JP2016017916A - Surface shape measurement device and surface shape measurement method - Google Patents

Surface shape measurement device and surface shape measurement method Download PDF

Info

Publication number
JP2016017916A
JP2016017916A JP2014142515A JP2014142515A JP2016017916A JP 2016017916 A JP2016017916 A JP 2016017916A JP 2014142515 A JP2014142515 A JP 2014142515A JP 2014142515 A JP2014142515 A JP 2014142515A JP 2016017916 A JP2016017916 A JP 2016017916A
Authority
JP
Japan
Prior art keywords
measurement
distance
height data
reference plane
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014142515A
Other languages
Japanese (ja)
Other versions
JP6086099B2 (en
Inventor
青江 信一郎
Shinichiro Aoe
信一郎 青江
亀崎 俊一
Shunichi Kamezaki
俊一 亀崎
順平 釘屋
Junpei Kugiya
順平 釘屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014142515A priority Critical patent/JP6086099B2/en
Publication of JP2016017916A publication Critical patent/JP2016017916A/en
Application granted granted Critical
Publication of JP6086099B2 publication Critical patent/JP6086099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface shape measurement device and a method of measuring a surface shape that appropriately evaluate a surface shape of a measurement object, and shorten a calculation time.SOLUTION: A surface shape measurement method comprises: a step S1 of decomposing a distance from a three-dimensional scanner to a surface of a measurement object into position data and height data; a step S2 of setting a reference plane on which a surface state is projected; a step S3 of splitting a surface projected on the reference plane into a measurement area of a preliminarily set size, and calculating the number of point groups of height data on each measurement area; a step S4 of calculating a distance projected on the reference plane between a center of each measurement area and the three-dimensional scanner; a step S5 of calculating the target number of point groups of height data on each measurement area in accordance with a distance to the three-dimensional scanner using a distance to the most distant measurement area from the three-dimensional scanner; a step S6 of performing thinning-out processing of the height data when the number of point groups of the height data is more than the target number of point groups; and a step S7 of evaluating a surface shape by a regression curve from point groups of the height data on each measurement area.SELECTED DRAWING: Figure 3

Description

本発明は、例えば鋼板などの測定対象物の表面形状測定装置及びその方法に関し、例えば圧延工程或いは加熱冷却工程で鋼板に発生した反り、耳波、歪みなどの表面形状をライン上で測定するのに好適なものである。   The present invention relates to an apparatus and a method for measuring the surface shape of an object to be measured such as a steel plate, for example, and measures on the line the surface shape such as warpage, ear waves, and distortion generated in the steel plate in a rolling process or heating and cooling process. It is suitable for.

鋼板の表面形状を自動測定する装置としては、例えば下記特許文献1に記載されるように、単一のレーザ光源からのレーザ光を多軸回転操作して距離データを測定する所謂三次元スキャナを用い、搬送ライン上に静止した鋼板の表面形状を測定するものがある。この表面形状測定装置では、三次元スキャナで測定された鋼板の表面までの距離を鋼板表面の位置データ及び高さデータの点群とし、それらの高さデータから平滑化スプライン曲面などの回帰曲面を解析し、その回帰曲面で鋼板表面の形状を評価する。また、この表面形状測定装置では、測定された高さデータの点群を平滑化処理し易いように、高さデータを均等に間引き処理している。また、下記特許文献2に記載される表面形状測定装置では、前記特許文献1と同様にして得られた鋼板表面の高さデータの点群の誤差を除去するためにデータを平滑化する方法が記載されている。   As an apparatus for automatically measuring the surface shape of a steel plate, for example, as described in Patent Document 1 below, a so-called three-dimensional scanner that measures distance data by rotating a laser beam from a single laser light source in multiple axes is used. Some of them use and measure the surface shape of a steel plate stationary on a transport line. In this surface shape measuring device, the distance to the surface of the steel sheet measured by a three-dimensional scanner is used as a point cloud of the position data and height data of the steel sheet surface, and a regression surface such as a smoothed spline surface is obtained from the height data. Analyze and evaluate the shape of the steel sheet surface with the regression surface. Moreover, in this surface shape measuring apparatus, the height data is thinned out evenly so that the point group of the measured height data can be easily smoothed. Moreover, in the surface shape measuring apparatus described in the following patent document 2, there is a method of smoothing data in order to remove point group errors in the height data of the steel sheet surface obtained in the same manner as in the patent document 1. Have been described.

特開2010−155272号公報JP 2010-155272 A 特開2012−37313号公報JP 2012-37313 A

品質保証の目的などで鋼板の表面形状を評価するためには、鋼板の表面全面で平滑化による統計誤差ができるだけ小さくなることが望ましい。しかしながら、統計誤差を零にすることは不可能なので、測定領域内での最大統計誤差を所定の誤差値内にすることが前提となる。そして、この前提の上で、測定時間の短縮及び前記特許文献2に記載される平滑化処理の計算時間の短縮のために、高さデータの点群数を可能な限り小さくすることが望ましい。以上より、鋼板の表面全面における測定領域内での統計誤差が均一になるように点群である高さデータを間引くことが最良の方法である。三次元スキャナで測定された高さデータの点群は、回転時の三次元スキャナの分解能(角度分解能)が一定であることから、測定対象物のうち三次元スキャナに近い部分ほど点群密度が高く、遠くなるほど点群密度が低くなる。前記特許文献1では、各測定領域内の高さデータの点群密度が測定対象物表面で均一化するように高さデータを間引くことで点群数を減らしており、これは点群数が同じであれば統計誤差も同じになるという前提である。しかしながら、このような間引き処理で鋼板の表面全面における測定領域内の統計誤差が均一になるかどうか不明である。
本発明は、上記のような問題点に着目してなされたものであり、測定対象物の表面全面で測定領域内の統計誤差を同等にすることで測定対象物の表面形状を適正に評価することが可能な表面形状測定装置及びその方法を提供することを目的とするものである。
In order to evaluate the surface shape of a steel sheet for the purpose of quality assurance, it is desirable that the statistical error due to smoothing is as small as possible on the entire surface of the steel sheet. However, since it is impossible to make the statistical error zero, it is assumed that the maximum statistical error in the measurement region is within a predetermined error value. Based on this assumption, it is desirable to reduce the number of point data of the height data as much as possible in order to reduce the measurement time and the calculation time of the smoothing process described in Patent Document 2. From the above, it is the best method to thin out the height data, which is a point cloud, so that the statistical error in the measurement region on the entire surface of the steel plate becomes uniform. Since the point data of the height data measured by the 3D scanner has a constant resolution (angular resolution) of the 3D scanner during rotation, the point cloud density is closer to the 3D scanner part of the measurement object. The higher the distance, the lower the point cloud density. In Patent Document 1, the number of point groups is reduced by thinning out the height data so that the point group density of the height data in each measurement region is uniform on the surface of the measurement object. The assumption is that the statistical error will be the same if they are the same. However, it is unclear whether the statistical error in the measurement region over the entire surface of the steel sheet becomes uniform by such a thinning process.
The present invention has been made paying attention to the above problems, and appropriately evaluates the surface shape of the measurement object by equalizing the statistical error in the measurement region over the entire surface of the measurement object. It is an object of the present invention to provide a surface shape measuring apparatus and a method thereof.

上記課題を解決するために、本発明の一態様によれば、演算処理機能を有する計算機及び三次元スキャナを用いて測定対象物の表面の表面形状を評価する場合に、三次元スキャナの分解能Δθで三次元スキャナから測定対象物の表面までの距離を測定し、その距離データを測定対象物の表面の位置データ及び高さデータに分解するデータ分解部、分解された測定対象物の表面の位置データ及び高さデータから測定対象物の表面を投影する基準平面を設定する基準平面設定部、基準平面に投影した測定対象物の表面を予め設定された大きさの測定領域に分割し、分割された各測定領域の高さデータの点群数を算出する測定領域分割部、分割された各測定領域の中心と三次元スキャナとの基準平面に投影された距離rを算出する測定領域距離算出部、算出された三次元スキャナから最も遠い測定領域までの距離rFを用いて各測定領域と三次元スキャナとの距離rに応じた各測定領域の高さデータの目標点群数ρを下記(1)式に従って算出する目標点群数算出部、各測定領域の高さデータの点群数が算出された各測定領域の高さデータの目標点群数ρより多い場合には目標点群数まで測定領域の高さデータの点群数を間引き処理する間引き処理部、各測定領域の高さデータの点群から表面形状を回帰曲面により評価する表面形状評価部を備えた表面形状測定装置が提供される。 In order to solve the above problems, according to one aspect of the present invention, when evaluating the surface shape of the surface of a measurement object using a computer having a calculation processing function and a three-dimensional scanner, the resolution Δθ of the three-dimensional scanner is obtained. Measures the distance from the 3D scanner to the surface of the measurement object, and decomposes the distance data into the position data and height data of the surface of the measurement object, the position of the surface of the disassembled measurement object A reference plane setting unit for setting a reference plane for projecting the surface of the measurement object from the data and height data, and dividing the surface of the measurement object projected on the reference plane into measurement areas of a predetermined size. A measurement area dividing unit for calculating the number of point groups of the height data of each measurement area, and a measurement area distance calculating unit for calculating a distance r projected on the reference plane between the center of each divided measurement area and the three-dimensional scanner Using the calculated distance r F from the 3D scanner to the farthest measurement area, the target point cloud number ρ of the height data of each measurement area corresponding to the distance r between each measurement area and the 3D scanner is expressed as follows ( 1) Target point cloud number calculation unit calculated according to the equation, and the target point cloud number when the number of point data of the height data of each measurement region is larger than the target point cloud number ρ of the calculated height data of each measurement region A surface shape measuring apparatus comprising a thinning processing unit that thins out the number of point groups of the height data of the measurement region, and a surface shape evaluation unit that evaluates the surface shape from the point data of the height data of each measurement region using a regression surface Provided.

Figure 2016017916
但し、
ρ:目標点群数(基準平面単位面積当たりの点群密度)[1/m2
z:三次元スキャナの基準平面からの高さ[m]
r:各測定領域の中心と三次元スキャナとの基準平面に投影された距離[m]
F:三次元スキャナから最も遠い測定領域までの距離[m]
Δθ:三次元スキャナの分解能[rad]
Figure 2016017916
However,
ρ: target point cloud number (point cloud density per unit area of reference plane) [1 / m 2 ]
z: Height from the reference plane of the 3D scanner [m]
r: Distance [m] projected on the reference plane between the center of each measurement region and the 3D scanner
r F : Distance from the 3D scanner to the farthest measurement area [m]
Δθ: 3D scanner resolution [rad]

また、本発明の異なる態様によれば、演算処理機能を有する計算機及び三次元スキャナを用いて測定対象物の表面の表面形状を評価する場合に、三次元スキャナの分解能Δθで三次元スキャナから測定対象物の表面までの距離を測定し、その距離データを測定対象物の表面の位置データ及び高さデータに分解するステップ、分解された測定対象物の表面の位置データ及び高さデータから測定対象物の表面を投影する基準平面を設定するステップ、基準平面に投影した測定対象物の表面を予め設定された大きさの測定領域に分割し、分割された各測定領域の高さデータの点群数を算出するステップ、分割された各測定領域の中心と三次元スキャナとの基準平面に投影された距離rを算出するステップ、算出された三次元スキャナから最も遠い測定領域までの距離rFを用いて各測定領域と三次元スキャナとの距離rに応じた各測定領域の高さデータの目標点群数ρを下記(1)式に従って算出するステップ、各測定領域の高さデータの点群数が算出された各測定領域の高さデータの目標点群数ρより多い場合には目標点群数まで測定領域の高さデータの点群数を間引き処理するステップ、各測定領域の高さデータの点群から表面形状を回帰曲面により評価するステップを備えた表面形状測定方法が提供される。 Further, according to a different aspect of the present invention, when the surface shape of the surface of the measurement object is evaluated using a computer having a calculation processing function and a three-dimensional scanner, the measurement is performed from the three-dimensional scanner with the resolution Δθ of the three-dimensional scanner. Measuring the distance to the surface of the object and decomposing the distance data into position data and height data of the surface of the object to be measured, measuring object from the position data and height data of the surface of the disassembled object to be measured A step of setting a reference plane for projecting the surface of the object, dividing the surface of the measurement object projected onto the reference plane into measurement areas of a predetermined size, and a point group of height data of each divided measurement area A step of calculating a number, a step of calculating a distance r projected on the reference plane between the center of each divided measurement region and the three-dimensional scanner, and a measurement farthest from the calculated three-dimensional scanner A step of calculating a target point group number ρ of height data of each measurement region according to the distance r between each measurement region and the three-dimensional scanner using the distance r F to the region according to the following equation (1), A step of thinning out the number of point data of the height data of the measurement area up to the target point group number when the number of point data of the height data of the measurement data is greater than the target point cloud number ρ of the height data of each measurement area There is provided a surface shape measuring method including a step of evaluating a surface shape from a point group of height data of each measurement region using a regression surface.

Figure 2016017916
但し、
ρ:目標点群数(基準平面単位面積当たりの点群密度)[1/m2
z:三次元スキャナの基準平面からの高さ[m]
r:各測定領域の中心と三次元スキャナとの基準平面に投影された距離[m]
F:三次元スキャナから最も遠い測定領域までの距離[m]
Δθ:三次元スキャナの分解能[rad]
Figure 2016017916
However,
ρ: target point cloud number (point cloud density per unit area of reference plane) [1 / m 2 ]
z: Height from the reference plane of the 3D scanner [m]
r: Distance [m] projected on the reference plane between the center of each measurement region and the 3D scanner
r F : Distance from the 3D scanner to the farthest measurement area [m]
Δθ: 3D scanner resolution [rad]

本発明の表面形状測定装置及びその方法によれば、各測定領域内での統計誤差が同等な各測定領域の高さデータの点群数は、各測定領域の中心と三次元スキャナとの基準平面に投影された距離rに依存するので、測定対象物の表面で各測定領域内の統計誤差を同等にすることができ、これにより測定対象物の表面形状を適正に評価することができる。   According to the surface shape measuring apparatus and method of the present invention, the number of point data of the height data of each measurement region having the same statistical error in each measurement region is determined based on the reference between the center of each measurement region and the three-dimensional scanner. Since it depends on the distance r projected on the plane, the statistical error in each measurement region can be made equal on the surface of the measurement object, and thus the surface shape of the measurement object can be properly evaluated.

本発明の表面形状測定装置及びその方法の一実施形態を示す概略説明図である。It is a schematic explanatory drawing which shows one Embodiment of the surface shape measuring apparatus and its method of this invention. 図1の表面形状測定装置の平面図である。It is a top view of the surface shape measuring apparatus of FIG. 図1及び図2のコンピュータ内で行われる演算処理のフローチャートである。It is a flowchart of the arithmetic processing performed within the computer of FIG.1 and FIG.2. 表面形状測定方法の説明図である。It is explanatory drawing of the surface shape measuring method. 表面形状測定方法の説明図である。It is explanatory drawing of the surface shape measuring method.

以下、本発明の実施形態に係る表面形状測定装置及びその方法について図面を参照しながら説明する。図1は、本実施形態の表面形状測定装置の概略構成を示す斜視図、図2は、図1の平面図である。本実施形態の表面形状測定装置は、厚板の鋼板Sを測定対象物としてライン上で形状測定するものである。本実施形態では、予め設定された分解能(角度分解能)でレーザ光を走査して測定対象物までの距離を測定する三次元スキャナ1を用い、この三次元スキャナ1で測定された鋼板Sの表面までの距離から、演算処理機能を有するコンピュータ(計算機)2で鋼板Sの表面形状を測定する。このような表面形状測定装置に用いる三次元スキャナ1としては、例えば前述の特許文献1に記載されているので、ここでの詳細な説明は省略する。   Hereinafter, a surface shape measuring apparatus and method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of the surface shape measuring apparatus of the present embodiment, and FIG. 2 is a plan view of FIG. The surface shape measuring apparatus of this embodiment measures a shape on a line using a thick steel plate S as a measurement object. In the present embodiment, the surface of the steel sheet S measured by the three-dimensional scanner 1 is used using the three-dimensional scanner 1 that scans the laser beam with a preset resolution (angular resolution) and measures the distance to the measurement object. From the distance up to, the surface shape of the steel sheet S is measured by a computer (computer) 2 having an arithmetic processing function. Since the three-dimensional scanner 1 used in such a surface shape measuring apparatus is described in, for example, the above-mentioned Patent Document 1, detailed description thereof is omitted here.

鋼板Sは、一般に搬送方向に長手で、搬送方向と直交方向に短い。つまり、鋼板Sには長辺と短辺があり、本実施形態では、長辺方向を長手方向(X方向ともいう)とし、短辺方向を幅方向(Y方向ともいう)と定義する。また、高さ方向をZ方向ともいう。三次元スキャナ1は、周知のように、レーザ光源からのレーザ光を例えば鋼板Sの長手方向に偏向すると共に鋼板Sの幅方向に走査して、鋼板Sの表面からの反射光を受光することにより、その表面の測定点までの距離を求めることができる。この距離は、測定点の長手方向(X方向)の位置及び幅方向(Y方向)の位置を規定すると、誤差を含む高さ方向Zの位置情報に変換することができる。従って、鋼板Sの表面におけるX、Y座標(x、y)上の高さz(位置)を鋼板Sの表面の形状として認識することができる。   The steel sheet S is generally long in the transport direction and short in the direction orthogonal to the transport direction. That is, the steel sheet S has a long side and a short side, and in the present embodiment, the long side direction is defined as the longitudinal direction (also referred to as the X direction), and the short side direction is defined as the width direction (also referred to as the Y direction). The height direction is also referred to as the Z direction. As is well known, the three-dimensional scanner 1 receives the reflected light from the surface of the steel sheet S by deflecting the laser light from the laser light source in the longitudinal direction of the steel sheet S and scanning in the width direction of the steel sheet S, for example. Thus, the distance to the measurement point on the surface can be obtained. This distance can be converted into position information in the height direction Z including an error if the position in the longitudinal direction (X direction) and the position in the width direction (Y direction) of the measurement point are defined. Therefore, the height z (position) on the X and Y coordinates (x, y) on the surface of the steel sheet S can be recognized as the shape of the surface of the steel sheet S.

本実施形態の表面形状測定装置は、コンピュータ2内で行われる演算処理によって構成される。この表面形状装置の概略について説明すると、例えば図1、図2に示すように、測定対象物である鋼板Sの表面を予め設定された大きさ、例えば予め規定された長手方向及び幅方向の長さ或いは面積の測定領域に分割する。その際、三次元スキャナ1で測定した鋼板Sの表面までの距離を位置と高さに分解し、分解された位置データ及び高さデータから鋼板Sの表面を投影する基準平面を設定し、その基準平面を予め設定された大きさの測定領域に分割する。そして、各測定領域内の高さデータの点群数を調整した後、表面形状を回帰曲面(平滑化スプライン曲面)によって評価する。   The surface shape measuring apparatus according to the present embodiment is configured by arithmetic processing performed in the computer 2. The outline of the surface shape device will be described below. For example, as shown in FIGS. 1 and 2, the surface of the steel sheet S as the measurement object has a predetermined size, for example, a predetermined length in the longitudinal direction and a width direction. Alternatively, the area is divided into measurement areas. At that time, the distance to the surface of the steel sheet S measured by the three-dimensional scanner 1 is decomposed into a position and height, and a reference plane for projecting the surface of the steel sheet S is set from the decomposed position data and height data, The reference plane is divided into measurement areas having a preset size. Then, after adjusting the number of point groups of the height data in each measurement region, the surface shape is evaluated by a regression surface (smoothed spline surface).

次に、表面形状測定装置を構成するためにコンピュータ2内で行われる演算処理について、図3のフローチャートを用いて説明する。この演算処理は、例えばオペレータの開始入力によって実行され、まずステップS1で、表面形状測定対象物、即ち鋼板Sの表面までの距離を三次元スキャナの分解能で測定し、その距離を鋼板Sの表面の位置データ及び高さデータに分解する。
次にステップS2に移行して、ステップS1で得られた鋼板Sの表面の位置データ及び高さデータから表面形状測定対象物、即ち鋼板Sの表面を投影する基準平面を設定する。この基準平面は、例えば取得した位置データ及び高さデータを用いて例えば最小二乗法などによって鋼板Sの表面状態に応じた平均的な平面を設定する。
Next, the calculation process performed in the computer 2 in order to comprise a surface shape measuring apparatus is demonstrated using the flowchart of FIG. This calculation process is executed by, for example, an operator's start input. First, in step S1, the distance to the surface shape measurement object, that is, the surface of the steel sheet S is measured with the resolution of a three-dimensional scanner, and the distance is measured on the surface of the steel sheet S To position data and height data.
Next, the process proceeds to step S2, and a reference plane for projecting the surface shape measurement object, that is, the surface of the steel sheet S is set from the position data and height data of the surface of the steel sheet S obtained in step S1. As the reference plane, for example, an average plane corresponding to the surface state of the steel sheet S is set by using, for example, the least square method using the acquired position data and height data.

次にステップS3に移行して、ステップS2で設定された基準平面を予め設定された大きさ、例えば予め規定された長手方向及び幅方向の長さ或いは面積の測定領域に分割し、各測定領域における高さデータの点群数を算出する。三次元スキャナで測定対象物、即ち鋼板Sの表面を走査すると、例えば図10のように、各測定領域で多数の高さデータが得られる。この各測定領域内における高さデータの数を点群数と定義する。なお、本実施形態では、測定領域は、図2に示すような方形の測定領域とした。測定領域の形状は、これ以外の形状であってもよい。   Next, the process proceeds to step S3, where the reference plane set in step S2 is divided into measurement areas of a predetermined size, for example, a length or area in the longitudinal direction and width direction defined in advance, and each measurement area is divided. The number of point clouds of the height data at is calculated. When the object to be measured, that is, the surface of the steel sheet S is scanned by the three-dimensional scanner, a number of height data are obtained in each measurement region as shown in FIG. The number of height data in each measurement region is defined as the number of point groups. In the present embodiment, the measurement area is a square measurement area as shown in FIG. The shape of the measurement region may be other shapes.

次にステップS4に移行して、ステップS3で分割された各測定領域の中心(重心)と三次元スキャナとの基準平面に投影した距離rを算出する。例えば図2に示すように、各測定領域の中心(重心)をOとしたとき、実際には三次元スキャナ1は測定対象物である鋼板Sの表面から予め設定された高さにあるので、各測定領域の中心(重心)と三次元スキャナとの基準平面に投影した距離rは、実際の三次元スキャナ1と各測定領域の中心(重心)Oとの距離から三次元スキャナ1の高さ成分を除去した距離を意味する。
次にステップS5に移行して、例えば図2に示すように、三次元スキャナ1から最も遠い測定領域までの距離rFを用いて、後述する1式に基づいて、各測定領域と三次元スキャナとの基準平面に投影した距離rに応じた高さデータの目標点群数を算出する。
Next, the process proceeds to step S4, and the distance r projected on the reference plane between the center (center of gravity) of each measurement region divided in step S3 and the three-dimensional scanner is calculated. For example, as shown in FIG. 2, when the center (center of gravity) of each measurement region is O, the three-dimensional scanner 1 is actually at a preset height from the surface of the steel sheet S that is the measurement object. The distance r projected onto the reference plane between the center (centroid) of each measurement region and the 3D scanner is the height of the 3D scanner 1 from the distance between the actual 3D scanner 1 and the center (centroid) O of each measurement region. It means the distance from which the component is removed.
Next, the process proceeds to step S5, and for example, as shown in FIG. 2, using the distance r F from the three-dimensional scanner 1 to the farthest measurement region, each measurement region and the three-dimensional scanner are based on one set described later. The number of target point groups of height data corresponding to the distance r projected on the reference plane is calculated.

次にステップS6に移行して、各測定領域の高さデータの点群数がその測定領域の目標点群数より多い場合には、目標点群数までその測定領域の高さデータの点群数を間引き処理する。この間引き処理は、測定領域の高さデータを目標点群数までランダムに間引くとか、間引かれた高さデータの相互間距離が同等になるように間引くといった手法がある。
次にステップS7に移行して、全測定領域の高さデータの点群から表面形状を回帰曲面(平滑化スプライン曲面)により評価してから復帰する。高さデータの点群から回帰曲面(平滑化スプライン曲面)を求める方法は、前述の特許文献2に詳しいので、ここでは詳細な説明を省略する。
Next, the process proceeds to step S6, and when the number of point data of the height data of each measurement region is larger than the number of target point groups of the measurement region, the point data of the height data of the measurement region up to the target point cloud number. Decimate the number. This thinning process includes a method of thinning the height data of the measurement area at random to the number of target point groups or thinning so that the distances between the thinned height data are equal.
Next, the process proceeds to step S7, where the surface shape is evaluated by a regression surface (smoothed spline surface) from the point group of the height data of all measurement regions, and then the process returns. Since the method for obtaining a regression surface (smoothed spline surface) from the point group of height data is detailed in the above-mentioned Patent Document 2, detailed description thereof is omitted here.

次に、図3の演算処理の作用について説明する。ある測定領域Ωに含まれるn個の測定値zi(i=1、2、…、n)から測定値の平均値z^を求める式は下記(2)式で表される。測定値の平均値は、母平均の推定値と考えてよいので、下記2式は推定モデルであり、z^は推定値となる。

Figure 2016017916
Next, the operation of the arithmetic processing in FIG. 3 will be described. An equation for obtaining an average value z ^ of measured values from n measured values z i (i = 1, 2,..., N) included in a certain measurement region Ω is expressed by the following equation (2). Since the average value of the measured values may be considered as an estimated value of the population average, the following two equations are estimation models, and z ^ is an estimated value.
Figure 2016017916

測定値の平均が零、分散がσz 2となる統計分布に従うとすると、(2)式の推定値の平均は下記(3)式となり、推定値の分散は下記(4)式となる。この(4)式から、推定値の標準偏差σ^zは下記(5)式となる。(5)式より明らかなように、推定値の標準偏差は、測定値の標準偏差の1/n1/2倍となる。従って、測定点数nが大きくなるほど、推定値の標準偏差σ^z又は誤差は小さくなる。(5)式は、中心極限定理と呼ばれるものであり、推定値の分布は、平均零、分散σz 2/nの正規分布となる。つまり、(5)式は、平均化したときに誤差が小さくなる原理式である。

Figure 2016017916
Assuming a statistical distribution in which the average of the measured values is zero and the variance is σ z 2 , the average of the estimated values in the equation (2) is the following equation (3), and the variance of the estimated values is the following equation (4). From this equation (4), the standard deviation σ ^ z of the estimated value becomes the following equation (5). As is clear from the equation (5), the standard deviation of the estimated value is 1 / n 1/2 times the standard deviation of the measured value. Therefore, the standard deviation σ ^ z or error of the estimated value becomes smaller as the number of measurement points n becomes larger. Equation (5) is called a central limit theorem, and the distribution of estimated values is a normal distribution with mean zero and variance σ z 2 / n. That is, equation (5) is a principle equation that reduces the error when averaged.
Figure 2016017916

次に、三次元スキャナを用いた場合の測定点数nと高さ方向Zの測定値の分散σz 2を求めることを考える。対象となる測定領域Ωの面積をA、三次元スキャナの中心から測定領域Ωの中心(重心)Oまでの基準平面に投影した距離をr、三次元スキャナの鉛直方向回転角度をφとすると、測定点数nは下記(6)式で表される。(6)式の分母は、測定点1個当たりの面積である。

Figure 2016017916
Next, it is considered to obtain the number of measurement points n and the variance σ z 2 of the measurement values in the height direction Z when a three-dimensional scanner is used. Assuming that the area of the target measurement region Ω is A, the distance projected onto the reference plane from the center of the three-dimensional scanner to the center (center of gravity) O of the measurement region Ω is r, and the vertical rotation angle of the three-dimensional scanner is φ, The number of measurement points n is expressed by the following formula (6). The denominator of equation (6) is the area per measurement point.
Figure 2016017916

図4に、これらのパラメータの幾何学的な関係を示す。図4のXY平面が基準平面となる。三次元スキャナ1の水平回転角度をθ、基準平面XYから三次元スキャナ1までの高さをzとすると、図4から下記(7)式が得られる。(7)式の両辺を微分して下記(8)式を得、(7)式を(8)式に代入して下記(9)式が得られる。(9)式を(6)式に代入すると下記(10)式が得られる。三次元スキャナ1では、水平方向回転角分解能dθと鉛直方向回転角分解能dφは同じであるから、三次元スキャナの角度分解能をΔθとすると(10)式は下記(11)式に置き換えられる。(11)式からは、距離rが大きくなるほど、測定点数nが小さくなることが分かる。

Figure 2016017916
FIG. 4 shows the geometric relationship between these parameters. The XY plane in FIG. 4 is the reference plane. If the horizontal rotation angle of the three-dimensional scanner 1 is θ and the height from the reference plane XY to the three-dimensional scanner 1 is z, the following equation (7) is obtained from FIG. The following equation (8) is obtained by differentiating both sides of the equation (7), and the following equation (9) is obtained by substituting the equation (7) into the equation (8). Substituting equation (9) into equation (6) yields the following equation (10). In the three-dimensional scanner 1, since the horizontal direction rotational angle resolution dθ and the vertical direction rotational angle resolution dφ are the same, if the angular resolution of the three-dimensional scanner is Δθ, the equation (10) is replaced by the following equation (11). From the equation (11), it can be seen that the number n of measurement points decreases as the distance r increases.
Figure 2016017916

図4を距離rと高さzを含む平面で表すと図5のようになる。ここで、三次元スキャナ1の距離測定誤差の標準偏差をσsとすると、高さ方向Zの誤差成分代表値である標準偏差σzは、図5の関係から下記(12)式で表される。(12)式から明らかなように、標準偏差σzは、距離rが大きくなるほど小さくなる。

Figure 2016017916
FIG. 4 is represented by a plane including the distance r and the height z as shown in FIG. Here, assuming that the standard deviation of the distance measurement error of the three-dimensional scanner 1 is σ s , the standard deviation σ z that is a representative error component value in the height direction Z is expressed by the following equation (12) from the relationship of FIG. The As is clear from the equation (12), the standard deviation σ z decreases as the distance r increases.
Figure 2016017916

(11)式と(12)式を(5)式に代入すると、高さ推定値の標準偏差σ^zは下記(13)式で表される。(13)式から明らかなように、高さ推定値の標準偏差σ^zは距離rの平方根に比例して大きくなるが、距離に対する精度の劣化は比較的小さい。これに対し、距離rにおける位置推定値の標準偏差σ^rは、同じく図5から下記(14)式で表される。(14)式から明らかなように、位置推定値の標準偏差σ^rは距離rの3/2乗に比例して大きくなることから、距離に対する精度の劣化は比較的大きい。しかしながら、表面形状測定において、位置推定値は高さ推定値ほど精度を要求されない。

Figure 2016017916
When the expressions (11) and (12) are substituted into the expression (5), the standard deviation σ ^ z of the height estimation value is expressed by the following expression (13). As is clear from the equation (13), the standard deviation σ ^ z of the height estimation value increases in proportion to the square root of the distance r, but the degradation of accuracy with respect to the distance is relatively small. In contrast, the standard deviation sigma ^ r position estimate at the distance r is likewise from 5 represented by the following equation (14). As is clear from the equation (14), the standard deviation σ ^ r of the position estimation value increases in proportion to the 3rd power of the distance r, so that the accuracy degradation with respect to the distance is relatively large. However, in the surface shape measurement, the position estimation value is not required to be as accurate as the height estimation value.
Figure 2016017916

標準偏差は、誤差の大きさを表す尺度の一つである。下記表1には、標準偏差σの倍率とその中に含まれる測定値の割合を示す。

Figure 2016017916
Standard deviation is one of the scales representing the magnitude of error. Table 1 below shows the magnification of the standard deviation σ and the ratio of the measurement values included therein.
Figure 2016017916

前述のように、標準偏差は誤差の大きさを表す尺度の一つであるから、例えば(12)式、(13)式、(14)式内の標準偏差を別の誤差の大きさを表す尺度に置き換えてもよい。ここでは、各測定領域Ωにおける高さ推定値の標準偏差が一定になるように各測定領域Ω内の目標点群数を点群密度ρで表すことを考える。(12)式を(5)式に代入すると、高さ推定値の標準偏差σ^zは下記(15)式で表される。(15)式中の高さ推定値の標準偏差σ^zをある定数に固定すると、測定領域Ω内の点群数nは下記(16)式で表される。

Figure 2016017916
As described above, since the standard deviation is one of the scales representing the magnitude of the error, for example, the standard deviation in the expressions (12), (13), and (14) represents another magnitude of error. It may be replaced with a scale. Here, it is assumed that the number of target point groups in each measurement region Ω is represented by a point group density ρ so that the standard deviation of the height estimation value in each measurement region Ω is constant. When the equation (12) is substituted into the equation (5), the standard deviation σ ^ z of the height estimation value is expressed by the following equation (15). When the standard deviation σ ^ z of the height estimation value in the equation (15) is fixed to a certain constant, the number n of point groups in the measurement region Ω is expressed by the following equation (16).
Figure 2016017916

点群密度ρは、下記(17)式で定義されるので、高さ推定値の標準偏差σ^zを一定とする点群密度ρは下記(18)式の条件を満たせばよい。距離rは基準平面に投影した三次元スキャナと点群との距離であるから、(18)式から明らかなように、距離rが大きいほど、つまり三次元スキャナから遠く離れるほど、点群密度ρを小さくしてもよいことが定性的に分かる。

Figure 2016017916
Since the point group density ρ is defined by the following equation (17), the point group density ρ with a constant standard deviation σ ^ z of the height estimation value only needs to satisfy the condition of the following equation (18). Since the distance r is the distance between the three-dimensional scanner projected onto the reference plane and the point group, as is clear from the equation (18), the point group density ρ increases as the distance r increases, that is, as the distance from the three-dimensional scanner increases. It is qualitatively understood that can be reduced.
Figure 2016017916

(13)式から、三次元スキャナから最も遠い測定領域Ωでの高さ推定値の標準偏差σ^zが最も大きくなるので、この標準偏差を基準とする。三次元スキャナから最も遠い測定領域での高さ推定値の標準偏差σ^zは、三次元スキャナから最も遠い測定領域Ωの中心(重心)までの距離rFを(13)式に用いることで下記(19)式と表される。(19)式を(16)式に代入すると下記(20)式が得られるので、(20)式を(17)式に代入し、高さ推定値の標準偏差σ^zが(19)式で一定となる点群密度(目標点群数)ρは下記(1)式で表される。

Figure 2016017916
Since the standard deviation σ ^ z of the height estimation value in the measurement region Ω farthest from the three-dimensional scanner is the largest from the equation (13), this standard deviation is used as a reference. The standard deviation σ ^ z of the height estimation value in the measurement area farthest from the 3D scanner is obtained by using the distance r F from the center (center of gravity) of the measurement area Ω farthest from the 3D scanner to the equation (13). It is represented by the following formula (19). By substituting equation (19) into equation (16), the following equation (20) is obtained. Therefore, equation (20) is substituted into equation (17), and the standard deviation σ ^ z of the height estimation value is expressed by equation (19). The point group density (the number of target point groups) ρ that is constant at is expressed by the following equation (1).
Figure 2016017916

このように本実施形態の表面形状測定装置及びその方法では、演算処理機能を有するコンピュータ(計算機)2及び三次元スキャナ1を用いて鋼板(測定対象物)Sの表面の表面形状を評価するにあたり、三次元スキャナ1の分解能Δθで三次元スキャナ1から鋼板Sの表面までの距離を測定し、その距離データを鋼板Sの表面の位置データ及び高さデータに分解する。また、分解された鋼板Sの表面の位置データ及び高さデータから鋼板Sの表面を投影する基準平面を設定する。また、基準平面に投影した鋼板Sの表面を予め設定された大きさの測定領域に分割し、分割された各測定領域の高さデータの点群数を算出する。また、分割された各測定領域の中心Oと三次元スキャナ1との基準平面に投影された距離rを算出する。また、算出された三次元スキャナ1から最も遠い測定領域までの距離rFを用いて各測定領域と三次元スキャナ1との距離rに応じた各測定領域の高さデータの目標点群数ρを算出する。そして、各測定領域の高さデータの点群数が算出された各測定領域の高さデータの目標点群数ρより多い場合には目標点群数まで測定領域の高さデータの点群数を間引き処理し、各測定領域の高さデータの点群から表面形状を回帰曲面により評価する。各測定領域内での統計誤差が同等な各測定領域の高さデータの点群数は、各測定領域の中心Oと三次元スキャナ1との基準平面に投影された距離rに依存するので、鋼板Sの表面で各測定領域内の統計誤差を同等にすることができ、これにより鋼板Sの表面形状を適正に評価すると共に、計算時間を短縮することができる。 As described above, in the surface shape measuring apparatus and method according to the present embodiment, the surface shape of the surface of the steel plate (measuring object) S is evaluated using the computer (computer) 2 having the arithmetic processing function and the three-dimensional scanner 1. The distance from the three-dimensional scanner 1 to the surface of the steel sheet S is measured with the resolution Δθ of the three-dimensional scanner 1, and the distance data is decomposed into position data and height data of the surface of the steel sheet S. Further, a reference plane for projecting the surface of the steel sheet S is set from the position data and height data of the surface of the disassembled steel sheet S. Further, the surface of the steel sheet S projected onto the reference plane is divided into measurement areas having a preset size, and the number of point data of the height data of each divided measurement area is calculated. Further, the distance r projected on the reference plane between the center O of each divided measurement region and the three-dimensional scanner 1 is calculated. Further, using the calculated distance r F from the three-dimensional scanner 1 to the farthest measurement region, the target point group number ρ of the height data of each measurement region according to the distance r between each measurement region and the three-dimensional scanner 1 Is calculated. And when the number of point data of the height data of each measurement area is larger than the target point group number ρ of the height data of each measurement area, the number of point data of the height data of the measurement area up to the target point group number Is thinned out, and the surface shape is evaluated by a regression surface from the point group of the height data of each measurement region. Since the number of point data points in the height data of each measurement region with the same statistical error in each measurement region depends on the distance r projected on the reference plane between the center O of each measurement region and the three-dimensional scanner 1, The statistical error in each measurement region can be made equal on the surface of the steel sheet S, whereby the surface shape of the steel sheet S can be properly evaluated and the calculation time can be shortened.

なお、実施形態では、ライン上でオンライン的に鋼板の表面形状を評価する場合について説明したが、本発明の表面形状測定装置及びその方法は、ラインの側方でオフライン的に適用することも可能である。
また、実施形態では、表面形状測定対象物として、ラインで圧延された鋼板についてのみ詳述したが、本発明の表面形状測定装置及びその方法は、鋼板に限らず、測定対象表面上の点群データを取得できる測定対象物であれば、如何様なものにも適用することができる。
In addition, although embodiment demonstrated the case where the surface shape of a steel plate was evaluated online on a line, the surface shape measuring apparatus and method of this invention can also be applied off-line at the side of a line. It is.
Further, in the embodiment, as the surface shape measurement object, only the steel sheet rolled in the line has been described in detail. However, the surface shape measurement apparatus and the method of the present invention are not limited to the steel sheet, but a point group on the measurement object surface. Any measurement object that can acquire data can be applied.

1 三次元スキャナ
2 コンピュータ(計算機)
S 鋼板(測定対象物)
1 Three-dimensional scanner 2 Computer (computer)
S Steel plate (object to be measured)

Claims (2)

演算処理機能を有する計算機及び三次元スキャナを用いて測定対象物の表面形状を評価する表面形状測定装置であって、
前記三次元スキャナの分解能Δθで前記三次元スキャナから前記測定対象物の表面までの距離を測定し、その距離データを前記測定対象物の表面の位置データ及び高さデータに分解するデータ分解部と、
前記分解された測定対象物の表面の位置データ及び高さデータから前記測定対象物の表面を投影する基準平面を設定する基準平面設定部と、
前記基準平面に投影した前記測定対象物の表面を予め設定された大きさの測定領域に分割し、分割された各測定領域の高さデータの点群数を算出する測定領域分割部と、
前記分割された各測定領域の中心と前記三次元スキャナとの前記基準平面に投影された距離rを算出する測定領域距離算出部と、
前記算出された前記三次元スキャナから最も遠い測定領域までの距離rFを用いて各測定領域と前記三次元スキャナとの前記距離rに応じた各測定領域の高さデータの目標点群数ρを下記(1)式に従って算出する目標点群数算出部と、
前記各測定領域の高さデータの点群数が前記算出された各測定領域の高さデータの目標点群数ρより多い場合には当該目標点群数まで当該測定領域の高さデータの点群数を間引き処理する間引き処理部と、
前記各測定領域の高さデータの点群から表面形状を回帰曲面により評価する表面形状評価部と
を備えたことを特徴とする表面形状測定装置。
Figure 2016017916
但し、
ρ:目標点群数(基準平面単位面積当たりの点群密度)[1/m2
z:三次元スキャナの基準平面からの高さ[m]
r:各測定領域の中心と三次元スキャナとの基準平面に投影された距離[m]
F:三次元スキャナから最も遠い測定領域までの距離[m]
Δθ:三次元スキャナの分解能[rad]
A surface shape measuring device for evaluating the surface shape of a measurement object using a computer having a calculation processing function and a three-dimensional scanner,
A data decomposing unit that measures the distance from the three-dimensional scanner to the surface of the measurement object with the resolution Δθ of the three-dimensional scanner and decomposes the distance data into position data and height data of the surface of the measurement object; ,
A reference plane setting unit for setting a reference plane for projecting the surface of the measurement object from the position data and the height data of the surface of the decomposed measurement object;
A measurement area dividing unit that divides the surface of the measurement object projected onto the reference plane into measurement areas of a preset size, and calculates the number of point groups of the height data of each divided measurement area;
A measurement region distance calculation unit that calculates a distance r projected on the reference plane between the center of each of the divided measurement regions and the three-dimensional scanner;
Using the calculated distance r F from the three-dimensional scanner to the farthest measurement area, the target point group number ρ of the height data of each measurement area according to the distance r between each measurement area and the three-dimensional scanner A target point cloud number calculation unit for calculating the following according to the following equation (1):
When the number of point groups of the height data of each measurement region is larger than the target point group number ρ of the calculated height data of each measurement region, the points of the height data of the measurement region up to the target point group number A decimation processing unit that decimates the number of groups;
A surface shape measuring apparatus, comprising: a surface shape evaluation unit that evaluates a surface shape from a point group of height data of each measurement region using a regression surface.
Figure 2016017916
However,
ρ: target point cloud number (point cloud density per unit area of reference plane) [1 / m 2 ]
z: Height from the reference plane of the 3D scanner [m]
r: Distance [m] projected on the reference plane between the center of each measurement region and the 3D scanner
r F : Distance from the 3D scanner to the farthest measurement area [m]
Δθ: 3D scanner resolution [rad]
演算処理機能を有する計算機及び三次元スキャナを用いて測定対象物の表面形状を評価する表面形状測定方法であって、
前記三次元スキャナの分解能Δθで前記三次元スキャナから前記測定対象物の表面までの距離を測定し、その距離データを前記測定対象物の表面の位置データ及び高さデータに分解するステップと、
前記分解された測定対象物の表面の位置データ及び高さデータから前記測定対象物の表面を投影する基準平面を設定するステップと、
前記基準平面に投影した前記測定対象物の表面を予め設定された大きさの測定領域に分割し、分割された各測定領域の高さデータの点群数を算出するステップと、
前記分割された各測定領域の中心と前記三次元スキャナとの前記基準平面に投影された距離rを算出するステップと、
前記算出された前記三次元スキャナから最も遠い測定領域までの距離rFを用いて各測定領域と前記三次元スキャナとの前記距離rに応じた各測定領域の高さデータの目標点群数ρを下記(1)式に従って算出するステップと、
前記各測定領域の高さデータの点群数が前記算出された各測定領域の高さデータの目標点群数ρより多い場合には当該目標点群数まで当該測定領域の高さデータの点群数を間引き処理するステップと、
前記各測定領域の高さデータの点群から表面形状を回帰曲面により評価するステップと
を備えたことを特徴とする表面形状測定方法。
Figure 2016017916
但し、
ρ:目標点群数(基準平面単位面積当たりの点群密度)[1/m2
z:三次元スキャナの基準平面からの高さ[m]
r:各測定領域の中心と三次元スキャナとの基準平面に投影された距離[m]
F:三次元スキャナから最も遠い測定領域までの距離[m]
Δθ:三次元スキャナの分解能[rad]
A surface shape measurement method for evaluating the surface shape of a measurement object using a computer having a calculation processing function and a three-dimensional scanner,
Measuring the distance from the three-dimensional scanner to the surface of the measurement object with the resolution Δθ of the three-dimensional scanner, and decomposing the distance data into position data and height data of the surface of the measurement object;
Setting a reference plane for projecting the surface of the measurement object from position data and height data of the surface of the measurement object that has been decomposed;
Dividing the surface of the measurement object projected onto the reference plane into measurement areas of a preset size, and calculating the number of point groups of the height data of each divided measurement area;
Calculating a distance r projected on the reference plane between the center of each of the divided measurement areas and the three-dimensional scanner;
Using the calculated distance r F from the three-dimensional scanner to the farthest measurement area, the target point group number ρ of the height data of each measurement area according to the distance r between each measurement area and the three-dimensional scanner Calculating according to the following equation (1):
When the number of point groups of the height data of each measurement region is larger than the target point group number ρ of the calculated height data of each measurement region, the points of the height data of the measurement region up to the target point group number A step of thinning out the number of groups;
And a step of evaluating a surface shape from a point group of height data of each measurement region using a regression surface.
Figure 2016017916
However,
ρ: target point cloud number (point cloud density per unit area of reference plane) [1 / m 2 ]
z: Height from the reference plane of the 3D scanner [m]
r: Distance [m] projected on the reference plane between the center of each measurement region and the 3D scanner
r F : Distance from the 3D scanner to the farthest measurement area [m]
Δθ: 3D scanner resolution [rad]
JP2014142515A 2014-07-10 2014-07-10 Surface shape measuring apparatus and method Active JP6086099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142515A JP6086099B2 (en) 2014-07-10 2014-07-10 Surface shape measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142515A JP6086099B2 (en) 2014-07-10 2014-07-10 Surface shape measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2016017916A true JP2016017916A (en) 2016-02-01
JP6086099B2 JP6086099B2 (en) 2017-03-01

Family

ID=55233218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142515A Active JP6086099B2 (en) 2014-07-10 2014-07-10 Surface shape measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP6086099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402245A (en) * 2020-03-20 2020-07-10 中建材(合肥)粉体科技装备有限公司 Roller surface defect identification method and device for roller press

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253894B (en) * 2018-02-06 2020-08-18 中原内配集团股份有限公司 Detection method for surface convex structure of cylinder sleeve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155272A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Device for straightening shape of steel sheet
JP2010156622A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Shape measurement method and shape measurement apparatus of steel plate
JP2011179910A (en) * 2010-02-26 2011-09-15 Canon Inc Device and method for measuring position and attitude, and program
JP2012037313A (en) * 2010-08-05 2012-02-23 Jfe Steel Corp Method of measuring planar shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155272A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Device for straightening shape of steel sheet
JP2010156622A (en) * 2008-12-27 2010-07-15 Jfe Steel Corp Shape measurement method and shape measurement apparatus of steel plate
JP2011179910A (en) * 2010-02-26 2011-09-15 Canon Inc Device and method for measuring position and attitude, and program
JP2012037313A (en) * 2010-08-05 2012-02-23 Jfe Steel Corp Method of measuring planar shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402245A (en) * 2020-03-20 2020-07-10 中建材(合肥)粉体科技装备有限公司 Roller surface defect identification method and device for roller press
CN111402245B (en) * 2020-03-20 2024-02-27 中建材(合肥)粉体科技装备有限公司 Roll surface defect identification method and device for roll squeezer

Also Published As

Publication number Publication date
JP6086099B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
EP3270104B1 (en) Shape measuring apparatus and shape measuring method
TW201525633A (en) CNC machining route amending system and method
JP6003583B2 (en) Shape evaluation method, steel plate shape correction method, and steel plate manufacturing method
JP5395470B2 (en) Shape recognition device
TW201543348A (en) Printing parameter setting method and device of three-dimensional printer
Ding et al. A laser-based machine vision measurement system for laser forming
EP3172106B1 (en) Method to obtain data concerning the upper profile of an element of a railway track or switch
JP6198701B2 (en) Shape measuring apparatus and shape measuring method
Shi et al. A simultaneous calibration technique of the extrinsic and turntable for structured-light-sensor-integrated CNC system
CN104613883A (en) Wet film thickness difference measurement and evenness assessment method of metal sheet printing coating
CN109754401B (en) Online measuring device and method for burrs at edge of lithium battery pole piece
US20230267593A1 (en) Workpiece measurement method, workpiece measurement system, and program
JP6086099B2 (en) Surface shape measuring apparatus and method
JP6357622B2 (en) Work support device, work support system, work support method and program
JP6064871B2 (en) Thickness measurement method
JP6213595B2 (en) Method and apparatus for detecting surface position of metal body on which chips are placed
JP6599698B2 (en) Image measuring apparatus and control program therefor
CN109000560B (en) Method, device and equipment for detecting package size based on three-dimensional camera
CN104576483A (en) Silicon slice prealignment device and method
JP5294891B2 (en) Image processing method for extracting uneven characters
JP2018096876A (en) Shape estimation method, steel sheet shape correction method, and manufacturing method of steel sheet
JP6376081B2 (en) Method for calculating shape of object, method for correcting press of steel plate, and method for manufacturing steel plate
SG11201806275VA (en) Light-spot distribution structure, surface shape measurement method, and method for calculating exposure field-of-view control value
CN113744194B (en) Steel plate defect detection method and computer readable storage medium
TW201621493A (en) System and method for processing planes with high precision

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170117

R150 Certificate of patent or registration of utility model

Ref document number: 6086099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250