JP2015230171A - Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same - Google Patents

Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same Download PDF

Info

Publication number
JP2015230171A
JP2015230171A JP2014114850A JP2014114850A JP2015230171A JP 2015230171 A JP2015230171 A JP 2015230171A JP 2014114850 A JP2014114850 A JP 2014114850A JP 2014114850 A JP2014114850 A JP 2014114850A JP 2015230171 A JP2015230171 A JP 2015230171A
Authority
JP
Japan
Prior art keywords
lightning arrester
temperature
protection element
lightning protection
lightning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014114850A
Other languages
Japanese (ja)
Inventor
信隆 荒岡
Nobutaka Araoka
信隆 荒岡
竜太 染谷
Ryuta Someya
竜太 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014114850A priority Critical patent/JP2015230171A/en
Publication of JP2015230171A publication Critical patent/JP2015230171A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measurement method of highly accurately and sequentially measuring a temperature of a lightning protection element positioned inside an arrester without changing characteristics of the arrester in the arrester constituted of the lightning protection element and a porcelain tube covering the lightning protection element.SOLUTION: A temperature measurement method of a lightning protection element in an arrester constituted of the lightning protection element and a porcelain tube covering the lightning protection element comprises the steps of: exciting ultrasonic waves to the porcelain tube of the arrestor and measuring a temperature of the porcelain tube on the basis of a relation between ultrasonic-wave propagation velocity and temperature propagation characteristics of the porcelain tube; and measuring a temperature of the lightning protection element on the basis of the temperature propagation characteristics between the porcelain tube and the lightning protection element.

Description

本発明の実施形態は、避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法に関する。   Embodiments of the present invention relate to a method for measuring the temperature of a lightning arrester in a lightning arrester comprising a lightning arrester and a soot tube covering the same.

避雷器は、雷や過雷圧のサージに起因する高雷圧による雷力機器の損傷を防止することを目的として設置される装置である。この避雷器の開発試験においては、碍管で覆われた避雷素子の温度変化測定を実施する必要がある。   A lightning arrester is a device installed for the purpose of preventing damage to lightning equipment due to high lightning pressure caused by lightning or surge of overthunder pressure. In this lightning arrester development test, it is necessary to measure the temperature change of the lightning arrester covered with a soot tube.

従来の測定方法としては、サーモテープや光による測定方法がある。サーモテープは特定温度に達したときに色が変色する不可逆性の指温材を複数個用いて、避雷素子の最高到達温度を推定する。しかしながら、温度刻み幅は5度前後であり、正確な温度上昇を測定することができず、また逐次測定ではないため最高到達温度に関する情報しか得ることができない。   Conventional measurement methods include a measurement method using thermo tape or light. The thermo tape uses a plurality of irreversible finger temperature materials whose color changes when reaching a specific temperature, and estimates the maximum temperature reached by the lightning protection element. However, the temperature increment is around 5 degrees, and an accurate temperature rise cannot be measured, and since it is not a sequential measurement, only information about the maximum temperature reached can be obtained.

光測定は避雷器碍管に光ファイバを挿入し、戻ってくる反射光を見ることで温度を逐次測定する。しかしながら、光ファイバを挿入するための穴加工を施す必要があるため、雷気的ストレスを増大させ、開発試験に影響を及ぼす可能性がある。したがって、従来では碍管により覆われた避雷素子温度を高精度かつ逐次的に避雷器の特性を変化させることなく測定する方法がなく、これを解決するために非接触で内部の避雷素子温度を測定する方法を開発する必要性がある。   The light measurement is performed by sequentially measuring the temperature by inserting an optical fiber into a lightning arrester tube and observing the reflected light returning. However, since it is necessary to provide a hole for inserting the optical fiber, it may increase lightning stress and affect development tests. Therefore, there is no conventional method for measuring the temperature of the lightning protection element covered with the soot tube without changing the characteristics of the lightning arrester with high accuracy and successively, and in order to solve this, the temperature of the internal lightning protection element is measured without contact. There is a need to develop a method.

また、特開2011−149839号公報には、超音波の速度と温度との関係式v(T)が予め求められた媒体に超音波を励起し、媒体を伝播した超音波を非接触的に検出して、媒体の二次元又は三次元温度分布を算出する超音波を用いた温度測定方法が開示されている。この方法においては、超音波の検出点を固定しつつ超音波の励起点を移動させて、励起点と検出点との間の超音波の伝播時間を算出する。また、媒体の二次元又は三次元温度分布を算出するために、励起点の各点と検出点との間の一次元温度分布を数値解析によって夫々算出することが開示されている。しかしながら、当該方法も、碍管により覆われた避雷素子温度を高精度かつ逐次的に測定することについては何ら言及していない。   Japanese Patent Application Laid-Open No. 2011-149839 discloses that a relational expression v (T) between an ultrasonic velocity and temperature is excited in advance to a medium, and the ultrasonic wave propagated through the medium is non-contacted. A temperature measurement method using ultrasonic waves for detecting and calculating a two-dimensional or three-dimensional temperature distribution of a medium is disclosed. In this method, the ultrasonic excitation point is moved while the ultrasonic detection point is fixed, and the ultrasonic propagation time between the excitation point and the detection point is calculated. In addition, it is disclosed that, in order to calculate a two-dimensional or three-dimensional temperature distribution of a medium, a one-dimensional temperature distribution between each excitation point and a detection point is calculated by numerical analysis. However, this method also makes no mention of measuring the temperature of the lightning protection element covered with the soot tube with high accuracy and sequentially.

特開2011−149839号公報JP 2011-149839 A

本発明は、避雷素子及びそれを覆う碍管からなる避雷器において、その内部に位置する避雷素子の温度を高精度かつ逐次的に、避雷器の特性を変化させることなく測定する方法を提供することを目的とする。   An object of the present invention is to provide a method for measuring the temperature of a lightning arrester located inside the lightning arrester composed of a lightning arrester and a soot pipe covering the same without changing the characteristics of the lightning arrester. And

実施形態の避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法は、前記避雷器の前記碍管に超音波を励起し、前記碍管の超音波伝播速度及び温度伝播特性の関係に基づいて、前記碍管の温度を計測するステップを具える。また、前記碍管及び前記避雷素子間の温度伝播特性に基づいて、前記避雷素子の温度を計測するステップを具える。   The method of measuring the temperature of the lightning arrester in the lightning arrester comprising the lightning arrester of the embodiment and the soot tube covering it is based on the relationship between the ultrasonic propagation speed and the temperature propagation characteristics of the soot tube, by exciting the soot tube of the arrester. And measuring the temperature of the soot tube. Further, the method includes a step of measuring a temperature of the lightning arrester based on a temperature propagation characteristic between the flame tube and the lightning arrester.

実施形態の避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法を実施するための概略構成図である。It is a schematic block diagram for implementing the temperature measuring method of the lightning arrester in the lightning arrester which consists of the lightning arrester of embodiment and the soot pipe which covers it.

図1は、本実施形態の避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法を実施するための概略構成図である。   FIG. 1 is a schematic configuration diagram for carrying out a method for measuring the temperature of a lightning arrester in a lightning arrester comprising a lightning arrester of this embodiment and a soot tube covering it.

図1に示すように、本実施形態においては、避雷素子の温度測定を行うための測定装置10と、避雷素子21及びそれを覆う碍管22からなるとともに、避雷素子21の両端部に配設された電極23,24からなる避雷器20とが配設されている。   As shown in FIG. 1, in the present embodiment, the measuring device 10 for measuring the temperature of the lightning protection element, the lightning protection element 21, and the soot tube 22 covering the lightning protection element 21, are disposed at both ends of the lightning protection element 21. A lightning arrester 20 comprising electrodes 23 and 24 is disposed.

測定装置10は、レーザ光源11、及びこのレーザ光源11の先端部に取り付けられ、当該レーザ光源11より発射されたレーザ光を導波するための光ファイバ12、避雷器20で発生した超音波を受信するための超音波検出装置13、当該超音波検出装置13で受信された超音波信号が雷気信号に変換された後、当該雷気信号を伝播させるための雷気信号ケーブル14、雷気信号を測定するための測定装置15(例えば二光波混合型干渉計)及び演算装置(例えば、PC)16からなる。   The measuring device 10 is attached to a laser light source 11 and a tip portion of the laser light source 11, and receives an ultrasonic wave generated by an optical fiber 12 for guiding a laser beam emitted from the laser light source 11 and a lightning arrester 20. An ultrasonic detection device 13 for transmitting the lightning signal, and after the ultrasonic signal received by the ultrasonic detection device 13 is converted into a lightning signal, the lightning signal cable 14 for propagating the lightning signal, the lightning signal A measuring device 15 (for example, a two-wave mixing interferometer) and an arithmetic device (for example, a PC) 16 for measuring the above.

レーザ光源11から照射されたレーザ光は、光ファイバ12を介して、避雷器20の表面に照射される。避雷器20に導入されたレーザ光は、避雷器20の外周に位置する碍管22の所定の地点にて超音波を非接触的に励起し、当該超音波は碍管22内を伝播した後、碍管22より外部に出力され、超音波検出装置13で検出される。その後、超音波検出装置13で検出した超音波信号は電気信号に変換された後、雷気信号ケーブル14を介して、測定装置15に送られる。測定装置15では検出された雷気信号波形をアナログ/デジタル変換して離散化された波形データに変換し、その波形データを演算装置16に転送する。   Laser light emitted from the laser light source 11 is applied to the surface of the lightning arrester 20 through the optical fiber 12. The laser light introduced into the lightning arrester 20 excites an ultrasonic wave in a non-contact manner at a predetermined point of the soot tube 22 located on the outer periphery of the lightning arrester 20, and the ultrasonic wave propagates through the soot tube 22 and then from the soot tube 22. It is output to the outside and detected by the ultrasonic detector 13. Thereafter, the ultrasonic signal detected by the ultrasonic detection device 13 is converted into an electric signal, and then sent to the measurement device 15 via the lightning signal cable 14. The measurement device 15 performs analog / digital conversion on the detected lightning signal waveform to convert it into discrete waveform data, and transfers the waveform data to the arithmetic device 16.

なお、本実施形態では、超音波を非接触的に検出する方法として、本実施形態のレーザ超音波による測定手法の他に、電磁超音波や空気超音波による測定手法を採用してもよい。しかしながら、レーザ超音波測定手法は、上記他の測定手法に比べSN比が高く取れるため、高精度測定としてより好適な手法である。また、計測対象に照射するレーザは、短パルス高エネルギーのレーザ光、例えば、Nd:YAGレーザが挙げられるが、他のレーザ光を用いることも可能である。   In the present embodiment, as a method for detecting ultrasonic waves in a non-contact manner, a measurement method using electromagnetic ultrasonic waves or air ultrasonic waves may be adopted in addition to the measurement method using laser ultrasonic waves of the present embodiment. However, the laser ultrasonic measurement method is a more suitable method for high-accuracy measurement because it has a higher SN ratio than the other measurement methods described above. The laser to be irradiated on the measurement target is a short pulse high energy laser beam, for example, an Nd: YAG laser, but other laser beams can also be used.

また、超音波信号(電気信号)の転送手段は、本実施形態のように、電気信号ケーブル14を用いて測定装置15と演算装置16とを接続した有線接続による方法の他に、測定装置15から雷子記憶媒体(例えば、USBメモリ)を介してデータを演算装置16へ転送する方法などを用いても同様に実施可能である。   The ultrasonic signal (electrical signal) transfer means is not limited to a method using a wired connection in which the measuring device 15 and the arithmetic device 16 are connected using the electric signal cable 14 as in the present embodiment. The method can be similarly implemented by using a method of transferring data to the arithmetic device 16 from a storage device (for example, a USB memory).

なお、碍管22の温度は、碍管22内における超音波伝播特性と温度伝播特性との相関から測定する。例えば、碍管22内における超音波の伝播速度と碍管22の温度との相関を予め導出しておき、この相関関係から碍管22の温度を推定し、碍管22の温度の測定値とする。   The temperature of the soot tube 22 is measured from the correlation between the ultrasonic propagation characteristics and the temperature propagation characteristics in the soot tube 22. For example, the correlation between the propagation speed of the ultrasonic wave in the soot tube 22 and the temperature of the soot tube 22 is derived in advance, and the temperature of the soot tube 22 is estimated from this correlation, and the measured value of the temperature of the soot tube 22 is used.

一般に、ある媒体に入射させられた超音波の伝播速度は、超音波が通過する媒体の温度分布に依存する。そこで、測定対象の媒体における超音波伝播速度の温度依存性が既知であれば、媒体に伝播した超音波の伝播速度を測定することで媒体の温度を逆算することが可能である。   In general, the propagation speed of an ultrasonic wave incident on a certain medium depends on the temperature distribution of the medium through which the ultrasonic wave passes. Therefore, if the temperature dependence of the ultrasonic propagation velocity in the medium to be measured is known, the temperature of the medium can be calculated backward by measuring the propagation velocity of the ultrasonic wave propagated to the medium.

また、本実施形態では、碍管22及び避雷素子21間の温度伝播特性、例えばこれらの間の界面を介した熱伝導特性を用いて避雷素子21の温度を推定し、避雷素子21の温度の測定値とする。   Moreover, in this embodiment, the temperature of the lightning arrester 21 is estimated by using the temperature propagation characteristics between the soot tube 22 and the lightning arrester 21, for example, the heat conduction characteristics through the interface between them, and the temperature of the lightning arrester 21 is measured. Value.

したがって、本実施形態によれば、碍管22及び避雷素子21間の熱伝導特性等の温度伝播特性を予め既知としておくことにより、避電器20を構成する外側の碍管22の超音波特性(超音波信号)を検出して、その内部の避雷素子21の温度を測定することができる。すなわち、避雷素子21及びそれを覆う碍管22からなる避雷器20において、その内部に位置する避雷素子21の温度を高精度かつ逐次的に、避雷器20の加工等に依存した特性変化を生じることなく、測定することができる。   Therefore, according to the present embodiment, the ultrasonic propagation characteristics (ultrasonic waves) of the outer rod tube 22 constituting the current arrester 20 are known in advance by making known the temperature propagation characteristics such as the heat conduction characteristic between the rod tube 22 and the lightning protection element 21. Signal) can be detected, and the temperature of the lightning protection element 21 inside thereof can be measured. That is, in the lightning arrester 20 composed of the lightning arrester 21 and the soot tube 22 covering it, the temperature of the lightning arrester 21 located inside the lightning arrester 21 is accurately and sequentially changed without causing characteristic changes depending on the processing of the lightning arrester 20, etc. Can be measured.

なお、上述した碍管22及び避雷素子21間の熱伝導特性等の温度伝播特性を用いることなく、レーザ光源11からのレーザ照射によって避雷素子21内に超音波を励起するには、高出力のレーザ光を用いる必要があるが、この場合、測定装置10の全体が高価になるとともに、安全上の問題も生じるようになる。   In order to excite ultrasonic waves in the lightning arrester 21 by laser irradiation from the laser light source 11 without using the temperature propagation characteristics such as the heat conduction characteristics between the soot tube 22 and the lightning arrester 21 described above, a high-power laser is used. Although it is necessary to use light, in this case, the whole measuring apparatus 10 becomes expensive and a safety problem also arises.

しかしながら、上述のように、碍管22及び避雷素子21間の熱伝導特性等の温度伝播特性を用いれば、外面に位置する碍管22に対してレーザ光源11からレーザ照射によって超音波を励起すれば足りるので、低出力のレーザ光を用いても避雷素子21の温度測定が可能となる。したがって、測定装置10の全体が高価になることを回避できるとともに、安全上の問題も回避することができる。   However, as described above, if temperature propagation characteristics such as heat conduction characteristics between the soot tube 22 and the lightning protection element 21 are used, it is sufficient to excite ultrasonic waves by laser irradiation from the laser light source 11 to the soot tube 22 located on the outer surface. Therefore, it is possible to measure the temperature of the lightning protection element 21 even using a low-power laser beam. Therefore, it is possible to avoid the entire measuring apparatus 10 from becoming expensive and to avoid a safety problem.

なお、碍管32及び避雷素子31間の温度伝播特性、例えば熱伝導特性(碍管32の温度をT32、避雷素子31の温度をT31とした場合、避雷器の熱伝導特性はT31=C×T32+Cと表現できる線形性を示す)は、実験によって予め求めた測定値を用いることもできるし、数値解析(例えば有限要素法解析による熱伝導解析)によって求めてもよい。数値解析を用いる場合、碍管32は避雷素子31と比較して厚さが薄いため温度分布は一様とみなしても問題ないと考えられる。 The temperature propagation characteristics between the porcelain bushing 32 and the lightning protection device 31, for example, thermal conductivity (the temperature of the porcelain bushing 32 T 32, if the temperature of the arrester element 31 was set to T 31, heat transfer characteristics of the arrester is T 31 = C 1 XT 32 + C 2 indicating a linearity that can be expressed in advance can be a measured value obtained in advance by experiments, or can be obtained by numerical analysis (for example, heat conduction analysis by a finite element method analysis). When numerical analysis is used, it is considered that there is no problem even if the temperature distribution is considered to be uniform because the soot tube 32 is thinner than the lightning protection element 31.

また、レーザ光照射等により、碍管22内に超音波が励起されるのは、レーザエネルギーの吸収による熱応力あるいは気化(アブレーション)圧縮力が発生し、その作用による歪みが超音波(表面波やバルク波)を励起するものである。   In addition, the ultrasonic wave is excited in the soot tube 22 by laser light irradiation or the like. Thermal stress or vaporization (ablation) compressive force is generated due to absorption of laser energy, and distortion caused by the action of the ultrasonic wave (surface wave or (Bulk wave) is excited.

さらに、上述のようにして励起される超音波においては、表面波よりもバルク波の方が好ましい。これは、バルク波の方が碍管22の内部にまで伝播するようになるので、碍管22の温度により依存した超音波信号を超音波検出装置13で検出できることによるものであり、これによって、碍管22の温度、すなわち避雷素子21の温度をより高精度に測定することができるためである。   Furthermore, in the ultrasonic wave excited as described above, a bulk wave is preferable to a surface wave. This is because the bulk wave propagates to the inside of the soot tube 22, so that an ultrasonic signal depending on the temperature of the soot tube 22 can be detected by the ultrasonic detection device 13, and thereby the soot tube 22. This is because the temperature of the lightning protection element 21 can be measured with higher accuracy.

本実施形態の避雷器20は、避雷素子21及び碍管32から成る二層構造であるため、測定器側碍管表面、測定器側碍管と避雷素子境界、避雷素子と非測定器側碍管境界、非測定器側碍管表面と境界が複数あり、境界面での複雑な超音波反射波の応答が検出される。したがって、避雷素子21を碍管22の材質で替えることにより、避雷器20と同じ形状及び同じ大きさであり、碍管22と同じ材料からなる避雷器ダミーを作製し、この避雷器ダミーに対して、上述のようにレーザ光源11よりレーザ光を照射して超音波を励起して、この超音波信号を超音波検出装置13で検出するとともに、電気信号ケーブル14で検出装置15に伝送し、演算装置16に伝送して、避雷器ダミーの超音波信号を得る。   Since the lightning arrester 20 of this embodiment has a two-layer structure including the lightning arrester element 21 and the soot tube 32, the measuring instrument side soot tube surface, the measuring instrument side soot tube and the lightning arrester boundary, the lightning arrester element and the non-measuring device side soot pipe boundary, non-measurement There are a plurality of boundaries with the vessel side tubule surface, and the response of a complex ultrasonic reflected wave at the boundary surface is detected. Therefore, by replacing the lightning arrester 21 with the material of the rod 22, a lightning arrester dummy having the same shape and the same size as the lightning arrester 20 and made of the same material as the rod 22 is manufactured. The laser light source 11 is irradiated with laser light to excite ultrasonic waves, and this ultrasonic signal is detected by the ultrasonic detection device 13, transmitted to the detection device 15 by the electric signal cable 14, and transmitted to the arithmetic device 16. Then, an ultrasonic signal of the lightning arrester dummy is obtained.

避雷器ダミーは、避雷素子21を有していないので、避雷素子21及び碍管22間において境界面が存在しない。したがって、上述のようにして得た避雷器20の超音波信号(電気信号)から避雷器ダミーの超音波信号(電気信号)を差し引くことにより、これらの差分を得ることができ、避雷器20の避雷素子21及び碍管22間の界面での超音波の反射に起因した超音波信号(電気信号)を得ることができる。したがって、超音波信号(電気信号)を高いSN比で得ることができるので、碍管22の温度、すなわち避雷素子21の温度をより高精度に測定することができる。   Since the lightning arrester dummy does not have the lightning protection element 21, there is no boundary surface between the lightning protection element 21 and the soot tube 22. Therefore, by subtracting the ultrasonic signal (electrical signal) of the lightning arrester dummy from the ultrasonic signal (electrical signal) of the lightning arrester 20 obtained as described above, the difference between them can be obtained, and the lightning protection element 21 of the lightning arrester 20 is obtained. And an ultrasonic signal (electric signal) resulting from the reflection of the ultrasonic wave at the interface between the soot tube 22 can be obtained. Therefore, since an ultrasonic signal (electrical signal) can be obtained with a high S / N ratio, the temperature of the soot tube 22, that is, the temperature of the lightning protection element 21, can be measured with higher accuracy.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment was posted as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 測定装置
11 レーザ光源
12 光ファイバ
13 超音波検出装置
14 電気信号ケーブル
15 測定装置
16 演算装置
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 11 Laser light source 12 Optical fiber 13 Ultrasonic detector 14 Electric signal cable 15 Measuring apparatus 16 Arithmetic unit

Claims (4)

避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法であって、
前記避雷器の前記碍管に超音波を励起し、前記碍管の超音波伝播速度及び温度伝播特性の関係に基づいて、前記碍管の温度を計測するステップと、
前記碍管及び前記避雷素子間の温度伝播特性に基づいて、前記避雷素子の温度を計測するステップと、
を具えることを特徴とする、避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法。
A method of measuring the temperature of a lightning arrester in a lightning arrester composed of a lightning arrester and a soot pipe covering it,
Exciting the ultrasonic wave to the soot tube of the lightning arrester, and measuring the temperature of the soot tube based on the relationship between the ultrasonic propagation speed and temperature propagation characteristics of the soot tube;
Measuring the temperature of the lightning arrester based on the temperature propagation characteristics between the steel pipe and the lightning arrester;
A method for measuring the temperature of a lightning arrester in a lightning arrester comprising a lightning arrester and a soot tube covering the lightning arrester.
前記避雷器と同一の形状及び同一の大きさであって、前記碍管と同じ材質からなる避雷器ダミーを準備し、当該避雷器ダミーに超音波を励起して当該避雷器ダミーの超音波伝播特性を得るステップと、
前記碍管の超音波伝播速度と前記避雷器ダミーの超音波伝播特性との差分を取ることにより、前記碍管と前記避雷素子との界面における前記超音波の反射波を検出するステップと、
を具えることを特徴とする、請求項1に記載の避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法。
Preparing a lightning arrester dummy having the same shape and the same size as the lightning arrester and made of the same material as the steel tube, and exciting the ultrasonic wave to the lightning arrester dummy to obtain ultrasonic propagation characteristics of the lightning arrester dummy; ,
Detecting a reflected wave of the ultrasonic wave at an interface between the flame tube and the lightning arrester by taking a difference between an ultrasonic wave propagation speed of the flame tube and an ultrasonic wave propagation characteristic of the lightning arrester dummy;
The temperature measuring method of the lightning arrester in the lightning arrester which consists of a lightning arrester of Claim 1 characterized by the above-mentioned, and the soot tube which covers it.
前記超音波は、前記避雷器へのレーザ光の照射により、非接触で励起することを特徴とする、請求項1又は2に記載の避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法。   3. The temperature measurement of the lightning arrester in the lightning arrester comprising the lightning arrester and the soot tube covering the lightning arrester according to claim 1, wherein the ultrasonic wave is excited in a non-contact manner by irradiating the lightning arrester with laser light. Method. 前記超音波はバルク波であることを特徴とする、請求項1〜3のいずれか一に記載の避雷素子及びそれを覆う碍管からなる避雷器における避雷素子の温度測定方法。   The said ultrasonic wave is a bulk wave, The temperature measuring method of the lightning arrester in the lightning arrester which consists of a lightning arrester and the soot pipe which covers it as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2014114850A 2014-06-03 2014-06-03 Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same Pending JP2015230171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114850A JP2015230171A (en) 2014-06-03 2014-06-03 Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114850A JP2015230171A (en) 2014-06-03 2014-06-03 Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same

Publications (1)

Publication Number Publication Date
JP2015230171A true JP2015230171A (en) 2015-12-21

Family

ID=54887027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114850A Pending JP2015230171A (en) 2014-06-03 2014-06-03 Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same

Country Status (1)

Country Link
JP (1) JP2015230171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606254A (en) * 2015-12-31 2016-05-25 天津鑫源达泰建筑工程有限公司 Checking device for surge protection device
CN107036730A (en) * 2017-05-18 2017-08-11 国家电网公司华中分部 Arrester temperature measurement on-line device based on surface acoustic wave sensor
CN107044889A (en) * 2017-05-18 2017-08-15 国家电网公司华中分部 The thermometry of high-voltage arrester
CN110320274A (en) * 2019-07-10 2019-10-11 华南理工大学 A kind of three support insulator internal flaw reconstructing methods based on ultrasonic scanning principle
JP2020112538A (en) * 2019-01-11 2020-07-27 ザ・ボーイング・カンパニーThe Boeing Company Laser joining inspection calibration system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606254A (en) * 2015-12-31 2016-05-25 天津鑫源达泰建筑工程有限公司 Checking device for surge protection device
CN107036730A (en) * 2017-05-18 2017-08-11 国家电网公司华中分部 Arrester temperature measurement on-line device based on surface acoustic wave sensor
CN107044889A (en) * 2017-05-18 2017-08-15 国家电网公司华中分部 The thermometry of high-voltage arrester
JP2020112538A (en) * 2019-01-11 2020-07-27 ザ・ボーイング・カンパニーThe Boeing Company Laser joining inspection calibration system
JP7332397B2 (en) 2019-01-11 2023-08-23 ザ・ボーイング・カンパニー Laser bonding inspection calibration system
CN110320274A (en) * 2019-07-10 2019-10-11 华南理工大学 A kind of three support insulator internal flaw reconstructing methods based on ultrasonic scanning principle
CN110320274B (en) * 2019-07-10 2020-12-22 华南理工大学 Three-post insulator internal defect reconstruction method based on ultrasonic scanning principle

Similar Documents

Publication Publication Date Title
JP2015230171A (en) Temperature measurement method of lightning protection element in arrester constituted of lightning protection element and porcelain tube covering the same
US11353367B2 (en) Fibre optic temperature measurement
EP2966426A1 (en) Optical fiber temperature distribution measuring device
JP2009036516A (en) Nondestructive inspection device using guide wave and nondestructive inspection method
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
CN109142781B (en) Wind speed measuring device and method based on surface plasma resonance
KR101053415B1 (en) Laser Ultrasonic Measuring Device and Measuring Method
Zhou et al. Water temperature measurement using a novel fiber optic ultrasound transducer system
JP2008014959A (en) Method for inspecting coating member for interface defects
CN101329203A (en) Apparatus for measuring temperature of alternating current-direct current lightning arrestor
CN105136069A (en) Method of measuring angle of conical tip inside cylinder based on laser ultrasonic technology
JP2009031180A (en) Method and device for measuring internal temperature
RU2428682C1 (en) Method for thermal nondestructive inspection of thermal-technical state of long, non-uniform and hard-to-reach objects
JP6217021B2 (en) Ultrasonic temperature measurement and flaw detection method Ultrasonic temperature and defect measurement method and apparatus
Zhou et al. A fiber optic acoustic pyrometer for temperature monitoring in an exhaust pipe of a boiler
Vidakovic et al. Fibre Bragg grating-based acoustic sensor array for improved condition monitoring of marine lifting surfaces
JP2015078910A (en) Ultrasonic measuring device and calibration method thereof
CN114112132B (en) System and method for measuring gradient residual stress by laser ultrasonic
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
JP2016114570A (en) Ultrasonic inspection method and device
CN104913876A (en) Device and method for manufacturing aluminum alloy vehicle body residual stress measurement zero-stress test block based on ultrasonic method
Wu et al. All-fiber photoacoustic system for large-area nondestructive testing
CN110686794A (en) Sapphire optical fiber temperature measuring device based on ultrasonic principle
CN113865987A (en) Device for non-contact detection of real-time high-temperature rock mass propagation coefficient by using laser range finder
JP5058196B2 (en) Apparatus and method for measuring phase transformation rate of material