upsetting punches 74 and 84 while suppressing deformation of the rotor facing portion 44 in the circumferential direction.

(4)拘束据え込み工程において、磁性板40の折曲部45の外側面における積層部41寄りの一部(被拘束面45a)を径方向拘束ダイ72にて拘束し、その拘束状態でロータ対向部44を据え込みパンチ74にて軸方向の折曲部45側に押圧する。このため、径方向拘束ダイ72の拘束(押さえ)によって折曲部45の内側の変形量が抑えられ、折曲部45の内側における巻き込みの発生が抑えられる。また、径方向拘束ダイ72の拘束によって、据え込みパンチ74の押圧時に積層部41に対して板厚方向に加わる破断力(剪断力)が小さく抑えられる。そして、据え込みパンチ74による押圧によって、折曲部45のロータ対向部44寄りの非拘束部45bが、据え込みパンチの押圧によって変形して肉厚となる。このように、本製造方法によれば、折曲部45の損傷を抑えつつ肉厚化することができる。   (4) In the restraining upsetting process, a portion (restrained surface 45a) near the laminated portion 41 on the outer surface of the bent portion 45 of the magnetic plate 40 is restrained by the radial restraint die 72, and the rotor is in the restrained state. The facing portion 44 is pressed by the upsetting punch 74 toward the bent portion 45 in the axial direction. For this reason, the amount of deformation inside the bent portion 45 is suppressed by restraining (pressing) the radial direction restraint die 72, and the occurrence of entanglement inside the bent portion 45 is suppressed. Further, by the restraint of the radial restraint die 72, the breaking force (shearing force) applied to the laminated portion 41 in the plate thickness direction when the upsetting punch 74 is pressed can be kept small. Then, due to the pressing by the upsetting punch 74, the unconstrained portion 45b of the bent portion 45 near the rotor facing portion 44 is deformed and thickened by the pressing of the upsetting punch. Thus, according to this manufacturing method, it is possible to increase the thickness while suppressing damage to the bent portion 45.

(5)径方向拘束ダイ72は、積層部41の折曲外側端面(反ロータ対向部側の板面)と当接する平坦面75と、該平坦面75と連なり折曲部45の被拘束面45aを拘束する拘束円弧面77aとを備える。これにより、拘束円弧面77aによって円弧状の被拘束面45aを隙間なく拘束することが可能となるため、被拘束面45aを安定して拘束(保持)させることができ、その結果、折曲部45の損傷をより確実に抑えることができる。   (5) The radial direction constraining die 72 includes a flat surface 75 that contacts the bent outer end surface (the plate surface on the side opposite the rotor) of the stacked portion 41, and a constrained surface of the bent portion 45 that is continuous with the flat surface 75. And a constraining arc surface 77a that constrains 45a. Accordingly, the constrained arc surface 77a can restrain the arcuate constrained surface 45a without a gap, so that the constrained surface 45a can be stably restrained (held), and as a result, the bent portion 45 damage can be suppressed more reliably.

(6)本据え込み工程では、ダイ82の平坦面85と折曲部45の被拘束面45aとの間に隙間G2が存在する状態で、ロータ対向部44を据え込みパンチ84にて軸方向の折曲部45側に押圧する。つまり、拘束据え込み工程後に、折曲部45の被拘束面45aを拘束しない状態で本据え込み工程を行うため、折曲部45のより広範囲を肉厚化することが可能となる。なお、拘束据え込み工程で折曲部45の一部に肉厚部45cが形成されるため、その後の本据え込み工程での折曲部45とダイ82との間の隙間G2は小さくなる。このため、本据え込み工程での折曲部45の変形量が少なくなるため、折曲部45の損傷が抑えられる。   (6) In this upsetting process, the rotor facing portion 44 is axially moved by the upsetting punch 84 in a state where the gap G2 exists between the flat surface 85 of the die 82 and the constrained surface 45a of the bent portion 45. To the bent portion 45 side. That is, after the restraining upsetting process, the main upsetting process is performed in a state where the restrained surface 45a of the bent portion 45 is not restrained, so that a wider range of the bent portion 45 can be thickened. In addition, since the thick part 45c is formed in a part of the bent part 45 in the restraining upsetting process, the gap G2 between the bent part 45 and the die 82 in the subsequent main setting up process becomes small. For this reason, since the amount of deformation of the bent portion 45 in the upsetting process is reduced, damage to the bent portion 45 is suppressed.

(7)ダイ82における折曲部45の外側面と隙間G2を介して対向する面が平面であるため、本据え込み工程によって折曲部45の外側面を略直角に成形することが可能となる。このため、折曲部45のより一層の肉厚化が可能となる。   (7) Since the surface of the die 82 that faces the outer surface of the bent portion 45 through the gap G2 is a flat surface, the outer surface of the bent portion 45 can be formed at a substantially right angle by this upsetting process. Become. For this reason, the thickness of the bent portion 45 can be further increased.

(8)本実施形態の磁性板40では、折曲部45の肉厚T3がロータ対向部44の板厚(つまり、磁性板40の板厚T1)よりも厚く形成される。この構成によれば、折曲部45での磁束飽和の発生を抑えることが可能となり、その結果、磁性板40による出力向上効果をより好適に発揮させることが可能となる。   (8) In the magnetic plate 40 of this embodiment, the thickness T3 of the bent portion 45 is formed to be thicker than the plate thickness of the rotor facing portion 44 (that is, the plate thickness T1 of the magnetic plate 40). According to this configuration, it is possible to suppress the occurrence of magnetic flux saturation in the bent portion 45, and as a result, it is possible to more suitably exhibit the output improvement effect by the magnetic plate 40.

(9)磁性板40の板厚T1は、コアシート30の板厚T2よりも厚く設定されるため、磁性板40を介して磁気を取り込みやすくすることができ、その結果、より一層の高出力化に寄与できる。また、磁性板40の板厚T1がコアシート30の板厚T2よりも厚いため、磁性板40のティース構成部43の角部に大きな面取り部43a(例えば、コアシート30の板厚T2よりも大きな曲率半径Rmを有する断面弧状の面取り部)を形成しやすく、その結果、セグメント導体25の屈曲部位の損傷を好適に抑制することが可能となる。   (9) Since the plate thickness T1 of the magnetic plate 40 is set to be thicker than the plate thickness T2 of the core sheet 30, it is possible to easily take in magnetism through the magnetic plate 40, and as a result, a higher output is achieved. Can contribute to Further, since the plate thickness T1 of the magnetic plate 40 is thicker than the plate thickness T2 of the core sheet 30, a large chamfered portion 43a (for example, the plate thickness T2 of the core sheet 30) is formed at the corner of the teeth constituting portion 43 of the magnetic plate 40. It is easy to form a chamfered portion having an arcuate cross section having a large radius of curvature Rm, and as a result, it is possible to suitably suppress damage to the bent portion of the segment conductor 25.

なお、上記実施形態は、以下のように変更してもよい。
・上記実施形態では、本据え込み工程に用いる第2の金型81のダイ82の平坦面85は、外周拘束部86の内周側からダイ82の径方向内側端面82aに亘って平面をなしているが、これに限定されるものではなく、例えば図15に示すような形状としてもよい。同図に示すように、平坦面85の径方向内側端部には、該平坦面85と連なり反折曲部側に凹となる円弧面87が形成されている。円弧面87の曲率半径R2は、前記径方向拘束ダイ72(第1の金型71)の拘束円弧面77aの曲率半径R1(即ち、折曲部45の被拘束面45aの曲率半径)よりも大きく設定されている。また、円弧面87の円弧中心P2は、平坦面85に載置された磁性板40の折曲部45の二等分線Lに対してロータ対向部44側に設定され、円弧面87の最下点が平坦面85上に位置するように構成されている。そして、据え込みパンチ84の加圧前の状態では、円弧面87と折曲部45(肉厚部45c及び被拘束面45a)との間に隙間G3が存在している。
In addition, you may change the said embodiment as follows.
In the above embodiment, the flat surface 85 of the die 82 of the second mold 81 used in the upsetting process is flat from the inner peripheral side of the outer peripheral restraining portion 86 to the radially inner end surface 82a of the die 82. However, the present invention is not limited to this. For example, the shape shown in FIG. 15 may be used. As shown in the figure, an arcuate surface 87 that is continuous with the flat surface 85 and is concave on the side opposite to the bent portion is formed at the radially inner end of the flat surface 85. The radius of curvature R2 of the arc surface 87 is larger than the radius of curvature R1 of the constraining arc surface 77a of the radial direction constraining die 72 (first mold 71) (that is, the radius of curvature of the constrained surface 45a of the bent portion 45). It is set large. The arc center P 2 of the arc surface 87 is set on the rotor facing portion 44 side with respect to the bisector L of the bent portion 45 of the magnetic plate 40 placed on the flat surface 85, and The lower point is configured to be located on the flat surface 85. And in the state before pressurization of the upsetting punch 84, the clearance gap G3 exists between the circular arc surface 87 and the bending part 45 (the thick part 45c and the to-be-restricted surface 45a).

図16に示すように、ロータ対向部44が据え込みパンチ84にて折曲部45側に押圧されると、折曲部45の肉が前記隙間G3に流れて、折曲部45が円弧面87に略倣った形状に変形する。ここで、ダイ82の円弧面87は、折曲部45に近づくように形成されているため、ダイ82と折曲部45との間の隙間G3は、上記実施形態におけるダイ82(平坦面85)と折曲部45との間の隙間G2(図13参照)よりも小さい。このため、上記実施形態に比べて、本据え込み工程で折曲部45に掛かる負荷が軽減され、折曲部45の損傷がより一層抑制される。   As shown in FIG. 16, when the rotor facing portion 44 is pressed toward the bent portion 45 by the upsetting punch 84, the flesh of the bent portion 45 flows into the gap G3, and the bent portion 45 becomes an arc surface. It is deformed into a shape that substantially follows 87. Here, since the arc surface 87 of the die 82 is formed so as to approach the bent portion 45, the gap G3 between the die 82 and the bent portion 45 is the die 82 (flat surface 85) in the above embodiment. ) And the bent portion 45 is smaller than the gap G2 (see FIG. 13). For this reason, compared with the said embodiment, the load concerning the bending part 45 is reduced in this upsetting process, and the damage of the bending part 45 is suppressed further.

図17に示すように、この本据え込み工程にて成形された磁性板40では、折曲部45の外側面には、ダイ82の円弧面87に倣った円弧面45dが形成される。折曲部45の円弧面45dの円弧中心P3は、折曲部45の二等分線Lに対してロータ対向部44側に位置し、円弧面45dの曲率半径R3は、拘束据え込み工程後の被拘束面45aの曲率半径よりも大きい。また、折曲部45の肉厚T5は、拘束据え込み工程後の前記肉厚部45cの肉厚T4(図5(b)参照)よりも厚く成形される。   As shown in FIG. 17, in the magnetic plate 40 formed in this upsetting process, an arc surface 45 d that follows the arc surface 87 of the die 82 is formed on the outer surface of the bent portion 45. The arc center P3 of the arc surface 45d of the bent portion 45 is located on the rotor facing portion 44 side with respect to the bisector L of the bent portion 45, and the radius of curvature R3 of the arc surface 45d is determined after the restraining upsetting process. It is larger than the radius of curvature of the constrained surface 45a. Further, the thickness T5 of the bent portion 45 is formed to be thicker than the thickness T4 (see FIG. 5B) of the thick portion 45c after the restraining upsetting process.

このような製造方法によれば、円弧面87の曲率半径R2が前記拘束円弧面77a(径方向拘束ダイ72)の曲率半径R1よりも大きく設定されるため、本据え込み工程において、折曲部45の外側面(円弧面45d)を円弧面87に沿った円弧形状に成形しつつ、折曲部45を肉厚化できるため、折曲部45の損傷をより抑えることが可能となる。   According to such a manufacturing method, the radius of curvature R2 of the arc surface 87 is set larger than the radius of curvature R1 of the constraining arc surface 77a (radial direction constraining die 72). Since the bent portion 45 can be thickened while the outer surface (arc surface 45d) of 45 is formed into an arc shape along the arc surface 87, damage to the bent portion 45 can be further suppressed.

また、円弧面87の円弧中心P2(折曲部45の円弧面45dの円弧中心P3)が、折曲部45の二等分線Lに対してロータ対向部44側の位置に設定されるため、ロータ対向部44におけるロータ14との対向面の軸方向長さを確保しつつ、折曲部45を肉厚とすることが可能となる。これにより、ロータ14からの磁気取り込み量を増加させることができる磁性板40を成形することが可能となる。   Further, the arc center P2 of the arc surface 87 (the arc center P3 of the arc surface 45d of the bent portion 45) is set at a position on the rotor facing portion 44 side with respect to the bisector L of the bent portion 45. The bent portion 45 can be made thick while securing the axial length of the surface of the rotor facing portion 44 facing the rotor 14. Thereby, it is possible to mold the magnetic plate 40 that can increase the amount of magnetic capture from the rotor 14.

なお、平坦面85の径方向内側端部に設ける円弧面87の形状(円弧中心P2の位置及び曲率半径R2)は、上記の例に限定されるものではなく、例えば図18に示すような円弧面91に変更してもよい。この円弧面91は、折曲部45の外側面の角部のアール部位45e(図19参照)を成形するためのものであり、円弧面91の円弧中心は、折曲部45の二等分線L上に設定され、円弧面91の曲率半径は、被拘束面45aの曲率半径よりも小さく設定されている。そして、据え込みパンチ84の加圧前の状態では、平坦面85及び円弧面91と折曲部45(肉厚部45c及び被拘束面45a)との間に隙間G4が存在している。   The shape of the arc surface 87 provided at the radially inner end of the flat surface 85 (the position of the arc center P2 and the radius of curvature R2) is not limited to the above example. For example, an arc as shown in FIG. The surface 91 may be changed. The arc surface 91 is for forming a rounded portion 45e (see FIG. 19) at the corner of the outer surface of the bent portion 45, and the arc center of the arc surface 91 is divided into two equal parts of the bent portion 45. Set on the line L, the radius of curvature of the arcuate surface 91 is set smaller than the radius of curvature of the constrained surface 45a. And in the state before pressurization of the upsetting punch 84, the clearance gap G4 exists between the flat surface 85 and the circular arc surface 91, and the bending part 45 (the thick part 45c and the to-be-restricted surface 45a).

図19に示すように、ロータ対向部44が据え込みパンチ84にて折曲部45側に押圧されると、折曲部45の肉が前記隙間G4に流れて、折曲部45が平坦面85及び円弧面91に倣った形状に変形する。このような製造方法によれば、円弧面91によって折曲部45の外側面の角部のアール部位45eを好適に成形することができる。   As shown in FIG. 19, when the rotor facing portion 44 is pressed toward the bent portion 45 by the upsetting punch 84, the flesh of the bent portion 45 flows into the gap G4, and the bent portion 45 is flat. 85 and the shape following the arc surface 91. According to such a manufacturing method, the rounded portion 45e at the corner of the outer surface of the bent portion 45 can be suitably formed by the arc surface 91.

・上記実施形態では、径方向拘束ダイ72の拘束円弧面77aが折曲部45の積層部41側の半分(折曲部45の二等分線Lよりも積層部41側の範囲)を拘束するように構成したが、拘束円弧面77aで拘束する範囲は上記実施形態に限定されるものではなく、例えば、拘束円弧面77aの拘束範囲を折曲部45の外側面の半分以下としてもよい。また、拘束円弧面77aの拘束範囲を二等分線Lよりもロータ対向部44側まで広げてもよい。   In the above embodiment, the constraining arc surface 77a of the radial direction constraining die 72 constrains the half of the bent portion 45 on the stacked portion 41 side (the range on the stacked portion 41 side from the bisector L of the bent portion 45). However, the range constrained by the constraining arc surface 77a is not limited to the above embodiment. For example, the constraining range of the constraining arc surface 77a may be less than or equal to half of the outer surface of the bent portion 45. . Further, the constraining range of the constraining arc surface 77a may be extended from the bisector L to the rotor facing portion 44 side.

・上記実施形態では、拘束据え込み工程において、折曲部45の被拘束面45aを拘束する拘束面を拘束円弧面77aとしたが、これ以外に例えば、径方向拘束ダイ72の径方向内側に向かうにつれて高さが増す平面状の傾斜面としてもよい。   In the above embodiment, in the restraining upsetting process, the restraining surface that restrains the restrained surface 45a of the bent portion 45 is the restraining arc surface 77a, but other than this, for example, on the radially inner side of the radially restraining die 72 It is good also as a planar inclined surface where height increases as it goes.

・上記実施形態では、押圧凸部74cを据え込みパンチ74に一体形成したが、これに限らず、据え込みパンチ74に対して別体で設けてもよい。
・上記実施形態の第1の金型71では、径方向拘束ダイ72に対して軸方向に分離可能な周方向拘束ダイ78に周方向拘束部78aを設けたが、これ以外に例えば、周方向拘束部78aを径方向拘束ダイ72に一体に設けてもよい。また、第2の金型81においても同様に変更してもよい。
In the above embodiment, the pressing convex portion 74 c is integrally formed with the upsetting punch 74, but the present invention is not limited thereto, and the pressing convex portion 74 c may be provided separately from the upsetting punch 74.
In the first mold 71 of the above embodiment, the circumferential restraint portion 78a is provided in the circumferential restraint die 78 that is separable in the axial direction with respect to the radial restraint die 72. The restraining portion 78a may be provided integrally with the radial restraining die 72. The second mold 81 may be similarly changed.

・拘束据え込み工程後の本据え込み工程は、必ずしも必要な工程ではなく、例えば、1回の拘束据え込み工程にて磁性板40を完成させてもよい。
・上記実施形態では、2回の据え込み加工(拘束据え込み工程と本据え込み工程)によって、折曲部45の外側面が略直角となるように成形したが、これに特に限定されるものではなく、1回の据え込み加工によって折曲部45の外側面を略直角に成形してもよい。つまり、ロータ対向部44の前記折り曲げ工程後、第1の金型71による拘束据え込み工程を経ずに第2の金型81による本据え込み工程を行ってもよい。
The main upsetting process after the restraining upsetting process is not necessarily a necessary process. For example, the magnetic plate 40 may be completed by a single restraining upsetting process.
In the above embodiment, the outer surface of the bent portion 45 is formed to be substantially right angle by two upsetting processes (constrained upsetting process and main upsetting process), but this is particularly limited to this. Instead, the outer surface of the bent portion 45 may be formed at a substantially right angle by one upsetting process. That is, after the bending process of the rotor facing portion 44, the main upsetting process by the second mold 81 may be performed without going through the restraining upsetting process by the first mold 71.

・上記実施形態では、本据え込み工程の後に磁性板40の各スロット形成部位Sb(図8(b)参照)を打ち抜くが、これ以外に例えば、拘束据え込み工程の前にスロット形成部位Sbを打ち抜いてもよい。   In the above embodiment, each slot forming portion Sb (see FIG. 8B) of the magnetic plate 40 is punched after the main upsetting step, but other than this, for example, the slot forming portion Sb is set before the restraining upsetting step. You may punch it.

・上記実施形態では、各セグメント導体25は、スロットSに挿通された一対の直線部51を繋ぐ第1突出部52側で折り返されるように形成し、第2突出部53側で溶接等により接合するように構成されたが、これに特に限定されるものではない。例えば、一対の直線部51をそれぞれ別体とし、第1突出部52においても溶接等により接合するように構成してもよい。また、セグメント導体25同士の接続は、溶接以外に例えば、バスバー等の別部材を用いた接続構造としてもよい。   In the above embodiment, each segment conductor 25 is formed so as to be folded back on the first projecting portion 52 side connecting the pair of linear portions 51 inserted through the slot S, and joined by welding or the like on the second projecting portion 53 side. However, the present invention is not particularly limited to this. For example, the pair of linear portions 51 may be separated from each other, and the first projecting portion 52 may be joined by welding or the like. Further, the connection between the segment conductors 25 may be a connection structure using another member such as a bus bar in addition to welding.

・上記実施形態では、セグメント導体25の直線部51を径方向に沿って一列に配置したが、これに限らず、直線部51が周方向にも並ぶように配置してもよい。
・上記実施形態では、各フレーム11,12のステータ保持部11b,12bは、メインコア部31の外周縁(露出面31a)を軸方向に直接的に挟み、磁性板40に対しては軸方向に当接しないように構成されたが、これに特に限定されるものではない。例えば、磁性板40の環状部42(積層部41)を介してメインコア部31を軸方向に挟むように構成してもよい。このような構成によれば、磁性板40の積層部41をステータ保持部11b,12bに対して軸方向に干渉しないように径方向に小さくする必要がないため、出力の低下を抑えることができる。また、磁性板40の板厚T1をコアシート30の板厚T2よりも厚くして出力向上を図る場合には、磁性板40よりも板厚が薄いコアシート30の枚数を調整することで、モータ10全体の軸方向寸法の変動を抑えることが可能である。
In the above embodiment, the straight portions 51 of the segment conductors 25 are arranged in a line along the radial direction. However, the present invention is not limited to this, and the straight portions 51 may be arranged in the circumferential direction.
In the above embodiment, the stator holding portions 11 b and 12 b of the frames 11 and 12 directly sandwich the outer peripheral edge (exposed surface 31 a) of the main core portion 31 in the axial direction, and the axial direction with respect to the magnetic plate 40. However, the present invention is not particularly limited to this. For example, you may comprise so that the main core part 31 may be pinched | interposed into the axial direction via the annular part 42 (lamination | stacking part 41) of the magnetic board 40. FIG. According to such a configuration, it is not necessary to make the laminated portion 41 of the magnetic plate 40 small in the radial direction so as not to interfere with the stator holding portions 11b and 12b in the axial direction, so that a reduction in output can be suppressed. . Further, when the plate thickness T1 of the magnetic plate 40 is made thicker than the plate thickness T2 of the core sheet 30 to improve the output, by adjusting the number of the core sheets 30 that are thinner than the magnetic plate 40, It is possible to suppress variations in the axial dimension of the entire motor 10.

・上記実施形態では、磁性板40の積層部41の外径をコアシート30の外径よりも小さくすることで、メインコア部31の軸方向端面の外周縁全体に亘って露出面31aを形成し、その露出面31aを各フレーム11,12のステータ保持部11b,12bで挟むように構成したが、これに特に限定されるものではない。例えば、メインコア部31(コアシート30)の外周面から径方向外側に突出する突出部を形成し、その突出部をステータ保持部11b,12bで挟むように構成してもよい。   In the above embodiment, the exposed surface 31 a is formed over the entire outer peripheral edge of the axial end surface of the main core portion 31 by making the outer diameter of the laminated portion 41 of the magnetic plate 40 smaller than the outer diameter of the core sheet 30. In addition, the exposed surface 31a is configured to be sandwiched between the stator holding portions 11b and 12b of the frames 11 and 12, but is not particularly limited thereto. For example, a protruding portion that protrudes radially outward from the outer peripheral surface of the main core portion 31 (core sheet 30) may be formed, and the protruding portion may be sandwiched between the stator holding portions 11b and 12b.

・上記実施形態では、ロータ対向部44を径方向視で台形形状に形成したが、これ以外に例えば、径方向視で矩形状に形成してもよく、磁気の取り込みが可能な形状であればよい。   In the above embodiment, the rotor facing portion 44 is formed in a trapezoidal shape when viewed in the radial direction. However, for example, it may be formed in a rectangular shape when viewed in the radial direction, as long as it has a shape capable of capturing magnetism. Good.

・上記実施形態では、磁性板40の積層部41は、環状部42とティース構成部43とを有するが、これ以外に例えば、積層部41をティース構成部43のみで構成してもよい。   In the above embodiment, the laminated portion 41 of the magnetic plate 40 includes the annular portion 42 and the tooth constituent portion 43. However, for example, the laminated portion 41 may be constituted by only the tooth constituent portion 43.

・上記実施形態では、磁性板40はメインコア部31(コアシート30)にかしめ固定されたが、これ以外に例えば、接着や溶接によって固定してもよい。
・上記実施形態では、磁性板40の板厚T1をコアシート30の板厚T2よりも厚く設定したが、これに特に限定されるものではなく、磁性板40の板厚T1をコアシート30の板厚T2に対して等しく、又は薄く設定してもよい。
In the above embodiment, the magnetic plate 40 is caulked and fixed to the main core portion 31 (core sheet 30), but other than this, for example, it may be fixed by adhesion or welding.
In the above embodiment, the plate thickness T1 of the magnetic plate 40 is set to be thicker than the plate thickness T2 of the core sheet 30. However, the present invention is not limited to this, and the plate thickness T1 of the magnetic plate 40 is set to the thickness of the core sheet 30. It may be set equal to or thinner than the plate thickness T2.

・上記実施形態では、磁性板40をメインコア部31の軸方向両側にそれぞれ設けたが、これに特に限定されるものではなく、磁性板40をメインコア部31の軸方向一方側のみに設けてもよい。また例えば、磁性板を軸方向両側にそれぞれ複数枚設けた構成としてもよい。   In the above embodiment, the magnetic plates 40 are provided on both sides of the main core portion 31 in the axial direction. However, the present invention is not particularly limited thereto, and the magnetic plates 40 are provided only on one side of the main core portion 31 in the axial direction. May be. Further, for example, a plurality of magnetic plates may be provided on both sides in the axial direction.

・上記実施形態では、セグメント導体25にて構成される電機子巻線22を用いたが、これ以外に例えば、銅線等をティースに巻回してなる電機子巻線を用いてもよい。
・上記実施形態では、ロータ14の界磁磁石62にフェライト磁石を用いたが、これ以外に例えば、ネオジム磁石等を用いてもよい。
In the above embodiment, the armature winding 22 configured by the segment conductor 25 is used. However, for example, an armature winding formed by winding a copper wire or the like around a tooth may be used.
In the above embodiment, a ferrite magnet is used as the field magnet 62 of the rotor 14, but other than this, for example, a neodymium magnet or the like may be used.

・上記実施形態では、界磁磁石62をロータコア61の外周面に設けたが、これ以外に例えば、ロータコア61の内部に埋設してもよい。
・上記実施形態において、ロータコア61及びロータ14の界磁磁石62の軸方向長さを、ステータコア21の内周端部の軸方向長さ(即ち、一方の磁性板40のロータ対向部44の先端から他方の磁性板40のロータ対向部44の先端までの長さ)に対して異なるように設定してもよい。
In the above embodiment, the field magnet 62 is provided on the outer peripheral surface of the rotor core 61. However, for example, the field magnet 62 may be embedded in the rotor core 61.
In the above embodiment, the axial lengths of the rotor core 61 and the field magnet 62 of the rotor 14 are set to the axial length of the inner peripheral end of the stator core 21 (that is, the tip of the rotor facing portion 44 of one magnetic plate 40). To the tip of the rotor facing portion 44 of the other magnetic plate 40) may be set differently.

・上記実施形態では、ステータコア21を一対のフレーム11,12で挟持する構成としたが、これ以外に例えば、ステータコア21を円筒状の金属製のハウジングに圧入や焼嵌め等により固定する構成としてもよい。   In the above embodiment, the stator core 21 is sandwiched between the pair of frames 11 and 12. However, for example, the stator core 21 may be fixed to a cylindrical metal housing by press fitting or shrink fitting. Good.

・上記実施形態では、ロータ14をステータ13の内周側に配置したインナロータ型のモータ10に具体化したが、これに特に限定されるものではなく、ロータをステータの外周側に配置したアウタロータ型のモータに具体化してもよい。   In the above embodiment, the rotor 14 is embodied as the inner rotor type motor 10 arranged on the inner peripheral side of the stator 13, but is not particularly limited to this, and the outer rotor type in which the rotor is arranged on the outer peripheral side of the stator It may be embodied in the motor.

13…ステータ、14…ロータ、21…ステータコア、31…メインコア部、40…磁性板(補助コア部材)、41…積層部、44…ロータ対向部(軸方向延出部)、45…折曲部、45a…被拘束面、45d…折曲部の円弧面、72…径方向拘束ダイ(コア装着ダイ)、74,84…据え込みパンチ、74b…押圧面(軸方向当接部)、74c…押圧凸部、74d…周方向両側面(周方向当接部)、75,85…平坦面、77a…拘束円弧面、78,88…周方向拘束ダイ、78a…周方向拘束部、82…ダイ(コア装着ダイ)、87,91…円弧面、L…二等分線、G1,G2,G3,G4…隙間、P1,P2,P3…円弧中心。   DESCRIPTION OF SYMBOLS 13 ... Stator, 14 ... Rotor, 21 ... Stator core, 31 ... Main core part, 40 ... Magnetic board (auxiliary core member), 41 ... Laminated part, 44 ... Rotor opposing part (axial extension part), 45 ... Bending 45a, a constrained surface, 45d, an arc surface of the bent portion, 72, a radial direction constraining die (core mounting die), 74, 84, an upsetting punch, 74b, a pressing surface (axial contact portion), 74c. ... pressing convex part, 74d ... circumferential side surfaces (circumferential contact parts), 75, 85 ... flat surface, 77a ... constraining arc surface, 78, 88 ... circumferential restraint die, 78a ... circumferential restraint part, 82 ... Die (core mounting die), 87, 91 ... arc surface, L ... bisector, G1, G2, G3, G4 ... gap, P1, P2, P3 ... arc center.

Claims (10)

ステータコアのメインコア部の軸方向端面に積層される積層部と、該積層部のロータ側の端部で折り曲げられて前記ステータコアの軸方向に延出されるとともに周方向に沿って複数設けられた軸方向延出部とを有する補助コア部材の製造方法であって、
前記積層部及び折り曲げ前の前記軸方向延出部を板材から打ち抜く打ち抜き工程と、
前記打ち抜き工程後、前記軸方向延出部を前記軸方向に折り曲げる折り曲げ工程と、
前記折り曲げ工程によって前記軸方向延出部の根元に形成された折曲部の周方向両側部を周方向拘束部によって拘束し、その拘束状態で据え込みパンチにて前記軸方向延出部を前記軸方向の前記折曲部側に押圧する拘束据え込み工程と
を有することを特徴とする補助コア部材の製造方法。
A laminated portion that is laminated on the axial end surface of the main core portion of the stator core, and a shaft that is bent at the rotor-side end portion of the laminated portion, extends in the axial direction of the stator core, and is provided in a plurality along the circumferential direction. A method of manufacturing an auxiliary core member having a direction extending portion,
A punching step of punching the laminated portion and the axially extending portion before bending from a plate material;
After the punching step, a bending step of bending the axially extending portion in the axial direction;
The both sides in the circumferential direction of the bent portion formed at the root of the axially extending portion by the bending step are restrained by the circumferentially restrained portion, and the axially extending portion is placed by the upsetting punch in the restrained state. A method for producing an auxiliary core member, comprising: a restraining upsetting step of pressing toward the bent portion side in the axial direction.
請求項1に記載の補助コア部材の製造方法において、
前記拘束据え込み工程において、前記積層部を支持するコア装着ダイと、前記周方向拘束部を有し前記コア装着ダイと分離可能な周方向拘束ダイとを用いることを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary | assistant core member of Claim 1,
In the restraining upsetting step, an auxiliary core member comprising: a core mounting die that supports the stacked portion; and a circumferential restraining die that has the circumferential restraining portion and is separable from the core mounting die. Production method.
請求項1又は2に記載の補助コア部材の製造方法において、
前記据え込みパンチは、前記軸方向延出部の軸方向先端面と当接する軸方向当接部と、前記軸方向延出部の周方向両側面と当接する周方向当接部とを備えることを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary | assistant core member of Claim 1 or 2,
The upsetting punch includes an axial contact portion that makes contact with an axial front end surface of the axial extension portion, and a circumferential contact portion that makes contact with both circumferential side surfaces of the axial extension portion. A manufacturing method of an auxiliary core member characterized by these.
請求項1〜3のいずれか1項に記載の補助コア部材の製造方法において、
前記拘束据え込み工程において、前記折曲部の外側面における前記積層部寄りの一部である被拘束面を径方向に拘束する径方向拘束ダイにて拘束し、その拘束状態で前記軸方向延出部を前記据え込みパンチにて前記軸方向の前記折曲部側に押圧することを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary | assistant core member of any one of Claims 1-3,
In the restraining upsetting step, a constrained surface that is a part of the outer side surface of the bent portion that is close to the laminated portion is constrained by a radial constraining die that constrains in the radial direction, and the axial extension is performed in the constrained state. A method for producing an auxiliary core member, wherein the protruding portion is pressed against the bent portion side in the axial direction by the upsetting punch.
請求項4に記載の補助コア部材の製造方法において、
前記径方向拘束ダイは、前記積層部の反軸方向延出部側の板面と当接する平坦面と、該平坦面と連なり前記折曲部の前記被拘束面を拘束する拘束円弧面とを備えることを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary core member according to claim 4,
The radial direction restraint die includes a flat surface that comes into contact with the plate surface on the side opposite to the axial extension portion of the stacked portion, and a constrained arc surface that is continuous with the flat surface and restrains the constrained surface of the bent portion. A method of manufacturing an auxiliary core member, comprising:
請求項4又は5に記載の補助コア部材の製造方法において、
前記拘束据え込み工程後、前記折曲部の周方向両側部を周方向拘束部によって拘束し、前記積層部の反軸方向延出部側の板面と当接するダイと前記折曲部の前記被拘束面との間に隙間が存在する状態で、前記軸方向延出部を据え込みパンチにて前記軸方向の前記折曲部側に押圧する本据え込み工程を有することを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary core member according to claim 4 or 5,
After the restraining upsetting step, both the circumferential sides of the bent portion are restrained by the circumferential restraining portion, and the die contacting the plate surface on the side opposite to the axial extension portion of the stacked portion and the bent portion An auxiliary device comprising a main upsetting step of pressing the axially extending portion against the bent portion side in the axial direction with an upsetting punch in a state where there is a gap with the restrained surface. Manufacturing method of core member.
請求項6に記載の補助コア部材の製造方法において、
前記本据え込み工程に用いる前記ダイにおける前記折曲部の外側面と対向する面が平面であることを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary core member according to claim 6,
A method of manufacturing an auxiliary core member, wherein a surface of the die used in the upsetting step that faces the outer surface of the bent portion is a flat surface.
請求項5に従属する請求項6に記載の補助コア部材の製造方法において、
前記本据え込み工程で用いる前記ダイは、前記積層部の反軸方向延出部側の板面と当接する平坦面と、該平坦面と連なり前記折曲部の外側面と隙間を介して対向するとともに反折曲部側に凹となる円弧面とを備え、該円弧面の曲率半径は、前記拘束ダイの前記拘束円弧面の曲率半径よりも大きく設定されていることを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary | assistant core member of Claim 6 subordinate to Claim 5,
The die used in the main upsetting step is a flat surface that comes into contact with the plate surface on the side opposite to the axially extending portion of the laminated portion, and is opposed to the outer surface of the bent portion connected to the flat surface with a gap. And an arcuate surface that is concave on the side of the bent portion, and the radius of curvature of the arcuate surface is set to be larger than the radius of curvature of the constraining arc surface of the constraining die Manufacturing method of member.
請求項8に記載の補助コア部材の製造方法において、
前記ダイの前記円弧面の円弧中心は、前記補助コア部材の前記折曲部の二等分線に対して前記軸方向延出部側の位置に設定されていることを特徴とする補助コア部材の製造方法。
In the manufacturing method of the auxiliary core member according to claim 8,
The auxiliary core member, wherein an arc center of the arc surface of the die is set at a position on the axially extending portion side with respect to a bisector of the bent portion of the auxiliary core member Manufacturing method.
請求項1〜9のいずれか1項に記載の製造方法にて製造した補助コア部材を、ステータコアのメインコア部の軸方向端面に設ける設置工程を有することを特徴とするステータの製造方法。   A method for manufacturing a stator, comprising: an installation step of providing an auxiliary core member manufactured by the manufacturing method according to any one of claims 1 to 9 on an axial end surface of a main core portion of the stator core.
JP2014140557A 2014-07-08 2014-07-08 Method for manufacturing auxiliary core member and method for manufacturing stator Active JP6330223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014140557A JP6330223B2 (en) 2014-07-08 2014-07-08 Method for manufacturing auxiliary core member and method for manufacturing stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014140557A JP6330223B2 (en) 2014-07-08 2014-07-08 Method for manufacturing auxiliary core member and method for manufacturing stator

Publications (2)

Publication Number Publication Date
JP2016019361A true JP2016019361A (en) 2016-02-01
JP6330223B2 JP6330223B2 (en) 2018-05-30

Family

ID=55234227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014140557A Active JP6330223B2 (en) 2014-07-08 2014-07-08 Method for manufacturing auxiliary core member and method for manufacturing stator

Country Status (1)

Country Link
JP (1) JP6330223B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034117A (en) * 2002-07-05 2004-02-05 Denso Preas Co Ltd Method for working plate material
JP2011015598A (en) * 2009-07-06 2011-01-20 Panasonic Corp Motor and electronic apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034117A (en) * 2002-07-05 2004-02-05 Denso Preas Co Ltd Method for working plate material
JP2011015598A (en) * 2009-07-06 2011-01-20 Panasonic Corp Motor and electronic apparatus using the same

Also Published As

Publication number Publication date
JP6330223B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US10164487B2 (en) Motor, method for manufacturing magnetic plate, and method for manufacturing stator
JP6208574B2 (en) motor
CN107251370B (en) Rotating electric machine and its manufacturing method
CN111512527B (en) Stator manufacturing method and stator
US20140306573A1 (en) Stator for electric rotating machine and method of manufacturing the same
JPWO2018062488A1 (en) Rotor core, rotor and motor
US10312778B2 (en) Stator of rotary electric machine and method for manufacturing same
WO2014136145A1 (en) Stator core of rotating machine, rotating machine and method for manufacturing same
JP6062754B2 (en) Method for manufacturing auxiliary core member and method for manufacturing stator
JP6330223B2 (en) Method for manufacturing auxiliary core member and method for manufacturing stator
JP2014204495A (en) Rotary electric machine and manufacturing method thereof
JP2015119516A (en) Stator core, stator, and motor
JP2012205489A (en) Stator of rotary electric machine and method for manufacturing the same
JP5947231B2 (en) motor
JP6030461B2 (en) motor
JP6068163B2 (en) motor
JP2017225208A (en) Armature, rotary electric machine, and manufacturing method of armature
JP6047412B2 (en) motor
JP2015119515A (en) Stator core, stator, motor, and manufacturing method of stator core
JP5977182B2 (en) motor
JP5335633B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
JP6244268B2 (en) Method for manufacturing armature core
JP6464905B2 (en) motor
CN111919358A (en) Rotor core, rotor and motor
JP5896948B2 (en) Manufacturing method of laminated iron core of rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6330223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250