JP2016001601A - Solid battery and battery pack using the same - Google Patents

Solid battery and battery pack using the same Download PDF

Info

Publication number
JP2016001601A
JP2016001601A JP2015100980A JP2015100980A JP2016001601A JP 2016001601 A JP2016001601 A JP 2016001601A JP 2015100980 A JP2015100980 A JP 2015100980A JP 2015100980 A JP2015100980 A JP 2015100980A JP 2016001601 A JP2016001601 A JP 2016001601A
Authority
JP
Japan
Prior art keywords
layer
battery
active material
solid
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015100980A
Other languages
Japanese (ja)
Other versions
JP6575136B2 (en
Inventor
絢加 堀川
Ayaka Horikawa
絢加 堀川
上野 哲也
Tetsuya Ueno
哲也 上野
佐藤 洋
Hiroshi Sato
洋 佐藤
充 高井
Mitsuru Takai
充 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015100980A priority Critical patent/JP6575136B2/en
Publication of JP2016001601A publication Critical patent/JP2016001601A/en
Application granted granted Critical
Publication of JP6575136B2 publication Critical patent/JP6575136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact solid battery capable of preventing the occurrence of a current leakage between terminals of different batteries even in the case where dust is involved between a side face of a solid battery and a battery housing part of a compact electronic apparatus when the solid battery is housed in the housing part.SOLUTION: A solid battery 20 includes a protective layer 15 on the surface of a power storage element body having one or more power storage elements each of which includes a solid electrolyte layer 3 between a positive electrode layer 1 and a negative electrode layer 2. In at least a pair of facing surfaces of the solid battery 20, the ratio of the thickness at the central part of the solid battery 20 with respect to the thickness at an end part of the solid battery 20 is 0.65-0.95.

Description

本発明は、固体電池及びそれを用いた組電池に関する。 The present invention relates to a solid state battery and an assembled battery using the same.

近年、携帯電話やスマートフォンに代表される情報端末やゲーム機等の民生用電子機器の電源、蓄電装置としてリチウムイオン二次電池は広く利用されている。一般的な非水系リチウムイオン二次電池には電解質として有機溶媒が用いられている。そのため予期せぬ衝撃により液漏れする恐れがあり、より信頼性の高いリチウムイオン二次電池が望まれている。   In recent years, lithium ion secondary batteries have been widely used as power sources and power storage devices for consumer electronic devices such as information terminals and game machines such as mobile phones and smartphones. An organic solvent is used as an electrolyte in a general non-aqueous lithium ion secondary battery. Therefore, there is a risk of liquid leakage due to an unexpected impact, and a more reliable lithium ion secondary battery is desired.

より安全なリチウムイオン電池として、電解質として有機溶媒の代わりに無機材料の固体電解質を用いた固体電池の研究開発が盛んにおこなわれている。たとえば特許文献1に記載されているように有機溶媒を無機材料の固体電解質に置き換えることで液漏れの恐れはなくなり、高信頼性のリチウムイオン二次電池を得ることができる。また、特許文献1に開示されている固体電池は、その大きさが1cm角以下の小型サイズで作製できるため、モバイル機器等の小型電子機器に好適に利用可能である。   As a safer lithium ion battery, research and development of a solid battery using a solid electrolyte of an inorganic material instead of an organic solvent as an electrolyte has been actively conducted. For example, by replacing the organic solvent with a solid electrolyte made of an inorganic material as described in Patent Document 1, there is no risk of liquid leakage, and a highly reliable lithium ion secondary battery can be obtained. Moreover, since the solid battery disclosed in Patent Document 1 can be manufactured in a small size of 1 cm square or less, it can be suitably used for small electronic devices such as mobile devices.

特開2013−239435号公報JP 2013-239435 A

しかしながら、小型サイズの固体電池は小型電子機器の電池収納部に直列で収納する際にごみ等を巻き込んで搭載してしまうと、端子間距離が短いため電流のリークが発生する恐れがある(図5、図6)。このようなことから電池収納部に収納する際に電流のリークを防止できる小型の固体電池が切望されている。   However, if a solid battery of a small size is stored in series in a battery storage part of a small electronic device, if a trash or the like is involved and mounted, current leakage may occur due to the short distance between the terminals (see FIG. 5, FIG. 6). For this reason, a small solid battery that can prevent leakage of current when stored in the battery storage unit is desired.

本発明はこのような事情を鑑み、電池収納部に収納した際の電流リークを防止できる小型の固体電池を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a small solid battery capable of preventing current leakage when stored in a battery storage unit.

上記課題を解決するため、本発明にかかる固体電池は、第一の電極層と第二の電極層の間に固体電解質層を有する蓄電要素を一つ以上有する蓄電素体を備え、積層体の表面には保護層を有する固体電池において、前記固体電池の少なくとも一対の対向する面は、前記固体電池の端部の厚みに対する固体電池の中央部の厚みの比が0.65以上かつ0.95以下となることを特徴とする。   In order to solve the above problems, a solid state battery according to the present invention includes a power storage element including one or more power storage elements each having a solid electrolyte layer between a first electrode layer and a second electrode layer, In the solid battery having a protective layer on the surface, the ratio of the thickness of the central part of the solid battery to the thickness of the end part of the solid battery is 0.65 or more and 0.95 on at least a pair of opposed surfaces of the solid battery. It is characterized by the following.

上記本発明にかかる固体電池を用いることにより、電池収納部に固体電池を収納した時に、固体電池の側面と電池収納部の間にごみを巻き込んだ場合であっても、端子間が導通するパスを作ることを防止できるため、電流リークを防止できる。   By using the solid state battery according to the present invention, when the solid state battery is accommodated in the battery accommodating part, even if dust is caught between the side surface of the solid battery and the battery accommodating part, the path between the terminals is conducted. Current leakage can be prevented.

本発明にかかる固体電池は、さらに、保護層の表面は、その一部が固体電池の端部の厚みにくらべ厚みが薄くなる方向に湾曲していることが好ましい。   In the solid battery according to the present invention, it is preferable that a part of the surface of the protective layer is curved in a direction in which the thickness is smaller than the thickness of the end of the solid battery.

かかる固体電池によれば、電池収納部に固体電池を収納したときに、固体電池の側面と電池収納部の間にごみを巻き込んだ場合であっても、端子間に導通するパスを作ることを防止できるため、電流リークを防止できる。   According to such a solid battery, when the solid battery is stored in the battery storage portion, even if dust is caught between the side surface of the solid battery and the battery storage portion, a path that conducts between the terminals is created. Therefore, current leakage can be prevented.

本発明にかかる固体電池は、保護層の表面のうち中央部が固体電池の厚みが薄くなる方向に湾曲していることが好ましい。   In the solid battery according to the present invention, it is preferable that the central portion of the surface of the protective layer is curved in a direction in which the thickness of the solid battery is reduced.

かかる固体電池によれば、例えば基板や外装、隣接した固体電池や電子部品と接する面積が小さくできるためより確実に電流リークを防止できる。   According to such a solid state battery, for example, an area in contact with a substrate, an exterior, an adjacent solid state battery or an electronic component can be reduced, and thus current leakage can be prevented more reliably.

本発明にかかる組電池は、本発明にかかる固体電池を直列に複数並べて接続し、それをケースに収納するものである。   The assembled battery according to the present invention is a battery in which a plurality of the solid batteries according to the present invention are connected in series and housed in a case.

熱の流れに方向性ができるので組電池にしたときの熱の分布ができにくく、また、電池の充放電による膨れにも対応できる。   Since the direction of the heat flow is possible, it is difficult to distribute heat when the battery pack is assembled, and it is possible to cope with swelling due to charging / discharging of the battery.

本発明によれば、電池収納時の電流リークを防止できる小型の固体電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the small solid battery which can prevent the current leak at the time of battery accommodation can be provided.

固体電池の模式断面図である。It is a schematic cross section of a solid battery. 固体電池の模式断面図である。It is a schematic cross section of a solid battery. 固体電池内部の蓄電要素の模式図である。It is a schematic diagram of the electrical storage element inside a solid battery. 本発明にかかる固体電池を用いた組電池の模式図である。It is a schematic diagram of the assembled battery using the solid battery concerning this invention. 従来の固体電池を電池収納部に収納する際にごみの巻き込んだ場合の模式図である。It is a schematic diagram at the time of entrapment of garbage when storing the conventional solid battery in the battery storage unit. 従来の固体電池を電池収納部に収納する際にごみの巻き込んだ場合の不具合を示した模式図である。It is the schematic diagram which showed the malfunction at the time of garbage being involved when accommodating the conventional solid battery in a battery accommodating part. 本発明にかかる固体電池を電池収納部に収納する際にごみを巻き込んだ場合の模式図である。It is a mimetic diagram at the time of enclosing garbage when storing the solid battery concerning the present invention in a battery storage part. 本発明にかかる固体電池を電池収納部に収納する際にごみを巻き込んで固体電池を電池収納部に収納した場合の模式図である。It is a schematic diagram at the time of storing a solid battery in a battery storage part by enclosing garbage when storing the solid battery concerning the present invention in a battery storage part.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. Furthermore, the constituent elements described below can be appropriately combined.

(固体電池)
図1および図2は、本実施形態の一例にかかる固体電池20の概念的構造を示す断面図である。また、図3は固体電池20の内部構造を模式的に表した図である。図1及び図2に示す固体電池20は、いずれも第一の電極として正極層1を、第二の電極層として負極層2を備えている。正極層1と負極層2との間に固体電解質層3を有し、正極層1は正極集電体層4と正極活物質層5からなり、負極層2は負極集電体層6と負極活物質層7からなる。また、固体電解質層3は固体電解質10からなり、正極集電体層は正極集電体11からなり、正極活物質層は正極活物質12からなり、負極集電体層6は負極集電体13からなり、負極活物質層7は負極活物質14からなる。正極層1と負極層2と固体電解質層3からなる蓄電素体は保護層15で覆われている。正極集電体層4と負極集電体層6にはそれぞれ端子電極16が電気的に接続されている。
(Solid battery)
1 and 2 are sectional views showing a conceptual structure of a solid state battery 20 according to an example of the present embodiment. FIG. 3 is a diagram schematically showing the internal structure of the solid state battery 20. The solid battery 20 shown in FIGS. 1 and 2 includes a positive electrode layer 1 as a first electrode and a negative electrode layer 2 as a second electrode layer. A solid electrolyte layer 3 is provided between the positive electrode layer 1 and the negative electrode layer 2, the positive electrode layer 1 includes a positive electrode current collector layer 4 and a positive electrode active material layer 5, and the negative electrode layer 2 includes a negative electrode current collector layer 6 and a negative electrode It consists of an active material layer 7. The solid electrolyte layer 3 is made of a solid electrolyte 10, the positive electrode current collector layer is made of a positive electrode current collector 11, the positive electrode active material layer is made of a positive electrode active material 12, and the negative electrode current collector layer 6 is made of a negative electrode current collector. 13 and the negative electrode active material layer 7 is made of the negative electrode active material 14. A power storage element composed of the positive electrode layer 1, the negative electrode layer 2, and the solid electrolyte layer 3 is covered with a protective layer 15. A terminal electrode 16 is electrically connected to each of the positive electrode current collector layer 4 and the negative electrode current collector layer 6.

尚、図1および図2では、5個の電池セルが積層された並列型の固体電池20の断面図が示されている。しかし、本実施形態の固体電池20に関する技術は、図1に示す5個の電池セルが積層された並列型の場合に限らず、任意の複数層が積層した固体電池や直列型の固体電池に適用でき、要求される固体電池20の容量や電流仕様に応じて幅広く変化させることが可能である。また、正極層1と負極層2の間に固体電解質層3を有する構造を持ては、積層型に限らず、捲回型の固体電池にも適応できる。   1 and 2 show cross-sectional views of a parallel type solid battery 20 in which five battery cells are stacked. However, the technology related to the solid battery 20 of the present embodiment is not limited to the parallel type in which the five battery cells shown in FIG. 1 are stacked, and is applicable to a solid battery or a series type solid battery in which a plurality of layers are stacked. It can be applied and can be widely changed according to the required capacity and current specifications of the solid battery 20. In addition, the structure having the solid electrolyte layer 3 between the positive electrode layer 1 and the negative electrode layer 2 is applicable not only to the stacked type but also to a wound type solid battery.

(固体電解質)
本実施形態の固体電池20の固体電解質層3は固体電解質10を含有している。固体電解質層3には固体電解質10以外に焼結助剤などを含んでもよい。図1に示す固体電池20の固体電解質層3は、図にて明らかなように、最上層及び最下層の膜厚を固体電池20の中央部の厚みが薄くなるように形成している。もちろん、このように固体電解質層3にて固体電池の厚みを制御する場合、最上層のみであっても、最下層のみであっても、どの層に厚みが薄くなる層を設けても良いが、少なくとも最上層に形成するのが好ましい。
また固体電解質10は、電子の伝導性が小さく、リチウムイオンの伝導性が高い材料を用いるのが好ましい。例えば、Li3+x1Six11−x1(0.4≦x1≦0.6)、Li1+x2Alx2Ti2−x2(PO(0≦x2≦0.6)、リン酸ゲルマニウムリチウム(LiGe(PO)、LiO−V−SiO、LiO−P−B、LiPOよりなる群から選択される少なくとも1種であることが望ましい。
(Solid electrolyte)
The solid electrolyte layer 3 of the solid battery 20 of the present embodiment contains the solid electrolyte 10. The solid electrolyte layer 3 may contain a sintering aid in addition to the solid electrolyte 10. The solid electrolyte layer 3 of the solid battery 20 shown in FIG. 1 is formed so that the thickness of the uppermost layer and the lowermost layer is reduced in the central portion of the solid battery 20 as is apparent from the figure. Of course, when the thickness of the solid battery is controlled by the solid electrolyte layer 3 as described above, a layer having a small thickness may be provided in any layer, whether only the uppermost layer or only the lowermost layer. It is preferable to form at least the uppermost layer.
The solid electrolyte 10 is preferably made of a material having low electron conductivity and high lithium ion conductivity. For example, Li 3 + x1 Si x1 P 1-x1 O 4 (0.4 ≦ x1 ≦ 0.6), Li 1 + x2 Al x2 Ti 2-x2 (PO 4 ) 3 (0 ≦ x2 ≦ 0.6), germanium phosphate At least one selected from the group consisting of lithium (LiGe 2 (PO 4 ) 3 ), Li 2 O—V 2 O 5 —SiO 2 , Li 2 O—P 2 O 5 —B 2 O 3 , Li 3 PO 4. It is desirable to be a seed.

(正極活物質及び負極活物質)
本実施形態のリチウムイオン二次電池20の正極活物質層5及び負極活物質層7を構成する正極活物質12及び負極活物質14としては、リチウムイオンを効率よく挿入、脱離できる材料を用いるのが好ましい。例えば、遷移金属酸化物、遷移金属複合酸化物を用いるのが好ましい。具体的には、リチウムマンガン複合酸化物LiMnx3Ma1−x3(0.8≦x3≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNix4Coy4Mnz4(x4+y4+z4=1、0≦x4≦1、0≦y4≦1、0≦z4≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMbPO(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、リン酸バナジウムリチウム(Li(PO又はLiVOPO)、Li過剰系固溶体正極LiMnO−LiMcO(Mc=Mn、Co、Ni)、チタン酸リチウム(LiTi12)、LiNix5Coy5Alz5(0.9<a<1.3、0.9<x5+y5+z5<1.1)で表される複合金属酸化物のいずれかであることが好ましい。
(Positive electrode active material and negative electrode active material)
As the positive electrode active material 12 and the negative electrode active material 14 constituting the positive electrode active material layer 5 and the negative electrode active material layer 7 of the lithium ion secondary battery 20 of the present embodiment, a material that can efficiently insert and desorb lithium ions is used. Is preferred. For example, it is preferable to use a transition metal oxide or a transition metal composite oxide. Specifically, the lithium manganese composite oxide Li 2 Mn x3 Ma 1-x3 O 3 (0.8 ≦ x3 ≦ 1, Ma = Co, Ni), lithium cobaltate (LiCoO 2), lithium nickelate (LiNiO 2 ), Lithium manganese spinel (LiMn 2 O 4 ), and a general formula: LiNi x4 Co y4 Mn z4 O 2 (x4 + y4 + z4 = 1, 0 ≦ x4 ≦ 1, 0 ≦ y4 ≦ 1, 0 ≦ z4 ≦ 1) Composite metal oxide, lithium vanadium compound (LiV 2 O 5 ), olivine type LiMbPO 4 (where Mb is one or more selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr) Element), lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 or LiVOPO 4 ), Li-rich solid solution positive electrode Li 2 MnO 3 -L iMcO 2 (Mc = Mn, Co, Ni), lithium titanate (Li 4 Ti 5 O 12 ), Li a Ni x5 Co y5 Al z5 O 2 (0.9 <a <1.3, 0.9 <x5 + y5 + z5) It is preferably any of the composite metal oxides represented by <1.1).

特に、固体電解質層3にLi1+x2Alx2Ti2−x2(PO(0≦x2≦0.6)、正極活物質層5及び負極活物質層7の一方又は両方にLiVOPO及びLi(POのうち一方又は両方を用いると、正極活物質層5及び負極活物質層7の一方又は両方と固体電解質3の界面における接合が強固なものになると同時に、接触面積を広くできるため望ましい。 In particular, Li 1 + x2 Al x2 Ti 2-x2 (PO 4 ) 3 (0 ≦ x2 ≦ 0.6) on the solid electrolyte layer 3, LiVOPO 4 and LiO 4 on one or both of the positive electrode active material layer 5 and the negative electrode active material layer 7. When one or both of 3 V 2 (PO 4 ) 3 are used, the bonding at the interface between one or both of the positive electrode active material layer 5 and the negative electrode active material layer 7 and the solid electrolyte 3 becomes strong, and at the same time, the contact area Is desirable because it can be widely used.

また、正極活物質層5又は負極活物質層7を構成する活物質には明確な区別がなく、2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質12として用い、より卑な電位を示す化合物を負極活物質14として用いることができる。   Moreover, there is no clear distinction in the active material which comprises the positive electrode active material layer 5 or the negative electrode active material layer 7, Comparing the electric potential of two types of compounds, the compound which shows a more noble electric potential is made into the positive electrode active material 12. A compound showing a lower potential can be used as the negative electrode active material 14.

(正極集電体及び負極集電体)
本実施形態の固体電池20の正極集電体層4及び負極集電体層6を構成する正極集電体11及び負極集電体13としては、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅は正極活物質12、負極活物質14及び固体電解質10と反応し難く、さらに固体電池20の内部抵抗の低減に効果があるため好ましい。また、正極集電体層4及び負極集電体層6を構成する正極集電体11及び負極集電体13は、同じであってもよいし、異なっていてもよい。
(Positive electrode current collector and negative electrode current collector)
As the positive electrode current collector 11 and the negative electrode current collector 13 constituting the positive electrode current collector layer 4 and the negative electrode current collector layer 6 of the solid battery 20 of the present embodiment, it is preferable to use a material having a high conductivity. Silver, palladium, gold, platinum, aluminum, copper, nickel and the like are preferably used. In particular, copper is preferable because it hardly reacts with the positive electrode active material 12, the negative electrode active material 14, and the solid electrolyte 10, and further has an effect of reducing the internal resistance of the solid battery 20. Further, the positive electrode current collector 11 and the negative electrode current collector 13 constituting the positive electrode current collector layer 4 and the negative electrode current collector layer 6 may be the same or different.

また、正極集電体層4及び負極集電体層6は、それぞれ正極活物質12及び負極活物質14を含むことが好ましい。その場合の含有比は、集電体として機能する限り特に限定はされないが、正極集電体11/正極活物質12、又は負極集電体13/負極活物質14が体積比率で90/10から70/30の範囲であることが好ましい。   The positive electrode current collector layer 4 and the negative electrode current collector layer 6 preferably include a positive electrode active material 12 and a negative electrode active material 14, respectively. The content ratio in that case is not particularly limited as long as it functions as a current collector, but the volume ratio of the positive electrode current collector 11 / the positive electrode active material 12 or the negative electrode current collector 13 / the negative electrode active material 14 is from 90/10. The range is preferably 70/30.

正極集電体層4及び負極集電体層6がそれぞれ正極活物質12及び負極活物質14を含むことにより、正極集電体層4と正極活物質層5及び負極集電体層6と負極活物質層7との密着性が向上するため望ましい。   When the positive electrode current collector layer 4 and the negative electrode current collector layer 6 include the positive electrode active material 12 and the negative electrode active material 14, respectively, the positive electrode current collector layer 4, the positive electrode active material layer 5, the negative electrode current collector layer 6, and the negative electrode This is desirable because the adhesion with the active material layer 7 is improved.

(保護層)
本実施形態の固体電池20の保護層15は固体電池の最外層に形成されるもので、電気的、物理的、化学的に保護するためのものである。図2に示す固体電池20の保護層15は、図にて明らかなように、最上層及び最下層の膜厚を固体電池20の厚みが薄くなるように形成している。もちろん、保護層15にて固体電池の厚みを制御する場合、最上層のみであっても、最下層のみであっても、どの層に厚みが薄くなる層を設けても良いが、少なくとも最上層に設けるのが好ましい。保護層15を構成する材料としては絶縁性、耐久性、耐湿性に優れ、環境的に安全であることが好ましい。たとえば、ガラスやセラミックス、熱硬化性樹脂や光硬化性樹脂を用いるのが好ましい。保護層の材料は1種類だけでもよいし、複数を併用してもよい。また、保護層は単層でもよいが、複数層からなる方が好ましい。
(Protective layer)
The protective layer 15 of the solid battery 20 of the present embodiment is formed on the outermost layer of the solid battery and is for electrical, physical, and chemical protection. As clearly shown in the drawing, the protective layer 15 of the solid battery 20 shown in FIG. 2 is formed so that the thickness of the uppermost layer and the lowermost layer is reduced. Of course, when the thickness of the solid state battery is controlled by the protective layer 15, a layer having a reduced thickness may be provided in any layer, whether only the uppermost layer or only the lowermost layer, but at least the uppermost layer. It is preferable to provide in. The material constituting the protective layer 15 is preferably excellent in insulation, durability and moisture resistance and environmentally safe. For example, it is preferable to use glass, ceramics, thermosetting resin, or photocurable resin. Only one type of protective layer material may be used, or a plurality of materials may be used in combination. The protective layer may be a single layer, but is preferably composed of a plurality of layers.

(端子電極)
本実施形態の固体電池20の端子電極16は、導電率が大きい材料を用いるのが好ましく、例えば銀、金、プラチナ、アルミニウム、銅、スズ、ニッケルを用いるのが望ましい。端子電極16の材料は1つでもよいし、複数の材料を併用して用いてもよい。また、単層でも複数層からなっていてもよい。
(Terminal electrode)
The terminal electrode 16 of the solid battery 20 according to the present embodiment is preferably made of a material having a high electrical conductivity. For example, silver, gold, platinum, aluminum, copper, tin, or nickel is preferably used. The terminal electrode 16 may be a single material or a combination of a plurality of materials. Moreover, it may consist of a single layer or a plurality of layers.

(固体電池の製造方法)
本実施形態の固体電池20は、正極集電体層4、正極活物質層5、固体電解質層3、負極活物質層7、及び、負極集電体層6の各材料をペースト化し、塗布乾燥してグリーンシートを作製し、かかるグリーンシートを積層して作製した積層体を作製する。作製した積層体を焼成して蓄電素体を作製し、かかる蓄電素体に保護層16を付与することにより製造する。
(Method for manufacturing solid battery)
In the solid battery 20 of this embodiment, the positive electrode current collector layer 4, the positive electrode active material layer 5, the solid electrolyte layer 3, the negative electrode active material layer 7, and the negative electrode current collector layer 6 are pasted and coated and dried. Thus, a green sheet is produced, and a laminate produced by laminating the green sheets is produced. The produced laminated body is fired to produce an electricity storage element, and a protective layer 16 is applied to the electricity storage element.

ペースト化の方法は、特に限定されないが、例えば、ビヒクルに上記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称である。ビヒクルには、溶媒、バインダーが含まれる。かかる方法により、正極集電体層4用のペースト、正極活物質層5用のペースト、固体電解質層3用のペースト、負極活物質層7用のペースト、及び、負極集電体層6用のペーストを作製する。   The method for forming the paste is not particularly limited, and for example, a paste can be obtained by mixing the powder of each of the above materials in a vehicle. Here, the vehicle is a general term for the medium in the liquid phase. The vehicle includes a solvent and a binder. By this method, the paste for the positive electrode current collector layer 4, the paste for the positive electrode active material layer 5, the paste for the solid electrolyte layer 3, the paste for the negative electrode active material layer 7, and the negative electrode current collector layer 6 Make a paste.

ペーストの組成は特に限定しない。正極活物質層14用のペーストおよび負極活物質層16用のペーストには活物質のほかに固体電解質や焼結助剤、導電性材料が含まれていても良いし、正極集電体層15及び負極集電体17用のペーストに活物質や固体電解質、焼結助剤が含まれていても良い。   The composition of the paste is not particularly limited. In addition to the active material, the paste for the positive electrode active material layer 14 and the paste for the negative electrode active material layer 16 may contain a solid electrolyte, a sintering aid, and a conductive material, or the positive electrode current collector layer 15. In addition, the paste for the negative electrode current collector 17 may contain an active material, a solid electrolyte, and a sintering aid.

作製したペーストをPET(ポリエチレンテレフタラート)などの基材上に所望の順序で塗布し、必要に応じ乾燥させた後、基材を剥離し、グリーンシートを作製する。ペーストの塗布方法は、特に限定されず、スクリーン印刷、塗布、転写、ドクターブレード等の公知の方法を採用することができる。   The prepared paste is applied in a desired order on a base material such as PET (polyethylene terephthalate) and dried as necessary, and then the base material is peeled to prepare a green sheet. The paste application method is not particularly limited, and a known method such as screen printing, application, transfer, doctor blade, or the like can be employed.

作製した正極集電体層4用、正極活物質層5用、固体電解質層3用、負極活物質層7用、及び、負極集電体層6用のそれぞれのグリーンシートを所望の順序、積層数で積み重ね、必要に応じアライメント、切断等を行い、積層体を作製する。並列型又は直並列型の電池を作製する場合は、正極層1の端面と負極層2の端面が一致しないようにアライメントを行い積み重ねるのが好ましい。   The green sheets for the positive electrode current collector layer 4, the positive electrode active material layer 5, the solid electrolyte layer 3, the negative electrode active material layer 7, and the negative electrode current collector layer 6 that are produced are laminated in a desired order. Stacked by number, alignment, cutting, etc. are performed as necessary to produce a laminate. In the case of producing a parallel type or series-parallel type battery, it is preferable to perform alignment so that the end face of the positive electrode layer 1 and the end face of the negative electrode layer 2 do not coincide with each other.

積層ブロックを作製するに際し、以下に説明する正極活物質層ユニット及び負極活物質層ユニットを準備し、積層ブロックを作製してもよい。   In producing a laminated block, a positive electrode active material layer unit and a negative electrode active material layer unit described below may be prepared to produce a laminated block.

その方法は、まずPETフィルム上に固体電解質層3用ペーストをドクターブレード法でシート状に形成し、固体電解質層3用シートを得た後、その固体電解質層3用シート上に、スクリーン印刷により正極活物質層5用ペーストを印刷し乾燥する。次に、その上に、スクリーン印刷により正極集電体層4用ペーストを印刷し乾燥する。更にその上に、スクリーン印刷により正極活物質層5用ペーストを再度印刷し、乾燥し、次いでPETフィルムを剥離することで正極活物質層ユニットを得る。このようにして、固体電解質層3用シート上に、正極活物質層5用ペースト、正極集電体層4用ペースト、正極活物質層5用ペーストがこの順に形成された正極活物質層ユニットを得る。同様の手順にて負極活物質層ユニットも作製し、固体電解質層3用シート上に、負極活物質層7用ペースト、負極集電体層6用ペースト、負極活物質層7用ペーストがこの順に形成された負極活物質層ユニットを得る。   First, a solid electrolyte layer 3 paste is formed on a PET film in the form of a sheet by a doctor blade method to obtain a solid electrolyte layer 3 sheet, and then screen printed on the solid electrolyte layer 3 sheet. The positive electrode active material layer 5 paste is printed and dried. Next, a paste for the positive electrode current collector layer 4 is printed thereon by screen printing and dried. Further thereon, the paste for the positive electrode active material layer 5 is printed again by screen printing, dried, and then the PET film is peeled off to obtain a positive electrode active material layer unit. In this way, the positive electrode active material layer unit in which the positive electrode active material layer 5 paste, the positive electrode current collector layer 4 paste, and the positive electrode active material layer 5 paste are formed in this order on the solid electrolyte layer 3 sheet. obtain. A negative electrode active material layer unit is also prepared by the same procedure, and the negative electrode active material layer 7 paste, the negative electrode current collector layer 6 paste, and the negative electrode active material layer 7 paste are arranged in this order on the solid electrolyte layer 3 sheet. A formed negative electrode active material layer unit is obtained.

正極活物質層ユニット一枚と負極活物質層ユニット一枚を、正極活物質層5用ペースト、正極集電体層4用ペースト、正極活物質層5用ペースト、固体電解質層3用シート、負極活物質層7用ペースト、負極集電体層6用ペースト、負極活物質層7用ペースト、固体電解質層3用シートの順に形成されるように積み重ねる。このとき、一枚目の正極活物質層ユニットの正極集電体層4用ペーストが一の端面にのみ延出し、二枚目の負極活物質層ユニットの負極集電体層6用ペーストが他の面にのみ延出するように、各ユニットをずらして積み重ねる。この積み重ねられたユニットの両面に所定厚みの固体電解質層3用シートをさらに積み重ね積層ブロックを作製する。   One positive electrode active material layer unit and one negative electrode active material layer unit are combined into a paste for positive electrode active material layer 5, a paste for positive electrode current collector layer 4, a paste for positive electrode active material layer 5, a sheet for solid electrolyte layer 3, a negative electrode The active material layer 7 paste, the negative electrode current collector layer 6 paste, the negative electrode active material layer 7 paste, and the solid electrolyte layer 3 sheet are stacked in this order. At this time, the paste for the positive electrode current collector layer 4 of the first positive electrode active material layer unit extends only to one end face, and the paste for the negative electrode current collector layer 6 of the second negative electrode active material layer unit is the other. Stagger each unit so that it extends only to the surface. A sheet for solid electrolyte layer 3 having a predetermined thickness is further stacked on both surfaces of the stacked unit to produce a stacked block.

作製した積層体を一括して圧着する。圧着は加熱しながら行うが、加熱温度は、例えば、40〜95℃とする。   The produced laminate is pressed together. The pressure bonding is performed while heating, and the heating temperature is, for example, 40 to 95 ° C.

圧着する際、例えば、固体電池20の中央部の厚みに比べ端部の厚みが薄くなるよう設計された金型と一軸プレスを用いて圧着成型しても良い。   When crimping, for example, the mold may be crimped using a mold and a uniaxial press designed so that the thickness of the end portion is thinner than the thickness of the central portion of the solid battery 20.

固体電池20の中央部の厚みが端部の厚みに比べ薄くなるように、圧着した積層体の上に電解質層3を付加してもよい。例えば中央に穴の開いたパターンを有する電解質層3を圧着した積層体上に付与することで中央部と端部の厚みに差をつけることができる。   The electrolyte layer 3 may be added on the pressure-bonded laminate so that the thickness of the central portion of the solid battery 20 is thinner than the thickness of the end portion. For example, the thickness of the central portion and the end portion can be made different by applying the electrolyte layer 3 having a pattern with a hole in the center onto the laminated body.

圧着した積層体を、例えば、窒素雰囲気下で600℃〜1000℃に加熱し焼成を行い、蓄電素体を作製する。600℃〜1000℃に焼成時間は、例えば、0.1〜3時間とする。   For example, the pressure-bonded laminated body is heated to 600 ° C. to 1000 ° C. in a nitrogen atmosphere and baked to produce a power storage element body. The firing time at 600 ° C. to 1000 ° C. is, for example, 0.1 to 3 hours.

蓄電素体をアルミナなどの研磨材とともに円筒型の容器に入れ、バレル研磨してもよい。これにより蓄電素体の角の面取りをすることができる。そのほかの方法としてサンドブラストにて研磨しても良い。この方法では特定の角部のみを削ることができるため好ましい。   The power storage element may be put into a cylindrical container together with an abrasive such as alumina and barrel polished. As a result, the corners of the power storage element can be chamfered. As another method, polishing may be performed by sandblasting. This method is preferable because only specific corners can be cut.

(端子電極形成)
蓄電素体に端子電極16をつける。端子電極16は正極集電体層4と負極集電体層6にそれぞれ電気的に接触するようつける。この限りではないが、例えば、スパッタやディッピングにより形成することが好ましい。
(Terminal electrode formation)
A terminal electrode 16 is attached to the storage element body. The terminal electrode 16 is attached so as to be in electrical contact with the positive electrode current collector layer 4 and the negative electrode current collector layer 6 respectively. Although not limited to this, for example, it is preferably formed by sputtering or dipping.

(保護層の付与)
方法はこの限りではないが、保護層15の形成にはスパッタやディッピング、スプレーコートで行うのが好ましい。端子電極16が保護層15で完全におおわれないことが好ましい。たとえば、マスキングをする、あるいは保護層15の材料としては端子電極がはじく材料を選択することが望ましい。保護層15をつけるのは基板実装後でもよいが、空気中の水分と反応する恐れがあるため基板実装前につけることが好ましい。
(Granting a protective layer)
The method is not limited to this, but the protective layer 15 is preferably formed by sputtering, dipping, or spray coating. It is preferable that the terminal electrode 16 is not completely covered with the protective layer 15. For example, it is desirable to select a material that masks or repels the terminal electrode as the material of the protective layer 15. The protective layer 15 may be attached after mounting on the substrate, but it is preferably applied before mounting on the substrate because of the possibility of reacting with moisture in the air.

上述したように、図2のように中央部の保護層16の厚みを端部の保護層の厚みと比べ薄くしても良い。例えば、中央部以外への保護層の重ね付をしてもよい。   As described above, the thickness of the protective layer 16 at the center may be made thinner than the thickness of the protective layer at the end as shown in FIG. For example, a protective layer other than the central portion may be superimposed.

固体電池の中央部と端部の厚みの差は、図1のように正極層1と負極層2と電解質層3からなる蓄電素体に由来しても良いし、図2のように保護層16に由来していても良いし、蓄電素体と保護層16の両方に由来するものであってもよい。また、図1及び図2はいずれも蓄電要素の積層方向の厚みが変化しているが、一対の対向する面のうち、面間の厚みが変化する一対の対向する面の選び方は蓄電素体の向きによらない。一対の対向する面のうち、どの面間の厚みを制御してもよい。   The difference in thickness between the central portion and the end portion of the solid battery may be derived from a power storage element composed of the positive electrode layer 1, the negative electrode layer 2, and the electrolyte layer 3 as shown in FIG. 1, or as shown in FIG. 16 may be derived from both the power storage element body and the protective layer 16. 1 and 2 both have the thickness in the stacking direction of the electricity storage elements changed. Of the pair of opposing surfaces, the method of selecting the pair of opposing surfaces in which the thickness between the surfaces changes is as follows. It doesn't depend on the direction. The thickness between any of the pair of opposing surfaces may be controlled.

固体電池の厚みの変化する対向する面間の厚みの、中央部の厚みに対する端部の厚みの比は小さ過ぎると厚み変化の効果が小さくなり、また、大き過ぎると外力が加わった際に損傷する可能性が大きくなる。そのため、中央部の厚みに対する端部の厚みの比は0.65以上0.95未満が好適である。   If the ratio of the thickness between the opposite faces of the solid battery where the thickness changes is too small, the effect of the thickness change will be small, and if it is too large, damage will occur when external force is applied. The possibility to do is increased. Therefore, the ratio of the thickness of the end portion to the thickness of the central portion is preferably 0.65 or more and less than 0.95.

(実施例1)
以下に実施例及び比較例に基づいて本発明を詳細に説明するが、本発明は以下に実施例に限定されるものではない。なお、部表示は特に断りのない限り重量部である。
(Example 1)
Hereinafter, the present invention will be described in detail based on examples and comparative examples, but the present invention is not limited to the examples. In addition, unless otherwise indicated, a part display is a weight part.

(正極活物質及び負極活物質の作製)
正極活物質及び負極活物質として、以下の方法で作製したLi(POを用いた。LiCOとVとNHPOとを出発材料とし、ボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥して正極活物質粉末及び負極活物質粉末を得た。作製した粉体の組成がLi(POであることは、X線回折装置を使用して確認した。
(Production of positive electrode active material and negative electrode active material)
Li 3 V 2 (PO 4 ) 3 produced by the following method was used as the positive electrode active material and the negative electrode active material. Using Li 2 CO 3 , V 2 O 5, and NH 4 H 2 PO 4 as starting materials, wet mixing is performed for 16 hours in a ball mill, and the powder obtained after dehydration drying is mixed with nitrogen and hydrogen at 850 ° C. for 2 hours. Calcination was performed in gas. The calcined product was wet pulverized with a ball mill, and then dehydrated and dried to obtain a positive electrode active material powder and a negative electrode active material powder. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 3 V 2 (PO 4 ) 3 .

(正極活物質層用ペースト及び負極活物質層用ペーストの作製)
正極活物質層用ペースト及び負極活物質層用ペーストは、この正極活物質粉末及び負極活物質粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して正極活物質層用ペースト及び負極活物質層用ペーストを作製した。
(Preparation of positive electrode active material layer paste and negative electrode active material layer paste)
The positive electrode active material layer paste and the negative electrode active material layer paste were mixed and dispersed by adding 15 parts of ethyl cellulose as a binder and 65 parts of dihydroterpineol as a solvent to 100 parts of the positive electrode active material powder and the negative electrode active material powder. Thus, a positive electrode active material layer paste and a negative electrode active material layer paste were prepared.

(固体電解質層用ペーストの作製)
固体電解質として、以下の方法で作製したLi1.3Al0.3Ti1.7(POを用いた。LiCOとAlとTiOとNHPOを出発材料として、ボールミルで16時間湿式混合を行った後、脱水乾燥した。得られた粉体を800℃で2時間、空気中で仮焼した。仮焼品をボールミルで24時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。作製した粉体の組成がLi1.3Al0.3Ti1.7(POであることは、X線回折装置を使用して確認した。
(Preparation of solid electrolyte layer paste)
As the solid electrolyte, Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 prepared by the following method was used. Using Li 2 CO 3 , Al 2 O 3 , TiO 2 and NH 4 H 2 PO 4 as starting materials, wet mixing was performed in a ball mill for 16 hours, followed by dehydration drying. The obtained powder was calcined in air at 800 ° C. for 2 hours. The calcined product was wet pulverized for 24 hours with a ball mill and then dehydrated and dried to obtain a solid electrolyte powder. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 .

次いで、この粉末に、溶媒としてエタノール100部、トルエン200部をボールミルで加えて湿式混合した。その後ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを調製した。   Next, 100 parts of ethanol and 200 parts of toluene were added to this powder as a solvent by a ball mill and wet mixed. Thereafter, 16 parts of polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate were further added and mixed to prepare a solid electrolyte layer paste.

(固体電解質層用シートの作製)
この固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシート成形し、厚さ15μmの固体電解質層用シートを得た。
(Preparation of sheet for solid electrolyte layer)
This solid electrolyte layer paste was formed into a sheet using a PET film as a base material by a doctor blade method to obtain a solid electrolyte layer sheet having a thickness of 15 μm.

(正極集電体層用ペースト及び負極集電体層用ペーストの作製)
正極集電体及び負極集電体として用いたCuとLi(POとを体積比率で80/20となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて混合・分散して正極集電体層用ペースト及び負極集電体層用ペーストを作製した。Cuの平均粒径は0.9μmであった。
(Preparation of positive electrode current collector layer paste and negative electrode current collector layer paste)
After mixing Cu and Li 3 V 2 (PO 4 ) 3 used as a positive electrode current collector and a negative electrode current collector so as to have a volume ratio of 80/20, 10 parts of ethyl cellulose as a binder and dihydroterpineol as a solvent 50 parts were added and mixed and dispersed to prepare a positive electrode current collector layer paste and a negative electrode current collector layer paste. The average particle diameter of Cu was 0.9 μm.

(端子電極ペーストの作製)
銀粉末とエポキシ樹脂、溶剤とを三本ロールで混錬・分散し、熱硬化型の導電ペーストを作製した。
(Preparation of terminal electrode paste)
Silver powder, epoxy resin, and solvent were kneaded and dispersed with three rolls to produce a thermosetting conductive paste.

これらのペーストを用いて、以下のようにしてリチウムイオン二次電池を作製した。   Using these pastes, lithium ion secondary batteries were produced as follows.

(正極活物質ユニットの作製)
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで正極活物質層用ペーストを印刷し、80℃で10分間乾燥した。次に、その上に、スクリーン印刷により厚さ5μmで正極集電体層用ペーストを印刷し、80℃で10分間乾燥した。更にその上に、スクリーン印刷により厚さ5μmで正極活物質層用ペーストを再度印刷し、80℃で10分間乾燥し、次いでPETフィルムを剥離した。このようにして、固体電解質層用シート上に、正極活物質層用ペースト、正極集電体層用ペースト、正極活物質層用ペーストがこの順に印刷・乾燥された正極活物質ユニットのシートを得た。
(Preparation of positive electrode active material unit)
On the solid electrolyte layer sheet, a positive electrode active material layer paste was printed at a thickness of 5 μm by screen printing and dried at 80 ° C. for 10 minutes. Next, a positive electrode current collector layer paste was printed thereon with a thickness of 5 μm by screen printing, and dried at 80 ° C. for 10 minutes. Further thereon, a positive electrode active material layer paste having a thickness of 5 μm was printed again by screen printing, dried at 80 ° C. for 10 minutes, and then the PET film was peeled off. In this manner, a positive electrode active material unit sheet in which the positive electrode active material layer paste, the positive electrode current collector layer paste, and the positive electrode active material layer paste are printed and dried in this order on the solid electrolyte layer sheet is obtained. It was.

(負極活物質ユニットの作製)
上記の固体電解質層用シート上に、スクリーン印刷により厚さ5μmで負極活物質層用ペーストを印刷し、80℃で10分間乾燥した。次に、その上に、スクリーン印刷により厚さ5μmで負極集電体層用ペーストを印刷し、80℃で10分間乾燥した。更にその上に、スクリーン印刷により厚さ5μmで負極活物質層用ペーストを再度印刷し、80℃で10分間乾燥し、次いでPETフィルムを剥離した。このようにして、固体電解質層用シート上に、負極活物質層用ペースト、負極集電体層用ペースト、負極活物質層用ペーストがこの順に印刷・乾燥された負極活物質ユニットのシートを得た。
(Preparation of negative electrode active material unit)
On the solid electrolyte layer sheet, a negative electrode active material layer paste was printed at a thickness of 5 μm by screen printing and dried at 80 ° C. for 10 minutes. Next, a negative electrode current collector layer paste was printed thereon by screen printing to a thickness of 5 μm, and dried at 80 ° C. for 10 minutes. Further thereon, a negative electrode active material layer paste was printed again by screen printing to a thickness of 5 μm, dried at 80 ° C. for 10 minutes, and then the PET film was peeled off. In this manner, a negative electrode active material unit sheet in which the negative electrode active material layer paste, the negative electrode current collector layer paste, and the negative electrode active material layer paste are printed and dried in this order on the solid electrolyte layer sheet is obtained. It was.

(蓄電素体の作製)
固体電解質層用シート10枚を重ね、正極活物質ユニットのシートと負極活物質ユニットのシートをそれぞれ25枚、正極活物質層用ペースト、正極集電体層用ペースト、正極活物質層用ペースト、固体電解質層用シート、負極活物質層用ペースト、負極集電体層用ペースト、負極活物質層用ペースト、固体電解質層用シートの順に形成されるように積み重ねた。このとき、奇数枚目の正極活物質ユニットのシートの正極集電体層用ペーストが一方の端面にのみ延出し、偶数枚目の負極活物質ユニットのシートの負極集電体層用ペーストが反対側の端面にのみ延出するように、各ユニットをずらして積み重ねた。この積み重ねられたユニットの上に、固体電解質層用シートを10枚重ねた。その後、これを温度80℃で圧力1000kgf/cm〔98MPa〕で一軸プレスを用いて成形した。この時使用した金型には、固体電池中央部が端部の厚みに比薄くなるように湾曲した金型を用い、固体電池の中央部が端部に比べ薄くなるように積層ブロックを作製した。次いで切断して積層体を作製し、その後、積層体を同時焼成して蓄電素体を得た。同時焼成は、窒素中で昇温速度200℃/時間で焼成温度840℃まで昇温して、その温度に2時間保持し、焼成後は自然冷却した。同時焼成後、積層方向に垂直な面のサイズは3.2mm×2.5mmであった。
(Production of electricity storage element)
10 sheets of solid electrolyte layer sheets are stacked, 25 sheets of positive electrode active material unit sheets and negative electrode active material unit sheets, respectively, positive electrode active material layer paste, positive electrode current collector layer paste, positive electrode active material layer paste, The solid electrolyte layer sheet, the negative electrode active material layer paste, the negative electrode current collector layer paste, the negative electrode active material layer paste, and the solid electrolyte layer sheet were stacked in this order. At this time, the positive electrode current collector layer paste of the odd-numbered positive electrode active material unit sheet extends only on one end surface, and the negative electrode current collector layer paste of the even-numbered negative electrode active material unit sheet is opposite. Each unit was shifted and stacked so as to extend only to the side end face. Ten sheets for the solid electrolyte layer were stacked on the stacked units. Thereafter, this was molded using a uniaxial press at a temperature of 80 ° C. and a pressure of 1000 kgf / cm 2 [98 MPa]. As the mold used at this time, a mold that was curved so that the central portion of the solid battery was thinner than the thickness of the end portion was used, and a laminated block was prepared so that the central portion of the solid battery was thinner than the end portion. . Next, a laminate was produced by cutting, and then the laminate was fired simultaneously to obtain a storage element body. In the simultaneous firing, the temperature was increased to a firing temperature of 840 ° C. at a temperature rise rate of 200 ° C./hour in nitrogen, maintained at that temperature for 2 hours, and naturally cooled after firing. After co-firing, the size of the surface perpendicular to the stacking direction was 3.2 mm × 2.5 mm.

(端子電極形成工程)
蓄電素体の端面に端子電極ペーストを塗布した。150℃、30分の熱硬化を行い、一対の端子電極を形成した。
(Terminal electrode formation process)
A terminal electrode paste was applied to the end face of the electricity storage element. Heat curing at 150 ° C. for 30 minutes was performed to form a pair of terminal electrodes.

(保護層作製工程)
端子電極が保護層で覆われないよう端部をマスキングし、その上からエポキシ樹脂を滴下し、その後150℃で30分間硬化し、実施例1の固体電池を得た。走査型電子顕微鏡で固体電池の断面観察を行い、付与した保護層の厚みを測定した。また、固体電池の厚みの異なる面間の中央部の厚みは1.31mm、端部の厚みは1.42mmであった。保護層は蓄電素体の外周を覆っており、厚みは1.8μmであった。
(Protective layer manufacturing process)
The edge part was masked so that a terminal electrode might not be covered with a protective layer, an epoxy resin was dripped from it, and it hardened | cured for 30 minutes at 150 degreeC after that, and the solid battery of Example 1 was obtained. The cross section of the solid battery was observed with a scanning electron microscope, and the thickness of the applied protective layer was measured. Moreover, the thickness of the center part between the surfaces from which the thickness of a solid battery differs was 1.31 mm, and the thickness of the edge part was 1.42 mm. The protective layer covered the outer periphery of the electricity storage element body, and the thickness was 1.8 μm.

(比較例1)
積層体を圧着する際に使用する金型を変更し、積層体と接する面が平らなものに変更したこと以外は実施例1と同様にして固体電池を作製した。同時焼成後のチップのサイズは3.2mm×2.5mm×1.37mmであった。保護層は蓄電素体の外周を覆っており、厚さは2μmであった。
(Comparative Example 1)
A solid battery was produced in the same manner as in Example 1 except that the mold used for crimping the laminate was changed to a flat one in contact with the laminate. The size of the chip after co-firing was 3.2 mm × 2.5 mm × 1.37 mm. The protective layer covered the outer periphery of the electricity storage element and had a thickness of 2 μm.

(リーク電流量評価の方法)
実施例1で作製した固体電池を3つ直列に組み合わせ、図4に示す組電池を5個作製し、充電状態での保存試験を行った。基板17は粘着性テープを銅板に貼ることで作製した。固体電池を直列に3つつなぎ固体電池の層構造と基板17が平行になるようにして基板17で固体電池を挟み、外部端子18をつけることで組電池22の形状を得た。外部端子18にはNiリードを用い、熱硬化型の銀ペーストで固体電池に接着した。基板で電池を挟む際は、基板の銅板側が外側にくるようにし、粘着性テープが3つの固体電池の端子電極と接するようにした。比較例1の固体電池に対しても同様の組電池を5個作製した。その後、それぞれの組電池を5Vまで充電した。次に充電状態の組電池を100℃で保存し、一定時間経過後の電圧を測定した。
(Leakage current evaluation method)
Three solid batteries produced in Example 1 were combined in series to produce five assembled batteries shown in FIG. 4, and a storage test in a charged state was performed. The board | substrate 17 was produced by sticking an adhesive tape on a copper plate. The shape of the assembled battery 22 was obtained by attaching the external terminal 18 with the solid battery sandwiched between the substrate 17 so that the layer structure of the solid battery and the substrate 17 are parallel to each other. Ni lead was used for the external terminal 18 and adhered to the solid battery with a thermosetting silver paste. When the battery was sandwiched between the substrates, the copper plate side of the substrate was placed outside, and the adhesive tape was in contact with the terminal electrodes of the three solid state batteries. For the solid battery of Comparative Example 1, five similar assembled batteries were produced. Then, each assembled battery was charged to 5V. Next, the assembled battery in a charged state was stored at 100 ° C., and the voltage after a predetermined time elapsed was measured.

(試験結果)
表1に実施例1及び比較例1の組電池の保存期間と電圧維持率の平均値を示す。なお、電圧維持率は初期状態、つまり5Vを100%とした。

Figure 2016001601
(Test results)
Table 1 shows the average values of the storage periods and voltage maintenance rates of the assembled batteries of Example 1 and Comparative Example 1. In addition, the voltage maintenance rate was made into the initial state, ie, 5V 100%.
Figure 2016001601

実施例1は比較例1と比べて維持率が高かった。これは、実施例1の固体電池と基板の接する面積が比較例1と比べ小さいため、電流リークが抑制されたのだと考えられる。   Example 1 had a higher maintenance rate than Comparative Example 1. This is probably because the area where the solid battery of Example 1 is in contact with the substrate is smaller than that of Comparative Example 1, and thus current leakage is suppressed.

本発明の固体電池を用いることにより、電池収納部に収納する際に生じる電流のリークを防止することができる。   By using the solid state battery of the present invention, it is possible to prevent current leakage that occurs when the battery is stored in the battery storage unit.

1 正極層
2 負極層
3 固体電解質層
4 正極集電体層
5 正極活物質層
6 負極集電体層
7 負極活物質層
10 固体電解質
11 正極集電体
12 正極活物質
13 負極集電体
14 負極活物質
15 保護層
16 端子電極
17 基板
18 外部端子
20 固体電池
21 固体電池内部の蓄電要素
22 実施例の組電池
23 ごみ
24 電池収納部
25 従来の場合のごみの巻き込み
26 本発明の場合のごみ巻き込み
DESCRIPTION OF SYMBOLS 1 Positive electrode layer 2 Negative electrode layer 3 Solid electrolyte layer 4 Positive electrode collector layer 5 Positive electrode active material layer 6 Negative electrode collector layer 7 Negative electrode active material layer 10 Solid electrolyte 11 Positive electrode collector 12 Positive electrode active material 13 Negative electrode collector 14 Negative electrode active material 15 Protective layer 16 Terminal electrode 17 Substrate 18 External terminal
DESCRIPTION OF SYMBOLS 20 Solid battery 21 The electrical storage element in a solid battery 22 The assembled battery of an Example 23 Garbage 24 Battery storage part 25 Entrainment of garbage in the conventional case 26 Garbage entrainment in the case of this invention

Claims (4)

第一の電極層と第二の電極層の間に固体電解質層を有する蓄電要素を一つ以上有する蓄電素体を備え、前記蓄電素体の表面には保護層を有する固体電池において、
前記固体電池の少なくとも一対の対向する面は、前記固体電池の端部の厚みに対する前記固体電池の中央部の厚みの比が0.65以上かつ0.95以下となることを特徴とする固体電池。
In a solid state battery having a power storage element having one or more power storage elements having a solid electrolyte layer between the first electrode layer and the second electrode layer, and having a protective layer on the surface of the power storage element,
At least a pair of opposing surfaces of the solid battery has a ratio of the thickness of the central portion of the solid battery to the thickness of the end portion of the solid battery of 0.65 or more and 0.95 or less. .
前記保護層の表面は、その一部が前記固体電池の端部の厚みにくらべ厚みが薄くなる方向に湾曲していることを特徴とする請求項1に記載の固体電池。   2. The solid state battery according to claim 1, wherein a part of the surface of the protective layer is curved in a direction in which a thickness thereof is thinner than a thickness of an end portion of the solid state battery. 前記保護層の表面のうち中央部が前記固体電池の厚みが薄くなる方向に湾曲していることを特徴とする請求項1または2に記載の固体電池。   The solid battery according to claim 1 or 2, wherein a central portion of the surface of the protective layer is curved in a direction in which the thickness of the solid battery is reduced. 請求項1乃至3のうちいずれか一項に記載の前記固体電池を直列に複数個並べて接続し、それをケースに収納したことを特徴とする組電池。
A battery pack comprising a plurality of the solid state batteries according to claim 1 connected in series and housed in a case.
JP2015100980A 2014-05-19 2015-05-18 Solid battery and assembled battery using the same Active JP6575136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015100980A JP6575136B2 (en) 2014-05-19 2015-05-18 Solid battery and assembled battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014103028 2014-05-19
JP2014103028 2014-05-19
JP2015100980A JP6575136B2 (en) 2014-05-19 2015-05-18 Solid battery and assembled battery using the same

Publications (2)

Publication Number Publication Date
JP2016001601A true JP2016001601A (en) 2016-01-07
JP6575136B2 JP6575136B2 (en) 2019-09-18

Family

ID=55077096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100980A Active JP6575136B2 (en) 2014-05-19 2015-05-18 Solid battery and assembled battery using the same

Country Status (1)

Country Link
JP (1) JP6575136B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163514A1 (en) * 2017-03-10 2018-09-13 株式会社村田製作所 All-solid state battery and manufacturing method therefor, and electronic device and electronic card
WO2018181575A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery
WO2018186449A1 (en) * 2017-04-07 2018-10-11 株式会社村田製作所 Secondary cell
JPWO2018062085A1 (en) * 2016-09-29 2019-07-11 Tdk株式会社 All solid lithium ion rechargeable battery
WO2019163756A1 (en) * 2018-02-23 2019-08-29 株式会社村田製作所 Solid-state battery
WO2019163755A1 (en) * 2018-02-23 2019-08-29 株式会社村田製作所 Solid-state battery
CN110249472A (en) * 2017-02-23 2019-09-17 株式会社村田制作所 Condenser plate and battery
WO2019176945A1 (en) 2018-03-14 2019-09-19 株式会社村田製作所 Battery and method for manufacturing same, circuit board, electronic device and electric vehicle
CN110635162A (en) * 2019-09-23 2019-12-31 深圳市泽塔电源***有限公司 Electrochemical energy storage device and method of manufacture
WO2020054549A1 (en) 2018-09-14 2020-03-19 株式会社村田製作所 Solid-state battery and solid-state battery group
WO2020054544A1 (en) 2018-09-14 2020-03-19 株式会社村田製作所 Solid-state battery and solid-state battery group
WO2020070989A1 (en) 2018-10-02 2020-04-09 株式会社村田製作所 Solid-state battery
WO2020137256A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
CN111480259A (en) * 2018-02-26 2020-07-31 株式会社村田制作所 All-solid-state battery
CN111480260A (en) * 2018-03-02 2020-07-31 株式会社村田制作所 All-solid-state battery
CN111566867A (en) * 2018-01-10 2020-08-21 Tdk株式会社 All-solid lithium ion secondary battery
CN111755639A (en) * 2019-03-27 2020-10-09 丰田自动车株式会社 Assembled battery
CN111868991A (en) * 2018-03-19 2020-10-30 Tdk株式会社 All-solid-state battery
CN112670626A (en) * 2019-10-16 2021-04-16 三星电机株式会社 All-solid-state battery
JPWO2021230055A1 (en) * 2020-05-12 2021-11-18
CN114556671A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059471A (en) * 2001-08-20 2003-02-28 Sony Corp Housing for battery
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
JP2016001600A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Solid battery and battery pack using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059471A (en) * 2001-08-20 2003-02-28 Sony Corp Housing for battery
JP2007080812A (en) * 2005-08-18 2007-03-29 Matsushita Electric Ind Co Ltd Full solid lithium secondary battery and method of manufacturing same
WO2007135790A1 (en) * 2006-05-23 2007-11-29 Incorporated National University Iwate University Total solid rechargeable battery
JP2014534592A (en) * 2011-11-02 2014-12-18 アイ テン Manufacturing method of all-solid-state thin film battery
JP2016001600A (en) * 2014-05-19 2016-01-07 Tdk株式会社 Solid battery and battery pack using the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062085A1 (en) * 2016-09-29 2019-07-11 Tdk株式会社 All solid lithium ion rechargeable battery
CN110249472A (en) * 2017-02-23 2019-09-17 株式会社村田制作所 Condenser plate and battery
CN110249472B (en) * 2017-02-23 2023-07-21 株式会社村田制作所 Power storage plate and battery
WO2018163514A1 (en) * 2017-03-10 2018-09-13 株式会社村田製作所 All-solid state battery and manufacturing method therefor, and electronic device and electronic card
JPWO2018181575A1 (en) * 2017-03-30 2020-02-06 Tdk株式会社 All-solid lithium-ion secondary battery
WO2018181575A1 (en) * 2017-03-30 2018-10-04 Tdk株式会社 All-solid-state lithium ion secondary battery
WO2018186449A1 (en) * 2017-04-07 2018-10-11 株式会社村田製作所 Secondary cell
CN111566867A (en) * 2018-01-10 2020-08-21 Tdk株式会社 All-solid lithium ion secondary battery
CN111566867B (en) * 2018-01-10 2023-09-01 Tdk株式会社 All-solid lithium ion secondary battery
JP7010360B2 (en) 2018-02-23 2022-01-26 株式会社村田製作所 Solid state battery
JPWO2019163755A1 (en) * 2018-02-23 2021-02-04 株式会社村田製作所 Solid state battery
JP2022043325A (en) * 2018-02-23 2022-03-15 株式会社村田製作所 Solid battery
WO2019163755A1 (en) * 2018-02-23 2019-08-29 株式会社村田製作所 Solid-state battery
WO2019163756A1 (en) * 2018-02-23 2019-08-29 株式会社村田製作所 Solid-state battery
JP7260008B2 (en) 2018-02-23 2023-04-18 株式会社村田製作所 solid state battery
US11424478B2 (en) 2018-02-23 2022-08-23 Murata Manufacturing Co., Ltd. Solid battery
US11764395B2 (en) 2018-02-26 2023-09-19 Murata Manufacturing Co., Ltd. All-solid-state battery
CN111480259B (en) * 2018-02-26 2023-11-03 株式会社村田制作所 All-solid battery
CN111480259A (en) * 2018-02-26 2020-07-31 株式会社村田制作所 All-solid-state battery
CN111480260B (en) * 2018-03-02 2023-07-25 株式会社村田制作所 All-solid battery
JPWO2019167821A1 (en) * 2018-03-02 2020-12-03 株式会社村田製作所 All solid state battery
CN111480260A (en) * 2018-03-02 2020-07-31 株式会社村田制作所 All-solid-state battery
US11424487B2 (en) 2018-03-02 2022-08-23 Murata Manufacturing Co., Ltd. Solid-state battery
JP7047896B2 (en) 2018-03-02 2022-04-05 株式会社村田製作所 All solid state battery
WO2019176945A1 (en) 2018-03-14 2019-09-19 株式会社村田製作所 Battery and method for manufacturing same, circuit board, electronic device and electric vehicle
CN111868991A (en) * 2018-03-19 2020-10-30 Tdk株式会社 All-solid-state battery
CN112689922A (en) * 2018-09-14 2021-04-20 株式会社村田制作所 Solid-state battery and solid-state battery pack
WO2020054544A1 (en) 2018-09-14 2020-03-19 株式会社村田製作所 Solid-state battery and solid-state battery group
CN112689922B (en) * 2018-09-14 2024-05-28 株式会社村田制作所 Solid battery and solid battery pack
WO2020054549A1 (en) 2018-09-14 2020-03-19 株式会社村田製作所 Solid-state battery and solid-state battery group
CN112805863A (en) * 2018-10-02 2021-05-14 株式会社村田制作所 Solid-state battery
WO2020070989A1 (en) 2018-10-02 2020-04-09 株式会社村田製作所 Solid-state battery
US11942605B2 (en) 2018-10-02 2024-03-26 Murata Manufacturing Co., Ltd. Solid-state battery
EP3863098A4 (en) * 2018-10-02 2022-08-31 Murata Manufacturing Co., Ltd. Solid-state battery
JP7417843B2 (en) 2018-12-28 2024-01-19 パナソニックIpマネジメント株式会社 battery
CN112913064A (en) * 2018-12-28 2021-06-04 松下知识产权经营株式会社 Battery with a battery cell
WO2020137256A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
CN111755639B (en) * 2019-03-27 2022-09-02 丰田自动车株式会社 Assembled battery
CN111755639A (en) * 2019-03-27 2020-10-09 丰田自动车株式会社 Assembled battery
CN110635162A (en) * 2019-09-23 2019-12-31 深圳市泽塔电源***有限公司 Electrochemical energy storage device and method of manufacture
CN114556671A (en) * 2019-10-11 2022-05-27 株式会社村田制作所 Solid battery
CN112670626A (en) * 2019-10-16 2021-04-16 三星电机株式会社 All-solid-state battery
JP7380860B2 (en) 2020-05-12 2023-11-15 株式会社村田製作所 All-solid-state batteries and assembled batteries
WO2021230055A1 (en) * 2020-05-12 2021-11-18 株式会社村田製作所 All-solid-state battery and battery pack
JPWO2021230055A1 (en) * 2020-05-12 2021-11-18

Also Published As

Publication number Publication date
JP6575136B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6575136B2 (en) Solid battery and assembled battery using the same
JP6492958B2 (en) Solid battery and assembled battery using the same.
JP6492959B2 (en) Solid battery
JP7276316B2 (en) All-solid battery
JP7031596B2 (en) All-solid-state lithium-ion secondary battery
US20210036362A1 (en) All-solid-state battery
JP6311445B2 (en) All solid lithium ion secondary battery
JP2015220099A (en) All-solid lithium ion secondary battery
JP6693226B2 (en) All solid state secondary battery
WO2019139070A1 (en) All-solid lithium ion secondary battery
US10879560B2 (en) Active material and all-solid-state lithium-ion secondary battery
JP2016001598A (en) Lithium ion secondary battery
CN109792080B (en) All-solid lithium ion secondary battery
CN109565076B (en) Electrochemical element and all-solid-state lithium ion secondary battery
US20150333330A1 (en) Lithium ion secondary battery
WO2020195381A1 (en) Solid-state battery
JP2017182945A (en) All-solid lithium ion secondary battery
JP7168070B2 (en) solid state battery
JP7275614B2 (en) All-solid secondary battery
JP2015220096A (en) Lithium ion secondary battery
JP2020095776A (en) Solid electrolyte and all-solid type secondary battery
WO2020189599A1 (en) All-solid-state secondary battery
WO2018181575A1 (en) All-solid-state lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190805

R150 Certificate of patent or registration of utility model

Ref document number: 6575136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150