JP2016003986A - Metallic material tension processing modification heating measurement device and tension test method - Google Patents

Metallic material tension processing modification heating measurement device and tension test method Download PDF

Info

Publication number
JP2016003986A
JP2016003986A JP2014125249A JP2014125249A JP2016003986A JP 2016003986 A JP2016003986 A JP 2016003986A JP 2014125249 A JP2014125249 A JP 2014125249A JP 2014125249 A JP2014125249 A JP 2014125249A JP 2016003986 A JP2016003986 A JP 2016003986A
Authority
JP
Japan
Prior art keywords
test piece
tensile test
tensile
load
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014125249A
Other languages
Japanese (ja)
Other versions
JP6044595B2 (en
Inventor
由康 川崎
Yoshiyasu Kawasaki
由康 川崎
心和 岩澤
Kiyokazu Iwasawa
心和 岩澤
竜也 上ケ市
Tatsuya Kamigaichi
竜也 上ケ市
森田 英明
Hideaki Morita
英明 森田
横田 毅
Takeshi Yokota
毅 横田
瀬戸 一洋
Kazuhiro Seto
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014125249A priority Critical patent/JP6044595B2/en
Publication of JP2016003986A publication Critical patent/JP2016003986A/en
Application granted granted Critical
Publication of JP6044595B2 publication Critical patent/JP6044595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metallic material tension processing modification heating measurement device and a metallic material tension test method capable of tracking a local tension deformation behavior.SOLUTION: A tension test piece 1 to whose one side (side temperature surface) a black body lacquer is coated, is used, and a tension processing modification heating measurement device in which, at least half or more of a periphery of the tension test piece 1 is surrounded by a blackout curtain 2b, is used for a tension test. In time series since start to end of the tension test, load is measured by load measurement means 3a, displacement is measured by displacement measurement means 3b, and a temperature distribution image is imaged by an infrared ray thermography from one side of the test piece 1, and an appearance of the test piece 1 is imaged by a test piece imaging device 4 from the other side. The acquired pieces of data are subjected to arithmetic processing, and the deformation behavior and temperature distribution are associated in time series for visualizing them. Therefore, local processing heating, a position where modification heating is generated, and a generation timing of the modification heating can be indicated in association with the tension deformation behavior, and deformation behavior of a material such as a steel plate can be analyzed.

Description

本発明は、金属材料の材料試験に係り、とくに引張変形挙動に伴う局所的な加工発熱、変態発熱の発生位置および発生タイミングを可視化できる金属材料の引張加工変態発熱測定装置および金属材料の引張試験方法に関する。   The present invention relates to a material test of a metal material, and in particular, an apparatus for measuring a tensile processing transformation heat of a metal material and a tensile test of the metal material capable of visualizing a local processing heat generation, a generation position and a generation timing of a transformation heat generation accompanying a tensile deformation behavior. Regarding the method.

金属材料の材料試験として、引張試験をはじめ、各種の特性値を評価する試験方法が、例えば、JIS Z 2241-2011 金属材料引張試験方法、JIS Z 2256-2010 金属材料の穴広げ試験方法、JIS Z 2248-2014 金属材料曲げ試験方法等として、標準化されている。しかし、これらの方法は、試験片全体の平均化された材料挙動を把握することに留まっている場合が多く、例えば、各種の特性を示す材料挙動を、局所的な変化を考慮しながら、時系列的に把握して材料の評価を行っている場合は少ない。   As a material test for metal materials, test methods for evaluating various characteristic values including tensile tests are, for example, JIS Z 2241-2011 Metal Material Tensile Test Method, JIS Z 2256-2010 Metal Material Hole Expansion Test Method, JIS Z 2248-2014 Standardized as a metal material bending test method. However, these methods are often limited to grasping the averaged material behavior of the entire test piece.For example, the material behavior showing various characteristics is sometimes considered while considering local changes. There are few cases where materials are evaluated by grasping in series.

引張試験ではないが、最近、例えば特許文献1には、穴−穴拡げ金属板の穴拡げ試験方法が記載されている。特許文献1に記載された技術は、金属板開穴部にポンチを当接して押し込みながら、開穴部の穴拡大過程をテレビカメラで撮像してデータ処理装置に入力し、板厚断面の外周端及び内周端が暗となるように画像処理したうえ、周方向に割れ検出を常時繰り返し、割れの軌跡を示す暗部が連続するか否かを判定することにより、板厚方向の内外面から不定位置に発生する割れを検出する穴−穴拡げ金属板の穴拡げ試験方法である。これにより、従来、目視で行っていた拡大開穴部の割れ検出が正確に行えるとしている。   Although it is not a tensile test, recently, for example, Patent Document 1 describes a hole expansion test method for a hole-hole expansion metal plate. In the technique described in Patent Document 1, a punch is brought into contact with and pushed into a metal plate opening portion, and a hole expansion process of the opening portion is imaged by a television camera and input to a data processing device. From the inner and outer surfaces in the plate thickness direction, image processing is performed so that the ends and the inner peripheral edge are dark, and crack detection is always repeated in the circumferential direction, and it is determined whether the dark portion indicating the crack trajectory is continuous. This is a hole-expansion test method for a hole-hole-expansion metal plate for detecting a crack generated at an indefinite position. Thereby, it is said that the crack detection of the enlarged hole part which was performed visually conventionally can be performed correctly.

また、特許文献2には、金属材料の穴拡げ試験方法が記載されている。特許文献2に記載された技術は、金属板開穴部にポンチを当接して押し込みながら、撮像装置によって打抜き穴の形状を時間を追って撮像してデータ処理装置に入力し、各時刻の撮像画像において打抜き穴板厚断面の内周端を明確化する画像処理を行い、打抜き穴全周について予め定めた周方向ピッチで内周端の位置データを取得して測定点とし、測定点の位置データに近似した真円を定めて擬似円とし、予め判定点数と判定閾値とを定めておき、判定点数以上の連続する個所の測定点において、測定点と擬似円との距離が判定閾値を超えたときを、穴拡げ限界と判定する金属材料の穴拡げ試験方法である。これにより、従来の目視方法と比較して測定ばらつきのない穴拡げ試験判定が可能になるとしている。   Patent Document 2 describes a hole expansion test method for a metal material. In the technique described in Patent Document 2, a punch is brought into contact with and pushed into a hole in a metal plate, and the shape of a punched hole is picked up with time by an image pickup device and input to a data processing device. In this example, the image processing is performed to clarify the inner peripheral edge of the punched hole plate thickness cross section, the position data of the inner peripheral edge is obtained as the measurement point by obtaining the position data of the inner peripheral edge at a predetermined circumferential pitch for the entire periphery of the punched hole. A perfect circle approximated to is defined as a pseudo circle, and the number of determination points and the determination threshold are determined in advance, and the distance between the measurement point and the pseudo circle exceeds the determination threshold at consecutive measurement points that are equal to or greater than the determination point. This is a hole expansion test method for a metal material that determines the time as the hole expansion limit. Thereby, it is said that the hole expansion test determination with no measurement variation can be made as compared with the conventional visual method.

また、特許文献3には、金属材料の試験方法が記載されている。特許文献3に記載された技術では、金属材料からなる試験片に負荷荷重を与え、その試験片に亀裂が発生した時の変形特性値を求める際に、試験片に負荷荷重を与えた時の変形特性値の時系列変化を計測及び記憶し、変形特性値の時系列変化と同期して、試験片の測定対象面の温度パターンの時系列変化を二次元の温度画像として計測及び記憶し、試験片に亀裂が発生した後の二次元の温度画像から亀裂の発生箇所を特定し、特定された亀裂の発生箇所の温度の時系列変化における特異点を検出して、亀裂の発生時期及び亀裂発生時の変形特性値を判定している。これにより、亀裂の発生時を的確に把握することができるとともに、変形特性値の正確な判定が可能となるとしている。   Patent Document 3 describes a method for testing a metal material. In the technique described in Patent Document 3, when a load is applied to a test piece made of a metal material and a deformation characteristic value is obtained when a crack occurs in the test piece, Measure and store the time series change of the deformation characteristic value, synchronize with the time series change of the deformation characteristic value, measure and store the time series change of the temperature pattern of the measurement target surface of the test piece as a two-dimensional temperature image, The crack occurrence point is identified from the two-dimensional temperature image after the crack has occurred in the test piece, the singular point in the time series change of the temperature of the identified crack occurrence point is detected, and the crack occurrence time and crack The deformation characteristic value at the time of occurrence is determined. Thereby, it is possible to accurately grasp the occurrence of a crack and to accurately determine the deformation characteristic value.

また、特許文献4には、金属材料の試験方法が記載されている。特許文献4に記載された技術では、金属材料からなる試験片に負荷荷重を与え、その試験片に亀裂が発生した時の変形特性値を求める際に、試験片に負荷荷重を与えた時の変形特性値の時系列変化を計測及び記憶し、変形特性値の時系列変化と同期して、試験片の測定対象面の温度パターンの時系列変化を二次元の温度画像として計測し、二次元画像の各画素毎に記憶し、記憶された温度パターンの時系列変化から、特異の温度変化履歴を生じた画素を順次抽出し、抽出された画素が予め設定された数以上に前後、左右及び斜め方向に隣接連結している画素数を検出して亀裂発生箇所を特定し、画素群の中から最初に特異の温度変化履歴を生じた画素を亀裂の始まり点として特定し、亀裂の始まり点の温度履歴の特異点を検出することにより、亀裂の発生時期及び亀裂発生時の変形特性値を判定している。これにより、測定点が移動しても正確に亀裂の発生時を的確に把握することができ、亀裂の発生箇所、発生時期、亀裂発生時の変形特性値の正確な判定が可能となるとしている。   Patent Document 4 describes a method for testing a metal material. In the technique described in Patent Document 4, when a load is applied to a test piece made of a metal material, and the deformation characteristic value when a crack occurs in the test piece, the load when the load is applied to the test piece. Measure and store time-series changes in deformation characteristic values, and synchronize with the time-series changes in deformation characteristic values. It memorizes every pixel of the image, sequentially extracts pixels that have produced a specific temperature change history from the time-series change of the stored temperature pattern, and the extracted pixels are more than a preset number, before and after, left and right and By detecting the number of pixels adjacently connected in an oblique direction, the crack occurrence location is specified, and the pixel in which a specific temperature change history is first generated from the pixel group is specified as the crack start point. By detecting the singular point of the temperature history of It is determined deformation characteristic value of the event time and cracking cracking. As a result, even when the measurement point moves, it is possible to accurately grasp when the crack occurs, and it is possible to accurately determine the crack occurrence location, the occurrence time, and the deformation characteristic value at the time of the crack occurrence. .

また、特許文献5には、金属材料の試験方法が記載されている。特許文献5に記載された技術では、金属材料からなる試験片に負荷荷重を与え、その試験片に亀裂が発生した時の変形特性値を求める際に、試験片に負荷荷重を与えた時の変形特性値の時系列変化を計測及び記憶し、変形特性値の時系列変化と同期して、試験片の測定対象面の温度パターンの時系列変化を計測及び記憶し、さらに、変形特性値の時系列変化と同期して、試験片の測定対象面を撮像し、その撮像画像を記憶し、記憶された撮像画像から負荷荷重により試験片の測定対象面に発生する亀裂を検出し、亀裂の発生箇所を特定し、記憶された温度パターンの時系列変化から特定された亀裂の発生箇所の温度の時系列変化を検索し、検索された亀裂の発生箇所の温度の時系列変化の特異点を検出して亀裂の発生時期、亀裂発生時の変形特性を判定している。これにより、亀裂の発生時を的確に把握することができ、変形特性値の正確な判定が可能となるとしている。   Patent Document 5 describes a method for testing a metal material. In the technique described in Patent Document 5, when a load is applied to a test piece made of a metal material, and the deformation characteristic value when a crack occurs in the test piece, the load when the load is applied to the test piece. Measure and store the time-series change of the deformation characteristic value, and measure and store the time-series change of the temperature pattern of the measurement target surface of the test piece in synchronization with the time-series change of the deformation characteristic value. In synchronization with the time-series change, the measurement target surface of the test piece is imaged, the captured image is stored, a crack generated on the measurement target surface of the test piece due to a load load is detected from the stored captured image, and the crack The occurrence point is identified, the time series change of the temperature of the crack occurrence point specified from the time series change of the stored temperature pattern is searched, and the singular point of the time series change of the temperature of the crack occurrence point is searched. Detecting crack generation time, deformation at the time of crack generation And to determine the sex. Accordingly, it is possible to accurately grasp the occurrence of a crack and to accurately determine the deformation characteristic value.

また、特許文献6には、ひずみ測定方法が記載されている。特許文献6に記載された技術は、試験体に外力を作用させる前後で、試験体の外力作用前画像と作用後画像を撮影しておき、外力作用前画像と作用後画像とからパターンのマッチングにより仮伸縮率を求め、得られた仮伸縮率に基づき、外力作用前画像のパターンまたは作用後画像のパターンを変形し、変形されたパターンに基づき、外力作用後画像から、パターンのマッチングにより伸縮率を求めるひずみ測定方法である。これによれば、パターンの変形を考慮し、測定精度の向上と情報処理量の低減が図れるとしている。   Patent Document 6 describes a strain measurement method. In the technique described in Patent Document 6, before and after applying an external force to the test body, images of the test body before and after the external force action are photographed, and pattern matching is performed from the image before and after the external force action. Based on the obtained temporary expansion ratio, the pattern of the image before external force action or the pattern of the post-action image is deformed, and based on the deformed pattern, the image is expanded or contracted by pattern matching from the image after the external force action. This is a strain measurement method for obtaining the rate. According to this, considering the deformation of the pattern, the measurement accuracy can be improved and the information processing amount can be reduced.

特許第3612154号公報Japanese Patent No. 3612154 特許第5170146号公報Japanese Patent No. 5170146 特許第3292062号公報Japanese Patent No. 3329602 特許第3292063号公報Japanese Patent No. 3329603 特許第3327134号公報Japanese Patent No. 3327134 特開2012−83309号公報JP 2012-83309 A

特許文献1〜5に記載された技術はいずれも、テレビ(ビデオ)カメラや赤外線カメラを使用して、リアルタイムに試験片の外観や温度分布を撮影し、データ解析して、割れ、亀裂の発生時期や発生位置の特定や、割れ、亀裂発生時の変形特性値を正確に測定できるとしている。しかし、特許文献1〜5には、穴拡げ試験についての記載しかなく、引張試験についてまでの具体的な言及はない。また、特許文献6に記載された技術は、カメラやビデオカメラを利用して試験体に描かれたマーク(パターン)を撮影して、簡便にひずみを測定している。しかし、特許文献6には、引張変形時に生じる発熱についての記載はなく、特許文献6に記載された技術では、時系列的に発熱を含む変形過程を追従することは難しいという問題があった。   All of the techniques described in Patent Documents 1 to 5 use a television (video) camera or an infrared camera to photograph the appearance and temperature distribution of the test piece in real time, analyze the data, and generate cracks and cracks. It is said that it is possible to accurately determine the timing and location of occurrence, and the deformation characteristic value at the time of cracking and cracking. However, Patent Documents 1 to 5 only describe the hole expansion test and do not specifically mention the tensile test. In the technique described in Patent Document 6, a mark (pattern) drawn on a specimen is photographed using a camera or a video camera, and strain is easily measured. However, Patent Document 6 does not describe heat generation that occurs during tensile deformation, and the technique described in Patent Document 6 has a problem that it is difficult to follow a deformation process including heat generation in time series.

金属材料の代表的な材料試験として、引張試験がある。引張試験は、JIS Z 2241として標準化されており、最新版としてJIS Z 2241−2011がある。しかし、引張試験中の材料の変形過程については、応力−歪曲線や、あるいはさらに試験片の外観観察等から、推測する程度に留まっていた。とくに、ネッキング前の加工硬化挙動やネッキング後の変形挙動など、局所的な変形挙動についての情報を得ることは難しく、さらに、TRIP鋼などの変形中に変態が生じるような場合には、変態開始時期や、変態の発生位置などの局所的な情報を得ることが難しいという問題があった。   As a typical material test for metal materials, there is a tensile test. The tensile test is standardized as JIS Z 2241, and the latest version is JIS Z 2241-2011. However, the deformation process of the material during the tensile test has only been estimated from the stress-strain curve or the observation of the appearance of the test piece. In particular, it is difficult to obtain information on local deformation behavior, such as work hardening behavior before necking and deformation behavior after necking, and when transformation occurs during deformation of TRIP steel, etc., transformation start There was a problem that it was difficult to obtain local information such as the timing and the location of transformation.

そこで、本発明は、かかる従来技術の問題を解決し、引張試験における局所的な引張変形挙動を追従することが可能な、金属材料の引張加工変態発熱測定装置及び金属材料の引張試験方法を提供することを目的とする。   Therefore, the present invention provides a metal material tensile deformation transformation exothermic measuring apparatus and a metal material tensile test method capable of solving the problems of the prior art and following the local tensile deformation behavior in the tensile test. The purpose is to do.

本発明者らは、上記した目的を達成するために、引張試験における変形挙動を時系列的に可視化する方法について鋭意検討した。その結果、まず、引張変形中に発生する熱(加工に伴う発熱現象および変態に伴う発熱現象)を利用することに想到した。そして、赤外線サーモグラフィを用いて、引張試験時に引張試験片全体の温度分布を時系列的に測定し、可視化することに思い至った。しかも、上記した画像を、負荷荷重とそれによって生じる変位とに同期して測定(記録)すれば、局所的な加工発熱および変態発熱の発生位置および発生タイミングを荷重−変位(ストローク)曲線(応力−歪曲線)と対応して示すことができ、局所的な引張変形挙動の解析に有効であることに想到した。   In order to achieve the above-described object, the present inventors diligently studied a method for visualizing the deformation behavior in the tensile test in time series. As a result, it was first conceived that heat generated during tensile deformation (a heat generation phenomenon accompanying processing and a heat generation phenomenon accompanying transformation) was used. Then, using infrared thermography, it was thought that the temperature distribution of the whole tensile test piece was measured in time series and visualized during the tensile test. Moreover, if the above-mentioned image is measured (recorded) in synchronization with the applied load and the displacement caused thereby, the position and timing of local processing heat generation and transformation heat generation can be represented by a load-displacement (stroke) curve (stress). -Strain curve), which is effective for analysis of local tensile deformation behavior.

しかし、引張試験中に引張試験片に生じる発熱現象は、微弱で、通常では精度良く測定することが難しく、局所的な変形挙動の解析に用いることには問題があった。そこで、更なる検討を行った結果、引張試験片の表面(測温面)に黒体ラッカーを塗布した引張試験片を用いることに思い至った。なお、測温面に塗布するラッカーは、放射率が0.94以上で、耐熱温度が500℃以上の耐熱性を有し、変形後に剥離等の状態変化の少ないものとすることが好ましいことも知見した。   However, the exothermic phenomenon that occurs in the tensile test piece during the tensile test is weak and usually difficult to measure with high accuracy, and there is a problem in using it for analysis of local deformation behavior. As a result of further studies, the inventors have come up with the idea of using a tensile test piece in which a black body lacquer is applied to the surface (temperature measuring surface) of the tensile test piece. It has also been found that the lacquer to be applied to the temperature measuring surface preferably has an emissivity of 0.94 or higher, a heat resistance of 500 ° C. or higher, and less change in state such as peeling after deformation. .

このような黒体ラッカーを測温面に塗布した引張試験片(高Mn系TRIP鋼板:残留γ:31面積%)を用い、さらに、引張試験片の周りを暗幕で遮光した状態で、引張試験を実施した。そして、引張試験中の荷重、変位を時系列的に測定するとともに、引張試験片測温面を赤外線サーモグラフィにより時系列的に測温し、温度分布画像を得た。温度分布画像は、引張試験時の荷重、変位に同期して記録した。得られた結果の一例を図1に示す。なお、図1(a)は、応力−歪曲線であり、図1(b)は、各歪における引張試験片の温度分布画像であり、白く見える領域ほど高い温度となっていることを示す。図1(b)に示す温度分布画像には、リューダース帯の伝播に近い発熱現象(1)や、局所的発熱現象(2,3)、破断部近傍の発熱状態(4)が、鮮明に示されている。   Using a tensile test piece (high Mn-based TRIP steel plate: residual γ: 31 area%) coated with such a black body lacquer on the temperature measuring surface, and further shielding the surrounding area of the tensile test piece with a black curtain Carried out. Then, the load and displacement during the tensile test were measured in time series, and the temperature measurement surface of the tensile test piece was measured in time series by infrared thermography to obtain a temperature distribution image. The temperature distribution image was recorded in synchronization with the load and displacement during the tensile test. An example of the obtained results is shown in FIG. 1A is a stress-strain curve, and FIG. 1B is a temperature distribution image of a tensile test piece at each strain, and shows that the region that appears white has a higher temperature. In the temperature distribution image shown in FIG. 1B, the exothermic phenomenon (1) close to the propagation of the Lueders band, the local exothermic phenomenon (2, 3), and the exothermic state (4) in the vicinity of the fracture portion are clearly shown. It is shown.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、つぎのとおりである。
(1)金属材料製の引張試験片に一対のチャックを介し負荷荷重を与える荷重負荷手段を有する引張試験装置と、前記負荷荷重を時系列的に計測する荷重計測手段と、前記負荷荷重により前記引張試験片に生じる変位を時系列的に計測する変位計測手段と、を有する計測装置と、前記引張試験片の変形状況を、時系列的に撮影可能に配設された試験片撮影装置と、前記引張試験片の温度を、時系列的に計測可能に配設された試験片測温装置と、前記計測装置、前記試験片撮影装置および前記試験片測温装置から得られたデータを演算する演算手段と、得られたデータおよび演算結果を取り出し可能に記憶する記憶手段とを有する記憶演算装置と、前記記憶演算装置からのデータを表示する表示装置とを有する引張加工変態発熱測定装置であって、前記引張試験片を、測温面に黒体ラッカーが塗布された引張試験片とし、前記引張試験装置を、該引張試験片の周囲の少なくとも半分以上を囲む暗幕を有する装置とし、前記表示装置に、引張変形中の前記引張試験片の変形挙動と温度分布とが対応可能に可視化されて表示させることを特徴とする引張加工変態発熱測定装置。
(2)(1)において、前記試験片撮影装置がカメラ、ビデオカメラまたはマイクロスコープのいずれかであり、前記試験片測温装置が二次元の温度分布画像を測定可能な赤外線サーモグラフィであることを特徴とする引張加工変態発熱測定装置。
(3)(1)または(2)において、前記変位測定手段が、前記引張試験片の表面に貼付された耐熱歪ゲージを用いた変位測定手段、前記引張試験片の表面に描かれたスクライブドサークルを用いた変位測定手段、および前記引張試験片の表面に描かれた直径1mm以下のドットを1mm以下のピッチで付けたグリッドを用いた変位測定手段のうちのいずれか1種であることを特徴とする引張加工変態発熱測定装置。
(4)(1)ないし(3)のいずれかにおいて、前記試験片撮影装置および前記試験片測温装置が、カメラのピント合わせ用治具を有することを特徴とする引張加工変態発熱測定装置。
(5)対象とする金属材料から採取した引張試験片を、引張試験装置の一対のチャックにセットし、該引張試験装置の荷重負荷手段で引張変形させる金属材料の引張試験方法において、前記引張試験片を、一方の側の表面に黒体ラッカーを塗布した引張試験片とし、前記引張試験片の周囲の少なくとも半分以上を暗幕で囲い、引張試験の開始から時系列的に、前記引張試験片に負荷された荷重を荷重計測手段で計測し、前記引張試験片に生じた変位を変位計測手段で計測するとともに、前記引張試験装置に配設された試験片測温装置で、前記引張試験片の一方の側から、引張試験の開始から時系列的に、引張変形中の該引張試験片の温度分布画像を測定し、さらに前記引張試験片の他方の側から、試験片撮影装置で、引張試験の開始から時系列的に、該引張試験片の外観を撮影し、得られた各データを記憶演算装置の演算手段に入力し、演算処理して、前記記憶演算装置の記憶手段に取り出し可能に記憶することを特徴とする金属材料の引張試験方法。
(6)(5)において、前記引張変形終了後に、前記記憶手段に記憶された各データを取り出し、前記演算手段により演算して、引張変形中の引張試験片の温度分布と変形挙動とを対応させて、可視化して表示することを特徴とする金属材料の引張試験方法。
(7)(5)または(6)において、前記試験片測温装置が二次元の画像を測定可能な赤外線サーモグラフィであり、前記試験片撮影装置がカメラ、ビデオカメラまたはマイクロスコープのいずれかであることを特徴とする金属材料の引張試験方法。
(8)(5)ないし(7)のいずれかにおいて、前記変位計測手段が、前記引張試験片の表面に貼付した耐熱歪ゲージを用いた変位計測手段、前記引張試験片の表面に描かれたスクライブドサークルを用いた変位計測手段、および前記引張試験片の表面に描かれた直径1mm以下のドットを1mm以下のピッチで付けたグリッドを用いた変位計測手段のうちのいずれか1種であることを特徴とする金属材料の引張試験方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) A tensile test apparatus having a load loading means for applying a load to a tensile test piece made of a metal material via a pair of chucks, a load measuring means for measuring the load load in time series, and the load load A displacement measuring means for measuring the displacement generated in the tensile test piece in time series, a test piece photographing apparatus disposed so as to be capable of photographing the deformation state of the tensile test piece in time series, and A test piece temperature measuring device arranged to measure the temperature of the tensile test piece in a time-series manner, and data obtained from the measurement device, the test piece imaging device, and the test piece temperature measurement device are calculated. A tensile processing transformation exothermic measuring device having a calculation means, a storage calculation device having storage means for retrievably storing obtained data and calculation results, and a display device for displaying data from the storage calculation device. The tensile test piece is a tensile test piece with a black body lacquer applied to a temperature measuring surface, and the tensile test device is a device having a black curtain surrounding at least half of the circumference of the tensile test piece, and the display device Further, a tensile deformation transformation exothermic measuring apparatus characterized in that the deformation behavior and temperature distribution of the tensile test piece during tensile deformation are visualized and displayed in a compatible manner.
(2) In (1), the test piece photographing device is any one of a camera, a video camera, and a microscope, and the test piece temperature measuring device is an infrared thermography capable of measuring a two-dimensional temperature distribution image. A tensile deformation transformation exotherm measuring device.
(3) In (1) or (2), the displacement measuring means is a displacement measuring means using a heat-resistant strain gauge attached to the surface of the tensile test piece, and a scribe drawn on the surface of the tensile test piece. It is one of a displacement measuring means using a circle and a displacement measuring means using a grid in which dots having a diameter of 1 mm or less drawn on the surface of the tensile test piece are attached at a pitch of 1 mm or less. A tensile deformation transformation exotherm measuring device.
(4) In any one of (1) to (3), the test piece photographing device and the test piece temperature measuring device each have a camera focusing jig.
(5) A tensile test method for a metal material in which a tensile test piece taken from a target metal material is set on a pair of chucks of a tensile test apparatus and is subjected to tensile deformation by a load loading means of the tensile test apparatus. The test piece is a tensile test piece with a black body lacquer applied to the surface of one side, and at least half of the circumference of the tensile test piece is surrounded by a black curtain, and the tensile test piece is time-sequentially from the start of the tensile test. The loaded load is measured by the load measuring means, the displacement generated in the tensile test piece is measured by the displacement measuring means, and the test piece temperature measuring device disposed in the tensile test apparatus is used to measure the tensile test piece. From one side, the temperature distribution image of the tensile test piece during tensile deformation is measured in time series from the start of the tensile test. Further, from the other side of the tensile test piece, the tensile test is performed with the test piece photographing device. Time series from the beginning of In particular, the appearance of the tensile test piece is photographed, and each obtained data is input to the calculation means of the storage calculation device, calculated, and stored in the storage means of the storage calculation device so as to be retrievable. A tensile test method for metal materials.
(6) In (5), after the end of the tensile deformation, each data stored in the storage means is taken out and calculated by the calculating means to correspond to the temperature distribution and deformation behavior of the tensile test piece during the tensile deformation. And a method for tensile testing of a metal material, characterized by being visualized and displayed.
(7) In (5) or (6), the test piece temperature measuring device is an infrared thermography capable of measuring a two-dimensional image, and the test piece imaging device is any one of a camera, a video camera, and a microscope. A tensile test method for a metal material.
(8) In any one of (5) to (7), the displacement measuring means is drawn on the surface of the tensile test piece, the displacement measuring means using a heat-resistant strain gauge attached to the surface of the tensile test piece. Any one of displacement measuring means using a scribed circle and displacement measuring means using a grid in which dots having a diameter of 1 mm or less drawn on the surface of the tensile test piece are attached at a pitch of 1 mm or less A tensile test method for a metal material.

本発明によれば、引張試験中の引張試験片の変形挙動と温度分布と対応して時系列的に可視化することができ、局所的な発熱の発生位置および発生タイミング等から、鋼板等の材料の変形挙動を解析することができ、例えば、自動車、缶、建築等用高強度鋼板の開発に大きく寄与することが期待され、産業上格段の効果を奏する。   According to the present invention, it is possible to visualize in time series corresponding to the deformation behavior and temperature distribution of a tensile test piece during a tensile test, and from a generation position and generation timing of local heat generation, a material such as a steel plate For example, it is expected to greatly contribute to the development of high-strength steel sheets for automobiles, cans, buildings, etc., and has a remarkable industrial effect.

引張試験を行って得られた応力−歪曲線と、引張試験片温度分布との対応を示す説明図である。It is explanatory drawing which shows a response | compatibility with the stress-strain curve obtained by performing a tensile test, and a tensile test piece temperature distribution. 本発明引張加工変態発熱測定装置の構成の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of a structure of this invention tensile process transformation heat_generation | fever measuring apparatus. 変位計測手段を、(a)耐熱歪ゲージとした場合、(b)スクライブドサークルとした場合、における試験片外観の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the test piece external appearance in the case where (a) heat-resistant strain gauge is used as a displacement measuring means, and (b) when it is a scribed circle. 実施例において使用した鋼板(鋼板A)の変形挙動と局所的発熱状態の対応の一例を示す説明図である。It is explanatory drawing which shows an example of a response | compatibility with the deformation | transformation behavior of the steel plate (steel plate A) used in the Example, and a local heat generation state. 実施例において使用した鋼板(鋼板B)の変形挙動と局所的発熱状態の対応の一例を示す説明図である。It is explanatory drawing which shows an example of a response | compatibility with the deformation | transformation behavior of the steel plate (steel plate B) used in the Example, and a local heat generation state.

本発明で使用する引張加工変態発熱測定装置は、引張試験装置2と、計測装置3と、試験片撮影装置4と、試験片測温装置5と、記憶演算装置6と、表示装置7とを有する。図2に、本発明で使用する引張加工変態発熱測定装置の構成の一例を示す。   The tensile processing transformation exothermic measuring device used in the present invention includes a tensile test device 2, a measuring device 3, a test piece photographing device 4, a test piece temperature measuring device 5, a memory operation device 6, and a display device 7. Have. FIG. 2 shows an example of the configuration of a tensile deformation transformation exothermic measuring device used in the present invention.

引張試験装置2には、荷重負荷手段2aを有する。荷重負荷手段2aは、引張試験片1に、好ましくは所定の引張速度で、荷重を負荷することができ、通常の引張試験が実施できればよい。なお、荷重負荷手段2aには、一対のチャック2a1,2a2が着脱容易に配設され、引張試験片1への荷重負荷を可能にする。   The tensile test apparatus 2 has a load loading means 2a. The load loading means 2a only needs to be able to load a load on the tensile test piece 1, preferably at a predetermined tensile speed, and to perform a normal tensile test. In addition, a pair of chucks 2a1 and 2a2 are easily attached to and detached from the load loading means 2a, thereby enabling load loading on the tensile test piece 1.

また、計測装置3は、負荷荷重を時系列的に計測する荷重計測手段3aと、負荷荷重により引張試験片1に生じる変位を時系列的に計測する変位計測手段3bとを有する。なお、荷重計測手段3aとしてはロードセルが例示できる。また、変位計測手段3bとしては、荷重計測手段3aのストロークを測定する変位計を用いても、あるいは引張試験片1に貼付した耐熱歪ゲージ、あるいは引張試験片1表面に描いたスクライブドサークル、あるいは引張試験片1の表面に描かれた直径1mm以下のドットを1mm以下のピッチで付けたグリッドを用いても良い。なお、スクライブドサークル、グリッドを使用する場合には、図3に示すように、引張試験片の一方の側に描かれたスクライブドサークルあるいはグリッド(図示せず)を、試験片撮影装置4で時系列的に撮影し、得られた画像から円の局所的な変位量を読み取り、記憶演算装置6の演算手段6aに入力する。   The measuring device 3 includes a load measuring unit 3a that measures a load load in a time series, and a displacement measurement unit 3b that measures a displacement generated in the tensile test piece 1 due to the load load in a time series. An example of the load measuring means 3a is a load cell. Further, as the displacement measuring means 3b, a displacement meter that measures the stroke of the load measuring means 3a, a heat-resistant strain gauge attached to the tensile test piece 1, or a scribed circle drawn on the surface of the tensile test piece 1, Alternatively, a grid in which dots having a diameter of 1 mm or less drawn on the surface of the tensile test piece 1 are attached at a pitch of 1 mm or less may be used. When using a scribed circle or grid, as shown in FIG. 3, a scribed circle or grid (not shown) drawn on one side of the tensile test piece is used by the test piece photographing apparatus 4. Images are taken in time series, and the local displacement of the circle is read from the obtained image and input to the calculation means 6 a of the storage calculation device 6.

計測装置3は、記憶演算装置6に接続され、計測装置3により得られたデータ(荷重、変位データ)を演算手段6aに入力し、取り出し可能に記憶手段6bに記憶する。なお、計測装置3では、得られたデータをアナログ値からデジタル値へ変換して、演算手段6aに入力する。   The measuring device 3 is connected to the storage arithmetic device 6 and inputs data (load, displacement data) obtained by the measuring device 3 to the arithmetic means 6a and stores it in the storage means 6b so that it can be taken out. In the measuring device 3, the obtained data is converted from an analog value to a digital value and input to the calculation means 6a.

本発明では、引張試験装置2には、引張試験片1の周囲の少なくとも半分以上を囲む暗幕2bが配設される。暗幕2bで、引張試験片1の周囲の少なくとも半分を遮光し、測温面を暗くする。これにより、引張変形中の引張試験片の発熱状況が明確に計測可能となる。引張試験片1の測温面での発熱は微量であるため、引張試験片1の測温面が明るい状態では、引張試験片1の発熱量(温度)を精度良く計測することができない。暗幕2bは、引張試験での破片の飛散防止という観点から、安全カバーの役割をも持たせる必要があり、完全遮光暗幕とすることが好ましい。   In the present invention, the tensile test apparatus 2 is provided with a black curtain 2 b that surrounds at least half of the circumference of the tensile test piece 1. The dark screen 2b shields at least half of the circumference of the tensile test piece 1 and darkens the temperature measuring surface. Thereby, the heat generation state of the tensile test piece during tensile deformation can be clearly measured. Since the heat generation on the temperature measurement surface of the tensile test piece 1 is very small, the heat generation amount (temperature) of the tensile test piece 1 cannot be accurately measured when the temperature measurement surface of the tensile test piece 1 is bright. From the viewpoint of preventing scattering of fragments in the tensile test, the black curtain 2b needs to also have a role of a safety cover, and is preferably a complete blackout black curtain.

また、試験片撮影装置4は、引張試験片の一方の側(面)を撮影可能に配設される。被撮影面である引張試験片の一方の側(面)に、試験片撮影装置4のカメラのピントが合うような位置(被撮影面から300mm以上離れた位置)に配設する必要があることはいうまでもない。撮影開始前に、試験片撮影装置4のカメラのピントを被撮影面に合わせる。試験片撮影装置4は、引張変形中の、引張試験片1の外観、引張試験片1表面に描かれたスクライブドサークルまたは直径1mm以下のドットを1mm以下のピッチで付けたグリッドを、時系列的に撮影する。これにより、引張変形中の試験片外観の変化を記録するとともに、スクライブドサークルを用いた変位計測手段、またはグリッドを用いた変位計測手段として、機能する。試験片撮影装置4としては、カメラ、ビデオカメラまたはマイクロスコープのいずれかが例示できる。   Moreover, the test piece imaging | photography apparatus 4 is arrange | positioned so that imaging | photography of the one side (surface) of a tensile test piece is possible. It must be arranged at a position where the camera of the test piece imaging device 4 is in focus (position at a distance of 300 mm or more from the imaging surface) on one side (surface) of the tensile test specimen that is the imaging surface. Needless to say. Prior to the start of photographing, the camera of the test piece photographing apparatus 4 is brought into focus on the surface to be photographed. The test piece imaging device 4 is a time series of the appearance of the tensile test piece 1 during tensile deformation, a scribe circle drawn on the surface of the tensile test piece 1 or a grid with dots having a diameter of 1 mm or less at a pitch of 1 mm or less. Take a picture. Thereby, while changing the appearance of the test piece during the tensile deformation, it functions as a displacement measuring means using a scribed circle or a displacement measuring means using a grid. Examples of the test piece imaging device 4 include a camera, a video camera, and a microscope.

試験片撮影装置4は、記憶演算装置6に接続され、得られたデータ(変位データ)を演算手段6aに入力する。得られたデータは、演算処理されて、取り出し可能に記憶手段6bに記憶される。   The test piece imaging device 4 is connected to the storage arithmetic device 6 and inputs the obtained data (displacement data) to the arithmetic means 6a. The obtained data is processed and stored in the storage means 6b so that it can be taken out.

また、試験片測温装置5は、引張試験片1の他方の側(被測温面)を計測可能に配設される。精度良く計測するためには、引張試験片の他方の側(被測温面)に、試験片測温装置5のカメラのピントが合うような位置(好ましくは被測温面から300mm以上離れた位置)に配設する必要があることはいうまでもない。計測開始前に、カメラのピントを被計測面に合わせる。通常では引張試験片の温度と室温とが同じで、ピントを合わせにくいため、ピント合わせ治具を利用することが好ましい。ピント合わせ治具は、異なる低温度に冷却した所定厚さの薄鋼板を着脱容易に保持し、計測する引張試験片の前に一定時間かざすことができる治具とすることが好ましい。   Moreover, the test piece temperature measuring device 5 is arrange | positioned so that the other side (temperature-measurement surface) of the tensile test piece 1 can be measured. In order to measure with high accuracy, the other side of the tensile test piece (the surface to be measured) is positioned so that the camera of the test piece temperature measuring device 5 is in focus (preferably at least 300 mm away from the surface to be measured). Needless to say, it is necessary to dispose at the position. Before starting measurement, focus the camera on the surface to be measured. Usually, since the temperature of the tensile test piece and the room temperature are the same and it is difficult to focus, it is preferable to use a focusing jig. The focusing jig is preferably a jig that can easily hold a thin steel plate having a predetermined thickness cooled to a different low temperature and can hold it for a certain period of time before a tensile test piece to be measured.

試験片測温装置5としては、引張試験片1の一方の側の面(測温面)のような二次元の温度分布(画像)を測温可能なように、赤外線サーモグラフィとすることが好ましい。なお、引張試験における局部的な発熱現象を精度良く測定するために、赤外線サーモグラフィの解像度は、320×256ピクセル以上、ピクセルピッチは50μm以下、インターバル記録は2秒以下であり、200℃以上の温度が測定可能であることが好ましい。   The test piece temperature measuring device 5 is preferably an infrared thermography so that a two-dimensional temperature distribution (image) such as a surface (temperature measurement surface) on one side of the tensile test piece 1 can be measured. . In order to accurately measure the local heat generation phenomenon in the tensile test, the resolution of the infrared thermography is 320 x 256 pixels or more, the pixel pitch is 50 μm or less, the interval recording is 2 seconds or less, and the temperature is 200 ° C or more. Is preferably measurable.

試験片測温装置5は、記憶演算装置6に接続され、得られたデータ(画像)(温度分布画像)を演算手段6aに入力する。得られたデータは、荷重、変位データと同期させるなど演算処理されて、記憶手段6bに取り出し可能に記憶される。   The test piece temperature measuring device 5 is connected to the memory calculation device 6 and inputs the obtained data (image) (temperature distribution image) to the calculation means 6a. The obtained data is subjected to arithmetic processing such as synchronizing with load and displacement data, and stored in the storage means 6b so as to be able to be taken out.

また、記憶演算装置6は、演算手段6aと記憶手段6bとを有するパソコン等が例示できる。演算手段6aでは得られたデータを用いて演算処理がなされ、所望の関係図等を作成できる。時系列的にデータが記憶されていることから、例えば応力−歪曲線、応力−歪曲線と温度分布画像との対応図など作成することが可能である。記憶手段6bでは、各装置で採取されデータを取り出し可能に記憶できる。記憶演算装置6には、得られたデータを表示するための表示装置7が付設されることはいうまでもない。表示装置7としては、プリンター、CRT等が例示でき、カラー表示可能とすることが好ましい。   Further, the storage arithmetic device 6 can be exemplified by a personal computer having the arithmetic means 6a and the storage means 6b. The arithmetic means 6a performs arithmetic processing using the obtained data, and can create a desired relationship diagram and the like. Since data is stored in time series, it is possible to create, for example, a stress-strain curve, a correspondence diagram between a stress-strain curve and a temperature distribution image, and the like. The storage means 6b can store the data collected by each device so that it can be taken out. It goes without saying that the storage arithmetic device 6 is provided with a display device 7 for displaying the obtained data. Examples of the display device 7 include a printer and a CRT, and it is preferable that color display is possible.

つぎに、本発明の金属材料の引張試験方法について説明する。   Next, a tensile test method for the metal material of the present invention will be described.

本発明の金属材料の引張試験方法では、例えば図2に示す引張加工変態発熱測定装置を用いて行うことが好ましい。   In the tensile test method for a metal material according to the present invention, it is preferable to use, for example, a tensile deformation transformation exothermic measuring apparatus shown in FIG.

まず、対象とする金属材料から引張試験片1を採取する。なお、引張試験片1の形状は、板状、角状、棒状等いずれでもよくとくに限定する必要はないが、板状が表裏の引張変形挙動を対応させるという観点から好ましい。   First, the tensile test piece 1 is sampled from the target metal material. The shape of the tensile test piece 1 may be any of a plate shape, a square shape, a rod shape and the like, and is not particularly limited.

そして採取された引張試験片1の一方の側の表面(被測温面)に黒体ラッカーを塗布する。被測温面に塗布するラッカーは、放射率が0.94以上で、耐熱温度が500℃以上となる耐熱性を有し、変形後に剥離等の状態変化の少ないものとすることが好ましい。放射率が0.94未満では、観測される試験片表面の温度が低く、測定される温度分布画像が所望の精度を確保できない。また、耐熱温度が500℃未満では、引張試験時に所望の温度分布画像を得ることができない。本発明で使用する黒体ラッカーとしては、市販品である、カンペパピオ(株)製「テルモスプレー」(商品名)、あるいは(株)キーエンス製「黒体スプレー」(商品名)等が例示できる。なお、黒体ラッカーを塗布した状態で、試験片測温装置(赤外線サーモグラフィ)による撮影(測温)で表示される温度と、試験片の実体温度とが誤差のないように、試験片に熱電対を溶着し、試験片温度を実測し、試験片測温装置の表示温度と対比し、実測した温度に一致するように、試験片測温装置における放射率等の調整を行っておくことはいうまでもない。   And the black body lacquer is apply | coated to the surface (surface to be measured) of the one side of the extract | collected tensile test piece 1. FIG. The lacquer to be applied to the surface to be measured is preferably heat-resistant such that the emissivity is 0.94 or more, the heat-resistant temperature is 500 ° C. or more, and the state change such as peeling is small after deformation. If the emissivity is less than 0.94, the surface temperature of the observed specimen is low, and the measured temperature distribution image cannot ensure the desired accuracy. Moreover, if the heat resistant temperature is less than 500 ° C., a desired temperature distribution image cannot be obtained during the tensile test. Examples of the black body lacquer used in the present invention include commercially available “Termospray” (trade name) manufactured by Campe Papi Co., Ltd., “Black Body Spray” (trade name) manufactured by Keyence Co., Ltd., and the like. In addition, in a state where black body lacquer is applied, thermoelectric power is applied to the test piece so that there is no error between the temperature displayed by photographing (temperature measurement) with the test piece temperature measuring device (infrared thermography) and the actual temperature of the test piece. Weld the pair, measure the test piece temperature, compare it with the display temperature of the test piece temperature measuring device, and adjust the emissivity etc. in the test piece temperature measuring device so that it matches the measured temperature. Needless to say.

黒体ラッカーを一方の側の面に塗布された引張試験片1は、引張試験装置2の一対のチャック2a1,2a2にセットされる。そして、引張試験片1の周囲の少なくとも半分以上を暗幕で囲い、少なくとも引張試験片1の黒体ラッカーが塗布された一方の面(被測温面)を暗く保持して、引張試験を実施する。   A tensile test piece 1 having a black body lacquer applied to one surface is set on a pair of chucks 2 a 1 and 2 a 2 of a tensile test apparatus 2. Then, at least half of the periphery of the tensile test piece 1 is surrounded by a black screen, and at least one surface (temperature-measured surface) coated with the black body lacquer of the tensile test piece 1 is kept dark, and a tensile test is performed. .

なお、引張試験を開始する前に、好ましくは被測温面から300mm以上離れた位置に配設された試験片測温装置5のカメラのピントを被測温面に合わせる。この際、ピントが合わせにくいため、ピント合わせ治具を利用し、低温度に冷却した所定厚さの薄鋼板を保持し、計測する引張試験片の前に一定時間かざしてピント合わせを行うことが好ましい。ピントを合わせたのちは、薄鋼板をピント合わせ治具から外すことはいうまでもない。また、試験片撮影装置4についても、同様に、カメラのピントを被撮影面に合わせておく。   Before starting the tensile test, the focus of the camera of the test piece temperature measuring device 5 disposed at a position 300 mm or more away from the temperature measurement surface is preferably adjusted to the temperature measurement surface. At this time, since it is difficult to focus, it is possible to use a focusing jig, hold a thin steel plate with a predetermined thickness cooled to a low temperature, and hold it for a certain period of time before the tensile test piece to be measured. preferable. It goes without saying that the thin steel plate is removed from the focusing jig after focusing. Similarly, for the test piece photographing apparatus 4, the camera is focused on the surface to be photographed.

セットされた引張試験片1に、荷重負荷手段2aにより、所望の引張速度で、荷重を負荷し、引張変形する。   The set tensile test piece 1 is subjected to tensile deformation by applying a load at a desired tensile speed by the load applying means 2a.

引張試験開始から時系列的に、荷重計測手段3aを用いて引張試験片1に負荷された荷重を、また、変位計測手段3bを用いて引張試験片に生じた変位を、計測する。得られたデータは、演算手段6aに入力され、演算処理されて、取り出し可能に記憶手段6bに記憶される。   From the start of the tensile test, the load applied to the tensile test piece 1 is measured using the load measuring means 3a, and the displacement generated in the tensile test piece is measured using the displacement measuring means 3b. The obtained data is input to the arithmetic means 6a, subjected to arithmetic processing, and stored in the storage means 6b so that it can be taken out.

また、同時に、引張開始から時系列的に、試験片測温装置5を用いて、引張変形中の引張試験片の温度分布画像を測定(撮影)する。好ましくは赤外線サーモグラフィで、引張試験片全域で二次元の温度分布画像が得られるように、被測温面を撮影する。得られたデータは、演算手段6aに入力し、演算処理されて、取り出し可能に記憶手段6bに記憶(格納)される。   At the same time, the temperature distribution image of the tensile test piece during tensile deformation is measured (photographed) using the test piece temperature measuring device 5 in time series from the start of tension. Preferably, the surface to be measured is photographed by infrared thermography so that a two-dimensional temperature distribution image can be obtained over the entire tensile test piece. The obtained data is input to the calculation means 6a, subjected to calculation processing, and stored (stored) in the storage means 6b so that it can be taken out.

また、同時に、引張開始から時系列的に、引張試験片1の他方の側から、試験片撮影装置4で、引張試験片1の外観を撮影し、試験片の変形状況を確認する。なお、変位計測手段として、引張試験片表面に描かれたスクライブドサークルを用いる場合には、時系列的に撮影された映像から、局所的な円の変形量を測定し、局所的な変位量を時系列的に算出することができる。また、変位計測手段として、引張試験片表面に描かれたグリッドを用いる場合には、時系列的に撮影された映像から、局所的なドットとドットの間の変位量を測定し、局所的な変位量を時系列的に算出することができる。   At the same time, the appearance of the tensile test piece 1 is photographed with the test piece photographing device 4 from the other side of the tensile test piece 1 in chronological order from the start of tension, and the deformation state of the test piece is confirmed. In addition, when using a scribed circle drawn on the surface of a tensile test piece as a displacement measuring means, the amount of local deformation is measured from images taken in time series. Can be calculated in time series. In addition, when using a grid drawn on the surface of a tensile test piece as a displacement measuring means, the amount of displacement between local dots is measured from images taken in time series, The amount of displacement can be calculated in time series.

記憶手段6bに格納されたデータは、引張開始から時系列的に採取されていることから、荷重と変位とを同期させて、荷重と変位の関係(曲線)、あるいは応力と歪の関係(曲線)を求めることができ、さらに、引張試験片の温度分布画像が時系列的に採取されていることから、局所的な加工発熱あるいは局所的な変態発熱の発生位置、発生タイミングを、応力−歪曲線とを対応させることにより、金属材料の変形挙動を解析することができる。さらに、耐熱歪ゲージやスクライブドサークルを用いた局所的な歪の計測により、同一位置、同一タイミングでの、局所的な加工発熱あるいは局所的な変態発熱と局所的歪とを対応(照合)させて変形挙動を解析することもできる。   Since the data stored in the storage means 6b is collected in time series from the start of tension, the relationship between the load and displacement (curve) or the relationship between the stress and strain (curve) is synchronized. In addition, since the temperature distribution image of the tensile specimen is collected in time series, the position and timing of local processing heat generation or local transformation heat generation can be determined by stress-distortion. By making the line correspond, the deformation behavior of the metal material can be analyzed. Furthermore, by measuring local strain using a heat-resistant strain gauge or scribed circle, local processing heat or local transformation heat at the same position and at the same timing can be matched (matched) with local strain. The deformation behavior can also be analyzed.

金属材料として、質量%で、0.15%C−1.5%Si−5.5%Mnを含む高Mn系TRIP鋼板(鋼種A、残留γ:31面積%;板厚:1.2mm)および0.21%C−1.5%Si−2.1%Mnを含む高C系TRIP鋼板(鋼種:B、残留γ:17面積%;板厚:1.2mm)を選定した。   High Mn TRIP steel sheet containing 0.15% C-1.5% Si-5.5% Mn as a metal material (Steel grade A, residual γ: 31 area%; plate thickness: 1.2 mm) and 0.21% C-1.5% A high-C TRIP steel sheet containing Si-2.1% Mn (steel type: B, residual γ: 17 area%; sheet thickness: 1.2 mm) was selected.

これら鋼板から、引張試験片(JIS 5号試験片)を採取し、一方の表面(被測温面)に黒体ラッカーを塗布した。使用したラッカーは、放射率:0.95で耐熱温度:550℃のラッカー(カンペパピオ(株)製「テルモスプレー」(商品名))とした。   From these steel plates, tensile test pieces (JIS No. 5 test pieces) were collected, and black body lacquer was applied to one surface (surface to be measured). The lacquer used was a lacquer (“Terumopray” (trade name) manufactured by Campe Papio Co., Ltd.) having an emissivity of 0.95 and a heat resistant temperature of 550 ° C.

上記したラッカーを測温面に塗布した引張試験片1について、図2に示す引張加工変態発熱測定装置を用いて、引張試験を実施した。なお、実施にあたっては、引張試験片の周りを暗幕2bで遮光した状態とした。   About the tensile test piece 1 which apply | coated the above-mentioned lacquer to the temperature measuring surface, the tension test was implemented using the tensile process transformation heat_generation | fever measuring apparatus shown in FIG. In the implementation, the tension test piece was shielded from light by the black curtain 2b.

引張試験片1を一対のチャック2a1,2a2にセットしたのち、荷重負荷手段2aにより引張速度:10mm/minで、引張り、引張試験片1に荷重を負荷した。そして、引張試験開始から時系列的に、引張試験中の荷重をロードセル(荷重計測手段3a)で、変位(ストローク)を変位計(変位計測手段3b)で計測し、デジタル値に変換して、演算手段6aに入力し、演算処理して記憶手段6bに格納した。   After the tensile test piece 1 was set on the pair of chucks 2a1 and 2a2, the tensile test piece 1 was pulled at a tensile speed of 10 mm / min by the load loading means 2a and a load was applied to the tensile test piece 1. Then, in chronological order from the start of the tensile test, the load during the tensile test is measured with the load cell (load measuring means 3a), the displacement (stroke) is measured with the displacement meter (displacement measuring means 3b), and converted into a digital value, The data was input to the calculation means 6a, calculated, and stored in the storage means 6b.

また、同時に、引張試験開始から時系列的に、試験片測温装置5として赤外線サーモグラフィで引張試験片のラッカーを塗布した面(被測温面)を測温し、二次元の温度分布画像を得て、演算手段6aに入力し、演算処理して記憶手段6bに格納した。引張試験は、破断まで行った。   At the same time, the temperature (surface to be measured) on which the lacquer of the tensile test piece is applied is measured by infrared thermography as the test piece temperature measuring device 5 in time series from the start of the tensile test, and a two-dimensional temperature distribution image is obtained. Obtained, input to the calculation means 6a, calculated and stored in the storage means 6b. The tensile test was performed until breakage.

記憶手段6bに格納された、引張試験開始から時系列的に計測された荷重、変位のデータから、演算手段6aで処理して、荷重−変位曲線、さらに公称応力−公称歪曲線として、可視化(表示)し、図4(a)、図5(a)に示す。この公称応力−公称歪曲線の各位置に対応して、得られた温度分布画像を図4(b)、図5(b)に示す。得られた温度分布画像の原図は、カラー表示されているが、ここでは、白黒表示とした。白色が強い領域ほど温度が高い領域であることを示す。   From the load and displacement data measured in time series from the start of the tensile test stored in the storage unit 6b, the calculation unit 6a processes the data to visualize a load-displacement curve and a nominal stress-nominal strain curve ( Display) and shown in FIGS. 4 (a) and 5 (a). Corresponding to each position of this nominal stress-nominal strain curve, the obtained temperature distribution images are shown in FIG. 4 (b) and FIG. 5 (b). The original image of the obtained temperature distribution image is displayed in color, but here it is displayed in black and white. The region where the white color is strong indicates that the temperature is high.

なお、参考として、引張試験片幅中央位置で長手方向に沿った温度分布曲線(ラインプロファイル)を図4(c)、図5(c)に示す。   For reference, temperature distribution curves (line profiles) along the longitudinal direction at the center position of the tensile test piece width are shown in FIGS. 4 (c) and 5 (c).

図4(c)、図5(c)における位置0mmは、引張試験片の標点の下端部に一致させている。引張試験片の標点距離は50mmであり、引張試験前における標点の下端部を位置0mmとし、上端部を位置50mmとして引張試験を行った。引張試験では下部を固定し、上方向に引張り、変形させる。したがって標点の下端部(位置0mm)は引張試験中固定され、位置の変動はない。   The position 0 mm in FIGS. 4 (c) and 5 (c) is made to coincide with the lower end portion of the mark of the tensile test piece. The tensile test piece had a gauge distance of 50 mm, and the tensile test was conducted with the lower end of the gauge before the tensile test at position 0 mm and the upper end at position 50 mm. In the tensile test, the lower part is fixed, pulled upward, and deformed. Therefore, the lower end of the gauge (position 0mm) is fixed during the tensile test and there is no change in position.

得られた温度分布画像から、鋼種Aでは、リューダース帯の伝播に近い挙動と残留γの変態発熱とが確認できる(図4(b)1参照)。また、ネッキング前の加工硬化挙動が段階的に確認でき、それに伴う局所的発熱の存在を確認できる(図4(b)2〜3参照)。また、ネッキング部近傍の発熱状態も確認できる(図4(b)4参照)。   From the obtained temperature distribution image, it is possible to confirm the behavior close to the propagation of the Luders band and the transformation heat generation of the residual γ in the steel type A (see FIG. 4 (b) 1). Moreover, the work hardening behavior before necking can be confirmed in steps, and the presence of local heat generation associated therewith can be confirmed (see FIGS. 4B to 2C). Further, the heat generation state in the vicinity of the necking portion can also be confirmed (see FIG. 4 (b) 4).

鋼種Bでは、リューダース帯の伝播に近い挙動はなく、残留γのマルテンサイトへの変態による発熱が顕著に確認できる(図5(b)2,3参照)。また、ネッキング部近傍の発熱状態も確認できる(図5(b)4参照)。   In steel type B, there is no behavior close to the propagation of the Lueders band, and heat generation due to transformation of residual γ to martensite can be confirmed remarkably (see FIGS. 5 (b) 2 and 3). Moreover, the heat generation state in the vicinity of the necking portion can also be confirmed (see FIG. 5 (b) 4).

このように、本発明によれば、鋼種によらず、引張変形における局所的な加工発熱、変態発熱を、その発生位置、発生タイミングとともに、明確に確認できることがわかる。一方、引張試験片に黒体ラッカーを塗布しない場合(比較例)には、暗幕を使用して試験片周囲を暗くしても、局所的な加工発熱、変態発熱を精度よく、確認することはできなかった。   Thus, according to the present invention, it can be seen that local processing heat generation and transformation heat generation in tensile deformation can be clearly confirmed along with the generation position and generation timing regardless of the steel type. On the other hand, when black body lacquer is not applied to the tensile test piece (comparative example), it is possible to accurately confirm local processing heat generation and transformation heat generation even if the periphery of the test piece is darkened using a black curtain. could not.

1 引張試験片
2 引張試験装置
3 計測装置
4 試験片撮影装置
5 試験片測温装置
6 記憶演算装置
7 表示装置
DESCRIPTION OF SYMBOLS 1 Tensile test piece 2 Tensile test device 3 Measuring device 4 Test piece imaging device 5 Test piece temperature measuring device 6 Memory arithmetic device 7 Display device

Claims (8)

金属材料製の引張試験片に一対のチャックを介し負荷荷重を与える荷重負荷手段を有する引張試験装置と、前記負荷荷重を時系列的に計測する荷重計測手段と、前記負荷荷重により前記引張試験片に生じる変位を時系列的に計測する変位計測手段と、を有する計測装置と、前記引張試験片の変形状況を、時系列的に撮影可能に配設された試験片撮影装置と、前記引張試験片の温度を、時系列的に計測可能に配設された試験片測温装置と、前記計測装置、前記試験片撮影装置および前記試験片測温装置から得られたデータを演算する演算手段と、前記得られたデータおよび演算結果を取り出し可能に記憶する記憶手段とを有する記憶演算装置と、前記記憶演算装置からのデータを表示する表示装置とを有する引張加工変態発熱測定装置であって、
前記引張試験片を、表面に黒体ラッカーが塗布された試験片とし、
前記引張試験装置を、該引張試験片の周囲の少なくとも半分以上を囲む暗幕を有する装置とし、前記表示装置に、引張変形中の前記引張試験片の変形挙動と温度分布とが対応可能に可視化されて表示させることを特徴とする引張加工変態発熱測定装置。
A tensile test device having a load loading means for applying a load to a tensile test piece made of a metal material via a pair of chucks, a load measuring means for measuring the load load in a time series, and the tensile test piece by the load load A displacement measuring means for measuring the displacement occurring in the time series, a test piece photographing apparatus arranged so as to be capable of photographing the deformation state of the tensile test piece in time series, and the tensile test A test piece temperature measuring device arranged so that the temperature of the piece can be measured in time series, and a calculation means for calculating data obtained from the measurement device, the test piece imaging device, and the test piece temperature measurement device; A tensile processing transformation exothermic measuring device having a storage arithmetic device having a storage means for removably storing the obtained data and calculation results, and a display device for displaying data from the storage arithmetic device.
The tensile test piece is a test piece with a black body lacquer applied to the surface,
The tensile test device is a device having a black curtain surrounding at least half of the circumference of the tensile test piece, and the display device visualizes the deformation behavior and temperature distribution of the tensile test piece during tensile deformation. A tensile processing transformation exothermic measuring device characterized by being displayed.
前記試験片撮影装置がカメラ、ビデオカメラまたはマイクロスコープのいずれかであり、前記試験片測温装置が二次元の温度分布画像を測定可能な赤外線サーモグラフィであることを特徴とする請求項1に記載の引張加工変態発熱測定装置。   The test piece photographing apparatus is any one of a camera, a video camera, and a microscope, and the test piece temperature measuring apparatus is an infrared thermography capable of measuring a two-dimensional temperature distribution image. Tensile processing transformation exothermic measuring device. 前記変位測定手段が、前記引張試験片の表面に貼付された耐熱歪ゲージを用いた変位測定手段、前記引張試験片の表面に描かれたスクライブドサークルを用いた変位測定手段、および前記引張試験片の表面に描かれた直径1mm以下のドットを1mm以下のピッチで付けたグリッドを用いた変位測定手段のうちのいずれか1種であることを特徴とする請求項1または2に記載の引張加工変態発熱測定装置。   The displacement measuring means includes a displacement measuring means using a heat-resistant strain gauge attached to the surface of the tensile test piece, a displacement measuring means using a scribed circle drawn on the surface of the tensile test piece, and the tensile test. The tension according to claim 1 or 2, wherein the tension is any one of displacement measuring means using a grid in which dots having a diameter of 1 mm or less drawn on the surface of the piece are attached with a pitch of 1 mm or less. Processing transformation exotherm measuring device. 前記試験片撮影装置および前記試験片測温装置が、カメラのピント合わせ用治具を有することを特徴とする請求項1ないし3のいずれかに記載の引張加工変態発熱測定装置。   The tensile processing transformation exothermic measuring device according to any one of claims 1 to 3, wherein the test piece photographing device and the test piece temperature measuring device have a camera focusing jig. 対象とする金属材料から採取した引張試験片を、引張試験装置の一対のチャックにセットし、該引張試験装置の荷重負荷手段で引張変形させる金属材料の引張試験方法において、
前記引張試験片を、一方の側の表面に黒体ラッカーを塗布した引張試験片とし、
前記引張試験片の周囲の少なくとも半分以上を暗幕で囲い、引張試験の開始から時系列的に、前記引張試験片に負荷された荷重を荷重計測手段で計測し、前記引張試験片に生じた変位を変位計測手段で計測するとともに、前記引張試験装置に配設された試験片測温装置で、前記引張試験片の一方の側から、引張試験の開始から時系列的に、引張変形中の該引張試験片の温度分布画像を測定し、さらに前記引張試験片の他方の側から、試験片撮影装置で、引張試験の開始から時系列的に、該引張試験片の外観を撮影し、得られた各データを記憶演算装置の演算手段に入力し、演算処理して、前記記憶演算装置の記憶手段に取り出し可能に記憶することを特徴とする金属材料の引張試験方法。
In a tensile test method for a metal material in which a tensile test piece collected from a target metal material is set on a pair of chucks of a tensile test apparatus and is subjected to tensile deformation by a load loading means of the tensile test apparatus.
The tensile test piece is a tensile test piece in which a black body lacquer is applied to the surface on one side,
Surround at least half of the periphery of the tensile test piece with a black screen, measure the load applied to the tensile test piece in time series from the start of the tensile test with a load measuring means, and the displacement generated in the tensile test piece Is measured by the displacement measuring means, and is measured in time series from the start of the tensile test from one side of the tensile test piece by the test piece temperature measuring device disposed in the tensile test device. The temperature distribution image of the tensile test piece is measured, and the appearance of the tensile test piece is obtained from the other side of the tensile test piece with the test piece photographing device in time series from the start of the tensile test. A method for tensile testing of a metal material, wherein each data is input to a calculation means of a storage calculation device, subjected to calculation processing, and stored in the storage means of the storage calculation device so as to be retrievable.
前記引張変形終了後に、前記記憶手段に記憶された各データを取り出し、前記演算手段により演算して、引張変形中の前記引張試験片の温度分布と変形挙動とを対応させて、可視化して表示することを特徴とする請求項5に記載の金属材料の引張試験方法。   After the completion of the tensile deformation, each data stored in the storage means is taken out, calculated by the calculation means, and the temperature distribution and deformation behavior of the tensile test piece during the tensile deformation are made to correspond and visualized. A tensile test method for a metal material according to claim 5. 前記試験片測温装置が二次元の画像を測定可能な赤外線サーモグラフィであり、前記試験片撮影装置がカメラ、ビデオカメラまたはマイクロスコープのいずれかであることを特徴とする請求項5または6に記載の金属材料の引張試験方法。   7. The test piece temperature measuring device is an infrared thermography capable of measuring a two-dimensional image, and the test piece photographing device is any one of a camera, a video camera, and a microscope. Tensile test method for metallic materials. 前記変位計測手段が、前記引張試験片の表面に貼付した耐熱歪ゲージを用いた変位計測手段、前記引張試験片の表面に描かれたスクライブドサークルを用いた変位計測手段、および前記引張試験片の表面に描かれた直径1mm以下のドットを1mm以下のピッチで付けたグリッドを用いた変位計測手段のうちのいずれか1種であることを特徴とする請求項5ないし7のいずれかに記載の金属材料の引張試験方法。   The displacement measuring means is a displacement measuring means using a heat-resistant strain gauge attached to the surface of the tensile test piece, a displacement measuring means using a scribed circle drawn on the surface of the tensile test piece, and the tensile test piece. The displacement measuring means using a grid in which dots with a diameter of 1 mm or less drawn on the surface of the substrate are attached with a pitch of 1 mm or less, is one of the above-described ones. Tensile test method for metallic materials.
JP2014125249A 2014-06-18 2014-06-18 Tensile processing transformation heat generation measuring apparatus and tensile test method of metal material Active JP6044595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125249A JP6044595B2 (en) 2014-06-18 2014-06-18 Tensile processing transformation heat generation measuring apparatus and tensile test method of metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125249A JP6044595B2 (en) 2014-06-18 2014-06-18 Tensile processing transformation heat generation measuring apparatus and tensile test method of metal material

Publications (2)

Publication Number Publication Date
JP2016003986A true JP2016003986A (en) 2016-01-12
JP6044595B2 JP6044595B2 (en) 2016-12-14

Family

ID=55223348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125249A Active JP6044595B2 (en) 2014-06-18 2014-06-18 Tensile processing transformation heat generation measuring apparatus and tensile test method of metal material

Country Status (1)

Country Link
JP (1) JP6044595B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113720702A (en) * 2021-08-08 2021-11-30 中国飞机强度研究所 Material external field low-temperature test response equivalence method based on equivalence theory
JP2022044097A (en) * 2020-09-07 2022-03-17 株式会社島津製作所 Material tester and method of controlling the same
WO2022074879A1 (en) * 2020-10-09 2022-04-14 株式会社島津製作所 Material testing machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649248C1 (en) * 2017-02-27 2018-03-30 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Method of thermal tests of ceramic shells
RU2649245C1 (en) * 2017-03-10 2018-03-30 Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" Method for thermal testing of metal frames of ceramic fairings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307822A (en) * 1998-04-24 1999-11-05 Nissan Motor Co Ltd Method and device for inspecting junction of semiconductor module
JP2002357521A (en) * 2001-06-01 2002-12-13 Shimadzu Corp Material testing machine
JP2006029963A (en) * 2004-07-15 2006-02-02 Takahide Sakagami Method and device for measuring degree of thermal influence by plastic deformation
JP3119564U (en) * 2005-12-13 2006-03-02 株式会社島津製作所 Material testing machine
JP2008157806A (en) * 2006-12-25 2008-07-10 Nippon Steel Corp Method and apparatus for diagnosing infrared piping
JP2012163420A (en) * 2011-02-04 2012-08-30 Panasonic Corp Fatigue limit identifying system and fatigue limit identifying method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307822A (en) * 1998-04-24 1999-11-05 Nissan Motor Co Ltd Method and device for inspecting junction of semiconductor module
JP2002357521A (en) * 2001-06-01 2002-12-13 Shimadzu Corp Material testing machine
JP2006029963A (en) * 2004-07-15 2006-02-02 Takahide Sakagami Method and device for measuring degree of thermal influence by plastic deformation
JP3119564U (en) * 2005-12-13 2006-03-02 株式会社島津製作所 Material testing machine
JP2008157806A (en) * 2006-12-25 2008-07-10 Nippon Steel Corp Method and apparatus for diagnosing infrared piping
JP2012163420A (en) * 2011-02-04 2012-08-30 Panasonic Corp Fatigue limit identifying system and fatigue limit identifying method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022044097A (en) * 2020-09-07 2022-03-17 株式会社島津製作所 Material tester and method of controlling the same
WO2022074879A1 (en) * 2020-10-09 2022-04-14 株式会社島津製作所 Material testing machine
CN113720702A (en) * 2021-08-08 2021-11-30 中国飞机强度研究所 Material external field low-temperature test response equivalence method based on equivalence theory
CN113720702B (en) * 2021-08-08 2023-08-04 中国飞机强度研究所 Equivalent method for material outfield low-temperature test response based on equivalence theory

Also Published As

Publication number Publication date
JP6044595B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6044596B2 (en) Bending characteristic evaluation apparatus and bending characteristic evaluation method for metal materials
JP6044595B2 (en) Tensile processing transformation heat generation measuring apparatus and tensile test method of metal material
KR101720845B1 (en) Method of obtaining reliable true stress-strain curves in a large range of strains in tensile testing using digital image correlation
JP6474134B2 (en) Crack detection system and crack detection method
US10989672B2 (en) Defect inspection device, defect inspection method, and program
US10209199B2 (en) Surface inspection method, surface inspection device, manufacturing system, method of identifying defect formed area, and manufacturing method of steel pipe
JP2008232998A (en) Method and device for measuring stress fluctuation distribution of structure, defect detecting method of structure, and risk assessing method of structure
WO2018034057A1 (en) Defect inspection apparatus, defect inspection method, and program
JP5170146B2 (en) Hole expansion test method for metal materials
JP5842864B2 (en) Deformation behavior measurement method during impact fracture test of steel materials
Montanini et al. Active thermography and post-processing image enhancement for recovering of abraded and paint-covered alphanumeric identification marks
JP2018207194A (en) Working place monitoring system
JP2014102131A (en) Fracture strength evaluation method
JP2008155345A (en) Residual stress evaluation method for waterjet peening processed surface
Nosov et al. Nondestructive testing of the quality of blanks for the fabrication of hot-rolled strips using the acoustic-emission method
Jasiak et al. Experimental and numerical determination of the temperature of TWIP steel during dynamic tensile testing
JP2017203685A (en) Method for diagnosing degradation of irradiation material and degradation diagnosis device of the same
Torres et al. Development of high‐temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking
JP2006250714A (en) Method and apparatus for detecting necking of molded object after press molding
JP2013148550A (en) Crack development prediction device, strength property prediction device, and program
JP2010164446A (en) Visual inspection method of item to be inspected and program
EP2554959A1 (en) Method and device for measuring the temperature of hot molten metal
Smith Development of a Variable Extensometer Method for Measuring Ductility Scaling Parameters
JP2016045037A (en) Evaluation method of intergranular stress corrosion crack occurrence sensitivity, and intergranular stress corrosion crack occurrence sensitivity evaluation device
Wolverton et al. EFFICIENT, FLEXIBLE, NONCONTACT DEFORMATION MEASUREMENTS USING VIDEO MULTI-EXTENSOMETRY.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250