JP2016001090A - Heat resistant material for regenerative burner - Google Patents

Heat resistant material for regenerative burner Download PDF

Info

Publication number
JP2016001090A
JP2016001090A JP2014121510A JP2014121510A JP2016001090A JP 2016001090 A JP2016001090 A JP 2016001090A JP 2014121510 A JP2014121510 A JP 2014121510A JP 2014121510 A JP2014121510 A JP 2014121510A JP 2016001090 A JP2016001090 A JP 2016001090A
Authority
JP
Japan
Prior art keywords
heat storage
heat
burner
powder
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014121510A
Other languages
Japanese (ja)
Inventor
友幸 福田
Tomoyuki Fukuda
友幸 福田
康太 小池
Yasuta Koike
康太 小池
詩門 石丸
Shimon Ishimaru
詩門 石丸
寛二 加藤
Kanji Kato
寛二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2014121510A priority Critical patent/JP2016001090A/en
Publication of JP2016001090A publication Critical patent/JP2016001090A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant material excellent in heat shock resistance used in a regenerative burner.SOLUTION: A heat resistant material of this invention is a heat resistant material for a regenerative burner used in the regenerative burner. The heat resistant material is constituted by calcinating mixed powder having 5-65% of cordierite powder, 5-65% of alumina powder and 5-65% of mullite powder based on 100% of the total mass.

Description

本発明は、蓄熱式バーナに用いられる耐熱材料に関する。   The present invention relates to a heat resistant material used for a heat storage burner.

鍛造炉、熱処理炉、溶解炉、焼成炉などでは、蓄熱式バーナ(リジェネバーナ)の燃焼により炉内温度を高温とすることがある。蓄熱式バーナは、例えば、特許文献1に記載されているように、横向きに取り付ける場合が有り、特許文献2のように蓄熱体が落下しないように両側から通過規制部材を当接させて保持することは公知となっている。   In a forging furnace, a heat treatment furnace, a melting furnace, a firing furnace, and the like, the furnace temperature may be increased due to combustion of a regenerative burner (regenerative burner). For example, as described in Patent Document 1, the heat storage type burner may be mounted sideways, and as in Patent Document 2, hold the passage regulating member from both sides so that the heat storage body does not fall. This is well known.

蓄熱式バーナは、バーナの燃焼により高温となった排ガスと、バーナの燃焼のために供給されるガス(エア)と、を交互に蓄熱体に流すバーナである。蓄熱式バーナは、排ガスの熱を蓄熱体で回収し、バーナの燃焼のために新たに供給されるガス(エア)を蓄熱体で予熱する。蓄熱体を流れるガス(排ガス,エア)は、数十秒間隔で切り替えられる。   The heat storage burner is a burner that alternately flows exhaust gas that has become high temperature due to combustion of the burner and gas (air) that is supplied for combustion of the burner to the heat storage body. The regenerative burner recovers the heat of the exhaust gas with the heat accumulator and preheats the gas (air) newly supplied for combustion of the burner with the heat accumulator. The gas (exhaust gas, air) flowing through the heat storage body is switched at intervals of several tens of seconds.

蓄熱式バーナは燃焼効率が高く、燃料使用量を低減することができるため、省エネルギーの効果とともに、排出される二酸化炭素を削減することができる効果を発揮する。この蓄熱式バーナには、それぞれ蓄熱体と組み合わせられた一対のバーナを用いるタイプと、一つのバーナでガスの流通方向を切り替えるタイプとがある。   Since the regenerative burner has high combustion efficiency and can reduce the amount of fuel used, it exerts the effect of reducing the carbon dioxide discharged together with the energy saving effect. This heat storage type burner includes a type using a pair of burners each combined with a heat storage body, and a type switching the gas flow direction with one burner.

蓄熱式バーナは、排ガスの熱を蓄熱体で回収するとともに、回収された熱で新たに供給されるエアを予熱する。予熱されたエアは、排ガスが流れたガス流路を逆方向に流れて燃焼に供される。予熱されたエアは、蓄熱体で予熱されているとはいえ、排出される排ガスよりも低い温度である。つまり、排ガスとエアが流れる流路には、排ガスの高熱と予熱されたエアの比較的低い温度とが繰り返し流れるため、特許文献3に記載されているように高い耐熱衝撃性を備えていることが求められている。   The regenerative burner collects the heat of the exhaust gas with the heat accumulator and preheats the newly supplied air with the recovered heat. The preheated air flows in the reverse direction through the gas flow path through which the exhaust gas has flowed and is used for combustion. Although the preheated air is preheated by the heat storage body, the temperature is lower than the exhaust gas discharged. That is, since the high heat of the exhaust gas and the relatively low temperature of the preheated air repeatedly flow in the flow path through which the exhaust gas and air flow, the high flow shock resistance as described in Patent Document 3 is provided. Is required.

特開平8−178257号公報JP-A-8-178257 特開2003−185372号公報JP 2003-185372 A 特開2013−100966号公報JP 2013-1000096 A

本発明は上記実状に鑑みてなされたものであり、蓄熱式バーナに用いられる耐熱衝撃性に優れた耐熱材料を提供することを課題とする。   This invention is made | formed in view of the said actual condition, and makes it a subject to provide the heat resistant material excellent in the thermal shock resistance used for a thermal storage type burner.

上記課題を解決するために本発明者等は耐熱衝撃性に優れた耐熱材料について検討を重ねた結果、コーディエライト粉末,アルミナ粉末及びムライト粉末をそれぞれ所定の割合で含有した混合粉末を焼成してなるものとすることで上記課題を解決できることを見出し、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have studied heat-resistant materials having excellent thermal shock resistance, and as a result, calcined mixed powders containing cordierite powder, alumina powder and mullite powder at a predetermined ratio, respectively. As a result, the inventors have found that the above-mentioned problems can be solved, and have made the present invention.

本発明の蓄熱式バーナ用耐熱材料は、熱処理炉内に燃料を噴射する燃料噴射口をもつバーナ部と、蓄熱体を収容する蓄熱室と、蓄熱室を通して燃焼用空気を給排気口から熱処理炉内に供給するとともに、熱処理炉内の燃焼排ガスを給排気口から蓄熱室を通して排気させる給排気路と、を有する給排気部と、を備えた蓄熱式バーナに用いられる蓄熱式バーナ用耐熱材料であって、全体の質量を100%としたときに、5〜65%のコーディエライト粉末と、5〜65%のアルミナ粉末と、5〜65%のムライト粉末と、を有する混合粉末を焼成してなることを特徴とする。   The heat-resisting material for the regenerative burner of the present invention includes a burner portion having a fuel injection port for injecting fuel into the heat treatment furnace, a heat storage chamber for housing the heat storage body, and combustion air from the supply / exhaust port through the heat storage chamber. A heat storage material for a heat storage type burner used for a heat storage type burner provided with an air supply / exhaust section having an air supply / exhaust passage for exhausting combustion exhaust gas in a heat treatment furnace from a gas supply / exhaust port through a heat storage chamber When the total mass is 100%, a mixed powder having 5 to 65% cordierite powder, 5 to 65% alumina powder, and 5 to 65% mullite powder is fired. It is characterized by.

本発明の耐熱材料は、コーディエライト粉末,アルミナ粉末及びムライト粉末をそれぞれ所定の割合で含有してなる混合粉末を焼成してなるものであり、高い耐熱衝撃性を発揮する耐熱材料となっている。
本発明の耐熱材料は、蓄熱式バーナに適用したときに、熱衝撃性に起因する損傷の発生が抑えられている。
The heat-resistant material of the present invention is obtained by firing a mixed powder containing cordierite powder, alumina powder, and mullite powder at a predetermined ratio, and becomes a heat-resistant material that exhibits high thermal shock resistance. Yes.
When the heat resistant material of the present invention is applied to a regenerative burner, the occurrence of damage due to thermal shock resistance is suppressed.

実施例の有孔板を示した図である。It is the figure which showed the perforated board of the Example. 実施例の有孔板を示した断面図である。It is sectional drawing which showed the perforated board of the Example. 実施形態の蓄熱式バーナの構成を示した模式図である。It is the schematic diagram which showed the structure of the thermal storage type burner of embodiment. 第一変形形態の蓄熱式バーナの給排気部の構成を示した模式図である。It is the schematic diagram which showed the structure of the air supply / exhaust part of the thermal storage type burner of a 1st modification.

本発明の蓄熱式バーナ用耐熱材料は、熱処理炉内に燃料を噴射する燃料噴射口をもつバーナ部と、蓄熱体を収容する蓄熱室と、蓄熱室を通して燃焼用空気を給排気口から熱処理炉内に供給するとともに、熱処理炉内の燃焼排ガスを給排気口から蓄熱室を通して排気させる給排気路と、を有する給排気部と、を備えた蓄熱式バーナに用いられる。   The heat-resisting material for the regenerative burner of the present invention includes a burner portion having a fuel injection port for injecting fuel into the heat treatment furnace, a heat storage chamber for housing the heat storage body, and combustion air from the supply / exhaust port through the heat storage chamber. The heat storage type burner is provided with a supply / exhaust section having a supply / exhaust passage that supplies the exhaust gas from the heat treatment furnace and exhausts the combustion exhaust gas in the heat treatment furnace through the heat storage chamber.

そして、全体の質量を100%としたときに、5〜65%のコーディエライト粉末と、5〜65%のアルミナ粉末と、5〜65%のムライト粉末と、を有する混合粉末を焼成してなる。ここで、全体の質量とは、混合粉末の固形分の全体の質量を示すことが好ましく、焼成により分解・消失する成分は含まれないことが好ましい。   And when the total mass is 100%, a mixed powder having 5 to 65% cordierite powder, 5 to 65% alumina powder, and 5 to 65% mullite powder is fired. Become. Here, the total mass preferably indicates the total mass of the solid content of the mixed powder, and preferably does not include components that decompose and disappear by firing.

本発明の耐熱材料は、コーディエライト粉末,アルミナ粉末及びムライト粉末を含有する混合粉末を焼成してなる。これらのセラミックス粉末の混合粉末を焼成して製造されることで、本発明の耐熱材料が多孔質セラミックスにより形成されることとなり、耐熱衝撃性を有するようになる。また、焼成により多孔質セラミックスとなることで、高強度の部材を形成できる。   The heat-resistant material of the present invention is obtained by firing a mixed powder containing cordierite powder, alumina powder and mullite powder. By producing a mixed powder of these ceramic powders, the heat-resistant material of the present invention is formed of porous ceramics, and has thermal shock resistance. Moreover, a high intensity | strength member can be formed by becoming porous ceramics by baking.

これらのセラミックス粉末のうち、コーディエライト粉末は、耐熱衝撃性をより高める効果を発揮する。また、アルミナ粉末及びムライト粉末は、耐熱材料の耐熱性をより高める効果を発揮する。   Of these ceramic powders, cordierite powder exhibits the effect of further increasing the thermal shock resistance. Alumina powder and mullite powder exhibit the effect of further improving the heat resistance of the heat-resistant material.

本発明の耐熱材料は、混合粉末にコーディエライト粉末を5〜65%で含有させることで、高い耐熱衝撃性を有するものとなる。コーディエライト粉末の含有割合が5%未満となると、コーディエライト粉末の含有の効果を十分に発揮できなくなり、65%を超えると、蓄熱式バーナに用いたときの耐熱性が十分でなくなる。好ましいコーディエライト粉末の割合は10〜40%であり、より好ましい割合は15〜25%である。   The heat-resistant material of the present invention has high thermal shock resistance by containing 5 to 65% cordierite powder in the mixed powder. When the cordierite powder content is less than 5%, the effect of cordierite powder content cannot be fully exhibited. When the cordierite powder content exceeds 65%, the heat resistance when used in a heat storage burner becomes insufficient. A preferred proportion of cordierite powder is 10 to 40%, and a more preferred proportion is 15 to 25%.

本発明の耐熱材料は、混合粉末にアルミナ粉末を5〜65%で含有させることで、高い耐熱性を有するものとなる。アルミナ粉末の含有割合が5%未満となると、アルミナ粉末の含有の効果を十分に発揮できなくなり、65%を超えると、耐熱衝撃性が低下する。好ましいアルミナ粉末の割合は10〜30%であり、より好ましい割合は10〜20%である。   The heat-resistant material of the present invention has high heat resistance by containing 5 to 65% alumina powder in the mixed powder. When the content ratio of the alumina powder is less than 5%, the effect of containing the alumina powder cannot be sufficiently exhibited, and when it exceeds 65%, the thermal shock resistance is lowered. A preferable ratio of the alumina powder is 10 to 30%, and a more preferable ratio is 10 to 20%.

本発明の耐熱材料は、混合粉末にムライト粉末を5〜65%で含有させることで、高い耐熱衝撃性を有するものとなる。ムライト粉末の含有割合が5%未満となると、ムライト粉末の含有の効果を十分に発揮できなくなり、65%を超えると、耐熱性が低下する。好ましいムライト粉末の割合は30〜60%であり、より好ましい割合は30〜55%である。   The heat-resistant material of the present invention has high thermal shock resistance when the mixed powder contains mullite powder at 5 to 65%. When the content ratio of the mullite powder is less than 5%, the effect of the mullite powder content cannot be sufficiently exhibited, and when it exceeds 65%, the heat resistance is lowered. A preferable ratio of the mullite powder is 30 to 60%, and a more preferable ratio is 30 to 55%.

混合粉末は、コーディエライト粉末,アルミナ粉末及びムライト粉末を、その合計が55%以上となるように有することが好ましく、75%以上となるように有することがより好ましく、85%以上となるように有することが更に好ましい。   The mixed powder preferably has cordierite powder, alumina powder, and mullite powder so that the total is 55% or more, more preferably 75% or more, and more preferably 85% or more. More preferably,

混合粉末は、従来公知の添加剤を含有していることが好ましい。この添加剤としては、耐熱材料の特性に変化を生じさせない添加剤であれば、従来の耐熱材料に用いられている添加剤をあげることができる。添加剤としては、例えば、成形体を焼成するときに消失する化合物や、バインダをあげることができる。   The mixed powder preferably contains a conventionally known additive. Examples of the additive include additives that are used in conventional heat-resistant materials as long as they do not cause changes in the characteristics of the heat-resistant materials. Examples of the additive include a compound that disappears when the molded body is fired, and a binder.

混合粉末は、コーディエライト粉末と、アルミナ粉末と、ムライト粉末と、更に添加剤で構成されることが好ましい。   The mixed powder is preferably composed of cordierite powder, alumina powder, mullite powder, and an additive.

本発明の耐熱材料において、混合粉末は、バインダを含有することが好ましい。混合粉末がバインダを含有することで、耐熱材料の成形体の成形性が向上し、耐熱材料を用いて蓄熱式バーナの部材(所定の形状の部材)を製造する時のコストの上昇を抑えることができる。   In the heat resistant material of the present invention, the mixed powder preferably contains a binder. By including the binder in the mixed powder, the moldability of the heat-resistant material molded body is improved, and the increase in cost when manufacturing a member of a regenerative burner (a member having a predetermined shape) using the heat-resistant material is suppressed. Can do.

本発明の耐熱材料は、蓄熱式バーナに用いられる耐熱材料である。蓄熱式バーナは、熱処理炉内に燃料を噴射する燃料噴射口をもつバーナ部と、蓄熱体を収容する蓄熱室と、蓄熱室を通して燃焼用空気を給排気口から熱処理炉内に供給するとともに、熱処理炉内の燃焼排ガスを給排気口から蓄熱室を通して排気させる給排気路と、を有する給排気部と、を備える。   The heat-resistant material of the present invention is a heat-resistant material used for a regenerative burner. The regenerative burner has a burner section having a fuel injection port for injecting fuel into the heat treatment furnace, a heat storage chamber for storing the heat storage body, and supplying combustion air from the supply / exhaust port into the heat treatment furnace through the heat storage chamber, And a supply / exhaust section having a supply / exhaust passage for exhausting the combustion exhaust gas in the heat treatment furnace from the supply / exhaust port through the heat storage chamber.

通過規制部材は、その設置位置から、高い耐熱衝撃性が求められている。本発明の耐熱材料は高い耐熱衝撃性と高い強度を備えた材料であり、通過規制部材を形成したときにその効果を発揮する。   The passage restricting member is required to have high thermal shock resistance from its installation position. The heat-resistant material of the present invention is a material having high thermal shock resistance and high strength, and exhibits its effect when a passage restricting member is formed.

通過規制部材は、蓄熱体と当接した状態で配されることが好ましい。通過規制部材を蓄熱体と当接した状態で配することで、蓄熱体自身が熱処理炉に向かって移動することを抑えることができる。また、蓄熱体が粒塊状の場合に、粒界のそれぞれがズレることが抑えられる。   It is preferable that the passage restricting member is disposed in contact with the heat storage body. By arranging the passage regulating member in contact with the heat storage body, the heat storage body itself can be prevented from moving toward the heat treatment furnace. Moreover, when the heat storage body is in the form of agglomerates, each of the grain boundaries can be prevented from shifting.

通過規制部材は、蓄熱体を支持することが好ましい。通過規制部材が蓄熱体を支持した状態で配することで、蓄熱体が熱処理炉内に移動することが抑えられる。本発明の耐熱材料は、耐熱衝撃性だけでなく、強度に優れた耐熱材料であることから、蓄熱体からの力を受けた状態でも、蓄熱体を支持することができる。この結果、通過規制部材が蓄熱体を支持するときに、粒塊状の蓄熱体の粒塊のそれぞれがズレることが抑えられる。   The passage restricting member preferably supports the heat storage body. By arranging the passage regulating member in a state in which the heat storage body is supported, the heat storage body is suppressed from moving into the heat treatment furnace. Since the heat-resistant material of the present invention is not only a thermal shock resistance but also an excellent heat-resistant material, it can support the heat storage body even when it receives a force from the heat storage body. As a result, when the passage restricting member supports the heat storage body, it is possible to prevent each of the particle blocks of the particle-like heat storage body from shifting.

以下、実施例を用いて本発明を具体的に説明する。
実施例として、蓄熱式バーナの固体通過規制部材として使用される有孔板を製造した。
Hereinafter, the present invention will be specifically described with reference to examples.
As an example, a perforated plate used as a solid passage regulating member of a regenerative burner was manufactured.

(実施例)
アルミナ粉末,ムライト粉末,コーディエライト粉末,粘土を含むその他の成分の粉末を準備した。そして、表1に示した質量部で秤量し、混合した。
(Example)
Alumina powder, mullite powder, cordierite powder, and powders of other components including clay were prepared. And it weighed in the mass part shown in Table 1, and mixed.

Figure 2016001090
Figure 2016001090

混合粉末を成形型のキャビティに投入して、1トン重/cm(98.1MPa)の圧力で加圧して所定の形状に成形し、室温で24時間保持して乾燥した。
その後、大気雰囲気で1350℃で5時間保持して焼結させた(焼成した)。
焼成後、放冷して網状の試料1〜2の有孔板が製造された。
The mixed powder was put into a cavity of a mold, pressed with a pressure of 1 ton weight / cm 2 (98.1 MPa), formed into a predetermined shape, held at room temperature for 24 hours, and dried.
Then, it was sintered by sintering at 1350 ° C. for 5 hours in an air atmosphere.
After firing, the plate was allowed to cool to produce a perforated plate of reticulated samples 1-2.

製造された試料1〜2の有孔板1は、図1(a),図1(b)に模式的に示したように、厚さ方向を貫通した貫通孔10が所定の間隔で複数形成された厚さ5mmの円板である。なお、図1(a)は正面図を、図1(b)は図1(a)中のI−I線での断面図である。   As shown in FIGS. 1A and 1B, the manufactured perforated plate 1 of Samples 1 and 2 is formed with a plurality of through holes 10 penetrating in the thickness direction at a predetermined interval. The disc is 5 mm thick. 1A is a front view, and FIG. 1B is a cross-sectional view taken along the line II in FIG. 1A.

(評価)
実施例の有孔板1の評価として、以下の耐熱衝撃試験を施した。
耐熱衝撃試験は、各試料の有孔板1を加熱炉で1300℃までの加熱と水冷とを繰り返した後に亀裂の有無を目視で確認することで行った。
(Evaluation)
As the evaluation of the perforated plate 1 of the example, the following thermal shock test was performed.
The thermal shock test was carried out by visually checking the presence or absence of cracks after the perforated plate 1 of each sample was repeatedly heated to 1300 ° C. and water cooled in a heating furnace.

具体的には、実施例の有孔板1を、加熱炉中に載置し、4時間かけて1300℃まで加熱し、1時間保持した。続いて、加熱炉から取り出して、水に投入して急冷した。その後、水から取り出し、1300℃の炉内に戻した後に30分間保持し、再び水に投入した。この1300℃で30分間の保持・水への投入のサイクルを10サイクル繰り返した。   Specifically, the perforated plate 1 of the example was placed in a heating furnace, heated to 1300 ° C. over 4 hours, and held for 1 hour. Then, it took out from the heating furnace, thrown into water, and quenched. Then, it took out from water, returned to the 1300 degreeC furnace, hold | maintained for 30 minutes, and thrown into water again. This cycle of holding at 1300 ° C. for 30 minutes and charging into water was repeated 10 cycles.

試料2の有孔板1は、最初の1サイクル目(最初の水への投入)で亀裂が発生した。しかし、試料1の有孔板1は、10サイクル経過しても亀裂の発生は確認できなかった。   In the perforated plate 1 of the sample 2, cracks occurred in the first cycle (first charging into water). However, the perforated plate 1 of Sample 1 was not confirmed to crack even after 10 cycles.

この耐熱衝撃試験から、アルミナ粉末,ムライト粉末,コーディエライト粉末をそれぞれ所定の割合で含有して形成されることで、耐熱衝撃性に優れた有孔板となることが確認できた。   From this thermal shock test, it was confirmed that a perforated plate having excellent thermal shock resistance can be obtained by containing alumina powder, mullite powder, and cordierite powder at a predetermined ratio.

(蓄熱式バーナ)
実施例の有孔板1を、蓄熱式バーナ2に用いた態様を図2を用いて説明する。蓄熱式バーナ2は、加熱炉内に火炎を噴射して炉内を加熱するバーナである。図2は、蓄熱式バーナ2の構成を模式的に示した図である。図2に示したように、2台のバーナ(2A,2B)は同様の構成であり、それぞれの部材の参照符号にAとBを付記して、2台のバーナの区別を行った。同様に、2台のバーナの部材の区別のために、参照符号へ付記を行った。2台のバーナの部材の区別が不要な場合には、参照符号へ付記を省略した。
(Regenerative burner)
The aspect which used the perforated board 1 of the Example for the thermal storage type burner 2 is demonstrated using FIG. The regenerative burner 2 is a burner that injects a flame into a heating furnace to heat the inside of the furnace. FIG. 2 is a diagram schematically showing the configuration of the heat storage burner 2. As shown in FIG. 2, the two burners (2A, 2B) have the same configuration, and A and B are added to the reference numerals of the respective members to distinguish the two burners. Similarly, in order to distinguish between the members of the two burners, reference numerals are added. In the case where it is not necessary to distinguish between the members of the two burners, the reference numerals are omitted.

蓄熱式バーナ2は、炉体5において向かい合った2台のバーナ(2A,2B)を1組とし、燃料を噴射する燃料噴射口をもつバーナ部3と、燃焼用空気を給気管81から供給するとともに燃焼排ガス(排ガス)を排気管82から排気させる給排気路40を有する給排気部4と、を備えている。   The regenerative burner 2 is a set of two burners (2A, 2B) facing each other in the furnace body 5, and supplies a burner section 3 having a fuel injection port for injecting fuel and combustion air from an air supply pipe 81. And an air supply / exhaust section 4 having an air supply / exhaust passage 40 for exhausting combustion exhaust gas (exhaust gas) from an exhaust pipe 82.

蓄熱式バーナ2は、バーナ部3及び給排気部4が耐熱金属よりなるケーシング6に収容され、ケーシング6の内面には、耐熱タイル7が配されている。
バーナ部3は、燃料を噴射する燃料噴射口31を有する。燃料噴射口31は、ケーシング6に開口している。
In the regenerative burner 2, the burner part 3 and the air supply / exhaust part 4 are accommodated in a casing 6 made of a heat-resistant metal, and a heat-resistant tile 7 is arranged on the inner surface of the casing 6.
The burner unit 3 has a fuel injection port 31 for injecting fuel. The fuel injection port 31 is open to the casing 6.

燃料噴射口31から噴射された燃料(燃焼用ガスと空気(エア)との混合気)は、燃焼を生じて、炉内の加熱に供される。   Fuel (a mixture of combustion gas and air) injected from the fuel injection port 31 is combusted and used for heating in the furnace.

給排気部4は、燃焼用空気を給気管81から供給するとともに、燃焼排ガスを排気管82から排気させる給排気路40を有する。また給排気部4は、その経路中に、蓄熱体42を収容する蓄熱室43を有する。   The air supply / exhaust unit 4 has a supply / exhaust passage 40 for supplying combustion air from an air supply pipe 81 and exhausting combustion exhaust gas from an exhaust pipe 82. In addition, the air supply / exhaust unit 4 includes a heat storage chamber 43 that accommodates the heat storage body 42 in the path.

蓄熱体42は、粒塊状のセラミックスよりなり、本態様では従来公知のアルミナボールである。この蓄熱体42は、従来の蓄熱式バーナで用いられている蓄熱体を用いることができる。   The heat storage body 42 is made of agglomerated ceramics and is a conventionally known alumina ball in this embodiment. The heat storage body 42 may be a heat storage body used in a conventional heat storage burner.

蓄熱室43は、蓄熱体42を内部に充填可能に区画され、エア又は排ガスが通過できるように、その側面に、排ガスが流れ込む高温側開口440と、エアが流れ込む低温側開口441が開口している。高温側開口440と、低温側開口441の内部の蓄熱体42が流れ出ることを規制する固体通過規制部材が配されている。高温側開口440に配される固体通過規制部材は、上記の有孔板1である。低温側開口441に配される固体通過規制部材は、耐熱金属よりなる網状の板442である。   The heat storage chamber 43 is partitioned so that the heat storage body 42 can be filled therein, and a high-temperature side opening 440 through which exhaust gas flows and a low-temperature side opening 441 through which air flows enter the side surface so that air or exhaust gas can pass therethrough. Yes. A high-temperature side opening 440 and a solid passage restriction member that restricts the flow of the heat storage body 42 inside the low-temperature side opening 441 are disposed. The solid passage restricting member disposed in the high temperature side opening 440 is the perforated plate 1 described above. The solid passage restricting member disposed in the low temperature side opening 441 is a net-like plate 442 made of a heat-resistant metal.

固体通過規制部材は、蓄熱室43の一部を形成し、蓄熱室43に充填された蓄熱体42を当接・支持している。このとき、蓄熱室43に充填された蓄熱体42は粒塊同士が固定されておらず、固体通過規制部材には、蓄熱体42の重量に起因する力が加わっている。   The solid passage restricting member forms part of the heat storage chamber 43 and abuts and supports the heat storage body 42 filled in the heat storage chamber 43. At this time, the heat storage bodies 42 filled in the heat storage chamber 43 are not fixed to each other, and a force due to the weight of the heat storage body 42 is applied to the solid passage regulating member.

固体通過規制部材のうち、高温側開口440に配される有孔板1は、蓄熱体42が流れ出すことを規制するだけでなく、給排気口41から排ガスとともに運ばれてくる炉内の異物が蓄熱室43内に浸入することを抑える。   Among the solid passage restriction members, the perforated plate 1 disposed in the high temperature side opening 440 not only restricts the heat storage body 42 from flowing out, but also foreign matter in the furnace that is carried along with the exhaust gas from the air supply / exhaust port 41. Intrusion into the heat storage chamber 43 is suppressed.

固体通過規制部材は、有孔板1及び網状の板442が用いられるが、その開口の径や開口率,開口面積等の条件は、使用される蓄熱式バーナ2ごとに設定することができる。   The perforated plate 1 and the net-like plate 442 are used as the solid passage regulating member, and conditions such as the diameter, opening ratio, and opening area of the opening can be set for each heat storage burner 2 to be used.

耐熱タイル7は、ケーシング6の内面に配された耐熱材であり、燃料噴射口31及び給気口81、給気管82に対応した位置に通気孔70が開口している。
本形態の蓄熱式バーナ2は、ガスの流量を制御する制御弁等の図示しない装置を有している。
The heat-resistant tile 7 is a heat-resistant material disposed on the inner surface of the casing 6, and a vent hole 70 is opened at a position corresponding to the fuel injection port 31, the air supply port 81, and the air supply pipe 82.
The regenerative burner 2 of this embodiment has a device (not shown) such as a control valve that controls the flow rate of gas.

(蓄熱式バーナの動作)
本形態の蓄熱式バーナ2は、バーナ2A,2Bの2台1組で運転される。バーナ部3Aの燃料噴射口31Aから燃料を噴射して燃焼を生じさせる。あわせて給気管81Aからもエアを供給し、より強い燃焼を生じさせる。このとき、排気管2Bは、燃焼により生じた燃焼排ガスを加熱炉の炉内から外部に排気する。すなわち、給排気部4Aは炉内にエアを供給する給気系として機能し、給排気部4Bは炉内の燃焼排ガスを排気する排気系として機能する。
(Operation of regenerative burner)
The regenerative burner 2 of this embodiment is operated by a set of two burners 2A and 2B. Fuel is injected from the fuel injection port 31A of the burner portion 3A to cause combustion. At the same time, air is supplied from the air supply pipe 81A to cause stronger combustion. At this time, the exhaust pipe 2B exhausts the combustion exhaust gas generated by the combustion from the inside of the heating furnace to the outside. That is, the supply / exhaust unit 4A functions as an air supply system that supplies air into the furnace, and the supply / exhaust unit 4B functions as an exhaust system that exhausts combustion exhaust gas in the furnace.

給排気部4Bでの排気は、加熱炉内の高温の排ガスを炉外に排出する。高温の排ガスは、給排気口41Bから蓄熱室43Bを通過して外部に排出される。高温の排ガスは、蓄熱室43Bを通過するときに、蓄熱体42Bを加熱することで、排ガス温度が低下する。   Exhaust gas in the supply / exhaust section 4B discharges high-temperature exhaust gas in the heating furnace to the outside of the furnace. Hot exhaust gas passes through the heat storage chamber 43B from the air supply / exhaust port 41B and is discharged to the outside. When the high-temperature exhaust gas passes through the heat storage chamber 43B, the exhaust gas temperature is lowered by heating the heat storage body 42B.

所定時間が経過した後に、給気管81と排気管82と燃料噴射口31を切り替える。つまり、給排気部4Bが炉内にエアを供給する給気系として機能し、給排気部4Aが炉内の燃焼排ガスを排気する排気系として機能する。   After a predetermined time has elapsed, the air supply pipe 81, the exhaust pipe 82, and the fuel injection port 31 are switched. That is, the air supply / exhaust unit 4B functions as an air supply system that supplies air into the furnace, and the air supply / exhaust unit 4A functions as an exhaust system that exhausts combustion exhaust gas in the furnace.

具体的には、給気管81Bからエアの供給を行う。このとき、給気管81Bから供給されるエアは、蓄熱室43Bを通過して炉内に供給され、燃焼に供される。エアが蓄熱室43Bを通過するときに、蓄熱体42Bとエアが接触し、この接触により蓄熱体42Bによりエアが加熱される。そして、炉内には、この加熱された状態のエアで燃料が燃焼される。
排気管82Aは、加熱炉の排ガスを排気する。給排気部4Aでの排気は、上記の給排気部4Bでの排気と同様に行われ、蓄熱体42Aが加熱される。
Specifically, air is supplied from the supply pipe 81B. At this time, the air supplied from the air supply pipe 81B passes through the heat storage chamber 43B, is supplied into the furnace, and is used for combustion. When the air passes through the heat storage chamber 43B, the heat storage body 42B comes into contact with the air, and the air is heated by the heat storage body 42B due to this contact. In the furnace, fuel is burned with the heated air.
The exhaust pipe 82A exhausts the exhaust gas from the heating furnace. Exhaust in the air supply / exhaust unit 4A is performed in the same manner as exhaust in the above-described supply / exhaust unit 4B, and the heat storage body 42A is heated.

蓄熱式バーナ2は、給排気部4Aと給排気部4Bでの給気と排気を所定時間ごとに切り替える。この切り替えにより、蓄熱式バーナ2は、蓄熱体42A,42Bで加熱(予熱)されたエアが加熱炉内での燃焼に供される。この結果、給気されるエアによる炉内温度の低下が抑えられ、省エネルギー性能が向上する。   The regenerative burner 2 switches between air supply and exhaust in the air supply / exhaust unit 4A and the air supply / exhaust unit 4B every predetermined time. By this switching, the heat stored in the heat storage burner 2 is heated (preheated) by the heat storage bodies 42A and 42B for combustion in the heating furnace. As a result, a decrease in the furnace temperature due to the supplied air is suppressed, and the energy saving performance is improved.

本形態の蓄熱式バーナ2のように、より高温の炉内の排ガスが直接当たる位置に配された実施例の有孔板1は、高い耐熱衝撃性を有している。さらに、本形態の蓄熱式バーナ2のように有孔板1に蓄熱体42からの力が加わった状態であっても、有孔板1に損傷が生じず、高い耐熱衝撃性を有する効果を発揮できることが確認できた。   Like the regenerative burner 2 of the present embodiment, the perforated plate 1 of the embodiment disposed at a position where the exhaust gas in the furnace having a higher temperature directly hits has high thermal shock resistance. Further, even when the force from the heat storage body 42 is applied to the perforated plate 1 as in the heat storage type burner 2 of the present embodiment, the perforated plate 1 is not damaged and has the effect of having high thermal shock resistance. It was confirmed that it could be demonstrated.

(第一変形形態)
上記の蓄熱式バーナ2は、有孔板1が給排気口41をなすように、蓄熱室43が炉に近接した状態で構成されているが、有孔板1を配する蓄熱式バーナの構成は、限定されるものではない。すなわち、蓄熱室43が管路8を介して給排気口41と連通する図3のような蓄熱式バーナ(従来の構成の形態)に、実施例の有孔板1を配してもよい。
(First variant)
The heat storage burner 2 is configured in a state where the heat storage chamber 43 is close to the furnace so that the perforated plate 1 forms the air supply / exhaust port 41, but the configuration of the heat storage burner in which the perforated plate 1 is arranged. Is not limited. That is, the perforated plate 1 of the embodiment may be disposed in a heat storage burner (a configuration of a conventional configuration) as shown in FIG.

1:有孔板
2:蓄熱式バーナ
3:バーナ部
4:給排気部
5:炉体
6:ケーシング
7:耐熱タイル
8:管路
1: Perforated plate 2: Regenerative burner 3: Burner part 4: Supply / exhaust part 5: Furnace body 6: Casing 7: Heat-resistant tile 8: Pipe line

Claims (4)

熱処理炉内に燃料を噴射する燃料噴射口をもつバーナ部と、
蓄熱体を収容する蓄熱室と、該蓄熱室を通して燃焼用空気を給排気口から該熱処理炉内に供給するとともに、該熱処理炉内の燃焼排ガスを給排気口から該蓄熱室を通して排気させる給排気路と、を有する給排気部と、
を備えた蓄熱式バーナに用いられる蓄熱式バーナ用耐熱材料であって、
全体の質量を100%としたときに、5〜65%のコーディエライト粉末と、5〜65%のアルミナ粉末と、5〜65%のムライト粉末と、を有する混合粉末を焼成してなることを特徴とする蓄熱式バーナ用耐熱材料。
A burner having a fuel injection port for injecting fuel into the heat treatment furnace;
A heat storage chamber for storing a heat storage body, and supply / exhaust air for supplying combustion air from the supply / exhaust port to the heat treatment furnace through the heat storage chamber and exhausting combustion exhaust gas in the heat treatment furnace from the supply / exhaust port through the heat storage chamber An air supply / exhaust section having a path;
A heat storage material for a heat storage burner used in a heat storage burner equipped with
When the total mass is 100%, a mixed powder having 5 to 65% cordierite powder, 5 to 65% alumina powder, and 5 to 65% mullite powder is fired. A heat-resistant material for regenerative burners.
前記蓄熱式バーナ用耐熱材料は、前記蓄熱室と前記熱処理炉内との間で固体の通過を規制する通過規制部材に用いられる請求項1に記載の蓄熱式バーナ用耐熱材料。   The heat-resistant material for a heat storage type burner according to claim 1, wherein the heat-resistant material for a heat storage type burner is used as a passage restricting member that restricts the passage of a solid between the heat storage chamber and the heat treatment furnace. 前記通過規制部材は、前記蓄熱体と当接した状態で配される請求項2に記載の蓄熱式バーナ用耐熱材料。   The heat storage material for a heat storage type burner according to claim 2, wherein the passage restriction member is arranged in a state of being in contact with the heat storage body. 前記通過規制部材は、前記蓄熱体を支持する請求項2〜3のいずれか1項に記載の蓄熱式バーナ用耐熱材料。   The heat storage material for a heat storage type burner according to any one of claims 2 to 3, wherein the passage restriction member supports the heat storage body.
JP2014121510A 2014-06-12 2014-06-12 Heat resistant material for regenerative burner Pending JP2016001090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121510A JP2016001090A (en) 2014-06-12 2014-06-12 Heat resistant material for regenerative burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121510A JP2016001090A (en) 2014-06-12 2014-06-12 Heat resistant material for regenerative burner

Publications (1)

Publication Number Publication Date
JP2016001090A true JP2016001090A (en) 2016-01-07

Family

ID=55076772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121510A Pending JP2016001090A (en) 2014-06-12 2014-06-12 Heat resistant material for regenerative burner

Country Status (1)

Country Link
JP (1) JP2016001090A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283073A (en) * 1995-04-11 1996-10-29 Ngk Insulators Ltd Kiln tool
JPH08285239A (en) * 1995-04-17 1996-11-01 Tokyo Gas Co Ltd In-furnace fuel direct-injection type burner
JPH09159149A (en) * 1995-12-05 1997-06-20 Nkk Corp Heat accumulative burner, its combustion method and its combustion device
JPH11248379A (en) * 1998-03-02 1999-09-14 Ihara Chikuro Kogyo Kk Heat-storing body and its mounting structure
JP2002228143A (en) * 2001-01-31 2002-08-14 Nippon Furnace Kogyo Kaisha Ltd Regenerative combustion method and burner for liquid fuel
JP2002274957A (en) * 2001-03-23 2002-09-25 Mitsui Eng & Shipbuild Co Ltd Vessel for firing
JP2003185372A (en) * 2001-12-17 2003-07-03 Tokyo Gas Co Ltd Mechanism for inhibiting impairing of heat recovering efficiency of heat accumulating part in regenerative burner
JP2003287379A (en) * 2002-03-28 2003-10-10 Ngk Insulators Ltd Honeycomb-shaped heat accumulator and heat accumulating burner using this heat accumulator
JP2006206338A (en) * 2005-01-25 2006-08-10 Noritake Co Ltd Highly corrosion-resistant refractory

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283073A (en) * 1995-04-11 1996-10-29 Ngk Insulators Ltd Kiln tool
JPH08285239A (en) * 1995-04-17 1996-11-01 Tokyo Gas Co Ltd In-furnace fuel direct-injection type burner
JPH09159149A (en) * 1995-12-05 1997-06-20 Nkk Corp Heat accumulative burner, its combustion method and its combustion device
JPH11248379A (en) * 1998-03-02 1999-09-14 Ihara Chikuro Kogyo Kk Heat-storing body and its mounting structure
JP2002228143A (en) * 2001-01-31 2002-08-14 Nippon Furnace Kogyo Kaisha Ltd Regenerative combustion method and burner for liquid fuel
JP2002274957A (en) * 2001-03-23 2002-09-25 Mitsui Eng & Shipbuild Co Ltd Vessel for firing
JP2003185372A (en) * 2001-12-17 2003-07-03 Tokyo Gas Co Ltd Mechanism for inhibiting impairing of heat recovering efficiency of heat accumulating part in regenerative burner
JP2003287379A (en) * 2002-03-28 2003-10-10 Ngk Insulators Ltd Honeycomb-shaped heat accumulator and heat accumulating burner using this heat accumulator
JP2006206338A (en) * 2005-01-25 2006-08-10 Noritake Co Ltd Highly corrosion-resistant refractory

Similar Documents

Publication Publication Date Title
ES2956739T3 (en) Procedure for the production of a porous sintered magnesia, combination for the production of an ordinary ceramic refractory product with a granulation of the sintered magnesia, such a product as well as a procedure for its production, interior lining with masonry of an industrial furnace and industrial furnace
EP1710523A4 (en) Continuous firing kiln and process for producing porous ceramic member therewith
CN105418098A (en) Heat-conductive and energy-saving refractory brick used for fire path wall in carbon roasting furnace and preparation method thereof
CN103384807A (en) Shuttle kiln for sintering ceramic porous body
CN100478614C (en) Fired-coal furnace
CN106594791A (en) Heat accumulating type heat preservation boiler
JP2016001090A (en) Heat resistant material for regenerative burner
CN205209241U (en) Electric heat sintered ceramic kiln with restoring function
CN106556003A (en) A kind of energy-saving type heat-preserving boiler
JP2013194991A (en) Burner for sintering machine ignition furnace
CN109679667A (en) A kind of heat recovery coke oven lower part quirk bottom cooling and insulating structure
CN202499873U (en) Improved ball type hot blast stove
CN103204690A (en) Zircon honeycomb ceramic body
CN106765058A (en) A kind of energy saving and environment friendly heat-preserving boiler
CN102589011A (en) Oxygen-supplementing biomass combustion furnace
KR200462156Y1 (en) Reduction firing apparatus
CN202730165U (en) Grate of blast furnace hot-blast stove
JP7029277B2 (en) Manufacturing method for regenerative burners, industrial furnaces and fired products
CN104930852B (en) De-waxing smoke treated stove
CN213687842U (en) High-temperature energy-saving kiln
CN104534861B (en) A kind of gas-fired cupola fire-resistant siege of integral honeycomb shape
CN209326315U (en) A kind of mineral aggregate sintering furnace
KR101074761B1 (en) Self regenerative burner and method for controlling the flow of the burning air and exhaust gas of the burner
RU210483U1 (en) THE CENTRAL PART OF THE COVER OF THE ARC STEEL-MELTING FURNACE
KR101137854B1 (en) Mmethod of manufacturing the ceramic plate for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001