JP2015531032A - Paper, paperboard and cardboard manufacturing method - Google Patents

Paper, paperboard and cardboard manufacturing method Download PDF

Info

Publication number
JP2015531032A
JP2015531032A JP2015527832A JP2015527832A JP2015531032A JP 2015531032 A JP2015531032 A JP 2015531032A JP 2015527832 A JP2015527832 A JP 2015527832A JP 2015527832 A JP2015527832 A JP 2015527832A JP 2015531032 A JP2015531032 A JP 2015531032A
Authority
JP
Japan
Prior art keywords
polymer
paper
stock
water
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015527832A
Other languages
Japanese (ja)
Other versions
JP6238986B2 (en
Inventor
エッサー アントン
エッサー アントン
ハンス−ヨアヒム ヘーンレ
ヘーンレ ハンス−ヨアヒム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2015531032A publication Critical patent/JP2015531032A/en
Application granted granted Critical
Publication of JP6238986B2 publication Critical patent/JP6238986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/38Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing crosslinkable groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/24Addition to the formed paper during paper manufacture
    • D21H23/26Addition to the formed paper during paper manufacture by selecting point of addition or moisture content of the paper
    • D21H23/28Addition before the dryer section, e.g. at the wet end or press section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、ワイヤーパートにおけるシート形成及び後続のプレスパートにおける紙のプレス下での、少なくとも1種の水溶性ポリマーを含む填料含有紙料の脱水を含む、紙、板紙及び厚紙の製造方法において、20〜40g/lの範囲内の繊維状物質濃度を有する紙料に少なくとも1種の水溶性ポリマーを計量供給し、次いでこの紙料を5〜15g/lの範囲内の繊維状物質濃度に希釈し、この希釈された紙料をシート形成下に脱水し、かつこのシートをプレスパートにおいてG(x)質量%以上の固形分にプレスし、G(x)は、G(x)=48+(x−15)?0.4により算出され、ここで、xは、乾燥された紙、板紙又は厚紙の填料含有率(質量%)の数値を表し、かつ、G(x)は、最低固形分(質量%)の数値を表し、この最低固形分にシートがプレスされるものとし、その際、前記水溶性ポリマーは、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、任意に次いで後架橋することにより得られる、前記方法に関する。The present invention relates to a method for producing paper, board and cardboard comprising dehydration of a filler-containing stock comprising at least one water-soluble polymer under sheet formation in a wire part and paper press in a subsequent press part, At least one water soluble polymer is metered into a stock having a fibrous material concentration in the range of 20-40 g / l, and then the stock is diluted to a fibrous material concentration in the range of 5-15 g / l The diluted stock is dehydrated under sheet formation, and the sheet is pressed to a solid content of G (x)% by mass or more in the press part, and G (x) is G (x) = 48 + ( x-15)? 0.4, where x represents the numerical value of the filler content (mass%) of the dried paper, paperboard or cardboard and G (x) is the lowest solids (% By mass) The sheet is pressed into form, wherein the water-soluble polymer relates to the process, obtained by Hoffmann degradation of acrylamide-containing polymers and / or methacrylamide-containing polymers, optionally followed by postcrosslinking.

Description

本発明は、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーのホフマン分解により得られる少なくとも1種の水溶性ポリマーを含む填料含有紙料を、ワイヤーパートにおけるシート形成及び後続のプレスパートにおける紙のプレス下に脱水することを含む、紙、板紙及び厚紙の製造方法に関する。   The present invention provides a filler-containing stock comprising at least one water-soluble polymer obtained by Hofmann degradation of an acrylamide-containing polymer and / or a methacrylamide-containing polymer under sheet formation in a wire part and subsequent paper pressing in a press part. The present invention relates to a method for producing paper, paperboard and cardboard, including dehydration.

プロセスにおける種々の点で、新規の製紙方法の開発が行われている。新規の使用物質や変更された計量供給方法によって、改善された紙が得られる。抄紙機はますます高速になってきてはいるが、製造方法に対しては新たな要求が課されている。   New papermaking methods are being developed at various points in the process. New papers used and modified metering methods result in improved paper. Although paper machines are becoming faster and faster, new demands are placed on manufacturing methods.

抄紙機の速度をさらに高める上での制限要因は、初期湿紙強度である。抄紙機において形成されたばかりのシート(該シートは、抄紙機のワイヤーパート及びプレスパートを通過してドライパートまで移送される)に対して加えることができる最大の適用可能な力は、この初期湿紙強度によって制約を受ける。これに関して、このシートをプレスロールから取り外す必要がある。抄紙機の途切れのない運転を保証し得るためには、この時点で適用される取り外し力は、この湿った紙の初期湿紙強度よりも明らかに小さくなければならない。初期湿紙強度を高めることにより、より高い取り外し力の適用が可能となり、ひいては抄紙機のより高速の運転が可能となる(EP−B−0780513参照)。   The limiting factor in further increasing the speed of the paper machine is the initial wet paper strength. The maximum applicable force that can be applied to a sheet that has just been formed in a paper machine (which passes through the wire part and press part of the paper machine to the dry part) is the initial wet force. Limited by paper strength. In this regard, it is necessary to remove this sheet from the press roll. In order to be able to guarantee uninterrupted operation of the paper machine, the removal force applied at this point must be clearly less than the initial wet paper strength of the wet paper. By increasing the initial wet paper strength, it is possible to apply a higher removal force, and thus the paper machine can be operated at a higher speed (see EP-B-0780513).

初期湿紙強度(initial wet web strength)とは、一度も乾燥させていない湿った紙の強度と解釈される。この強度は、製紙の際に抄紙機のワイヤーパート及びプレスパートを通過した後に存在するような湿った紙の強度である。   The initial wet web strength is taken as the strength of wet paper that has never been dried. This strength is that of wet paper as it exists after passing through the wire part and press part of the paper machine during papermaking.

プレスパートにおいて、湿った繊維ウェブはサクションピックアップ装置(サクションロール又は静的減圧要素)によりプレスフェルト上に移される。このプレスフェルトの役割は、種々の変更形態のプレスニップによる繊維ウェブの輸送である。このウェブの絶乾率は、プレスパートの設計や紙料の組成に応じて最大で55%までである。その際、この絶乾率は、プレス中で通過する紙ウェブにかけられる圧力に伴って増加する。圧力、ひいては紙ウェブの絶乾率は、多くの抄紙機において比較的広範囲にわたって変動可能である。   In the press part, the wet fiber web is transferred onto the press felt by a suction pick-up device (suction roll or static vacuum element). The role of the press felt is to transport the fiber web through various modified press nips. The absolute dry rate of this web is up to 55% depending on the design of the press part and the composition of the stock. The rate of dryness then increases with the pressure applied to the paper web passing in the press. The pressure, and thus the dry rate of the paper web, can vary over a relatively wide range in many paper machines.

製造プロセスのプレスパートとドライパートとの間の箇所で紙の固形分を増加させることによって初期湿紙強度を向上させることができるということは公知である。このプロセスのこうした箇所での固形分を、脱水向上のための填料によって改善することも考えられる。しかしながら、この可能性には限界がある。   It is known that the initial wet paper strength can be improved by increasing the solids content of the paper at a location between the press and dry parts of the manufacturing process. It is also conceivable to improve the solids at these points in the process with a filler to improve dehydration. However, this possibility is limited.

WO 2009/156274には、N−ビニルカルボン酸アミドとアニオン性コモノマーとの共重合並びに後続のビニルカルボン酸アミドの加水分解により得られる両性コポリマーの、紙の初期湿紙強度を向上させるための紙料填料としての使用が教示されている。抄紙工程において、例えば高濃度紙料若しくは低濃度紙料において処理が行われている。   WO 2009/156274 describes a paper for improving the initial wet paper strength of an amphoteric copolymer obtained by copolymerization of N-vinylcarboxylic acid amide with an anionic comonomer and subsequent hydrolysis of vinylcarboxylic acid amide. It is taught for use as a filler. In the papermaking process, for example, processing is performed on high-concentration paper stock or low-concentration paper stock.

より早期の出願であるWO 2012/175392は、アクリルアミドとアニオン性コモノマーとの共重合により得られるアクリルアミドベースの両性コポリマーの、紙の初期湿紙強度を向上させるための紙料填料としての使用を教示している。抄紙工程において、高濃度紙料において処理が行われている。さらに、抄紙機のプレスパートは、このプレスパートを去った後の湿った紙ウェブの絶乾率が紙料組成に応じた最小値を上回るように調整されている必要がある。   An earlier application WO 2012/175392 teaches the use of acrylamide-based amphoteric copolymers obtained by copolymerization of acrylamide and anionic comonomers as a paper filler to improve the initial wet paper strength of paper. doing. In the papermaking process, processing is performed on high-concentration stock. Furthermore, the press part of the paper machine needs to be adjusted so that the dry rate of the wet paper web after leaving this press part exceeds the minimum value according to the stock composition.

さらに、例えば、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーのホフマン分解により得られるポリマーの、補強のための使用が知られている。   Furthermore, the use for reinforcement of polymers obtained, for example, by Hoffmann degradation of acrylamide-containing polymers and / or methacrylamide-containing polymers is known.

本発明は、抄紙工程における公知の方法よりも高い機械速度を達成するために、抄紙の際にドライパートへの移行前にまだ湿っている紙ウェブの初期湿紙強度を向上させるという課題に基づいている。   The present invention is based on the problem of improving the initial wet paper strength of a paper web that is still wet prior to the transition to the dry part during paper making in order to achieve a higher machine speed than known methods in the paper making process. ing.

それに応じて、ワイヤーパートにおけるシート形成及び後続のプレスパートにおける紙のプレス下での、少なくとも1種の水溶性ポリマーを含む填料含有紙料の脱水を含む、紙、板紙及び厚紙の製造方法において、20〜40g/lの範囲内の繊維状物質濃度を有する紙料に少なくとも1種の水溶性ポリマーを計量供給し、次いでこの紙料を5〜15g/lの範囲内の繊維状物質濃度に希釈し、この希釈された紙料をシート形成下に脱水し、かつこのシートをプレスパートにおいてG(x)質量%以上の固形分にプレスし、G(x)は、

Figure 2015531032
により算出され、
ここで、xは、乾燥された紙、板紙又は厚紙の填料含有率(質量%)の数値を表し、かつ、
G(x)は、最低固形分(質量%)の数値を表し、この最低固形分にシートがプレスされるものとし、
その際、前記水溶性ポリマーは、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、任意に次いで後架橋することにより得られる前記方法が見出された。 Accordingly, in a process for producing paper, paperboard and cardboard comprising dehydration of a filler-containing stock comprising at least one water-soluble polymer under sheet formation in a wire part and paper press in a subsequent press part, At least one water soluble polymer is metered into a stock having a fibrous material concentration in the range of 20-40 g / l, and then the stock is diluted to a fibrous material concentration in the range of 5-15 g / l The diluted stock is dehydrated under sheet formation, and the sheet is pressed to a solid content of G (x) mass% or more in the press part, and G (x) is
Figure 2015531032
Calculated by
Where x represents the numerical value of the filler content (% by weight) of the dried paper, paperboard or cardboard, and
G (x) represents the numerical value of the minimum solid content (mass%), and the sheet is pressed to this minimum solid content,
In that case, it has been found that the water-soluble polymer is obtained by Hofmann decomposition of an acrylamide-containing polymer and / or a methacrylamide-containing polymer, optionally followed by postcrosslinking.

本発明はさらに、ワイヤーパートにおけるシート形成及び後続のプレスパートにおける紙のプレス下での、少なくとも1種の水溶性ポリマーを含む填料含有紙料の脱水を含む、紙、板紙及び厚紙の製造方法において、20〜40g/lの範囲内の繊維状物質濃度での紙料に少なくとも1種の水溶性ポリマーを計量供給し、次いでこの紙料を5〜15g/lの範囲内の繊維状物質濃度に希釈し、この希釈された紙料をシート形成下に脱水し、かつこのシートをプレスパートにおいて48質量%以上、好ましくは49〜53質量%の固形分にプレスし、その際、前記水溶性ポリマーは、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、次いで後架橋することにより得られる前記方法に関する。   The invention further relates to a method for producing paper, paperboard and cardboard comprising the dewatering of a filler-containing stock comprising at least one water-soluble polymer under sheet formation in a wire part and paper press in a subsequent press part. At least one water-soluble polymer is metered into the stock at a fibrous material concentration in the range of 20-40 g / l, and then the stock is brought to a fibrous material concentration in the range of 5-15 g / l. The diluted stock is dehydrated under sheet formation, and the sheet is pressed to a solid content of 48% by mass or more, preferably 49 to 53% by mass in the press part. Relates to said process obtained by Hofmann degradation of acrylamide-containing polymers and / or methacrylamide-containing polymers and then post-crosslinking.

紙料とは、以下で、水と繊維状物質とからの混合物であると解釈され、ここで、この繊維状物質は、紙、板紙又は厚紙の製造工程における段階に応じてさらに、水溶性ポリマー、填料及び任意に製紙用助剤を含有している。   Paper stock is hereinafter understood to be a mixture of water and fibrous material, where the fibrous material is further water-soluble polymer depending on the stage in the paper, board or cardboard manufacturing process. , Containing fillers and optionally papermaking aids.

紙の絶乾率とは、例えばDIN EN ISO 638 DEにより測定されるようなオーブン乾燥法を用いた紙、板紙、厚紙及び繊維状物質の固形分と解釈される。   The absolute dry rate of paper is taken as the solid content of paper, paperboard, cardboard and fibrous materials using an oven drying method as measured, for example, by DIN EN ISO 638 DE.

本願の範囲内で、顔料という概念は填料という概念と同義で用いられており、何故ならば、抄紙の際には顔料が填料として使用されるためである。その際、填料とは、抄紙において通常通り、無機顔料と解釈される。   Within the scope of the present application, the concept of pigment is used synonymously with the concept of filler because it is used as a filler during papermaking. In this case, the filler is interpreted as an inorganic pigment as usual in papermaking.

本発明による方法は、填料含有紙料の脱水を含む、紙、板紙及び厚紙の製造に関する。その際、紙、板紙及び厚紙の填料含有率(x)は、この紙、板紙又は厚紙に対して5〜40質量%であってよい。   The process according to the invention relates to the production of paper, paperboard and cardboard, including the dehydration of filler-containing stocks. At that time, the filler content (x) of the paper, paperboard and cardboard may be 5 to 40% by mass with respect to the paper, paperboard or cardboard.

好ましい一実施形態によれば、填料含有率が20〜30質量%である紙の製造方法が好ましい。このような紙は、例えば上質紙である。   According to a preferred embodiment, a paper production method with a filler content of 20-30% by weight is preferred. Such paper is, for example, high-quality paper.

さらなる好ましい一実施形態によれば、填料含有率が10〜20質量%である紙の製造方法が好ましい。このような紙は、特に包装紙として使用される。   According to a further preferred embodiment, a paper production method with a filler content of 10 to 20% by weight is preferred. Such paper is used in particular as wrapping paper.

さらなる好ましい一実施形態によれば、填料含有率が5〜15質量%である紙の製造方法が好ましい。このような紙は、特に新聞用紙として使用される。   According to a further preferred embodiment, a paper production method with a filler content of 5 to 15% by weight is preferred. Such paper is used in particular as newsprint.

さらなる好ましい一実施形態によれば、填料含有率が25〜40質量%である紙、例えばSC紙の製造方法が好ましい。   According to a further preferred embodiment, a method for producing paper, for example SC paper, with a filler content of 25-40% by weight is preferred.

本発明による少なくとも1種の水溶性ポリマー、繊維状物質並びに填料を含有する水性紙料は、ワイヤーパートにおいてシート形成下に脱水され、かつこのシートはプレスパートにおいてプレスされ、つまりさらに脱水される。その際、プレスパートにおける脱水は最低固形分まで行われるが、これを超えて行われてもよい。ここまでプレスされねばならないという固形分のこうした下限は、以下で限界絶乾率とも最低固形分G(x)とも称され、これは紙料と水からの混合物であるプレスされたシートに関するものである。その際、少なくともここまで脱水されるというこうした限界絶乾率は、填料の量に依存する。例えば、30若しくは15質量%の填料含有率を有する紙についての限界絶乾率G(x)は、次式

Figure 2015531032
に従って、
Figure 2015531032
と算出される。 The aqueous stock containing at least one water-soluble polymer, fibrous material and filler according to the invention is dewatered under sheet formation in the wire part, and the sheet is pressed in the press part, ie further dewatered. At that time, dehydration in the press part is performed up to the minimum solid content, but may be performed beyond this. These lower limits of solids that must be pressed so far are also referred to below as the critical dryness and minimum solids G (x), which relates to pressed sheets that are a mixture of stock and water. is there. At that time, such a critical dry rate of at least dehydration depends on the amount of filler. For example, the critical dry rate G (x) for paper having a filler content of 30 or 15% by weight is given by
Figure 2015531032
According to
Figure 2015531032
Is calculated.

つまり、30質量%の填料含有率を有する紙を製造する場合、本発明によれば、良好な初期湿紙強度を有する紙を得るためには、プレスパートにおいて少なくとも54質量%の固形分にプレスされる。   That is, when producing paper with a filler content of 30% by weight, according to the present invention, in order to obtain a paper with good initial wet paper strength, the press part is pressed to a solids content of at least 54% by weight. Is done.

それに対して、本発明によれば、15以下の填料含有率を有する紙を製造する場合、良好な初期湿紙強度を有する紙を得るためには、プレスパートにおいて少なくとも48質量%の固形分にプレスされる。   On the other hand, according to the present invention, when producing a paper having a filler content of 15 or less, in order to obtain a paper having a good initial wet paper strength, the press part has a solid content of at least 48% by weight. Pressed.

本発明の一実施形態によれば、17〜32質量%の填料含有率を有する紙、板紙及び厚紙を製造するためには、プレスパートにおいて少なくとも49〜55質量%の範囲内の固形分にプレスされる。   According to one embodiment of the invention, to produce paper, paperboard and cardboard having a filler content of 17-32% by weight, the press part is pressed to a solids content in the range of at least 49-55% by weight. Is done.

本発明のさらなる一実施形態によれば、15質量%以下の填料含有率を有する紙、板紙及び厚紙を製造するためには、プレスパートにおいて少なくとも48質量%の固形分にプレスされる。   According to a further embodiment of the invention, to produce paper, paperboard and cardboard having a filler content of 15% by weight or less, the press part is pressed to a solids content of at least 48% by weight.

繊維の処理は、本発明によれば、水溶性ポリマーを、20〜40g/lの範囲内の繊維状物質濃度での紙料に計量供給することにより行われる。20〜40g/lの繊維状物質濃度(水性繊維状物質に対して2〜4質量%の繊維状物質濃度に相当)とは、抄紙において通常は高濃度紙料と解釈される。この高濃度紙料は低濃度紙料と区別され、ここで、低濃度紙料とは、以下で5〜15g/lの範囲内の繊維状物質濃度と解釈されるべきものである。水溶性ポリマーでの処理に引き続いて、紙料は水で5〜15g/lの範囲内の繊維状物質濃度に希釈される。   According to the invention, the fiber treatment is carried out by metering a water-soluble polymer into the stock at a fibrous material concentration in the range of 20-40 g / l. A fibrous substance concentration of 20 to 40 g / l (corresponding to a fibrous substance concentration of 2 to 4% by mass with respect to the aqueous fibrous substance) is usually interpreted as a high-concentration stock in papermaking. This high-concentration stock is distinguished from the low-concentration stock, where the low-concentration stock is to be interpreted below as a fibrous material concentration in the range of 5-15 g / l. Following treatment with the water-soluble polymer, the stock is diluted with water to a fibrous concentration in the range of 5-15 g / l.

本発明によれば、繊維状物質として、バージン繊維及び/又は再生繊維が使用されてよい。紙工業において慣用されている針葉樹及び広葉樹からの全ての繊維を使用することができ、例えば、機械パルプ、漂白化学パルプ、未漂白化学パルプ並びに全ての一年生植物からの繊維状物質を使用することができる。機械パルプには、例えば砕木パルプ、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、加圧砕木パルプ、セミケミカルパルプ、高歩留パルプ及びリファイナーメカニカルパルプ(RMP)が包含される。化学パルプとしては、例えば、硫酸塩パルプ、亜硫酸塩パルプ及びソーダ化学パルプが考慮される。好ましくは、未漂白クラフトパルプとも称される未漂白化学パルプが使用される。繊維状物質の製造に適した一年生植物は、例えば、米、小麦、サトウキビ及びケナフである。パルプの製造には古紙を使用することもでき、これは単独か又は他の繊維状物質と混合して使用される。古紙は、例えば脱墨工程に由来したものであってよい。しかしながら、使用すべき古紙は、必ずしもそのような工程で処理される必要はない。さらに、一次紙料や再生塗工損紙から得られる繊維混合物から出発してもよい。   According to the invention, virgin fibers and / or regenerated fibers may be used as the fibrous material. All fibers from conifers and hardwoods commonly used in the paper industry can be used, for example, using mechanical pulp, bleached chemical pulp, unbleached chemical pulp and fibrous materials from all annual plants. it can. Mechanical pulp includes, for example, groundwood pulp, thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), pressurized groundwood pulp, semi-chemical pulp, high yield pulp and refiner mechanical pulp (RMP). As chemical pulp, for example, sulfate pulp, sulfite pulp and soda chemical pulp are considered. Preferably, unbleached chemical pulp, also called unbleached kraft pulp, is used. Suitable annual plants for the production of fibrous materials are, for example, rice, wheat, sugar cane and kenaf. Waste paper can also be used in the manufacture of the pulp, which is used alone or mixed with other fibrous materials. The waste paper may be derived from, for example, a deinking process. However, the used paper to be used does not necessarily have to be processed in such a process. Furthermore, it is also possible to start with a fiber mixture obtained from primary paper stock or recycled coated waste paper.

漂白化学パルプや未漂白化学パルプの場合には、20〜30SRのろ水度を有する繊維状物質を使用することができる。通常は、約30SRのろ水度を有する繊維状物質が使用され、これはパルプ製造の間に叩解される。好ましくは、30SR未満のろ水度を有する繊維状物質が使用される。好ましくは、30SR以下のろ水度を有する繊維状物質が使用される。   In the case of bleached chemical pulp or unbleached chemical pulp, a fibrous material having a freeness of 20 to 30 SR can be used. Usually, a fibrous material having a freeness of about 30 SR is used, which is beaten during pulp production. Preferably, a fibrous material having a freeness of less than 30 SR is used. Preferably, a fibrous material having a freeness of 30 SR or less is used.

水溶性ポリマーでの繊維状物質の処理は、水性懸濁液中で、好ましくは、通常、抄紙の際に使用される他の工程用薬品の不在下に実施される。これは、抄紙工程において、20〜40g/lの繊維状物質濃度を有する水性紙料に少なくとも1種の水溶性ポリマーを添加することにより行われる。填料の添加前の時点で水溶性ポリマーを水性紙料に添加する変法が特に好ましい。極めて特に好ましくは、この添加は、例えばデンプンのような乾燥紙力増強剤の添加後に行われる。   Treatment of the fibrous material with the water-soluble polymer is carried out in an aqueous suspension, preferably in the absence of other process chemicals usually used in papermaking. This is done by adding at least one water-soluble polymer to an aqueous stock having a fibrous material concentration of 20-40 g / l in the papermaking process. Particularly preferred is a modification in which the water-soluble polymer is added to the aqueous paper stock prior to the addition of the filler. Very particularly preferably, this addition takes place after the addition of a dry strength agent such as starch.

水溶性ポリマーは、好ましくは繊維状物質(固体)に関して0.05〜5.00質量%の量で添加される。   The water-soluble polymer is preferably added in an amount of 0.05 to 5.00% by weight with respect to the fibrous material (solid).

典型的な使用量は、例えば、乾燥繊維状物質1トン当たり、少なくとも1種の水溶性のポリマーを0.5〜50kg、好ましくは0.6〜10kgである。特に好ましくは、使用される水溶性ポリマーの量は、乾燥繊維状物質1トン当たり0.6〜3kg(固体)である。   Typical usage is, for example, 0.5 to 50 kg, preferably 0.6 to 10 kg of at least one water-soluble polymer per ton of dry fibrous material. Particularly preferably, the amount of water-soluble polymer used is 0.6 to 3 kg (solid) per ton of dry fibrous material.

計量供給後からシート形成までに、この水溶性ポリマーが純粋な繊維状物質若しくは紙料に作用する時間は、例えば0.5秒〜2時間、好ましくは1.0秒〜15分間、特に好ましくは2〜20秒間である。   The time for the water-soluble polymer to act on the pure fibrous material or paper stock from the metering to the sheet formation is, for example, 0.5 seconds to 2 hours, preferably 1.0 seconds to 15 minutes, particularly preferably. 2 to 20 seconds.

この水溶性ポリマーに加えて、繊維状物質には無機顔料が填料として添加される。無機顔料としては、紙工業において通常使用可能な金属酸化物、ケイ酸塩及び/又は炭酸塩ベースの全ての顔料が挙げられ、特に、粉砕(GCC)石灰、チョーク、大理石又は沈降炭酸カルシウム(PCC)の形態で使用可能である炭酸カルシウム、タルク、カオリン、ベントナイト、サチン白、硫酸カルシウム、硫酸バリウム及び二酸化チタンからなる群からの顔料が挙げられる。2種以上の顔料からの混合物も使用可である。   In addition to the water-soluble polymer, an inorganic pigment is added as a filler to the fibrous material. Inorganic pigments include all metal oxide, silicate and / or carbonate based pigments commonly used in the paper industry, in particular ground (GCC) lime, chalk, marble or precipitated calcium carbonate (PCC). And pigments from the group consisting of calcium carbonate, talc, kaolin, bentonite, satin white, calcium sulfate, barium sulfate and titanium dioxide. Mixtures of two or more pigments can also be used.

本発明によれば、10μm以下、好ましくは0.3〜5μm、特に0.5〜2μmの平均粒子径(体積平均)を有する無機顔料が使用される。無機顔料並びに粉体組成物の粒子の平均粒子径(体積平均)の測定は、本明細書の範囲内では包括的に、例えばMalvern Instruments Ltd.社製Mastersizer 2000を用いた準弾性光散乱法(DIN−ISO 13320−1)により行われる。   According to the invention, inorganic pigments having an average particle size (volume average) of 10 μm or less, preferably 0.3 to 5 μm, in particular 0.5 to 2 μm are used. The measurement of the average particle diameter (volume average) of the particles of the inorganic pigment and the powder composition is comprehensive within the scope of the present specification, for example, a quasielastic light scattering method using a Mastersizer 2000 manufactured by Malvern Instruments Ltd. ( DIN-ISO 13320-1).

無機顔料は、好ましくは水性ポリマーの添加後に計量供給される。その際、好ましい一実施形態によれば、この添加は、繊維状物質がすでに低濃度紙料として存在している段階で、つまり5〜15g/lの繊維状物質濃度で行われる。   The inorganic pigment is preferably metered in after the addition of the aqueous polymer. In this case, according to a preferred embodiment, this addition takes place at a stage where the fibrous material is already present as a low-concentration stock, i.e. at a fibrous material concentration of 5 to 15 g / l.

さらなる好ましい一実施形態によれば、この無機顔料は低濃度紙料中にも高濃度紙料中にも計量供給され、その際、これら双方の添加量の比(添加 高濃度紙料/添加 低濃度紙料)は、好ましくは5/1〜1/5である。   According to a further preferred embodiment, the inorganic pigment is metered into the low and high concentration papers, with the ratio of both additions (addition high concentration paper / additional low The density paper stock is preferably 5/1 to 1/5.

さらに、この水溶性ポリマーに加えて、紙料に、通常は5〜15g/lの繊維状物質濃度で、任意に慣用の製紙用助剤を混加することができる。慣用の製紙用助剤は、例えばサイズ剤、湿潤紙力増強剤、合成ポリマーをベースとするカチオン性若しくはアニオン性歩留剤並びにデュアル系、ろ水剤、他の乾燥紙力増強剤、蛍光増白剤、消泡剤、殺生物剤及び製紙用染料である。これらの慣用の製紙用填料は、通常の量で使用されてよい。   Furthermore, in addition to the water-soluble polymer, a conventional paper-making auxiliary can be optionally added to the paper stock at a fibrous substance concentration of usually 5 to 15 g / l. Conventional papermaking aids include, for example, sizing agents, wet paper strength enhancers, cationic or anionic retention agents based on synthetic polymers and dual systems, filtering agents, other dry paper strength enhancers, fluorescence enhancing agents. Whitening agents, antifoaming agents, biocides and dyes for papermaking. These conventional papermaking fillers may be used in conventional amounts.

サイズ剤として、アルキルケテンダイマー(AKD)、アルケニル無水コハク酸(ASA)及びロジンサイズ剤が挙げられる。   Sizing agents include alkyl ketene dimers (AKD), alkenyl succinic anhydride (ASA), and rosin sizing agents.

歩留剤として、例えば、無機マイクロ粒子(コロイドシリカ、ベントナイト)、無機ポリアクリルアミド、カチオン性ポリアクリルアミド、カチオン性デンプン、カチオン性ポリエチレンイミン又はカチオン性ポリビニルアミンが考慮される。さらに、その任意の組合せが考えられ、例えば、カチオン性ポリマーとアニオン性マイクロ粒子から、又はアニオン性ポリマーとカチオン性マイクロ粒子からなるデュアル系が考えられる。高い填料歩留まりを達成するためには、例えば高濃度紙料のみならず低濃度紙料にも添加することのできる歩留剤の添加が推奨される。   As a retention agent, for example, inorganic microparticles (colloidal silica, bentonite), inorganic polyacrylamide, cationic polyacrylamide, cationic starch, cationic polyethyleneimine or cationic polyvinylamine are considered. Furthermore, arbitrary combinations thereof are conceivable, for example, a dual system composed of a cationic polymer and an anionic microparticle or an anionic polymer and a cationic microparticle is conceivable. In order to achieve a high filler yield, for example, it is recommended to add a retention agent that can be added not only to a high-concentration stock but also to a low-concentration stock.

乾燥紙力増強剤とは、合成乾燥紙力増強剤、例えばポリビニルアミン、ポリエチレンイミン、グリオキシル化ポリアクリルアミド(PAM)、両性ポリアクリルアミド又は例えばデンプンのような天然の乾燥紙力増強剤と解釈されるべきである。   A dry paper strength enhancer is understood as a synthetic dry strength enhancer such as polyvinylamine, polyethyleneimine, glyoxylated polyacrylamide (PAM), amphoteric polyacrylamide or a natural dry strength enhancer such as starch. Should.

抄紙機において、プレスパートを通過する際に絶乾率が調整される。プレスパートにおいて、湿った繊維ウェブはサクションピックアップ装置(サクションロール又は静的減圧要素)によりプレスフェルト上に移される。このプレスフェルトの役割は、種々の変更形態のプレスニップによる繊維ウェブの輸送である。このウェブの絶乾率は、プレスパートの設計や紙料の組成に応じて最大で55%までである。その際、この絶乾率は、プレス中で通過する紙ウェブにかけられる圧力に伴って増加する。圧力、ひいては紙ウェブの絶乾率は、多くの抄紙機において比較的広範囲にわたって変動可能である。   In the paper machine, the absolute drying rate is adjusted when passing through the press part. In the press part, the wet fiber web is transferred onto the press felt by a suction pick-up device (suction roll or static vacuum element). The role of the press felt is to transport the fiber web through various modified press nips. The absolute dry rate of this web is up to 55% depending on the design of the press part and the composition of the stock. The rate of dryness then increases with the pressure applied to the paper web passing in the press. The pressure, and thus the dry rate of the paper web, can vary over a relatively wide range in many paper machines.

本発明により使用される水溶性ポリマーは、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、任意に次いで後架橋することにより得られる。   The water-soluble polymer used according to the invention is obtained by Hofmann degradation of an acrylamide-containing polymer and / or a methacrylamide-containing polymer, optionally followed by postcrosslinking.

プレポリマー
こうしたアクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマー(以下でプレポリマーとも称される)は、アクリルアミド及び/又はメタクリルアミドを含むモノマー混合物のラジカル共重合により得られる。
Prepolymers These acrylamide-containing polymers and / or methacrylamide-containing polymers (hereinafter also referred to as prepolymers) are obtained by radical copolymerization of monomer mixtures containing acrylamide and / or methacrylamide.

モノマーアクリルアミド及びメタクリルアミドは、このプレポリマーのモノマー組成物に対して、単独で、又は、10モル%〜100モル%の割合での、好ましくは20〜90モル%の割合での、特に好ましくは30〜80モル%の割合での混合物として、重合導入された形態で含まれている。   Monomeric acrylamide and methacrylamide are particularly preferably based on the monomer composition of this prepolymer alone or in a proportion of 10 mol% to 100 mol%, preferably in a proportion of 20 to 90 mol%. As a mixture at a ratio of 30 to 80 mol%, it is contained in a form introduced by polymerization.

好ましくは、このモノマー混合物は、以下のものを含む以下の組成を有する:
a)アクリルアミド及び/又はメタクリルアミド(モノマーa)、
b)任意に、1種以上のモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマー、及び/又はDADMAC(ジアリルジメチルアンモニウムクロリド)(モノマーb)、
(c)任意に、2つ以上のエチレン性不飽和基を有する1種以上の化合物であって、前記ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物、その際、DADMACは含まれない(モノマーc)。
Preferably, the monomer mixture has the following composition, including:
a) acrylamide and / or methacrylamide (monomer a),
b) optionally one or more monoethylenically unsaturated monomers, wherein the corresponding structural units of the monomers in the polymer are stable under the Hofmann decomposition reaction conditions, and / or DADMAC (diallyldimethyl) Ammonium chloride) (monomer b),
(C) optionally one or more compounds having two or more ethylenically unsaturated groups, wherein the corresponding structural units of said compounds in said polymer are stable under Hofmann decomposition reaction conditions, In this case, DADMAC is not included (monomer c).

モノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマーは、例えばα,β−エチレン性不飽和モノ−及びジカルボン酸のニトリル、例えばアクリロニトリル及びメタクリロニトリル、α,β−エチレン性不飽和モノカルボン酸及びそのN−アルキル−及びN,N−ジアルキル誘導体のアミド、N−ビニルラクタム、含窒素複素環、ビニル芳香族化合物、C2〜C8モノオレフィン、α,β−エチレン性不飽和モノ−及びジカルボン酸並びにその塩、α,β−エチレン性不飽和モノ−及びジカルボン酸の無水物、エチレン性不飽和スルホン酸並びにその塩、エチレン性不飽和ホスホン酸並びにその塩である。 Monoethylenically unsaturated monomers, in which the corresponding structural units of the monomers in the polymer are stable under the Hofmann decomposition reaction conditions, are, for example, α, β-ethylenically unsaturated mono- and dicarboxylic acids. Nitriles, such as amides of acrylonitrile and methacrylonitrile, α, β-ethylenically unsaturated monocarboxylic acids and their N-alkyl- and N, N-dialkyl derivatives, N-vinyl lactams, nitrogen-containing heterocycles, vinyl aromatic compounds , C 2 -C 8 monoolefins, α, β-ethylenically unsaturated mono- and dicarboxylic acids and salts thereof, α, β-ethylenically unsaturated mono- and dicarboxylic acid anhydrides, ethylenically unsaturated sulfonic acids and Salts thereof, ethylenically unsaturated phosphonic acids and salts thereof.

この群(b)の代表物の例は、例えばN−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、n−プロピル(メタ)アクリルアミド、N−(n−ブチル)(メタ)アクリルアミド、tert−ブチル(メタ)アクリルアミド、n−オクチル(メタ)アクリルアミド、1,1,3,3−テトラメチルブチル(メタ)アクリルアミド、エチルヘキシル(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、Ν,Ν−ジメチルメタクリルアミド、N−ビニルホルムアミド、N−ビニルアセトアミド、N−メチル−N−ビニルアセトアミド及びその混合物である。さらに、モノマー(b)として適しているものは、N−[2−(ジメチルアミノ)エチル]アクリルアミド、N−[2−(ジメチルアミノ)エチル]メタクリルアミド、N−[3−(ジメチルアミノ)プロピル]アクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、N−[4−(ジメチルアミノ)ブチル]アクリルアミド、N−[4−(ジメチルアミノ)ブチル]メタクリルアミド、N−[2−(ジエチルアミノ)エチル]アクリルアミド、N−[2−(ジエチルアミノ)エチル]メタクリルアミド及びその混合物である。   Examples of representatives of this group (b) are N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, n-propyl (meth) acrylamide, N- (n-butyl) (meth) acrylamide, tert. -Butyl (meth) acrylamide, n-octyl (meth) acrylamide, 1,1,3,3-tetramethylbutyl (meth) acrylamide, ethylhexyl (meth) acrylamide, N, N-dimethylacrylamide, Ν, Ν-dimethylmethacryl Amides, N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide and mixtures thereof. Further suitable as the monomer (b) are N- [2- (dimethylamino) ethyl] acrylamide, N- [2- (dimethylamino) ethyl] methacrylamide, N- [3- (dimethylamino) propyl. ] Acrylamide, N- [3- (dimethylamino) propyl] methacrylamide, N- [4- (dimethylamino) butyl] acrylamide, N- [4- (dimethylamino) butyl] methacrylamide, N- [2- ( Diethylamino) ethyl] acrylamide, N- [2- (diethylamino) ethyl] methacrylamide and mixtures thereof.

適しているモノマー(b)は、さらに、N−ビニルラクタム及びその誘導体であり、これは例えば(上に定義されているような)1つ以上のC1〜C6アルキル置換基を有し得る。 Suitable monomers (b) are furthermore N-vinyl lactams and derivatives thereof, which can have, for example, one or more C 1 -C 6 alkyl substituents (as defined above). .

これには、N−ビニルピロリドン、N−ビニルピペリドン、N−ビニルカプロラクタム、N−ビニル−5−メチル−2−ピロリドン、N−ビニル−5−エチル−2−ピロリドン、N−ビニル−6−メチル−2−ピペリドン、N−ビニル−6−エチル−2−ピペリドン、N−ビニル−7−メチル−2−カプロラクタム、N−ビニル−7−エチル−2−カプロラクタム及びその混合物が含まれる。   This includes N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl- 2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof are included.

さらに、モノマー(b)として、N−ビニルイミダゾール及びアルキルビニルイミダゾールが適しており、特に、メチルビニルイミダゾール、例えば、1−ビニル−2−メチルイミダゾール、3−ビニルイミダゾール−N−オキシド、2−ビニルピリジン−N−オキシド、4−ビニルピリジン−N−オキシド並びにベタイン系誘導体及びこれらのモノマーの四級化生成物が適している。   Furthermore, N-vinylimidazole and alkylvinylimidazole are suitable as the monomer (b), and in particular, methylvinylimidazole such as 1-vinyl-2-methylimidazole, 3-vinylimidazole-N-oxide, 2-vinyl. Pyridine-N-oxide, 4-vinylpyridine-N-oxide and betaine derivatives and quaternized products of these monomers are suitable.

さらに、ジアリルジメチルアンモニウムクロリド(DADMAC)が適している。   Furthermore, diallyldimethylammonium chloride (DADMAC) is suitable.

適したさらなるモノマーは、さらに、エチレン、プロピレン、イソブチレン、ブタジエン、スチレン、α−メチルスチレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン及びそれらの混合物である。   Further suitable monomers are furthermore ethylene, propylene, isobutylene, butadiene, styrene, α-methylstyrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.

さらに、少なくとも1つの酸官能基を有している、つまり少なくとも1つのスルホン酸基、ホスホン酸基又はカルボン酸基を有するモノマーが適している。さらに、上記化合物の塩が適している。例示的に、以下のものが挙げられる:
ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、アクリルアミドメチレンホスホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルホスホン酸、CH2=CH−NH−CH2−PO3H、ビニルホスホン酸モノメチルエステル、アリルホスホン酸、アリルホスホン酸モノメチルエステル、アクリルアミドメチルプロピルホスホン酸。
Furthermore, monomers having at least one acid functional group, ie having at least one sulfonic acid group, phosphonic acid group or carboxylic acid group are suitable. Furthermore, salts of the above compounds are suitable. Illustrative examples include:
Vinylsulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfonic acid, acrylamido methylene phosphonic acid, 2-acrylamido-2-methylpropanesulfonic acid, vinylphosphonic acid, CH 2 = CH-NH- CH 2 -PO 3 H Vinylphosphonic acid monomethyl ester, allylphosphonic acid, allylphosphonic acid monomethyl ester, acrylamidomethylpropylphosphonic acid.

同様に、3〜8個のC原子を有するモノエチレン性不飽和カルボン酸、並びにこれらのカルボン酸の水溶性塩、例えばアルカリ金属塩、アルカリ土類金属塩又はアンモニウム塩、並びにモノエチレン性不飽和カルボン酸無水物が適している。こうしたモノマーの群には、例えばアクリル酸、メタクリル酸、ジメタクリル酸、エタクリル酸、α−クロロアクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、メサコン酸、シトラコン酸、グルタコン酸、アコニット酸、メチレンマロン酸、アリル酢酸、ビニル酢酸及びクロトン酸が含まれる。   Similarly, monoethylenically unsaturated carboxylic acids having 3 to 8 C atoms, and water-soluble salts of these carboxylic acids, such as alkali metal, alkaline earth metal or ammonium salts, and monoethylenically unsaturated Carboxylic anhydride is suitable. Examples of such monomers include acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, α-chloroacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, glutaconic acid, aconite. Acids, methylenemalonic acid, allylic acetic acid, vinyl acetic acid and crotonic acid are included.

これらの酸基を有するモノマーは、中和されていない、部分的に中和された、又は完全に中和された形態で存在していてよく、その際、ホスホン酸は1又は2個のプロトンが適当な塩基により中和されてよい。   These monomers with acid groups may be present in an unneutralized, partially neutralized or fully neutralized form, in which the phosphonic acid has 1 or 2 protons May be neutralized with a suitable base.

モノマーの酸基の部分的又は完全な中和に適した塩基は、例えばアルカリ金属塩、アルカリ土類金属塩、アンモニア、アミン及び/又はアルカノールアミンである。これについての例は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水酸化マグネシウム、酸化マグネシウム、水酸化カルシウム、酸化カルシウム、トリエタノールアミン、エタノールアミン及びモルホリンである。   Suitable bases for partial or complete neutralization of the acid groups of the monomers are, for example, alkali metal salts, alkaline earth metal salts, ammonia, amines and / or alkanolamines. Examples of this are sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine and morpholine. It is.

この群(b)のモノマーを、単独で、又は混合して使用することができる。   The monomers of this group (b) can be used alone or in admixture.

好ましいモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマーは、例えばα,β−エチレン性不飽和モノ−及びジカルボン酸のニトリル、例えばアクリロニトリル及びメタクリロニトリル、α,β−エチレン性不飽和モノカルボン酸及びそのN−アルキル−及びN,N−ジアルキル誘導体のアミド、N−ビニルラクタム及びDADMACである。   Preferred monoethylenically unsaturated monomers, in which the corresponding structural units of the monomers in the polymer are stable under the Hofmann decomposition reaction conditions, are for example α, β-ethylenically unsaturated mono- and dicarboxylic acids Nitriles such as acrylonitrile and methacrylonitrile, amides of α, β-ethylenically unsaturated monocarboxylic acids and their N-alkyl- and N, N-dialkyl derivatives, N-vinyl lactam and DADMAC.

前記プレポリマーは、1種以上のモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマー(モノマーb)を、モノマーの全モル数(a及びb)に対して、好ましくは少なくとも5モル%、好ましくは少なくとも10モル%でかつ好ましくは最高で90モル%、好ましくは最高で70モル%、特に好ましい形態においては最高で50モル%を重合導入して含有している。   The prepolymer is one or more monoethylenically unsaturated monomers, wherein the monomer (monomer b) in which the corresponding structural unit of the monomer in the polymer is stable under the Hofmann decomposition reaction conditions, Preferably at least 5 mol%, preferably at least 10 mol% and preferably at most 90 mol%, preferably at most 70 mol%, in particular preferred forms at most, relative to the total number of moles (a and b) 50 mol% is contained after polymerization.

それに加えて、前記プレポリマーは、2つ以上のエチレン性不飽和基を有する化合物であって、該ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物を、重合に使用されたモノマーa及びbの総質量に対して5質量%まで、好ましくは3質量%まで、特に1質量%まで、極めて特に好ましくは1質量%まででかつ少なくとも0.0001質量%、特に少なくとも0.001質量%を、重合導入された形態で含有することができ、その際、DADMACは含まれない(モノマーc)。   In addition, the prepolymer is a compound having two or more ethylenically unsaturated groups, wherein the corresponding structural unit of the compound in the polymer is stable under the Hofmann decomposition reaction conditions, Up to 5% by weight, preferably up to 3% by weight, in particular up to 1% by weight, very particularly preferably up to 1% by weight and at least 0.0001% by weight, based on the total weight of monomers a and b used in the polymerization, In particular, at least 0.001% by weight can be contained in a polymerized form, without DADMAC (monomer c).

2つ以上のエチレン性不飽和基を有する化合物であって、前記ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物の共重合による前記プレポリマーのこのような変形は、例えば、メチレンビスアクリルアミド、トリアリルアミン、テトラアリルアンモニウムクロリド又はN,N'−ジビニルプロピレン尿素を用いて達成される。   Such a prepolymer by copolymerization of a compound having two or more ethylenically unsaturated groups, wherein the corresponding structural unit of the compound in the polymer is stable under the Hofmann decomposition reaction conditions. The transformation is achieved using, for example, methylene bisacrylamide, triallylamine, tetraallylammonium chloride or N, N′-divinylpropylene urea.

特に好ましくは、前記プレポリマーの製造に使用されるモノマー混合物は、以下の組成を有する:
アクリルアミド及び/又はメタクリルアミド(モノマーa)を、30〜95モル%、及び
1種以上のモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマー、及び/又はジアリルジメチルアンモニウムクロリド(モノマーb)を、5〜70モル%、
並びに、2つ以上のエチレン性不飽和基を有する1種以上の化合物であって、前記ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物を、モノマーa及びbの総質量に対して1.0質量%まで。
Particularly preferably, the monomer mixture used in the preparation of the prepolymer has the following composition:
30 to 95 mol% of acrylamide and / or methacrylamide (monomer a), and one or more monoethylenically unsaturated monomers, the corresponding structural units of the monomers in the polymer being reaction conditions for Hofmann decomposition 5 to 70 mol% of a monomer that is stable below and / or diallyldimethylammonium chloride (monomer b),
And one or more compounds having two or more ethylenically unsaturated groups, wherein the corresponding structural unit of the compound in the polymer is stable under Hofmann decomposition reaction conditions, the monomer a and Up to 1.0 mass% with respect to the total mass of b.

さらなる好ましい一実施形態において、前記プレポリマーの製造に使用されるモノマー混合物は、以下の組成を有する:
アクリルアミド及び/又はメタクリルアミドを、50〜90モル%、及び
1種以上のモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマー、及び/又はジアリルジメチルアンモニウムクロリド(モノマーb)を、10〜50モル%、
並びに、2つ以上のエチレン性不飽和基を有する1種以上の化合物であって、前記ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物を、モノマーa及びbの総質量に対して1.0質量%まで。
In a further preferred embodiment, the monomer mixture used for the preparation of the prepolymer has the following composition:
Acrylamide and / or methacrylamide is 50-90 mol% and one or more monoethylenically unsaturated monomers, the corresponding structural units of the monomers in the polymer being stable under the Hoffmann decomposition reaction conditions. 10 to 50 mol% of a certain monomer and / or diallyldimethylammonium chloride (monomer b),
And one or more compounds having two or more ethylenically unsaturated groups, wherein the corresponding structural unit of the compound in the polymer is stable under Hofmann decomposition reaction conditions, the monomer a and Up to 1.0 mass% with respect to the total mass of b.

特に、前記プレポリマーの製造には、以下の組成のモノマー混合物が好ましい:
アクリルアミド及び/又はメタクリルアミド(モノマーa)を、60〜80モル%、
ジアリルジメチルアンモニウムクロリド(モノマーb)を、20〜40モル%、
並びに、任意に、メチレンビスアクリルアミド、トリアリルアミン、テトラアリルアンモニウムクロリド、N,N'−ジビニルプロピレン尿素から選択された1種以上の化合物を、モノマーa及びモノマーbの総量に対して0.001〜0.1質量%。
In particular, a monomer mixture having the following composition is preferred for the production of the prepolymer:
Acrylamide and / or methacrylamide (monomer a), 60-80 mol%,
Diallyldimethylammonium chloride (monomer b), 20-40 mol%,
And optionally, one or more compounds selected from methylene bisacrylamide, triallylamine, tetraallylammonium chloride, N, N′-divinylpropyleneurea are added in an amount of 0.001 to 0.001 based on the total amount of monomer a and monomer b. 0.1% by mass.

前記プレポリマーの製造は、溶液重合法、沈殿重合法、懸濁重合法、ゲル重合法又は乳化重合法により実施することができる。水性媒体中での溶液重合法が好ましい。好適な水性媒体は、水、並びに、水と少なくとも1種の水混和性溶剤、例えばメタノール、エタノール、n−プロパノール、イソプロパノールなどのアルコールとの混合物である。   The prepolymer can be produced by a solution polymerization method, a precipitation polymerization method, a suspension polymerization method, a gel polymerization method or an emulsion polymerization method. A solution polymerization method in an aqueous medium is preferred. Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent such as alcohols such as methanol, ethanol, n-propanol, isopropanol.

重合温度は、好ましくは約30〜200℃の範囲内、特に好ましくは40〜110℃の範囲内である。重合は、通常は大気圧下に実施されるが、減圧下又は高められた圧力下でも進行しうる。好適な圧力範囲は、0.1〜10barである。   The polymerization temperature is preferably in the range of about 30 to 200 ° C, particularly preferably in the range of 40 to 110 ° C. The polymerization is usually carried out at atmospheric pressure, but can proceed under reduced pressure or elevated pressure. A suitable pressure range is 0.1 to 10 bar.

酸基を有するモノマー(b)は、好ましくは塩形態で使用される。   The monomer (b) having an acid group is preferably used in a salt form.

前記ポリマーの製造のために、前記モノマーをラジカル形成性開始剤により重合させることができる。   For the production of the polymer, the monomer can be polymerized with a radical-forming initiator.

ラジカル重合用の開始剤として、このために通常のペルオキソ化合物及び/又はアゾ化合物を使用することができ、例えばアルカリ金属ペルオキソ二硫酸塩、ペルオキソ二硫酸アンモニウム、ジアセチルペルオキシド、ジベンゾイルペルオキシド、スクシニルペルオキシド、ジ−tert−ブチルペルオキシド、tert−ブチルペルベンゾエート、tert−ブチルペルピバレート、tert−ブチルペルオキシ−2−エチルヘキサノエート、tert−ブチルペルマレエート、クミルヒドロペルオキシド、ジイソプロピルペルオキソジカルバメート、ビス−(o−トルオイル)ペルオキシド、ジデカノイルペルオキシド、ジオクタノイルペルオキシド、ジラウロイルペルオキシド、tert−ブチルペルイソブチレート、tert−ブチルペルアセテート、ジ−tert−アミルペルオキシド、tert−ブチルヒドロペルオキシド、アゾ−ビス−イソブチロニトリル、アゾ−ビス−(2−アミジノプロパン)ジヒドロクロリド又は2−2’−アゾ−ビス−(2−メチルブチロニトリル)を使用することができる。例えばアスコルビン酸/硫酸鉄(II)/ペルオキソ二硫酸ナトリウム、tert−ブチルヒドロペルオキシド/二亜硫酸ナトリウム、tert−ブチルヒドロペルオキシド/ヒドロキシメタンスルフィン酸ナトリウム、H22/CuIなどの開始剤混合物又はレドックス開始剤系も好適である。 As initiators for radical polymerization, conventional peroxo compounds and / or azo compounds can be used for this purpose, such as alkali metal peroxodisulfates, ammonium peroxodisulfates, diacetyl peroxide, dibenzoyl peroxide, succinyl peroxide, Tert-butyl peroxide, tert-butyl perbenzoate, tert-butyl perpivalate, tert-butyl peroxy-2-ethylhexanoate, tert-butyl permaleate, cumyl hydroperoxide, diisopropyl peroxodicarbamate, bis- (O-toluoyl) peroxide, didecanoyl peroxide, dioctanoyl peroxide, dilauroyl peroxide, tert-butyl perisobutyrate, tert-butyl Peracetate, di-tert-amyl peroxide, tert-butyl hydroperoxide, azo-bis-isobutyronitrile, azo-bis- (2-amidinopropane) dihydrochloride or 2-2'-azo-bis- (2- Methylbutyronitrile) can be used. Initiator mixtures or redox, such as ascorbic acid / iron (II) sulfate / sodium peroxodisulfate, tert-butyl hydroperoxide / sodium disulfite, tert-butyl hydroperoxide / sodium hydroxymethanesulfinate, H 2 O 2 / CuI Initiator systems are also suitable.

分子量を調節するために、少なくとも1種の調整剤の存在下に重合を実施することができる。調整剤として、当業者に公知の通例の化合物、例えば硫黄化合物、例えばメルカプトエタノール、2−エチルヘキシルチオグリコレート、チオグリコール酸、次亜リン酸ナトリウム、ギ酸又はドデシルメルカプタン、並びにトリブロモクロロメタン、又は、得られるポリマーの分子量に対して調整作用を有する他の化合物を使用することができる。   In order to adjust the molecular weight, the polymerization can be carried out in the presence of at least one regulator. As modifiers customary compounds known to the person skilled in the art, for example sulfur compounds such as mercaptoethanol, 2-ethylhexyl thioglycolate, thioglycolic acid, sodium hypophosphite, formic acid or dodecyl mercaptan, and tribromochloromethane, or Other compounds having a regulating effect on the molecular weight of the resulting polymer can be used.

前記水溶性プレポリマーのモル質量は、例えば、少なくとも50,000ダルトン、好ましくは少なくとも100,000ダルトン、特に少なくとも500,000ダルトンである。従って、前記プレポリマーのモル質量は、例えば、50,000〜1000万、好ましくは100,000〜500万(例えば、光散乱法により測定)である。このモル質量範囲は、例えば、50〜300、好ましくは70〜250のK値に相当する(25℃及び0.1質量%のポリマー濃度での5%濃度の食塩水溶液中でH. Fikentscherにより測定)。   The molar mass of the water-soluble prepolymer is, for example, at least 50,000 daltons, preferably at least 100,000 daltons, in particular at least 500,000 daltons. Therefore, the molar mass of the prepolymer is, for example, 50,000 to 10,000,000, preferably 100,000 to 5,000,000 (for example, measured by a light scattering method). This molar mass range corresponds, for example, to a K value of 50 to 300, preferably 70 to 250 (measured by H. Fikentscher in a 5% strength saline solution at 25 ° C. and a polymer concentration of 0.1% by weight. ).

ホフマン分解
ホフマン分解(ホフマン転位とも称される)とは、炭素原子の消費下での第一級酸アミドからアミンへの分解であると当業者に解釈される(Roempp Online, Version 3.12)。ホフマン分解において、前記プレポリマーのアミド基がアルカリ条件下に次亜ハロゲン酸塩と反応し、次いで、形成されたカルバメートが酸性化により脱カルボキシル化されてアミノ基が得られる。
Hoffman decomposition Hoffman decomposition (also called Hoffman rearrangement) is interpreted by those skilled in the art as decomposition of primary acid amides to amines with consumption of carbon atoms (Roempp Online, Version 3.12). In Hofmann decomposition, the amide group of the prepolymer reacts with hypohalite under alkaline conditions, and then the carbamate formed is decarboxylated by acidification to yield an amino group.

Figure 2015531032
Figure 2015531032

そのようなポリマーは、例えばEP−A−0377313及びWO−A−2006/075115から公知である。ビニルアミン基を含むポリマーの製造は、例えばWO−A−2006/075115、第4頁第25行〜第10頁第22行、並びに第13頁及び第14頁の実施例において詳細に扱われており、その内容が明確に引用される。   Such polymers are known for example from EP-A-0377313 and WO-A-2006 / 075115. The production of polymers containing vinylamine groups is dealt with in detail, for example in the examples of WO-A-2006 / 075115, page 4, line 25 to page 10, line 22, and pages 13 and 14. The content is clearly quoted.

ホフマン分解は、好ましくは水溶液中で行われる。アミド基1モル当量につき、0.1〜2.0、好ましくは0.8〜1.1、特に好ましくは1.0モル当量の次亜ハロゲン酸塩が使用される。強塩基は、アミド基1モル当量につき1.0〜4.0モル当量、好ましくは1.5〜3.0モル当量、特に好ましくは2.0〜2.5モル当量の量で使用される。   The Hoffman decomposition is preferably performed in an aqueous solution. 0.1 to 2.0, preferably 0.8 to 1.1, particularly preferably 1.0 molar equivalent of hypohalite is used per mole equivalent of amide group. The strong base is used in an amount of 1.0 to 4.0 molar equivalents, preferably 1.5 to 3.0 molar equivalents, particularly preferably 2.0 to 2.5 molar equivalents per molar equivalent of the amide group. .

次亜ハロゲン酸塩として、例えば次亜塩素酸ナトリウム(NaOCl)及び次亜臭素酸ナトリウム(NaOBr)が使用され、その際、NaOClが好ましい。強塩基として、アルカリ金属水酸化物、アルカリ土類金属水酸化物及びアルカリ土類金属酸化物が使用される。   As hypohalite, for example, sodium hypochlorite (NaOCl) and sodium hypobromite (NaOBr) are used, with NaOCl being preferred. Alkali metal hydroxides, alkaline earth metal hydroxides and alkaline earth metal oxides are used as strong bases.

前記ポリマーのホフマン分解は、例えば−15〜90℃、好ましくは−5〜40℃の温度範囲内で、任意に、生じるアミノ基と出発ポリマーのアミド基との副反応を防ぐため、安定剤としての四級化アンモニウム塩の存在下に行われる。アルカリ液/アルカリ金属次亜塩素酸塩を用いた反応の終了後に、反応生成物の脱カルボキシル化のために酸が装入されている反応器中に、この水性反応溶液が導入される。ビニルアミン単位を含む反応生成物のpH値は、2〜7の値に調整される。   The Hofmann decomposition of the polymer is, for example, as a stabilizer in order to prevent side reactions between the resulting amino group and the amide group of the starting polymer, optionally within a temperature range of -15 to 90 ° C, preferably -5 to 40 ° C. In the presence of a quaternized ammonium salt. After completion of the reaction with the alkali / alkali metal hypochlorite, this aqueous reaction solution is introduced into a reactor charged with acid for decarboxylation of the reaction product. The pH value of the reaction product containing vinylamine units is adjusted to a value of 2-7.

アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーのホフマン分解により得られた水溶性ポリマーを、本発明による方法において使用することができる。   Water-soluble polymers obtained by Hofmann degradation of acrylamide-containing polymers and / or methacrylamide-containing polymers can be used in the process according to the invention.

さらなる一変法によれば、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーのホフマン分解により得られたポリマーは、さらに後架橋される。   According to a further variant, the polymer obtained by Hofmann degradation of an acrylamide-containing polymer and / or a methacrylamide-containing polymer is further postcrosslinked.

後架橋
ホフマン分解されたポリマーの分子量を増加させ、かつ分岐状のポリマー構造を得るために、ホフマン分解されたポリマーを後で架橋剤と反応させることができる。この場合、架橋剤とは、ホフマン生成物の第一級アミノ基と反応しうる反応性基を少なくとも2つ有する化合物と解釈されてよい。
Post-crosslinking To increase the molecular weight of the Hoffman-decomposed polymer and to obtain a branched polymer structure, the Hoffman-decomposed polymer can be subsequently reacted with a cross-linking agent. In this case, the crosslinking agent may be interpreted as a compound having at least two reactive groups capable of reacting with the primary amino group of the Hoffman product.

架橋剤として、例えば多官能性エポキシド、例えばオリゴエチレンオキシドのビスグリシジルエーテル、ポリエチレンオキシドのビスグリシジルエーテル、又は例えばグリセリン若しくは糖のような他の多官能性アルコールのビスグリシジルエーテル、多官能性カルボン酸エステル、多官能性イソシアネート、多官能性アクリル酸エステル、多官能性メタクリル酸エステル、多官能性アクリル酸アミド、多官能性メタクリル酸アミド、エピクロロヒドリン、多官能性酸ハロゲン化物、多官能性ニトリル、オリゴエチレンオキシドのα,ω−クロロヒドリンエーテル、ポリエチレンオキシドのα,ω−クロロヒドリンエーテル、又は例えばグリセリン若しくは糖のような他の多官能性アルコールのα,ω−クロロヒドリンエーテル、ジビニルスルホン、無水マレイン酸又はω−ハロカルボン酸クロリド、多官能性ハロゲンアルカン、特にα,ω−ジクロロアルカン及び炭酸塩、例えばエチレンカーボネート又はプロピレンカーボネートが該当する。他の架橋剤は、WO−A−97/25367、第8頁〜第16頁に記載されている。   Cross-linking agents such as polyfunctional epoxides such as bisglycidyl ethers of oligoethylene oxide, bisglycidyl ethers of polyethylene oxide, or bisglycidyl ethers of other polyfunctional alcohols such as glycerin or sugars, polyfunctional carboxylic acid esters , Multifunctional isocyanate, multifunctional acrylic ester, multifunctional methacrylate ester, multifunctional acrylic amide, multifunctional methacrylate, epichlorohydrin, multifunctional acid halide, multifunctional nitrile Α, ω-chlorohydrin ethers of oligoethylene oxide, α, ω-chlorohydrin ethers of polyethylene oxide, or α, ω-chlorohydrin ethers of other polyfunctional alcohols such as glycerin or sugars, divinyl Sulfo , Maleic acid or .omega.-halocarboxylic acid chlorides anhydrides, polyfunctional haloalkanes, particularly alpha, .omega.-dichloro alkanes and carbonates, such as ethylene carbonate or propylene carbonate is applicable. Other crosslinking agents are described in WO-A-97 / 25367, pages 8-16.

架橋剤として、多官能性エポキシド、例えばオリゴエチレンオキシドのビスグリシジルエーテル、ポリエチレンオキシドのビスグリシジルエーテル、又は例えばグリセリン若しくは糖のような他の多官能性アルコールのビスグリシジルエーテルが好ましい。   As cross-linking agents, polyfunctional epoxides such as bisglycidyl ethers of oligoethylene oxide, bisglycidyl ethers of polyethylene oxide or other polyfunctional alcohols such as glycerin or sugars are preferred.

前記架橋剤は、任意に、ホフマン分解により得られるポリマーに対して、5.0質量%まで、好ましくは20ppm〜2質量%の量で使用される。   The crosslinking agent is optionally used in an amount of up to 5.0% by weight, preferably 20 ppm to 2% by weight, based on the polymer obtained by Hofmann decomposition.

本発明による方法は、抄紙機のより途切れのない運転を可能にする。この方法により生じる紙ウェブ若しくは紙シートは、明らかにより高い初期湿紙強度を示す。   The method according to the invention allows a more seamless operation of the paper machine. The paper web or paper sheet produced by this method clearly shows a higher initial wet paper strength.

以下の実施例により本発明を詳説する。これらの実施例中のパーセンテージは、別段の記載がない限り質量パーセントである。   The following examples illustrate the invention. The percentages in these examples are percentages by weight unless otherwise noted.

ポリマーの製造を3つの連続した工程において行う:
a)プレポリマーの製造、
b)プレポリマーのホフマン分解、
及び任意に後架橋。
Polymer production takes place in three consecutive steps:
a) production of prepolymers,
b) Hoffmann decomposition of the prepolymer,
And optionally postcrosslinking.

ポリマーIの製造
a)プレポリマーI(アクリルアミド70モル%及びDADMAC(ジアリルジメチルアンモニウムクロリド)30モル%、非分岐状)の製造
アンカー撹拌機、還流冷却器、内部温度計及び窒素送込管を備えた2Lのガラス装置中に、蒸留水295.5g、DADMACの65質量%水溶液189.6g及び75質量%リン酸1.0gを装入した。水酸化ナトリウム0.4gの添加によりpHを3に調整した。窒素の導入によりこの初充填物から酸素を除去し、その間にこの初充填物を75℃の重合温度に加熱した。同時に、以下のフィードを製造した。
フィード1:50質量%アクリルアミド溶液253.0g、蒸留水60.0g及び水酸化ナトリウム0.9gからの混合物。
フィード2:0.6質量%重亜硫酸塩水溶液100g。
フィード3:0.88質量%過硫酸ナトリウム水溶液100g。
Production of polymer I a) Production of prepolymer I (acrylamide 70 mol% and DADMAC (diallyldimethylammonium chloride) 30 mol%, unbranched) with anchor stirrer, reflux condenser, internal thermometer and nitrogen feed tube Further, 295.5 g of distilled water, 189.6 g of a 65 mass% aqueous solution of DADMAC and 1.0 g of 75 mass% phosphoric acid were charged into a 2 L glass apparatus. The pH was adjusted to 3 by the addition of 0.4 g sodium hydroxide. Oxygen was removed from the initial charge by introducing nitrogen while the initial charge was heated to a polymerization temperature of 75 ° C. At the same time, the following feeds were produced:
Feed 1: Mixture from 253.0 g of 50% by weight acrylamide solution, 60.0 g of distilled water and 0.9 g of sodium hydroxide.
Feed 2: 100 g of 0.6% by weight aqueous bisulfite solution.
Feed 3: 100 g of 0.88 mass% sodium persulfate aqueous solution.

これら3つのフィードを同時に開始した。フィード1を2時間の期間にわたって供給し、一方でフィード2及び3は5時間の期間にわたって供給した。次いで、この混合物の温度を85℃に高めた。フィード2及び3の終了後に、このバッチを85℃でさらに1時間保持し、次いで冷却した。   These three feeds were started simultaneously. Feed 1 was fed over a 2 hour period, while feeds 2 and 3 were fed over a 5 hour period. The temperature of the mixture was then raised to 85 ° C. After the end of feeds 2 and 3, the batch was held at 85 ° C. for an additional hour and then cooled.

固形分25.6質量%、粘度50000mPas(ブルックフィールドLV粘度、スピンドル4、6rpm、RT)を有する澄明な粘性のプレポリマー溶液が得られた。   A clear viscous prepolymer solution having a solids content of 25.6% by weight and a viscosity of 50000 mPas (Brookfield LV viscosity, spindle 4, 6 rpm, RT) was obtained.

b)プレポリマーのホフマン分解
a)の後に得られたプレポリマーI 250.0gを、内部温度計及びブレード撹拌機を備えた三ツ口フラスコ中に装入し、氷/食塩混合物を用いて常に撹拌しながら8℃に冷却した。
b) Hoffmann decomposition of the prepolymer 250.0 g of the prepolymer I obtained after a) is placed in a three-necked flask equipped with an internal thermometer and a blade stirrer and is always stirred with an ice / salt mixture. While cooling to 8 ° C.

以下のフィードを製造した:14.1質量%NaOCl水溶液234.5g及び蒸留水20.5gをガラスビーカー中に装入し、氷浴を用いて5℃に冷却した。常に撹拌しながら、温度を10℃未満に保持できるように、50質量%苛性ソーダ液71.1gをゆっくりと滴加した。   The following feeds were produced: 234.5 g of 14.1 wt% NaOCl aqueous solution and 20.5 g of distilled water were charged into a glass beaker and cooled to 5 ° C. using an ice bath. With constant stirring, 71.1 g of 50% by weight caustic soda solution was slowly added dropwise so that the temperature could be kept below 10 ° C.

このフィードを、冷却した滴下漏斗(10℃未満)から、80分間で、冷却したプレポリマー初充填物中に、温度が添加の間に8〜10℃に保持されるようにして滴加した。次いで、この反応混合物を10分以内に20℃に加熱し、20℃で30分間保持した。次いで、この混合物558.1gを常に撹拌しながら37%塩酸135gに滴加し、その際、強度の気体発生が認められた。次いで、得られた溶液のpHを25質量%苛性ソーダ液10.0gを用いてpH3.5に調整した。   This feed was added dropwise from a cooled addition funnel (below 10 ° C.) over 80 minutes into the cooled prepolymer initial charge such that the temperature was maintained at 8-10 ° C. during the addition. The reaction mixture was then heated to 20 ° C. within 10 minutes and held at 20 ° C. for 30 minutes. Subsequently, 558.1 g of this mixture was added dropwise to 135 g of 37% hydrochloric acid with constant stirring, and strong gas evolution was observed. Subsequently, the pH of the obtained solution was adjusted to pH 3.5 using 10.0 g of 25 mass% sodium hydroxide solution.

ポリマー含分8.6質量%、粘度39mPas(ブルックフィールドLV粘度、スピンドル1、60rpm、RT)を有するポリマーIの澄明でわずかに粘性の溶液が得られた。   A clear and slightly viscous solution of polymer I having a polymer content of 8.6% by weight and a viscosity of 39 mPas (Brookfield LV viscosity, spindle 1, 60 rpm, RT) was obtained.

ポリマーIIの製造(後架橋)
ポリマーI 309.8gを、ブレード撹拌機を備えた500mL三ツ口フラスコ中に装入し、50質量%苛性ソーダ液6.8gの添加によりpH8.5に調整した。次いで、この混合物を45℃に加熱し、Grillbond G 1701(EMS社)0.29gを添加した。45℃で30分間撹拌した後、温度を55℃に高め、55℃で2時間でバッチが得られた。この時間内に、粘度の上昇が認められた。2時間経過した後、このバッチを室温に冷却し、37%塩酸8.0gの添加によりpH値を3.0に調整した。
Production of polymer II (post-crosslinking)
309.8 g of Polymer I was charged into a 500 mL three-necked flask equipped with a blade stirrer and adjusted to pH 8.5 by addition of 6.8 g of 50% by weight sodium hydroxide solution. The mixture was then heated to 45 ° C. and 0.29 g of Grillbond G 1701 (EMS) was added. After stirring for 30 minutes at 45 ° C., the temperature was increased to 55 ° C. and a batch was obtained at 55 ° C. for 2 hours. Within this time, an increase in viscosity was observed. After 2 hours, the batch was cooled to room temperature and the pH value was adjusted to 3.0 by the addition of 8.0 g of 37% hydrochloric acid.

ポリマー含分8.2質量%、粘度190mPas(ブルックフィールドLV粘度、スピンドル2、60rpm、RT)を有するポリマーIIの澄明でわずかに粘性の溶液が得られた。   A clear and slightly viscous solution of polymer II with a polymer content of 8.2% by weight and a viscosity of 190 mPas (Brookfield LV viscosity, spindle 2, 60 rpm, RT) was obtained.

ポリマーIIIの製造
a)プレポリマーIII(アクリルアミド70モル%及びDADMAC30モル%、モノマーcとしてのトリアリルアミン)の製造
アンカー撹拌機、還流冷却器、内部温度計及び窒素送込管を備えた2Lのガラス装置中に、蒸留水155.8g、DADMACの65質量%水溶液189.6g及び75質量%リン酸1.0gを装入した。NaOH0.4gの添加によりpHを3に調整した。窒素の導入によりこの初充填物から酸素を除去し、その間にこの初充填物を75℃の重合温度に加熱した。
Preparation of Polymer III a) Preparation of Prepolymer III (70 mol% acrylamide and 30 mol% DADMAC, triallylamine as monomer c) 2 L glass with anchor stirrer, reflux condenser, internal thermometer and nitrogen inlet tube In the apparatus, 155.8 g of distilled water, 189.6 g of a 65% by mass aqueous solution of DADMAC and 1.0 g of 75% by mass phosphoric acid were charged. The pH was adjusted to 3 by the addition of 0.4 g NaOH. Oxygen was removed from the initial charge by introducing nitrogen while the initial charge was heated to a polymerization temperature of 75 ° C.

以下のフィードを準備した:
フィード1:トリアリルアミン0.5gを、蒸留水160.0g中に、75質量%リン酸0.75gの添加下に溶解させた。次いで、50質量%アクリルアミド溶液253.0gを添加し、25質量%苛性ソーダ液0.4gを用いてpHを4.0に調整した。
フィード2:0.6質量%重亜硫酸塩水溶液120g。
フィード3:0.88質量%過硫酸ナトリウム水溶液120.6g。
The following feeds were prepared:
Feed 1: 0.5 g triallylamine was dissolved in 160.0 g distilled water with the addition of 0.75 g 75% by weight phosphoric acid. Subsequently, 253.0 g of 50 mass% acrylamide solution was added, and pH was adjusted to 4.0 using 0.4 g of 25 mass% sodium hydroxide solution.
Feed 2: 0.6 g% by weight aqueous bisulfite solution 120 g.
Feed 3: 0.86 mass% sodium persulfate aqueous solution 120.6 g.

これら3つのフィードを同時に開始した。フィード1を3時間で添加したのに対して、フィード2及び3は6時間で供給した。フィード2の添加の終了後に温度を85℃に高め、この温度でさらに1時間保持し、次いで冷却した。   These three feeds were started simultaneously. Feed 1 was added in 3 hours, while feeds 2 and 3 were fed in 6 hours. After the end of feed 2 addition, the temperature was increased to 85 ° C., held at this temperature for an additional hour, and then cooled.

固形分25.5%、粘度15800mPas(ブルックフィールドLV粘度、スピンドル4、6rpm、RT)を有する澄明で粘性のプレポリマー溶液が得られた。   A clear and viscous prepolymer solution having a solids content of 25.5% and a viscosity of 15800 mPas (Brookfield LV viscosity, spindle 4, 6 rpm, RT) was obtained.

b)プレポリマーIIIのホフマン分解
a)によるプレポリマーIII 250.0gを、ブレード撹拌機及び内部温度計を備えた三ツ口フラスコ中に装入し、氷/食塩混合物を用いて常に撹拌しながら8℃に冷却した。
b) Hoffmann decomposition of prepolymer III 250.0 g of prepolymer III from a) was charged into a three-necked flask equipped with a blade stirrer and an internal thermometer and constantly stirred with an ice / salt mixture at 8 ° C. Cooled to.

同時に、以下のフィードを製造した:そのために、14.1質量%NaOCl水溶液234.5g及び蒸留水20.5gをガラスビーカー中に装入し、氷浴を用いて5℃に冷却した。常に撹拌しながら、温度を10℃未満に保持できるように、50質量%苛性ソーダ液71.1gをゆっくりと滴加した。   At the same time, the following feed was produced: For that purpose, 234.5 g of 14.1% by weight NaOCl aqueous solution and 20.5 g of distilled water were charged into a glass beaker and cooled to 5 ° C. using an ice bath. With constant stirring, 71.1 g of 50% by weight caustic soda solution was slowly added dropwise so that the temperature could be kept below 10 ° C.

このフィードを、冷却した滴下漏斗(10℃未満)から、80分間で、初充填物中に、温度が添加の間に8〜10℃の範囲内に保持できるようにして滴加した。次いで、この反応混合物を10分以内に20℃に加熱し、20℃で60分間保持した。次いで、この混合物566.2gを常に撹拌しながら37%塩酸135gに滴加し、その際、強度の気体発生が認められた。次いで、得られた溶液のpH値を25質量%苛性ソーダ液12.2gを用いてpH3.5に調整した。ポリマー含分8.6質量%、粘度23mPas(ブルックフィールドLV粘度、スピンドル1、60rpm、RT)を有するプレポリマーIIIの澄明でわずかに粘性の溶液が得られた。   This feed was added dropwise from a cooled addition funnel (below 10 ° C.) in the initial charge over 80 minutes such that the temperature could be kept within the range of 8-10 ° C. during the addition. The reaction mixture was then heated to 20 ° C. within 10 minutes and held at 20 ° C. for 60 minutes. Next, 566.2 g of this mixture was added dropwise to 135 g of 37% hydrochloric acid with constant stirring, with strong gas evolution observed. Subsequently, the pH value of the obtained solution was adjusted to pH 3.5 using 12.2 g of 25 mass% sodium hydroxide solution. A clear and slightly viscous solution of Prepolymer III having a polymer content of 8.6% by weight and a viscosity of 23 mPas (Brookfield LV viscosity, spindle 1, 60 rpm, RT) was obtained.

ポリマーIV(後架橋)
ポリマーIII 301.8gを、ブレード撹拌機を備えた500mL三ツ口フラスコ中に装入し、50質量%苛性ソーダ液6.2gの添加によりpH8.5に調整した。次いで、この混合物を45℃に加熱し、Grillbond G 1701(EMS社)0.43gを添加した。45℃で30分間撹拌した後、温度を55℃に高め、55℃で3時間でバッチが得られた。この時間内に、粘度の上昇が認められた。3時間経過した後、このバッチを室温に冷却し、37%塩酸7.4gの添加によりpH値を3.0に調整した。ポリマー含分8.2質量%、粘度419mPas(ブルックフィールドLV粘度、スピンドル2、60rpm、RT)を有するポリマーIVの澄明でわずかに粘性の溶液が得られた。
Polymer IV (post-crosslinking)
301.8 g of Polymer III was charged into a 500 mL three-necked flask equipped with a blade stirrer and adjusted to pH 8.5 by the addition of 6.2 g of 50% by weight caustic soda solution. The mixture was then heated to 45 ° C. and 0.43 g of Grillbond G 1701 (EMS) was added. After stirring for 30 minutes at 45 ° C., the temperature was raised to 55 ° C. and a batch was obtained at 55 ° C. for 3 hours. Within this time, an increase in viscosity was observed. After 3 hours, the batch was cooled to room temperature and the pH value was adjusted to 3.0 by adding 7.4 g of 37% hydrochloric acid. A clear and slightly viscous solution of polymer IV with a polymer content of 8.2% by weight and a viscosity of 419 mPas (Brookfield LV viscosity, spindle 2, 60 rpm, RT) was obtained.

ポリマーVの製造
a)プレポリマーV(アクリルアミド70モル%及びDADMAC30モル%、モノマーcとしてのトリアリルアミン)の製造
アンカー撹拌機、還流冷却器、内部温度計及び窒素送込管を備えた2Lのガラス装置中に、蒸留水155.8g、DADMACの65質量%水溶液189.6g及び75質量%リン酸1.0gを装入した。NaOH0.4gの添加によりpHを3に調整した。窒素の導入によりこの初充填物から酸素を除去し、その間にこの初充填物を75℃の重合温度に加熱した。同時に、以下のフィードを準備した:
フィード1:トリアリルアミン0.25gを、蒸留水160.0g中に、75質量%リン酸0.75gの添加下に溶解させた。次いで、50質量%アクリルアミド溶液253.0gを添加し、25質量%苛性ソーダ液0.6gを用いてpHを4.0に調整した。
フィード2:0.6質量%重亜硫酸塩水溶液120g。
フィード3:0.88質量%過硫酸ナトリウム水溶液120.6g。
Production of polymer V a) Production of prepolymer V (70 mol% acrylamide and 30 mol% DADMAC, triallylamine as monomer c) 2 L glass with anchor stirrer, reflux condenser, internal thermometer and nitrogen feed tube In the apparatus, 155.8 g of distilled water, 189.6 g of a 65% by mass aqueous solution of DADMAC and 1.0 g of 75% by mass phosphoric acid were charged. The pH was adjusted to 3 by the addition of 0.4 g NaOH. Oxygen was removed from the initial charge by introducing nitrogen while the initial charge was heated to a polymerization temperature of 75 ° C. At the same time, the following feeds were prepared:
Feed 1: 0.25 g triallylamine was dissolved in 160.0 g distilled water with the addition of 0.75 g 75% by weight phosphoric acid. Subsequently, 253.0 g of 50 mass% acrylamide solution was added, and pH was adjusted to 4.0 using 0.6 g of 25 mass% sodium hydroxide solution.
Feed 2: 0.6 g% by weight aqueous bisulfite solution 120 g.
Feed 3: 0.86 mass% sodium persulfate aqueous solution 120.6 g.

これら3つのフィードを同時に開始した。フィード1を3時間で添加したのに対して、フィード2及び3は6時間で供給した。フィード2の終了後に温度を85℃に高めた。フィード2及び3の終了後に、このバッチを85℃でさらに1時間保持し、次いで冷却した。固形分25.5%、粘度12400mPas(ブルックフィールドLV粘度、スピンドル4、6rpm、RT)を有する澄明で粘性のプレポリマー溶液が得られた。   These three feeds were started simultaneously. Feed 1 was added in 3 hours, while feeds 2 and 3 were fed in 6 hours. The temperature was raised to 85 ° C. after the end of Feed 2. After the end of feeds 2 and 3, the batch was held at 85 ° C. for an additional hour and then cooled. A clear and viscous prepolymer solution having a solids content of 25.5% and a viscosity of 12400 mPas (Brookfield LV viscosity, spindle 4, 6 rpm, RT) was obtained.

b)プレポリマーのホフマン分解
a)によるプレポリマーV 250.0gを、ブレード撹拌機及び内部温度計を備えた三ツ口フラスコ中に装入し、氷/食塩混合物を用いて常に撹拌しながら8℃に冷却した。
b) Hoffmann decomposition of the prepolymer 250.0 g of prepolymer V from a) is placed in a three-necked flask equipped with a blade stirrer and an internal thermometer and kept at 8 ° C. with constant stirring using an ice / salt mixture. Cooled down.

同時に、以下のフィードを製造した:
14.1質量%NaOCl水溶液234.5g及び蒸留水20.5gをガラスビーカー中に装入し、氷浴を用いて5℃に冷却した。常に撹拌しながら、温度を10℃未満に保持できるように、50質量%NaOH溶液71.1gをゆっくりと滴加した。
At the same time, the following feeds were produced:
14.4.5% NaOCl aqueous solution (234.5 g) and distilled water (20.5 g) were charged into a glass beaker and cooled to 5 ° C. using an ice bath. With constant stirring, 71.1 g of 50% by weight NaOH solution was slowly added dropwise so that the temperature could be kept below 10 ° C.

このフィードを、冷却した滴下漏斗(10℃未満)から、80分間で、初充填物中に、温度が添加の間に8〜10℃の範囲内に保持できるようにして滴加した。次いで、この反応混合物を10分以内に20℃に加熱し、20℃で60分間保持した。次いで、この混合物566.2gを常に撹拌しながら37%塩酸135gに滴加し、その際、強度の気体発生が認められた。次いで、得られた溶液のpHを25質量%苛性ソーダ液16.0gを用いてpH3.5に調整した。ポリマー含分8.5%、粘度22mPas(ブルックフィールドLV粘度、スピンドル1、60rpm、RT)を有するプレポリマーVの澄明でわずかに粘性の溶液が得られた。   This feed was added dropwise from a cooled addition funnel (below 10 ° C.) in the initial charge over 80 minutes such that the temperature could be kept within the range of 8-10 ° C. during the addition. The reaction mixture was then heated to 20 ° C. within 10 minutes and held at 20 ° C. for 60 minutes. Next, 566.2 g of this mixture was added dropwise to 135 g of 37% hydrochloric acid with constant stirring, with strong gas evolution observed. Subsequently, the pH of the obtained solution was adjusted to pH 3.5 using 16.0 g of 25 mass% sodium hydroxide solution. A clear and slightly viscous solution of Prepolymer V having a polymer content of 8.5% and a viscosity of 22 mPas (Brookfield LV viscosity, spindle 1, 60 rpm, RT) was obtained.

ポリマーVI(後架橋)
ポリマーV 314.4gを、ブレード撹拌機を備えた500mL三ツ口フラスコ中に装入し、50質量%苛性ソーダ液6.4gの添加によりpH8.5に調整した。次いで、この混合物を45℃に加熱し、Grillbond G 1701(EMS社)0.44gを添加した。45℃で30分間撹拌した後、温度を55℃に高め、55℃で3時間でバッチが得られた。この時間内に、粘度の上昇が認められた。3時間経過した後、このバッチを室温に冷却し、37%塩酸7.6gの添加によりpHを3.0に調整した。
Polymer VI (post-crosslinking)
314.4 g of polymer V was charged into a 500 mL three-necked flask equipped with a blade stirrer and adjusted to pH 8.5 by addition of 6.4 g of 50% by weight caustic soda solution. The mixture was then heated to 45 ° C. and 0.44 g of Grillbond G 1701 (EMS) was added. After stirring for 30 minutes at 45 ° C., the temperature was raised to 55 ° C. and a batch was obtained at 55 ° C. for 3 hours. Within this time, an increase in viscosity was observed. After 3 hours, the batch was cooled to room temperature and the pH was adjusted to 3.0 by addition of 7.6 g of 37% hydrochloric acid.

ポリマー含分8.1%、粘度190mPas(ブルックフィールドLV粘度、スピンドル2、60rpm、RT)を有するポリマーVIの澄明でわずかに粘性の溶液が得られた。   A clear and slightly viscous solution of polymer VI having a polymer content of 8.1% and a viscosity of 190 mPas (Brookfield LV viscosity, spindle 2, 60 rpm, RT) was obtained.

ポリマーVII(アクリルアミド85モル%及びアクリル酸15モル%)
JP63042998(第624頁の表参照)に相応して、ホフマン生成物C−4を再現した。
Polymer VII (acrylamide 85 mol% and acrylic acid 15 mol%)
The Hoffman product C-4 was reproduced in accordance with JP 63042998 (see table on page 624).

ポリマーVIII(本発明によらない)(比較例はEP出願番号11170740.2からのポリマーIに相当)
アンカー撹拌機、温度計、下降冷却器及び窒素送込管を備えた2Lの五ツ口フラスコ中に、脱イオン水400gを装入した。さらに、以下のフィードを準備した:
フィード1:ガラスビーカー中で、以下の成分を混合した:
脱イオン水250g、
アクリルアミドの50質量%水溶液95.6g、
アクリロイルオキシエチルトリメチルアンモニウムクロリドの80質量%水溶液121.9g、
アクリル酸ナトリウムの32質量%水溶液148.1g、
ジエチレントリアミン五酢酸の1質量%水溶液0.2g。
37%塩酸約32gの添加により、pHを4.1に調整した。
フィード2:2,2’−アゾビス(2−アミジノプロパン)−ジヒドロクロリドの1質量%水溶液60.0g。
フィード3:2,2’−アゾビス(2−アミジノプロパン)−ジヒドロクロリドの1質量%水溶液16.5g。
Polymer VIII (not according to the invention) (comparative example corresponds to polymer I from EP application number 11170740.2)
400 g of deionized water was charged into a 2 L five-necked flask equipped with an anchor stirrer, thermometer, down cooler, and nitrogen feed tube. In addition, the following feeds were prepared:
Feed 1: The following ingredients were mixed in a glass beaker:
250 g of deionized water,
95.6 g of a 50% by weight aqueous solution of acrylamide,
121.9 g of an 80% by weight aqueous solution of acryloyloxyethyltrimethylammonium chloride,
148.1 g of a 32% by weight aqueous solution of sodium acrylate,
0.2 g of a 1% by weight aqueous solution of diethylenetriaminepentaacetic acid.
The pH was adjusted to 4.1 by adding about 32 g of 37% hydrochloric acid.
Feed 2: 60.0 g of a 1% by weight aqueous solution of 2,2′-azobis (2-amidinopropane) -dihydrochloride.
Feed 3: 16.5 g of a 1% by weight aqueous solution of 2,2′-azobis (2-amidinopropane) -dihydrochloride.

初充填物を63℃に加熱し、水がちょうど沸騰し始めるまで、ウォータージェットポンプを用いて圧力を低下させた。フィード1及び2を同時に開始し、フィード1を2時間で、フィード2を3時間で、一定の内部温度で初充填物に添加した。フィード2の終了後に、反応を63℃でさらに1時間保持し、次いで72℃に加熱し、相応して真空を低減した。この反応混合物を72℃でさらに2時間保持し、その後、フィード3を一度に添加し、72℃でさらに2時間、後重合した。次いで、真空を解除し、バッチを脱イオン水500gで希釈し、室温に冷却した。重合全体の間に、水208gを留去した。   The initial charge was heated to 63 ° C. and the pressure was reduced using a water jet pump until the water just started to boil. Feeds 1 and 2 were started simultaneously, feed 1 was added to the initial charge at a constant internal temperature for 2 hours and feed 2 for 3 hours. After the end of feed 2, the reaction was held at 63 ° C. for an additional hour and then heated to 72 ° C., correspondingly reducing the vacuum. The reaction mixture was held at 72 ° C. for an additional 2 hours, after which Feed 3 was added in one portion and post-polymerized at 72 ° C. for an additional 2 hours. The vacuum was then released and the batch was diluted with 500 g of deionized water and cooled to room temperature. During the entire polymerization, 208 g of water was distilled off.

アクリルアミド40モル%、アクリロイルオキシエチルトリメチルアンモニウムクロリド30モル%及びアクリル酸ナトリウム30モル%の組成を有するポリマーVIIIの無色澄明で粘性の溶液が得られた。
固形分:14.5質量%
粘度:10600mPas(ブルックフィールド、スピンドル7、50rpm、室温)
K値:120(5質量%食塩水溶液中のポリマーの0.1%溶液)。
A colorless, clear and viscous solution of polymer VIII having a composition of 40 mol% acrylamide, 30 mol% acryloyloxyethyltrimethylammonium chloride and 30 mol% sodium acrylate was obtained.
Solid content: 14.5% by mass
Viscosity: 10600 mPas (Brookfield, spindle 7, 50 rpm, room temperature)
K value: 120 (0.1% solution of polymer in 5% by weight saline solution).

ポリマーIX(本発明によらない):(比較例はEP出願番号11170740.2からのポリマーIIに相当)
アンカー撹拌機、温度計、下降冷却器及び窒素送込管を備えた2Lの五ツ口フラスコ中に、脱イオン水400gを装入した。さらに、以下のフィードを準備した:
フィード1:ガラスビーカー中で、以下の成分を混合した:
脱イオン水250g、
アクリルアミドの50質量%水溶液119.5g、
アクリロイルオキシエチルトリメチルアンモニウムクロリドの80質量%水溶液113.8g、
アクリル酸ナトリウムの32質量%水溶液108.6g、
ジエチレントリアミン五酢酸の1質量%水溶液0.2g。
37%塩酸約38gの添加により、pHを4.1に調整した。
フィード2:2,2’−アゾビス(2−アミジノプロパン)−ジヒドロクロリドの1%水溶液63.5g。
フィード3:2,2’−アゾビス(2−アミジノプロパン)−ジヒドロクロリドの1%水溶液17.0g。
Polymer IX (not according to the invention): (Comparative example corresponds to polymer II from EP application number 11170740.2)
400 g of deionized water was charged into a 2 L five-necked flask equipped with an anchor stirrer, thermometer, down cooler, and nitrogen feed tube. In addition, the following feeds were prepared:
Feed 1: The following ingredients were mixed in a glass beaker:
250 g of deionized water,
119.5 g of a 50% by weight aqueous solution of acrylamide,
113.8 g of an 80% by weight aqueous solution of acryloyloxyethyltrimethylammonium chloride,
108.6 g of a 32% by weight aqueous solution of sodium acrylate,
0.2 g of a 1% by weight aqueous solution of diethylenetriaminepentaacetic acid.
The pH was adjusted to 4.1 by adding about 38 g of 37% hydrochloric acid.
Feed 2: 63.5 g of a 1% aqueous solution of 2,2′-azobis (2-amidinopropane) -dihydrochloride.
Feed 3: 17.0 g of a 1% aqueous solution of 2,2′-azobis (2-amidinopropane) -dihydrochloride.

初充填物を66℃に加熱し、水がちょうど沸騰し始めるまで、ウォータージェットポンプを用いて圧力を低下させた。フィード1及び2を同時に開始し、フィード1を2時間で、フィード2を3時間で、一定の内部温度で初充填物に添加した。フィード2の終了後に、反応を66℃でさらに1時間保持し、次いで78℃に加熱し、相応して真空を低減した。この反応混合物を78℃でさらに2時間保持し、その後、フィード3を一度に添加し、78℃でさらに2時間、後重合した。次いで、真空を解除し、バッチを脱イオン水500gで希釈し、室温に冷却した。重合全体の間に、水200gを留去した。   The initial charge was heated to 66 ° C. and the pressure was reduced using a water jet pump until the water just started to boil. Feeds 1 and 2 were started simultaneously, feed 1 was added to the initial charge at a constant internal temperature for 2 hours and feed 2 for 3 hours. After the end of feed 2, the reaction was held at 66 ° C. for an additional hour and then heated to 78 ° C., correspondingly reducing the vacuum. The reaction mixture was held at 78 ° C for an additional 2 hours, after which Feed 3 was added in one portion and post-polymerized at 78 ° C for an additional 2 hours. The vacuum was then released and the batch was diluted with 500 g of deionized water and cooled to room temperature. During the entire polymerization, 200 g of water was distilled off.

アクリルアミド50モル%、アクリロイルオキシエチルトリメチルアンモニウムクロリド28モル%及びアクリル酸ナトリウム22モル%の組成を有するポリマーIXの無色澄明で粘性の溶液が得られた。
固形分:14.1質量%
粘度:42000mPas(ブルックフィールド、スピンドル7、50rpm、室温)
K値:125(5%食塩水溶液中のポリマーの0.1%溶液)。
A colorless clear viscous solution of polymer IX having a composition of 50 mol% acrylamide, 28 mol% acryloyloxyethyltrimethylammonium chloride and 22 mol% sodium acrylate was obtained.
Solid content: 14.1% by mass
Viscosity: 42000 mPas (Brookfield, spindle 7, 50 rpm, room temperature)
K value: 125 (0.1% solution of polymer in 5% saline solution).

ポリマーX(本発明によらない):(EP出願番号11170740.2からのポリマーIIIに相当)
アンカー撹拌機、温度計、下降冷却器及び窒素送込管を備えた2Lの五ツ口フラスコ中に、脱イオン水400gを装入した。さらに、以下のフィードを準備した:
フィード1:ガラスビーカー中で、以下の成分を混合した:
脱イオン水250g、
アクリルアミドの50質量%水溶液71.7g、
アクリロイルオキシエチルトリメチルアンモニウムクロリドの80質量%水溶液130.1g、
アクリル酸ナトリウムの32質量%水溶液187.8g、
ジエチレントリアミン五酢酸の1質量%水溶液0.2g。
37%塩酸約34gの添加により、pHを4.1に調整した。
フィード2:2,2’−アゾビス(2−アミジノプロパン)−ジヒドロクロリドの1質量%水溶液60.3g。
フィード3:2,2’−アゾビス(2−アミジノプロパン)−ジヒドロクロリドの1質量%水溶液16.0g。
Polymer X (not according to the invention): (corresponds to polymer III from EP application number 11170740.2)
400 g of deionized water was charged into a 2 L five-necked flask equipped with an anchor stirrer, thermometer, down cooler, and nitrogen feed tube. In addition, the following feeds were prepared:
Feed 1: The following ingredients were mixed in a glass beaker:
250 g of deionized water,
71.7 g of a 50% by weight aqueous solution of acrylamide,
130.1 g of an 80% by weight aqueous solution of acryloyloxyethyltrimethylammonium chloride,
187.8 g of a 32% by weight aqueous solution of sodium acrylate,
0.2 g of a 1% by weight aqueous solution of diethylenetriaminepentaacetic acid.
The pH was adjusted to 4.1 by adding about 34 g of 37% hydrochloric acid.
Feed 2: 60.3 g of a 1% by weight aqueous solution of 2,2′-azobis (2-amidinopropane) -dihydrochloride.
Feed 3: 16.0 g of a 1% by weight aqueous solution of 2,2′-azobis (2-amidinopropane) -dihydrochloride.

初充填物を63℃に加熱し、水がちょうど沸騰し始めるまで、ウォータージェットポンプを用いて圧力を低下させた。フィード1及び2を同時に開始し、フィード1を2時間で、フィード2を3時間で、一定の内部温度で初充填物に添加した。フィード2の終了後に、反応を63℃でさらに1時間保持し、次いで72℃に加熱し、相応して真空を低減した。この反応混合物を72℃でさらに2時間保持し、その後、フィード3を一度に添加し、72℃でさらに2時間、後重合した。次いで、真空を解除し、バッチを脱イオン水500gで希釈し、室温に冷却した。重合全体の間に、水200gを留去した。   The initial charge was heated to 63 ° C. and the pressure was reduced using a water jet pump until the water just started to boil. Feeds 1 and 2 were started simultaneously, feed 1 was added to the initial charge at a constant internal temperature for 2 hours and feed 2 for 3 hours. After the end of feed 2, the reaction was held at 63 ° C. for an additional hour and then heated to 72 ° C., correspondingly reducing the vacuum. The reaction mixture was held at 72 ° C. for an additional 2 hours, after which Feed 3 was added in one portion and post-polymerized at 72 ° C. for an additional 2 hours. The vacuum was then released and the batch was diluted with 500 g of deionized water and cooled to room temperature. During the entire polymerization, 200 g of water was distilled off.

アクリルアミド30モル%、アクリロイルオキシエチルトリメチルアンモニウムクロリド32モル%及びアクリル酸ナトリウム38モル%の組成を有するポリマーXの無色澄明で粘性の溶液が得られた。
固形分:14.8質量%
粘度:12000mPas(ブルックフィールド、スピンドル7、50rpm、室温)
K値:117(5質量%食塩水溶液中のポリマーの0.1%溶液)。
A colorless clear viscous solution of polymer X having a composition of 30 mol% acrylamide, 32 mol% acryloyloxyethyltrimethylammonium chloride and 38 mol% sodium acrylate was obtained.
Solid content: 14.8% by mass
Viscosity: 12000 mPas (Brookfield, Spindle 7, 50 rpm, room temperature)
K value: 117 (0.1% solution of polymer in 5% by weight saline solution).

紙の初期湿紙強度を向上させるための、上記ポリマーI〜Xの試験
シート形成工程を実験室規模でシミュレーションするためには、実施例中の低濃度紙料の繊維状物質濃度を3.5g/lに調整する必要がある。
Testing of the above polymers I to X to improve the initial wet paper strength of the paper In order to simulate the sheet forming process on a laboratory scale, the fibrous material concentration of the low-concentration stock in the examples is 3.5 g. It is necessary to adjust to / l.

繊維状物質懸濁液の前処理
漂白したバーチウッドスルフェートを、実験室用パルパー中で繊維状物質濃度4%で、30°SRのろ水度に達するまでフロック不含となるように叩解した。次いで、この叩解した紙料に、蛍光増白剤(Blankophor(R) PSG)並びに完全蒸解カチオン性デンプン(HiCat(R) 5163A)を添加し、5分間作用させた。このカチオン性デンプンの蒸解は、予め、10%デンプンスラリーとして、ジェット蒸解器内で130℃で滞留時間1分で実施した。蛍光増白剤の計量供給量は、繊維状物質懸濁液の絶乾率に対して市販製品0.5質量%であった。カチオン性デンプンの計量供給量は、繊維状物質懸濁液の絶乾率に対してデンプン0.8%(固体)であった。デンプン及び蛍光増白剤を添加した後の繊維状物質懸濁液の繊維状物質含分は、3.5%(35g/l)であった。
Pretreatment of the fibrous material suspension Bleached birchwood sulfate was beaten in a laboratory pulper at a fibrous material concentration of 4% so as to be free of floc until a freeness of 30 ° SR was reached. . Then, this beaten stock, optical brightener (Blankophor (R) PSG) and fully cooked cationic starch (HiCat (R) 5163A) was added, allowed to act for 5 minutes. The cationic starch was cooked in advance as a 10% starch slurry in a jet digester at 130 ° C. for a residence time of 1 minute. The metering amount of the optical brightener was 0.5% by mass of the commercial product with respect to the dry rate of the fibrous substance suspension. The metering amount of the cationic starch was 0.8% (solid) of starch with respect to the absolute dry rate of the fibrous material suspension. The fibrous material content of the fibrous material suspension after addition of starch and optical brightener was 3.5% (35 g / l).

実施例1〜7
7個のガラスビーカーに、上記の前処理した繊維状物質懸濁液それぞれ50gを充填した。このガラスビーカーの各々に、上記ポリマーI〜VIIのうち1つの1質量%水溶液それぞれ1.75gを、繊維状物質懸濁液をわずかに撹拌しながら計量供給した(繊維状物質(固体)に対して1%のポリマー(固体)に相当)。次いで、この繊維状物質懸濁液を水の添加によりそれぞれ0.35%の繊維状物質濃度に希釈した。その後、20質量%炭酸塩顔料スラリー(PCC、Omya社製Syncarb F474)を添加した。顔料懸濁液(填料懸濁液に相当)の添加量を、これに引き続いて形成される実験用シート中での顔料含分が約20%となるように、複数の予備試験で調整した。顔料添加の2分後に、この繊維状物質懸濁液をラピッド−コーセンシート作製機にてISO 5269/2に従って処理して、100g/m2の坪量を有するシートを得た。次いで、この湿ったシートをワイヤーフレームから取り出し、2枚のサクションフェルトの間に置いた。次いで、これらのサクションフェルトとこの湿った紙とをひとまとめにしたものを、静的プレス機においてプレス圧6barで圧縮した。その際、その都度、湿ったシートの固形分が50質量%となるまで圧縮した。
Examples 1-7
Seven glass beakers were filled with 50 g of each of the above pretreated fibrous material suspensions. To each of the glass beakers, 1.75 g of each 1% by mass aqueous solution of each of the above polymers I to VII was metered in while slightly stirring the fibrous material suspension (based on the fibrous material (solid)). Equivalent to 1% polymer (solid)). The fibrous material suspension was then diluted to a fibrous material concentration of 0.35% by adding water. Thereafter, 20% by mass carbonate pigment slurry (PCC, Syncarb F474 from Omya) was added. The amount of pigment suspension (corresponding to the filler suspension) added was adjusted in several preliminary tests so that the pigment content in the laboratory sheet subsequently formed was about 20%. Two minutes after the pigment addition, this fibrous material suspension was processed according to ISO 5269/2 on a Rapid-Corsen sheet making machine to obtain a sheet having a basis weight of 100 g / m 2 . The wet sheet was then removed from the wire frame and placed between two suction felts. The suction felt and the wet paper were then compressed together in a static press with a pressing pressure of 6 bar. In that case, it compressed until the solid content of the wet sheet | seat became 50 mass% each time.

実施例8、9及び10(本発明によらない)
3つのガラスビーカーに、上記の前処理した繊維状物質懸濁液それぞれ50gを充填した。これらのガラスビーカーの各々に、上記ポリマーI〜IIIのうち1つの1質量%水溶液それぞれ1.75gを、繊維状物質懸濁液をわずかに撹拌しながら計量供給した(繊維状物質(固体)に対して1%のポリマー(固体)に相当)。次いで、この繊維状物質懸濁液を水の添加によりそれぞれ0.35%の繊維状物質濃度に希釈した。その後、20質量%炭酸塩顔料スラリー(PCC、Omya社製Syncarb F474)を添加した。顔料懸濁液の添加量を、これに引き続いて形成される実験用シート中での顔料含分が約20%となるように、複数の予備試験で調整した。顔料添加の2分後に、この繊維状物質懸濁液をラピッド−コーセンシート作製機にてISO 5269/2に従って処理して、100g/m2の坪量を有するシートを得た。次いで、この湿ったシートをワイヤーフレームから取り出し、2枚のサクションフェルトの間に置いた。次いで、これらのサクションフェルトとこの湿った紙とをひとまとめにしたものを、静的プレス機においてプレス圧6barで圧縮した。その際、プレス装置内の滞留時間を適合させることにより、その都度、湿ったシートの、第1表から引用されうる固形分まで圧縮した。
Examples 8, 9 and 10 (not according to the invention)
Three glass beakers were each filled with 50 g of the pretreated fibrous material suspension. To each of these glass beakers, 1.75 g of each 1% by weight aqueous solution of the above polymers I to III was metered in while slightly stirring the fibrous material suspension (to the fibrous material (solid)). Equivalent to 1% polymer (solid)). The fibrous material suspension was then diluted to a fibrous material concentration of 0.35% by adding water. Thereafter, 20% by mass carbonate pigment slurry (PCC, Syncarb F474 from Omya) was added. The amount of pigment suspension added was adjusted in several preliminary tests so that the pigment content in the laboratory sheet subsequently formed was about 20%. Two minutes after the pigment addition, this fibrous material suspension was processed according to ISO 5269/2 on a Rapid-Corsen sheet making machine to obtain a sheet having a basis weight of 100 g / m 2 . The wet sheet was then removed from the wire frame and placed between two suction felts. The suction felt and the wet paper were then compressed together in a static press with a pressing pressure of 6 bar. At that time, by adjusting the residence time in the press apparatus, the wet sheet was compressed to the solid content that can be cited from Table 1 each time.

実施例11、12及び13
3個のガラスビーカーに、上記の前処理した繊維状物質懸濁液それぞれ50gを充填した。これらのガラスビーカーの各々に、上記ポリマーVIII〜Xのうち1つの1質量%水溶液それぞれ1.75gを、繊維状物質懸濁液をわずかに撹拌しながら計量供給した(繊維状物質(固体)に対して1%のポリマー(固体)に相当)。次いで、この繊維状物質懸濁液を水の添加によりそれぞれ0.35%の繊維状物質濃度に希釈した。その後、20質量%炭酸塩顔料スラリー(PCC、Omya社製Syncarb F474)を添加した。顔料懸濁液(填料懸濁液に相当)の添加量を、これに引き続いて形成される実験用シート中での顔料含分が約20%となるように、複数の予備試験で調整した。顔料添加の2分後に、この繊維状物質懸濁液をラピッド−コーセンシート作製機にてISO 5269/2に従って処理して、100g/m2の坪量を有するシートを得た。次いで、この湿ったシートをワイヤーフレームから取り出し、2枚のサクションフェルトの間に置いた。次いで、これらのサクションフェルトとこの湿った紙とをひとまとめにしたものを、静的プレス機においてプレス圧6barで圧縮した。その際、その都度、湿ったシートの固形分が50質量%となるまで圧縮した。
Examples 11, 12, and 13
Three glass beakers were each filled with 50 g of the pretreated fibrous material suspension. To each of these glass beakers, 1.75 g of each 1% by mass aqueous solution of one of the above polymers VIII to X was metered in while slightly stirring the fibrous material suspension (to the fibrous material (solid)). Equivalent to 1% polymer (solid)). The fibrous material suspension was then diluted to a fibrous material concentration of 0.35% by adding water. Thereafter, 20% by mass carbonate pigment slurry (PCC, Syncarb F474 from Omya) was added. The amount of pigment suspension (corresponding to the filler suspension) added was adjusted in several preliminary tests so that the pigment content in the laboratory sheet subsequently formed was about 20%. Two minutes after the pigment addition, this fibrous material suspension was processed according to ISO 5269/2 on a Rapid-Corsen sheet making machine to obtain a sheet having a basis weight of 100 g / m 2 . The wet sheet was then removed from the wire frame and placed between two suction felts. The suction felt and the wet paper were then compressed together in a static press with a pressing pressure of 6 bar. In that case, it compressed until the solid content of the wet sheet | seat became 50 mass% each time.

実施例14、15及び16(本発明によらない、低濃度紙料における計量供給)
前処理した繊維状物質懸濁液(高濃度紙料)50gを含む3個のガラスビーカーを、水450gの添加により、繊維状物質濃度0.35%(3.5g/lに相当)に希釈した。
Examples 14, 15 and 16 (not in accordance with the invention, metering in low concentration stock)
Three glass beakers containing 50 g of pretreated fibrous material suspension (high-concentration stock) are diluted to a fibrous material concentration of 0.35% (corresponding to 3.5 g / l) by adding 450 g of water. did.

希釈したこの繊維状物質懸濁液(低濃度紙料)500g当たり、ポリマーI、II又はIIIの1質量%水溶液それぞれ1.75gを添加した(繊維状物質(固体)に対して1質量%のポリマー(固体)に相当)。   1.75 g of each 1% by mass aqueous solution of polymer I, II or III was added per 500 g of this diluted fibrous substance suspension (low concentration paper stock) (1% by mass relative to the fibrous substance (solid)) Equivalent to polymer (solid)).

その後、それぞれ20質量%炭酸塩顔料スラリー(PCC、Omya社製Syncarb F474)をこの混合物に添加した。顔料懸濁液の添加量を、これに引き続いて形成される実験用シート中での顔料含分が約20%となるように、複数の予備試験で調整した。   Thereafter, each 20% by weight carbonate pigment slurry (PCC, Syncarb F474 from Omya) was added to the mixture. The amount of pigment suspension added was adjusted in several preliminary tests so that the pigment content in the laboratory sheet subsequently formed was about 20%.

顔料添加の2分後に、この繊維状物質懸濁液をラピッド−コーセンシート作製機にてISO 5269/2に従って処理して、100g/m2の坪量を有するシートを得た。次いで、この湿ったシートをワイヤーフレームから取り出し、2枚のサクションフェルトの間に置いた。次いで、これらのサクションフェルトとこの湿った紙とをひとまとめにしたものを、静的プレス機においてプレス圧6barで圧縮した。その際、プレス装置内での紙の滞留時間を適合させることにより、その都度、湿ったシートの固形分が50質量%となるまで圧縮した。 Two minutes after the pigment addition, this fibrous material suspension was processed according to ISO 5269/2 on a Rapid-Corsen sheet making machine to obtain a sheet having a basis weight of 100 g / m 2 . The wet sheet was then removed from the wire frame and placed between two suction felts. The suction felt and the wet paper were then compressed together in a static press with a pressing pressure of 6 bar. At that time, the paper was compressed until the solid content of the wet sheet reached 50% by mass by adjusting the residence time of the paper in the press apparatus.

実施例17、18(対照)
3個のガラスビーカーに、上記の前処理した繊維状物質懸濁液それぞれ50gを充填した。次いで、この繊維状物質懸濁液を水の添加によりそれぞれ0.35%の繊維状物質濃度に希釈した。その後、20質量%炭酸塩顔料スラリー(PCC、Omya社製Syncarb F474)を添加した。顔料懸濁液(填料懸濁液に相当)の添加量を、これに引き続いて形成される実験用シート中での顔料含分が約20%となるように、複数の予備試験で調整した。顔料添加の2分後に、この繊維状物質懸濁液をラピッド−コーセンシート作製機にてISO 5269/2に従って処理して、100g/m2の坪量を有するシートを得た。次いで、この湿ったシートをワイヤーフレームから取り出し、2枚のサクションフェルトの間に置いた。次いで、これらのサクションフェルトとこの湿った紙とをひとまとめにしたものを、静的プレス機においてプレス圧6barで圧縮した。圧縮時間を変化させることにより、種々の絶乾率を有するシートが生じた(第1表参照)。
Examples 17, 18 (control)
Three glass beakers were each filled with 50 g of the pretreated fibrous material suspension. The fibrous material suspension was then diluted to a fibrous material concentration of 0.35% by adding water. Thereafter, 20% by mass carbonate pigment slurry (PCC, Syncarb F474 from Omya) was added. The amount of pigment suspension (corresponding to the filler suspension) added was adjusted in several preliminary tests so that the pigment content in the laboratory sheet subsequently formed was about 20%. Two minutes after the pigment addition, this fibrous material suspension was processed according to ISO 5269/2 on a Rapid-Corsen sheet making machine to obtain a sheet having a basis weight of 100 g / m 2 . The wet sheet was then removed from the wire frame and placed between two suction felts. The suction felt and the wet paper were then compressed together in a static press with a pressing pressure of 6 bar. Varying the compression time produced sheets with various dry rates (see Table 1).

応用技術試験:初期湿紙強度の測定
初期湿紙強度は、紙の湿潤強度や初期湿潤強度とは区別されねばならず、なぜならば、これらの2つの特性は、乾燥後に再度所定の水含分へ湿潤した紙について測定されるものであるためである。初期湿紙強度は、永続的な湿潤強度を有しない紙を評価する際に重要なパラメータの1つである。乾燥され、その後再度湿潤された紙は、抄紙機のワイヤーパート及びプレスパートを通過した直後の湿った紙とは全く異なる湿潤強度を有する。
Applied technology test: measurement of initial wet paper strength Initial wet paper strength must be distinguished from paper wet strength and initial wet strength, because these two properties are again determined to be a predetermined water content after drying. This is because it is measured on paper that has been wet. Initial wet paper strength is one of the important parameters when evaluating paper that does not have permanent wet strength. Paper that has been dried and then re-wet has a wet strength that is completely different from the wet paper immediately after passing through the wire and press parts of the paper machine.

湿った紙についての初期湿紙強度の測定を、それぞれVoith法により実施する(M.Schwarz and K.Bechtel,”Initiale Gefuegefestigkeit bei der Blattbildung”,Wochenblatt fuer Papierfabrikation 131, p.950-957(2003)No.16参照)。このために、湿ったシートを、静的プレス機中でのプレス後にプラスチック基材上にたたき落とし、切断用基材上に移した。次いで、このシートから、所定の長さ及び幅を有する試験ストリップを切り出した。この試験ストリップを、所望の絶乾率に達するまで一定圧下でプレスした。上に示した実施例により得た紙シートの実験のために、それぞれ、42%〜58%の範囲内の4つの絶乾率に調整した。これらの値から、上記の刊行物に記載されている近似方法を用いて、50%絶乾率における初期湿紙強度を求めた。初期湿紙強度の実際の測定は、特別なクランプ装置を備えた垂直引張り試験機において実施した。この引張り試験機において測定した力を、坪量に依存しない、いわゆるINF指数に換算した。クランプ装置、測定手順、紙の絶乾率の測定及びデータ処理の詳細な説明については、上記の刊行物を引用することができる。   Initial wet paper strength measurements on wet paper are carried out by the Voith method (M. Schwarz and K. Bechtel, “Initiale Gefuegefestigkeit bei der Blattbildung”, Wochenblatt fuer Papierfabrikation 131, p.950-957 (2003) No. .16). For this purpose, the wet sheet was knocked down on a plastic substrate after pressing in a static press and transferred onto a cutting substrate. A test strip having a predetermined length and width was then cut from the sheet. The test strip was pressed under constant pressure until the desired dry rate was reached. For the experiments with paper sheets obtained according to the examples given above, each was adjusted to four dry rates in the range of 42% to 58%. From these values, the initial wet paper web strength at 50% dryness was determined using the approximation method described in the above publication. The actual measurement of initial wet paper strength was carried out in a vertical tensile tester equipped with a special clamping device. The force measured by this tensile tester was converted into a so-called INF index that does not depend on the basis weight. Reference may be made to the above publications for a detailed description of the clamping device, the measurement procedure, the measurement of the dry rate of the paper and the data processing.

試験の結果を第1表にまとめる。   The test results are summarized in Table 1.

第1表:20質量%の填料含有率を有する紙を製造するための応用技術試験の結果。限界絶乾率G(x)=G(20)の算出によれば、本発明により、少なくとも50質量%の固形分にプレスされねばならない:

Figure 2015531032
Table 1. Results of applied technology tests for producing paper with a filler content of 20% by weight. According to the calculation of the critical dry rate G (x) = G (20), according to the invention, it must be pressed to a solids content of at least 50% by weight:
Figure 2015531032

Figure 2015531032
Figure 2015531032

Claims (10)

ワイヤーパートにおけるシート形成及び後続のプレスパートにおける紙のプレス下での、少なくとも1種の水溶性ポリマーを含む填料含有紙料の脱水を含む、紙、板紙及び厚紙の製造方法において、20〜40g/lの範囲内の繊維状物質濃度を有する紙料に少なくとも1種の水溶性ポリマーを計量供給し、次いでこの紙料を5〜15g/lの範囲内の繊維状物質濃度に希釈し、この希釈された紙料をシート形成下に脱水し、かつこのシートをプレスパートにおいてG(x)質量%以上の固形分にプレスし、G(x)は、
Figure 2015531032
により算出され、
ここで、xは、乾燥された紙、板紙又は厚紙の填料含有率(質量%)の数値を表し、かつ、
G(x)は、最低固形分(質量%)の数値を表し、この最低固形分にシートがプレスされるものとし、
その際、前記水溶性ポリマーは、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、任意に次いで後架橋することにより得られる、前記方法。
In a process for producing paper, board and cardboard comprising dehydration of a filler-containing stock comprising at least one water-soluble polymer under sheet forming in a wire part and paper pressing in a subsequent press part, 20-40 g / at least one water-soluble polymer is metered into a stock having a fibrous material concentration in the range of l, and the stock is then diluted to a fibrous material concentration in the range of 5-15 g / l. The formed stock is dehydrated under sheet formation, and this sheet is pressed to a solid content of G (x)% by mass or more in the press part, and G (x) is
Figure 2015531032
Calculated by
Where x represents the numerical value of the filler content (% by weight) of the dried paper, paperboard or cardboard, and
G (x) represents the numerical value of the minimum solid content (mass%), and the sheet is pressed to this minimum solid content,
In this case, the water-soluble polymer is obtained by subjecting an acrylamide-containing polymer and / or a methacrylamide-containing polymer to Hofmann decomposition and optionally then post-crosslinking.
ワイヤーパートにおけるシート形成及び後続のプレスパートにおける紙のプレス下での、少なくとも1種の水溶性ポリマーを含む填料含有紙料の脱水を含む、紙、板紙及び厚紙の製造方法において、20〜40g/lの範囲内の繊維状物質濃度を有する紙料に少なくとも1種の水溶性ポリマーを計量供給し、次いでこの紙料を5〜15g/lの範囲内の繊維状物質濃度に希釈し、この希釈された紙料をシート形成下に脱水し、かつこのシートをプレスパートにおいて48質量%以上の固形分にプレスし、その際、前記水溶性ポリマーは、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、次いで後架橋することにより得られる、前記方法。   In a process for producing paper, board and cardboard comprising dehydration of a filler-containing stock comprising at least one water-soluble polymer under sheet forming in a wire part and paper pressing in a subsequent press part, 20-40 g / at least one water-soluble polymer is metered into a stock having a fibrous material concentration in the range of l, and the stock is then diluted to a fibrous material concentration in the range of 5-15 g / l. The formed stock is dehydrated while forming a sheet, and the sheet is pressed to a solid content of 48% by mass or more in a press part. In this case, the water-soluble polymer is an acrylamide-containing polymer and / or a methacrylamide-containing polymer. Said process obtained by Hoffmann decomposition and then post-crosslinking. 前記紙料が、繊維状物質として、30°SR以下のろ水度を有する繊維状物質のみを含有していることを特徴とする、請求項1又は2に記載の方法。   The method according to claim 1, wherein the stock contains only a fibrous material having a freeness of 30 ° SR or less as the fibrous material. 前記水溶性ポリマーを、20〜40g/lの範囲内の繊維状物質濃度を有する紙料に、填料の添加前に添加することを特徴とする、請求項1から3までのいずれか1項に記載の方法。   4. The method according to claim 1, wherein the water-soluble polymer is added to a paper material having a fibrous substance concentration within a range of 20 to 40 g / l before addition of a filler. 5. The method described. 前記水溶性ポリマーを、繊維状物質に対して0.05〜5.00質量%の量で添加することを特徴とする、請求項1から4までのいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the water-soluble polymer is added in an amount of 0.05 to 5.00% by mass with respect to the fibrous substance. 前記アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーが、以下:
a)アクリルアミド及び/又はメタクリルアミド、
b)任意に、1種以上のモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマー、及び/又はジアリルジメチルアンモニウムクロリド、
(c)任意に、2つ以上のエチレン性不飽和基を有する1種以上の化合物であって、前記ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物
を含むモノマー混合物のラジカル重合により得られることを特徴とする、請求項1から5までのいずれか1項に記載の方法。
The acrylamide-containing polymer and / or methacrylamide-containing polymer is:
a) acrylamide and / or methacrylamide,
b) optionally one or more monoethylenically unsaturated monomers, monomers in which the corresponding structural units of said monomers in the polymer are stable under the Hofmann decomposition reaction conditions, and / or diallyldimethylammonium chloride ,
(C) optionally one or more compounds having two or more ethylenically unsaturated groups, wherein the corresponding structural units of the compounds in the polymer are stable under the Hofmann decomposition reaction conditions 6. Process according to any one of claims 1 to 5, characterized in that it is obtained by radical polymerization of a monomer mixture comprising.
前記アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーが、以下:
アクリルアミド及び/又はメタクリルアミドを、50〜90モル%、及び
1種以上のモノエチレン性不飽和モノマーであって、前記ポリマー中の該モノマーの相応する構造単位がホフマン分解の反応条件下に安定であるモノマー、及び/又はジアリルジメチルアンモニウムクロリドを、10〜50モル%、
並びに、2つ以上のエチレン性不飽和基を有する1種以上の化合物であって、前記ポリマー中の該化合物の相応する構造単位がホフマン分解の反応条件下に安定である化合物を、モノマーa及びbの総質量に対して1.0質量%まで
からなるモノマー混合物のラジカル重合により得られることを特徴とする、請求項1から6までのいずれか1項に記載の方法。
The acrylamide-containing polymer and / or methacrylamide-containing polymer is:
Acrylamide and / or methacrylamide is 50-90 mol% and one or more monoethylenically unsaturated monomers, the corresponding structural units of the monomers in the polymer being stable under the Hoffmann decomposition reaction conditions. 10 to 50 mol% of a certain monomer and / or diallyldimethylammonium chloride,
And one or more compounds having two or more ethylenically unsaturated groups, wherein the corresponding structural unit of the compound in the polymer is stable under Hofmann decomposition reaction conditions, the monomer a and The process according to any one of claims 1 to 6, characterized in that it is obtained by radical polymerization of a monomer mixture comprising up to 1.0% by weight with respect to the total weight of b.
前記水溶性ポリマーが、アクリルアミド含有ポリマー及び/又はメタクリルアミド含有ポリマーをホフマン分解し、次いで、多官能性エポキシド、多官能性カルボン酸エステル、多官能性イソシアネート、多官能性アクリル酸エステル、多官能性メタクリル酸エステル、多官能性アクリル酸アミド、多官能性メタクリル酸アミド、エピクロロヒドリン、多官能性酸ハロゲン化物、多官能性ニトリル、オリゴエチレンオキシドのα,ω−クロロヒドリンエーテル、ポリエチレンオキシドのα,ω−クロロヒドリンエーテル、他の多官能性アルコールのα,ω−クロロヒドリンエーテル、ジビニルスルホン、無水マレイン酸又はω−ハロカルボン酸クロリド、多官能性ハロゲンアルカン及び炭酸塩から選択された架橋剤で後架橋することにより得られることを特徴とする、請求項1から7までのいずれか1項に記載の方法。   The water-soluble polymer decomposes the acrylamide-containing polymer and / or the methacrylamide-containing polymer by Hofmann, and then multi-functional epoxide, polyfunctional carboxylic acid ester, polyfunctional isocyanate, polyfunctional acrylate ester, polyfunctional Methacrylic acid ester, polyfunctional acrylic amide, polyfunctional methacrylic amide, epichlorohydrin, polyfunctional acid halide, polyfunctional nitrile, α, ω-chlorohydrin ether of oligoethylene oxide, polyethylene oxide Selected from α, ω-chlorohydrin ethers, α, ω-chlorohydrin ethers of other multifunctional alcohols, divinyl sulfone, maleic anhydride or ω-halocarboxylic acid chlorides, multifunctional halogen alkanes and carbonates Obtained by post-crosslinking with a cross-linking agent Wherein the method according to any one of claims 1 to 7. 17〜32の填料含分を有する紙、板紙及び厚紙を製造するための、請求項2から8までのいずれか1項に記載の方法において、プレスパートにおいて少なくとも49〜55の範囲内の固形分にプレスすることを特徴とする、前記方法。   A process according to any one of claims 2 to 8 for producing paper, board and cardboard having a filler content of 17 to 32, wherein the solids content in the press part is at least in the range of 49 to 55. And pressing the method. 15以下の填料含分を有する紙、板紙及び厚紙を製造するための、請求項2から8までのいずれか1項に記載の方法において、プレスパートにおいて少なくとも48質量%の固形分にプレスすることを特徴とする、前記方法。   9. A method according to any one of claims 2 to 8 for producing paper, board and cardboard having a filler content of 15 or less, wherein the pressing part is pressed to a solids content of at least 48% by weight. Characterized by the above.
JP2015527832A 2012-08-22 2013-07-31 Paper, paperboard and cardboard manufacturing method Expired - Fee Related JP6238986B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12181322 2012-08-22
EP12181322.4 2012-08-22
PCT/EP2013/066120 WO2014029593A1 (en) 2012-08-22 2013-07-31 Method for producing paper, paperboard and cardboard

Publications (2)

Publication Number Publication Date
JP2015531032A true JP2015531032A (en) 2015-10-29
JP6238986B2 JP6238986B2 (en) 2017-11-29

Family

ID=46826253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015527832A Expired - Fee Related JP6238986B2 (en) 2012-08-22 2013-07-31 Paper, paperboard and cardboard manufacturing method

Country Status (8)

Country Link
EP (1) EP2888404B1 (en)
JP (1) JP6238986B2 (en)
CN (1) CN104583493B (en)
BR (1) BR112015003272B1 (en)
CA (1) CA2881868C (en)
ES (1) ES2690592T3 (en)
PL (1) PL2888404T3 (en)
WO (1) WO2014029593A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051687B2 (en) 2012-08-22 2015-06-09 Basf Se Production of paper, card and board
FR3016363B1 (en) * 2014-01-15 2017-05-26 Snf Sas AQUEOUS SOLUTION OF ACRYLAMIDE-DERIVED CATIONIC COPOLYMERS, PROCESS FOR PREPARATION AND USE
JP6779976B2 (en) * 2015-08-06 2020-11-04 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Paper manufacturing method
JP2018044273A (en) * 2016-09-16 2018-03-22 栗田工業株式会社 Manufacturing method of paper, manufacturing device of additive for making paper and manufacturing device of paper

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568409A (en) * 1979-07-03 1981-01-28 Seiko Kagaku Kogyo Co Ltd Cation-modified polyacrylamide, and use and preparation of the same
JPH0457994A (en) * 1990-06-26 1992-02-25 Mitsui Toatsu Chem Inc Additive for paper-making process
JPH0978486A (en) * 1995-09-14 1997-03-25 Seiko Kagaku Kogyo Co Ltd Additive for papermaking and papermaking
JPH11228641A (en) * 1997-11-28 1999-08-24 Mitsui Chem Inc New polymer and its usage
JP2002212898A (en) * 2000-11-13 2002-07-31 Hymo Corp Method for freeness improvement
JP2003301398A (en) * 2002-04-08 2003-10-24 Mitsui Chemicals Inc Method of making paper
JP2004300634A (en) * 2003-03-31 2004-10-28 Somar Corp Paper-making method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039757A (en) * 1988-12-28 1991-08-13 Mitsui Toatsu Chemicals, Inc. Method of manufacturing cationic acrylamide polymers, cationic acrylamide polymers, and the applications of these polymers
US5239014A (en) * 1988-12-28 1993-08-24 Mitsui Toatsu Chemicals, Inc. Cationic acrylamide polymers and the applications of these polymers
US6197919B1 (en) * 1997-05-30 2001-03-06 Hercules Incorporated Resins of amphoteric aldehyde polymers and use of said resins as temporary wet-strength or dry-strength resins for paper
FR2880901B1 (en) * 2005-01-17 2008-06-20 Snf Sas Soc Par Actions Simpli METHOD FOR MANUFACTURING PAPER AND CARDBOARD OF HIGH RESISTANCE BY DRY AND PAPERS AND CARTONS THUS OBTAINED
PT2288750E (en) * 2008-05-15 2012-09-26 Basf Se Method for producing paper, paperboard and cardboard with a high dry strength
ES2700610T3 (en) * 2008-06-24 2019-02-18 Basf Se Paper manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568409A (en) * 1979-07-03 1981-01-28 Seiko Kagaku Kogyo Co Ltd Cation-modified polyacrylamide, and use and preparation of the same
JPH0457994A (en) * 1990-06-26 1992-02-25 Mitsui Toatsu Chem Inc Additive for paper-making process
JPH0978486A (en) * 1995-09-14 1997-03-25 Seiko Kagaku Kogyo Co Ltd Additive for papermaking and papermaking
JPH11228641A (en) * 1997-11-28 1999-08-24 Mitsui Chem Inc New polymer and its usage
JP2002212898A (en) * 2000-11-13 2002-07-31 Hymo Corp Method for freeness improvement
JP2003301398A (en) * 2002-04-08 2003-10-24 Mitsui Chemicals Inc Method of making paper
JP2004300634A (en) * 2003-03-31 2004-10-28 Somar Corp Paper-making method

Also Published As

Publication number Publication date
WO2014029593A1 (en) 2014-02-27
BR112015003272A2 (en) 2017-08-08
CN104583493A (en) 2015-04-29
EP2888404B1 (en) 2018-07-18
JP6238986B2 (en) 2017-11-29
EP2888404A1 (en) 2015-07-01
BR112015003272B1 (en) 2021-07-20
CN104583493B (en) 2019-06-07
CA2881868C (en) 2020-12-15
CA2881868A1 (en) 2014-02-27
ES2690592T3 (en) 2018-11-21
PL2888404T3 (en) 2018-12-31

Similar Documents

Publication Publication Date Title
CA2726500C (en) Production of paper
CA2777115C (en) Method for producing paper, paperboard and cardboard having high dry strength
US9765483B2 (en) Production of paper, card and board
JP5832426B2 (en) Paper, board and cardboard manufacturing methods
CA2586076C (en) Production of paper, paperboard, or cardboard having high dry strength using polymeric anionic compound and polymer comprising vinylamine units
CA2733503C (en) Process for increasing the dry strength of paper, board and cardboard
US8597466B2 (en) Process for the production of paper, board and cardboard having high dry strength
CA2644348A1 (en) Method for producing paper, paperboard and cardboard having high dry strength
CA2750671A1 (en) Method for producing paper, card and board with high dry strength
JP6238986B2 (en) Paper, paperboard and cardboard manufacturing method
JP6779976B2 (en) Paper manufacturing method
CA2876609C (en) Improved method for manufacturing paper using a cationic polymer obtained by hofmann degradation
CN103620115B (en) The method preparing paper, cardboard and clamp
US8753479B2 (en) Production of paper, card and board
KR20170068561A (en) Solidifying composition for paper and cardboard
CN113039224B (en) Method for producing paper or board
TW202413770A (en) Additive compositions and methods for papermaking with high-kappa furnishes
JP2000160499A (en) Additive for paper making

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees