JP2016011430A - Fibrous copper fine particle fluid dispersion - Google Patents

Fibrous copper fine particle fluid dispersion Download PDF

Info

Publication number
JP2016011430A
JP2016011430A JP2014131985A JP2014131985A JP2016011430A JP 2016011430 A JP2016011430 A JP 2016011430A JP 2014131985 A JP2014131985 A JP 2014131985A JP 2014131985 A JP2014131985 A JP 2014131985A JP 2016011430 A JP2016011430 A JP 2016011430A
Authority
JP
Japan
Prior art keywords
copper fine
fibrous copper
fine particles
fine particle
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014131985A
Other languages
Japanese (ja)
Inventor
裕孝 竹田
Hirotaka Takeda
裕孝 竹田
吉永 輝政
Terumasa Yoshinaga
輝政 吉永
大西 早美
Hayami Onishi
早美 大西
健太 柴田
Kenta Shibata
健太 柴田
睦 松下
Mutsumi Matsushita
睦 松下
山田 宗紀
Munenori Yamada
宗紀 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2014131985A priority Critical patent/JP2016011430A/en
Publication of JP2016011430A publication Critical patent/JP2016011430A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fibrous copper fine particle fluid dispersion configured to reduce a surface resistance value change with time.SOLUTION: A fibrous copper fine particle fluid dispersion contains fibrous copper fine particles, a dispersion medium composed mainly of a protic polar solvent, and an organic compound having a triazole group. The fibrous copper fine particle fluid dispersion suppresses a reaction with dissolved oxygen or the like in a fluid dispersion, and, even when containing fibrous copper fine particles having a large surface area, is capable of sufficiently preventing deposition of impurities, such as copper oxide, on the surface of these fine particles, thereby reducing a surface resistance value change with time.

Description

本発明は、繊維状銅微粒子分散液に関する。   The present invention relates to a fibrous copper fine particle dispersion.

繊維状銅微粒子は導電性に優れ、かつ銀などの金属と比較すると安価な材料であることから、例えば、導電性コーティング剤などの原料として広く用いられている。このような導電性コーティング剤は、プリント配線板などにおいて各種印刷法を用いて回路を形成するための材料や、各種の電気的接点部材などとして幅広く利用されている。   Since the fibrous copper fine particles are excellent in conductivity and are inexpensive compared to metals such as silver, they are widely used as raw materials for conductive coating agents, for example. Such conductive coating agents are widely used as materials for forming circuits using various printing methods on printed wiring boards and the like, and various electrical contact members.

しかしながら、銅は、大気中や溶媒中の酸素やその他の物質と反応しやすいという問題がある。銅の反応性を抑制した分散液としては、例えば、特許文献1に、1,2,3−トリアゾール基を有する有機化合物からなる酸化防止皮膜を形成した粒状の銅微粒子の分散液が開示されている。   However, copper has a problem that it easily reacts with oxygen and other substances in the atmosphere and in a solvent. As a dispersion liquid in which the reactivity of copper is suppressed, for example, Patent Document 1 discloses a dispersion liquid of granular copper fine particles in which an antioxidant film made of an organic compound having a 1,2,3-triazole group is formed. Yes.

特開2007−270264号公報JP 2007-270264 A

しかしながら、繊維状銅微粒子は、粒状の銅微粒子と比べて表面積が大きく、その表面が大気中や溶媒中の酸素やその他の物質と反応しやすい。しかしながら、特許文献1には、1,2,3−トリアゾール基を有する有機化合物からなる酸化防止皮膜を有し、粒径が1〜1000nmの範囲にある銅微粒子分散液については記載されているが、粒状の銅微粒子とは表面積が全く異なる繊維状銅微粒子については記載がない。   However, the fibrous copper fine particles have a larger surface area than the granular copper fine particles, and the surface thereof easily reacts with oxygen or other substances in the air or in the solvent. However, Patent Document 1 describes a copper fine particle dispersion having an antioxidant film made of an organic compound having a 1,2,3-triazole group and having a particle size in the range of 1 to 1000 nm. There is no description of fibrous copper fine particles having a completely different surface area from the granular copper fine particles.

本発明は、表面抵抗値の経時的な変化が抑制された繊維状銅微粒子分散液を提供することを目的とする。   An object of the present invention is to provide a fibrous copper fine particle dispersion in which a change in surface resistance with time is suppressed.

本発明者らは、上記の課題を解決するため鋭意検討した結果、トリアゾール基を有する有機化合物を含有し、かつ、プロトン性極性溶媒を主成分とする分散媒に、繊維状銅微粒子を分散させることにより、上記目的が達成されることを見出し、本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors disperse fibrous copper fine particles in a dispersion medium containing an organic compound having a triazole group and having a protic polar solvent as a main component. As a result, the inventors have found that the above object can be achieved, and have reached the present invention.

すなわち、本発明は、繊維状銅微粒子と、プロトン性極性溶媒を主成分とする分散媒と、トリアゾール基を有する有機化合物とを含有することを特徴とする繊維状銅微粒子分散液を要旨とするものである。   That is, the gist of the present invention is a fibrous copper fine particle dispersion characterized by containing fibrous copper fine particles, a dispersion medium mainly composed of a protic polar solvent, and an organic compound having a triazole group. Is.

本発明によれば、表面抵抗値の経時的な変化が抑制された繊維状銅微粒子分散液を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fibrous copper microparticle dispersion liquid by which the temporal change of the surface resistance value was suppressed can be provided.

本発明の繊維状銅微粒子分散液は、繊維状銅微粒子と、プロトン性極性溶媒を主成分とする分散媒と、トリアゾール基を有する有機化合物とを含有する。   The fibrous copper fine particle dispersion of the present invention contains fibrous copper fine particles, a dispersion medium mainly containing a protic polar solvent, and an organic compound having a triazole group.

本発明に用いる繊維状銅微粒子の繊維径(繊維状銅微粒子の繊維長さ方向に対して垂直な断面における径)、長さ(繊維長さ)、及びアスペクト比(長さ/繊維径)は、用途や目的とされる性能などにより適宜に選択される。なかでも、繊維径は200nm以下であることが好ましく、100nm以下であることがより好ましい。また、アスペクト比は25以上であることが好ましく、50以上であることがより好ましい。一般的に、繊維状銅微粒子は、細いほど、又はアスペクト比が大きいほど、その表面積が大きくなる。そのため、表面積の大きい繊維状銅微粒子は分散液中の溶存酸素などと反応し、表面抵抗値が経時的に変化する場合がある。しかしながら、本発明の繊維状銅微粒子分散液は、このような表面積の大きい繊維状銅微粒子を含有したとしても、その表面における酸化銅などの不純物の析出を十分に防止することができるため、表面抵抗値の経時的な変化を抑制することができる。   The fiber diameter (the diameter in the cross section perpendicular to the fiber length direction of the fibrous copper fine particles), the length (fiber length), and the aspect ratio (length / fiber diameter) of the fibrous copper fine particles used in the present invention are as follows. It is appropriately selected depending on the application and intended performance. Especially, it is preferable that a fiber diameter is 200 nm or less, and it is more preferable that it is 100 nm or less. Further, the aspect ratio is preferably 25 or more, and more preferably 50 or more. In general, the surface area of the fibrous copper fine particles increases as the fineness or aspect ratio increases. For this reason, the fibrous copper fine particles having a large surface area may react with dissolved oxygen in the dispersion, and the surface resistance value may change over time. However, since the fibrous copper fine particle dispersion of the present invention can sufficiently prevent precipitation of impurities such as copper oxide on the surface even when such a large surface area fibrous copper fine particle is contained, The change with time of the resistance value can be suppressed.

繊維状銅微粒子の繊維径、長さ及びアスペクト比は、以下のようにして求められる。つまり、繊維状銅微粒子分散液に含有される繊維状銅微粒子を100本選択し、それぞれの繊維径及び長さを測定し、それらの平均値を繊維状銅微粒子の径及び長さとする。さらに、該長さを該繊維径で除することにより繊維状銅微粒子のアスペクト比とする。   The fiber diameter, length, and aspect ratio of the fibrous copper fine particles are obtained as follows. That is, 100 fibrous copper fine particles contained in the fibrous copper fine particle dispersion are selected, the respective fiber diameters and lengths are measured, and the average values thereof are taken as the diameters and lengths of the fibrous copper fine particles. Further, the aspect ratio of the fibrous copper fine particles is obtained by dividing the length by the fiber diameter.

繊維状銅微粒子は、例えば、銅イオン、アルカリ性化合物、銅イオンと安定な錯体を形成し得る含窒素化合物及び還元剤を含有する水溶液から、繊維状銅微粒子を析出させて製造することができる。   The fibrous copper fine particles can be produced, for example, by depositing fibrous copper fine particles from an aqueous solution containing a copper ion, an alkaline compound, a nitrogen-containing compound capable of forming a stable complex with copper ions, and a reducing agent.

本発明に用いる分散媒は、プロトン性極性溶媒を主成分とする分散媒である。分散媒中のプロトン性極性溶媒の割合は、50質量%以上とすることが好ましく、70質量%以上とすることがより好ましく、90質量%以上とすることがさらに好ましい。分散媒として、プロトン性極性溶媒を主成分とする分散媒を用いない場合、例えば、アセトニトリルやジメチルホルムアミドなどの非プロトン性極性溶媒を用いた場合、ベンゾトリアゾールが金属と溶媒和を形成し、繊維状銅微粒子の表面の酸化を防止することができず、表面抵抗値が経時的に変化するので好ましくない。   The dispersion medium used in the present invention is a dispersion medium mainly composed of a protic polar solvent. The proportion of the protic polar solvent in the dispersion medium is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more. When a dispersion medium mainly composed of a protic polar solvent is not used as the dispersion medium, for example, when an aprotic polar solvent such as acetonitrile or dimethylformamide is used, benzotriazole forms a solvate with the metal, and the fiber It is not preferable because oxidation of the surface of the fine copper particles cannot be prevented and the surface resistance value changes with time.

プロトン性極性溶媒とは、ヒドロキシル基、アミノ基、カルボン酸基、スルホン酸基などを骨格に有する、プロトン供与性を示す溶媒のことである。なかでも、アルコール系有機溶媒が好ましい。アルコール系有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノールが挙げられ、メタノール、エタノール、イソプロパノールがより好ましい。   The protic polar solvent is a solvent having a hydroxyl group, an amino group, a carboxylic acid group, a sulfonic acid group or the like in a skeleton and exhibiting a proton donating property. Of these, alcohol-based organic solvents are preferable. Examples of the alcohol organic solvent include methanol, ethanol, propanol, isopropanol, and butanol, and methanol, ethanol, and isopropanol are more preferable.

本発明に用いるトリアゾール基を有する有機化合物としては、例えば、1,2,3−トリアゾール、ベンゾトリアゾール、各種のトリアゾール誘導体、ベンゾトリアゾール誘導体が挙げられる。トリアゾール誘導体としては、1,2,3−トリアゾール−4−カルボン酸、1,2,3−トリアゾール−5−カルボン酸、1,2,3−トリアゾール−4,5−ジカルボン酸、1,2,3−トリアゾール−5−チオール、1,2,3−トリアゾール−4−カルバルデヒド、4−フェニル−1,2,3−トリアゾール、5−メチル−1,2,3−トリアゾール−4−カルボン酸、4−ブロモ−5−フェニル−1,2,3−トリアゾールなどが挙げられる。ベンゾトリアゾール誘導体としては、ベンゾトリアゾール−5−カルボン酸、5−メチルベンゾトリアゾール、メチルベンゾトリアゾール(混合物)、5,6−ジメチルベンゾトリアゾール、5−アミノベンゾトリアゾール、ベンゾトリアゾール−4−スルホン酸、5−クロロベンゾトリアゾール、5−ニトロベンゾトリアゾール、4,6−ジニトロベンゾトリアゾール、5−ブロモベンゾトリアゾール、5,6−ジブロモベンゾトリアゾール、4,5,6,7−テトラブロモベンゾトリアゾール、4−ブロモ−5,6−ジメチルベンゾトリアゾール、5−フルオロベンゾトリアゾール、5−トリフルオロメチルベンゾトリアゾール、5−ペンタフルオロスルファニルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾールなどが挙げられる。トリアゾール基を有する有機化合物のなかでも、ベンゾトリアゾールまたはベンゾトリアゾール誘導体が好ましい。トリアゾール基を有する有機化合物を含有し、かつ、プロトン性極性溶媒を主成分とする分散媒に分散させることにより、繊維状銅微粒子の表面に被膜を形成し、酸化を長時間抑制することができるので、表面抵抗値の経時的な変化を抑制することができる。   Examples of the organic compound having a triazole group used in the present invention include 1,2,3-triazole, benzotriazole, various triazole derivatives, and benzotriazole derivatives. Examples of the triazole derivatives include 1,2,3-triazole-4-carboxylic acid, 1,2,3-triazole-5-carboxylic acid, 1,2,3-triazole-4,5-dicarboxylic acid, 1,2, 3-triazole-5-thiol, 1,2,3-triazole-4-carbaldehyde, 4-phenyl-1,2,3-triazole, 5-methyl-1,2,3-triazole-4-carboxylic acid, Examples include 4-bromo-5-phenyl-1,2,3-triazole. Examples of the benzotriazole derivatives include benzotriazole-5-carboxylic acid, 5-methylbenzotriazole, methylbenzotriazole (mixture), 5,6-dimethylbenzotriazole, 5-aminobenzotriazole, benzotriazole-4-sulfonic acid, 5 -Chlorobenzotriazole, 5-nitrobenzotriazole, 4,6-dinitrobenzotriazole, 5-bromobenzotriazole, 5,6-dibromobenzotriazole, 4,5,6,7-tetrabromobenzotriazole, 4-bromo- 5,6-dimethylbenzotriazole, 5-fluorobenzotriazole, 5-trifluoromethylbenzotriazole, 5-pentafluorosulfanylbenzotriazole, 4-hydroxybenzotriazole, etc. . Among organic compounds having a triazole group, benzotriazole or a benzotriazole derivative is preferable. By containing an organic compound having a triazole group and being dispersed in a dispersion medium containing a protic polar solvent as a main component, a film can be formed on the surface of the fibrous copper fine particles, and oxidation can be suppressed for a long time. Therefore, it is possible to suppress a change in the surface resistance value with time.

繊維状銅微粒子100質量部に対するトリアゾール基を有する有機化合物の添加量としては、0.001〜2質量部とすることが好ましく、0.005〜0.5質量部とすることがより好ましく、0.01〜0.1質量部とすることがさらに好ましい。添加量が0.001質量部未満の場合、酸化防止効果に劣る場合があり、一方、2質量部を超える場合、過剰添加によるコスト増加や後工程での加工性低下などの要因となる場合がある。   The addition amount of the organic compound having a triazole group with respect to 100 parts by mass of the fibrous copper fine particles is preferably 0.001 to 2 parts by mass, more preferably 0.005 to 0.5 parts by mass. More preferably, the content is 0.01 to 0.1 parts by mass. When the addition amount is less than 0.001 part by mass, the antioxidant effect may be inferior. On the other hand, when it exceeds 2 parts by mass, it may cause an increase in cost due to excessive addition or a decrease in workability in a subsequent process. is there.

本発明の繊維状銅微粒子分散液には、本発明の効果を損なわない範囲で、必要に応じて、界面活性剤やバインダ樹脂などの有機化合物、無機化合物、各種金属化合物などの各種の添加剤が含有されていてもよい。   In the fibrous copper fine particle dispersion of the present invention, various additives such as an organic compound such as a surfactant and a binder resin, an inorganic compound, and various metal compounds are used as long as the effects of the present invention are not impaired. May be contained.

一般的には、繊維状銅微粒子分散液から繊維状銅微粒子を取り出す際は、その表面における不純物の析出を防止するために、不活性ガス雰囲気(例えば、窒素ガス雰囲気)下で回収作業をおこなうことが好ましい。しかしながら、本発明の繊維状銅微粒子分散液は、繊維状銅微粒子表面の酸化を効果的に防止することができるので、不活性ガス雰囲気下でなくても、大気下にて繊維状銅微粒子を固液分離したり、分散媒を揮発除去したりすることができる。   In general, when taking out the fibrous copper fine particles from the fibrous copper fine particle dispersion, in order to prevent the precipitation of impurities on the surface, the recovery operation is performed under an inert gas atmosphere (for example, a nitrogen gas atmosphere). It is preferable. However, since the fibrous copper fine particle dispersion of the present invention can effectively prevent the surface of the fibrous copper fine particles from oxidizing, the fibrous copper fine particles can be removed under the atmosphere even in an inert gas atmosphere. Solid-liquid separation can be performed, or the dispersion medium can be removed by volatilization.

本発明の繊維状銅微粒子分散液は、保存する期間や温度は必要に応じて適宜に選択することができる。   The storage period and temperature of the fibrous copper fine particle dispersion of the present invention can be appropriately selected as necessary.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

1. 外観評価
実施例及び比較例にて得られた繊維状銅微粒子分散液を、23℃の恒温下で放置した。作製直後および3か月経過後の分散液中の繊維状銅微粒子の外観を目視で観察し、以下の基準で評価した。
○:繊維状銅微粒子の外観が変わらなかった。
×:繊維状銅微粒子の外観が変わった(色調が変化した)。
1. Appearance Evaluation The fibrous copper fine particle dispersions obtained in the examples and comparative examples were allowed to stand at a constant temperature of 23 ° C. The appearance of the fibrous copper fine particles in the dispersion immediately after production and after the lapse of 3 months was visually observed and evaluated according to the following criteria.
○: The appearance of the fibrous copper fine particles was not changed.
X: The appearance of the fibrous copper fine particles changed (the color tone changed).

2. 繊維状銅微粒子の表面抵抗値
実施例及び比較例にて得られた繊維状銅微粒子分散液を、ガラス容器に入れ、窒素雰囲気下で100℃×2時間乾燥後、真空下で60℃×1時間乾燥させた繊維状銅微粒子集合体を作製した。作製直後および3か月経過後の繊維状銅微粒子分散液から得られた繊維状銅微粒子集合体について、抵抗率計(ダイアインスツルメンツ社製、ロレスタAP、MCP−T400)を用いて、表面抵抗値を測定した。
実用上、作製直後と3ヶ月経過後の表面抵抗値の差が10Ω/sq.未満であることが好ましい。
2. Surface resistance value of fibrous copper fine particles The fibrous copper fine particle dispersions obtained in Examples and Comparative Examples are placed in a glass container, dried in a nitrogen atmosphere at 100 ° C. for 2 hours, and then vacuumed at 60 ° C. × 1. An aggregate of fibrous copper fine particles dried for a period of time was prepared. About the aggregate of the fibrous copper fine particles obtained from the fibrous copper fine particle dispersion immediately after the production and after the lapse of 3 months, the surface resistance value was measured using a resistivity meter (Dear Instruments, Loresta AP, MCP-T400). Was measured.
Practically, the difference in surface resistance immediately after fabrication and after 3 months is 10 Ω / sq. It is preferable that it is less than.

(繊維状銅微粒子の調製)
窒素雰囲気下で、3000mLのフラスコ内にて、720gの水酸化ナトリウム(ナカライテスク社製)を、純水2400gに溶解した。次いで、硝酸銅三水和物(ナカライテスク社製)2.1gを90gの純水で溶解させた水溶液を添加した。さらに39gのエチレンジアミン(ナカライテスク社製)を添加し、200rpmで撹拌をおこない、均一な青色の水溶液を調製した。
(Preparation of fibrous copper fine particles)
Under a nitrogen atmosphere, 720 g of sodium hydroxide (manufactured by Nacalai Tesque) was dissolved in 2400 g of pure water in a 3000 mL flask. Subsequently, an aqueous solution in which 2.1 g of copper nitrate trihydrate (manufactured by Nacalai Tesque) was dissolved in 90 g of pure water was added. Further 39 g of ethylenediamine (manufactured by Nacalai Tesque) was added and stirred at 200 rpm to prepare a uniform blue aqueous solution.

この水溶液に、アスコルビン酸(ナカライテスク社製)水溶液(10質量%)160gを加え、200rpmで撹拌を継続したまま、フラスコを70℃の湯浴に60分間浸漬した。その後、撹拌を停止し、湯浴に浸漬し続けることによって、繊維状銅微粒子が析出したことを目視で確認した。析出した繊維状銅微粒子を、ポリテトラフルオロエチレンメンブレンフィルター(孔径:1μm、アドバンテック社製)を用いた加圧濾過によって固液分離、回収した。
得られた繊維状銅微粒子の平均繊維径は70nm、平均繊維長は45μmであった。
To this aqueous solution, 160 g of an aqueous solution of ascorbic acid (manufactured by Nacalai Tesque) (10% by mass) was added, and the flask was immersed in a 70 ° C. hot water bath for 60 minutes while stirring was continued at 200 rpm. Then, stirring was stopped and it was confirmed by visual observation that fibrous copper fine particles were deposited by continuing to be immersed in a hot water bath. The precipitated fibrous copper fine particles were separated into solid and liquid and recovered by pressure filtration using a polytetrafluoroethylene membrane filter (pore size: 1 μm, manufactured by Advantech).
The obtained fibrous copper fine particles had an average fiber diameter of 70 nm and an average fiber length of 45 μm.

(実施例1)
ガラス製の容器に、前記により作製した繊維状銅微粒子20mgとベンゾトリアゾール(ナカライテスク社製)2mgを4.8gメタノール(ナカライテスク社製)中に添加、混合することにより、繊維状銅微粒子分散液を作製後、容器に蓋をし、23℃の恒温下で放置した。作製直後および3か月経過後の繊維状銅微粒子分散液から得られた繊維状銅微粒子集合体について、各種評価をおこなった。その評価結果を表1に示す。
(Example 1)
Dispersion of fibrous copper fine particles by adding and mixing 20 mg of the fibrous copper fine particles prepared above and 2 mg of benzotriazole (manufactured by Nacalai Tesque) into 4.8 g methanol (manufactured by Nacalai Tesque) in a glass container. After preparing the liquid, the container was covered and allowed to stand at a constant temperature of 23 ° C. Various evaluations were performed on the fibrous copper fine particle aggregates obtained from the fibrous copper fine particle dispersion immediately after the production and after the lapse of 3 months. The evaluation results are shown in Table 1.

(実施例2〜8、比較例1〜3)
分散媒、トリアゾール基を有する有機化合物、繊維状銅微粒子100質量部に対するトリアゾール基を有する有機化合物の添加量を表1の記載の通りに変更する以外は、実施例1と同様の方法で繊維状銅微粒子分散液を作製し、各種評価をおこなった。
(Examples 2-8, Comparative Examples 1-3)
Except for changing the addition amount of the organic compound having a triazole group to the dispersion medium, the organic compound having a triazole group, and 100 parts by mass of the fibrous copper fine particles as described in Table 1, it is fibrous in the same manner as in Example 1. Copper fine particle dispersions were prepared and subjected to various evaluations.

実施例1〜8は、繊維状銅微粒子と、プロトン性極性溶媒を主成分とする分散媒と、トリアゾール基を有する有機化合物とを含有していたため、作製直後と3ヶ月経過後の表面抵抗値の変化が10Ω/sq.未満であった。   Since Examples 1 to 8 contained fibrous copper fine particles, a dispersion medium containing a protic polar solvent as a main component, and an organic compound having a triazole group, the surface resistance value immediately after production and after three months had elapsed. Change of 10 Ω / sq. Was less than.

比較例1では、トリアゾール基を有する有機化合物を含有していなかったため、3ヶ月経過すると、表面抵抗値が10/sq.以上大きくなっていた。
比較例2および3は、非プロトン性極性溶媒を主成分とする分散媒であったため、表面抵抗値が10/sq.以上大きくなっていた。
In Comparative Example 1, since the organic compound having a triazole group was not contained, the surface resistance value was 10 / sq. After 3 months. It was bigger than that.
Since Comparative Examples 2 and 3 were dispersion media mainly composed of an aprotic polar solvent, the surface resistance value was 10 / sq. It was bigger than that.

Claims (1)

繊維状銅微粒子と、プロトン性極性溶媒を主成分とする分散媒と、トリアゾール基を有する有機化合物とを含有することを特徴とする繊維状銅微粒子分散液。   A fibrous copper fine particle dispersion comprising a fibrous copper fine particle, a dispersion medium mainly composed of a protic polar solvent, and an organic compound having a triazole group.
JP2014131985A 2014-06-27 2014-06-27 Fibrous copper fine particle fluid dispersion Pending JP2016011430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131985A JP2016011430A (en) 2014-06-27 2014-06-27 Fibrous copper fine particle fluid dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131985A JP2016011430A (en) 2014-06-27 2014-06-27 Fibrous copper fine particle fluid dispersion

Publications (1)

Publication Number Publication Date
JP2016011430A true JP2016011430A (en) 2016-01-21

Family

ID=55228338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131985A Pending JP2016011430A (en) 2014-06-27 2014-06-27 Fibrous copper fine particle fluid dispersion

Country Status (1)

Country Link
JP (1) JP2016011430A (en)

Similar Documents

Publication Publication Date Title
JP5065607B2 (en) Fine silver particle production method and fine silver particle obtained by the production method
JP5190412B2 (en) ALLOY NANOPARTICLE, PROCESS FOR PRODUCING THE SAME, AND INK AND PASTE USING THE ALLOY NANOPARTICLE
JP5521207B2 (en) Conductive film forming composition, method for producing the same, and conductive film forming method
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
KR101448361B1 (en) Method for producing silver nanowires using copolymer capping agents
US20090311530A1 (en) Silver nanowire, production method thereof, and aqueous dispersion
TW200840666A (en) Flaky copper powder, method for producing the same, and conductive paste
KR101325536B1 (en) Method for producing silver nanowires using ionic liquid
JP5504734B2 (en) Conductive film forming composition and conductive film forming method
JP2016507640A (en) Method for producing silver nanowires using ionic liquid
JP5785023B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
JP5439827B2 (en) Copper fine particle dispersion and method for producing the same
JP2011034750A (en) Composition for conductive film formation and conductive film formation method
TWI399254B (en) Nickel powder and its manufacturing method and conductive paste
CN110382641A (en) Silver nanowires ink
CN107614160A (en) Silver particles dispersion liquid
JP2010024526A (en) Copper particulate dispersion and production method therefor
JP4066247B2 (en) Nickel colloid solution and method for producing the same
WO2021132095A1 (en) Production method for silver nanowire dispersion
JP2012126815A (en) Conductive ink composition, and method for producing the same
JP2005133119A (en) Double layer-coated metal powder, method of producing the double layer-coated metal powder, and electrically conductive paste obtained by using the double layer-coated metal powder
JP2016011430A (en) Fibrous copper fine particle fluid dispersion
JP6102697B2 (en) Aqueous silver colloidal liquid, method for producing the same, and ink using aqueous silver colloidal liquid
CN108025358A (en) Conductive material powder, conductive material ink, the manufacture method of conductive paste and conductive material powder
TW201731587A (en) Metal dispersion having enhanced stability