JP2015226435A - Dc breaker device - Google Patents

Dc breaker device Download PDF

Info

Publication number
JP2015226435A
JP2015226435A JP2014111562A JP2014111562A JP2015226435A JP 2015226435 A JP2015226435 A JP 2015226435A JP 2014111562 A JP2014111562 A JP 2014111562A JP 2014111562 A JP2014111562 A JP 2014111562A JP 2015226435 A JP2015226435 A JP 2015226435A
Authority
JP
Japan
Prior art keywords
parallel
current
circuit
power transmission
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111562A
Other languages
Japanese (ja)
Other versions
JP6391993B2 (en
Inventor
俊介 玉田
Shunsuke Tamada
俊介 玉田
中沢 洋介
Yosuke Nakazawa
洋介 中沢
隆太 長谷川
Ryuta Hasegawa
隆太 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014111562A priority Critical patent/JP6391993B2/en
Publication of JP2015226435A publication Critical patent/JP2015226435A/en
Application granted granted Critical
Publication of JP6391993B2 publication Critical patent/JP6391993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC breaker device capable of reducing a conduction loss, and of interrupting a current at high speed.SOLUTION: A DC breaker device 1 comprises: a mechanical disconnector 2 provided on a power transmission line 100; a parallel circuit 3 connected in parallel to the mechanical disconnector 2; and a resistor 7 that connects from one point of the parallel circuit 3 to a negative side 101 of a DC power transmission system. The parallel circuit 3 comprises: a semiconductor circuit breaker 4 that switches between supplying and interrupting of a current of a power transmission line 100 to the parallel circuit 3; and an H bridge 5 connected in series to the semiconductor circuit breaker 4. The semiconductor circuit breaker 4 and the H bridge 5 are arranged in series in a few devices on both sides of a point connected with the negative side 101, symmetrically about the point. The H bridge 5 has a plurality of switching elements 51 and capacitors 53, and when the parallel circuit 3 is supplied with the current of the power transmission line 100, an amount of a current flowing in the mechanical disconnector 2 is controlled by controlling an output voltage.

Description

本発明の実施形態は、直流送電系統の事故点を切り離す直流遮断装置に関する。   Embodiments described herein relate generally to a DC interrupter that isolates an accident point in a DC power transmission system.

環境への負荷低減や、電源の多様化といった観点から、風力発電や太陽光発電などの再生可能エネルギーの普及が進んでいる。また、それら電源の大規模化が進んでおり、例えば、洋上での風力発電や、砂漠地帯での太陽光又は太陽熱発電などが実用化され始めている。洋上や砂漠は、電力需要地となる都市部から地理的に離れていることが多く、送電距離が長くなる。このような長距離の送電には、一般的に用いられている交流送電システムに代わって、高圧直流送電(HVDC;high-voltage, direct current)が適用されることがある。   Renewable energy such as wind power generation and solar power generation is spreading from the viewpoint of reducing environmental load and diversifying power sources. Further, the scale of these power sources is increasing, and for example, wind power generation on the ocean, sunlight or solar thermal power generation in the desert area, etc. are beginning to be put into practical use. Oceans and deserts are often geographically distant from the urban areas where power is demanded, increasing the transmission distance. For such long-distance power transmission, high-voltage direct current (HVDC) may be applied instead of a commonly used AC power transmission system.

HVDCは、長距離大電力送電に適用した場合に、従来の交流送電システムに比べて、低コストで送電損失が少ないシステムを構築することが可能である。しかしながら、HVDCにおいては、落雷等に起因する系統事故が生じた場合、事故点を切り離すことが容易ではない。というのも、交流では、電流が周波数50Hzまたは60Hzの半サイクルごとにゼロを横切る点で電流遮断ができるが、直流電流では電流がゼロを横切る点がない。そのため、系統に設けられた断路器の接点を単に切り離しても、接点間にアークが生じて電流が流れ続けてしまう。   When HVDC is applied to long-distance high-power power transmission, it is possible to construct a system with lower transmission loss and lower cost than conventional AC power transmission systems. However, in HVDC, when a system fault caused by lightning strikes or the like occurs, it is not easy to isolate the fault point. This is because, in alternating current, the current can be cut off at a point where the current crosses zero every half cycle at a frequency of 50 Hz or 60 Hz, but in direct current, there is no point where the current crosses zero. Therefore, even if the contact of the disconnector provided in the system is simply disconnected, an arc is generated between the contacts and current continues to flow.

HVDCにおける直流遮断装置として、例えば、機械式断路器に並列にLC回路を接続した構成が提案されている。この遮断装置は、電流遮断の際にLC回路から機械式断路器へ共振電流を流し、機械式断路器に流れる電流のゼロ点をつくり遮断を実現している。しかし、共振のゼロ点で遮断を行うため、ゼロ点が継続せず、遮断が完了するまでに時間がかかっていた。   For example, a configuration in which an LC circuit is connected in parallel to a mechanical disconnector has been proposed as a DC interrupter in HVDC. This interruption device causes a resonance current to flow from the LC circuit to the mechanical disconnector when the current is interrupted, thereby creating a zero point of the current flowing through the mechanical disconnector to realize the interruption. However, since the cutoff is performed at the zero point of resonance, the zero point does not continue, and it takes time to complete the cutoff.

一方、機械式断路器の代わりに半導体遮断器を用いることで、高速遮断を行うことが提案されている。半導体遮断器は、送電系統に直列に接続された半導体素子と、半導体素子に対して並列に接続されたアレスタとを有する。半導体遮断器は、系統事故が生じて事故電流が流れ込んだ際に、半導体素子を非導通に切り換える。流れ込んだ電流はアレスタによって吸収され、電流遮断が実現する。   On the other hand, it has been proposed to perform high-speed disconnection by using a semiconductor circuit breaker instead of a mechanical disconnector. The semiconductor circuit breaker includes a semiconductor element connected in series to the power transmission system and an arrester connected in parallel to the semiconductor element. The semiconductor circuit breaker switches the semiconductor element to non-conduction when a system fault occurs and an accident current flows. The flowing current is absorbed by the arrester, and current interruption is realized.

国際公開WO2010/045360号公報International Publication WO2010 / 045360 欧州特許0867998B1European Patent 0867998B1

しかしながら、半導体遮断器を用いた場合、送電系統に複数の半導体素子を設ける必要がある。そのため、通常運転時であっても、送電される電力が常時複数の半導体素子を通過することになり、導通損失が発生して送電効率の低下を招く可能性があった。   However, when a semiconductor circuit breaker is used, it is necessary to provide a plurality of semiconductor elements in the power transmission system. For this reason, even during normal operation, the transmitted power always passes through a plurality of semiconductor elements, and there is a possibility that conduction loss occurs and the transmission efficiency decreases.

本実施形態は、HVDCにおいて、高速の電流遮断と導通損失の低減を実現し、送電効率の向上、コスト低減、HVDCの信頼性の向上に寄与することができる直流遮断装置を提供することを目的とする。   An object of the present embodiment is to provide a direct current interrupter capable of realizing high-speed current interruption and reduction of conduction loss in HVDC, and contributing to improvement of power transmission efficiency, cost reduction, and improvement of HVDC reliability. And

上記目的を達成するために、実施形態の直流遮断器は、直流送電系統の正側に設けられる機械式断路器と、前記機械式断路器に並列に接続される並列回路と、前記並列回路の一点から直流送電系統の負側との間を接続する第1の抵抗と、を備え、前記並列回路は、当該並列回路への前記直流送電系統の電流の供給及び遮断を切り換える複数の半導体遮断器と、前記半導体遮断器に直列に接続され、複数のスイッチング素子及びコンデンサを有し、前記並列回路に前記直流送電系統の電流が供給されると、出力電圧の制御により、前記機械式断路器に流れる電流の量を制御する複数のHブリッジ回路と、を備え、前記半導体遮断器と前記Hブリッジ回路とを前記一点で対称となるように、前記一点を挟んで同数機ずつ直列配置すること、を特徴とする。   In order to achieve the above object, a DC circuit breaker according to an embodiment includes a mechanical disconnector provided on the positive side of a DC power transmission system, a parallel circuit connected in parallel to the mechanical disconnector, and the parallel circuit A plurality of semiconductor circuit breakers that switch between supplying and interrupting the current of the DC power transmission system to the parallel circuit. And a plurality of switching elements and capacitors connected in series to the semiconductor circuit breaker, and when the current of the DC power transmission system is supplied to the parallel circuit, the mechanical disconnector is controlled by the output voltage. A plurality of H bridge circuits that control the amount of flowing current, and the semiconductor breaker and the H bridge circuit are arranged in series with the same number of machines sandwiching the one point so as to be symmetric with respect to the one point, Features To.

第1の実施形態に係る直流遮断装置の構成を示す図である。It is a figure showing composition of a direct-current circuit breaker concerning a 1st embodiment. 第1の実施形態に係る直流遮断装置の電流の流れを示す図である。It is a figure which shows the flow of the electric current of the direct-current circuit breaker which concerns on 1st Embodiment. 第2の実施形態に係る直流遮断装置の構成を示す図である。It is a figure which shows the structure of the direct current | flow interrupting apparatus which concerns on 2nd Embodiment. 第3の実施形態に係る直流遮断装置の構成を示す図である。It is a figure which shows the structure of the direct current | flow interrupting device which concerns on 3rd Embodiment. 第3の実施形態に係る直流遮断装置のゲートアンプの構成を示す図である。It is a figure which shows the structure of the gate amplifier of the direct current | flow cutoff device which concerns on 3rd Embodiment. 第4の実施形態に係る直流遮断装置の構成を示す図である。It is a figure which shows the structure of the direct-current circuit interrupter which concerns on 4th Embodiment.

以下、実施形態に係る直流遮断装置について、図面を参照して説明する。なお、実施形態の説明において「通常時」とは、直流送電系統において正常な電流が流れている状態をいい、「事故時」とは、雷等に起因する系統事故によって、過大な事故電流が生じた状態をいう。   Hereinafter, a DC interrupter according to an embodiment will be described with reference to the drawings. In the description of the embodiment, “normal time” means a state in which a normal current is flowing in the DC power transmission system, and “at the time of an accident” means an excessive accident current due to a system fault caused by lightning or the like. The state that has occurred.

(第1の実施形態)
(構成)
図1に示すように、直流送電系統において、2つの直流送電網A,Bを接続する送電線が設けられている。送電線には正側100と負側101があるが、本実施形態の直流遮断装置1は、正側に設けられている。正側では、直流送電網Aから直流送電網Bへ送電されている。
(First embodiment)
(Constitution)
As shown in FIG. 1, in a DC power transmission system, a power transmission line that connects two DC power transmission networks A and B is provided. Although the power transmission line has a positive side 100 and a negative side 101, the DC breaker 1 of the present embodiment is provided on the positive side. On the positive side, power is transmitted from the DC power transmission network A to the DC power transmission network B.

直流遮断装置1は、送電線100に直列に接続された機械式断路器2と、この機械式断路器2に並列に接続された並列回路3とを備えている。   The DC breaker 1 includes a mechanical disconnector 2 connected in series to the power transmission line 100 and a parallel circuit 3 connected in parallel to the mechanical disconnector 2.

機械式断路器2は、公知の種々の構成を用いることができる。本実施形態では、後述するように並列回路3を用いて直流電流の遮断が行われるため、機械式断路器2自体には電流遮断能力が無くともよい。機械式断路器2は、機械接点を持つものであって、接点が切り離された状態で、事故点を切り離すのに必要な直流電圧に耐える絶縁耐圧を持つものであれば足りる。この機械式断路器2は、例えば、回路の端子間に回動接触子を設け、この回動接触子が回動して各端子に取り付けられた固定接触子と接離することによって、回路の切り離しを行う構成とすることができる。   The mechanical disconnector 2 can use various known configurations. In this embodiment, since the direct current is interrupted using the parallel circuit 3 as will be described later, the mechanical disconnector 2 itself may not have the current interrupting capability. The mechanical disconnector 2 is sufficient if it has a mechanical contact and has a withstand voltage that can withstand a DC voltage necessary for disconnecting the accident point in a state where the contact is disconnected. For example, the mechanical disconnector 2 is provided with a rotating contact between the terminals of the circuit, and the rotating contact rotates and contacts and separates from the fixed contact attached to each terminal. It can be set as the structure which isolate | separates.

機械式断路器2は、通常時にはオン状態、すなわち接点が接触した状態になるように制御される。直流送電網Aからの電流は、機械式断路器2を通過して直流送電網Bへ流れる。事故時は、後述するが、並列回路3に電流が流れるように制御が行われ、機械式断路器2を流れる電流が略ゼロになったところで、機械式断路器2がオフ状態、すなわち接点が開離した状態に切り換えられ、回路が切り離される。   The mechanical disconnector 2 is normally controlled to be in an on state, that is, in a state in which the contacts are in contact with each other. The current from the DC transmission network A flows through the mechanical disconnector 2 to the DC transmission network B. In the event of an accident, as will be described later, control is performed so that a current flows through the parallel circuit 3, and when the current flowing through the mechanical disconnector 2 becomes substantially zero, the mechanical disconnector 2 is turned off, that is, the contact is It is switched to the open state and the circuit is disconnected.

機械式断路器2に並列に接続された並列回路3には、半導体遮断器4と、Hブリッジ5とが直列に設けられている。そして、並列回路3は、半導体遮断器4とHブリッジ5が並ぶ線路上の一点3aから抵抗7を介して送電線の負側101と接続されている。   A parallel circuit 3 connected in parallel to the mechanical disconnector 2 is provided with a semiconductor circuit breaker 4 and an H bridge 5 in series. The parallel circuit 3 is connected to the negative side 101 of the power transmission line through a resistor 7 from a point 3a on the line where the semiconductor breaker 4 and the H bridge 5 are arranged.

半導体遮断器4とHブリッジ5は、並列回路3内において、それぞれ同数基が一点3aを中心にして直流送電網A側と直流送電網B側に分かれて設けられる。各半導体遮断器4は、それぞれコレクタ端子が送電線の正側100と接続される。Hブリッジ5は、この半導体遮断器4の間に一点3aを挟んで同数基が直列配置される。   In the parallel circuit 3, the same number of semiconductor breakers 4 and H bridges 5 are provided separately on the DC power transmission network A side and the DC power transmission network B side with a single point 3 a as the center. Each semiconductor circuit breaker 4 has a collector terminal connected to the positive side 100 of the transmission line. The same number of H bridges 5 are arranged in series between the semiconductor circuit breakers 4 with one point 3a interposed therebetween.

すなわち、半導体遮断器4とHブリッジ5は、並列回路3内で一点3aを中点3aとして、対称に配置される。中点3aを境に半導体遮断器4とHブリッジ5の組が2組形成され、各組において、半導体遮断器4とHブリッジ5は直列に連接し、半導体遮断器4が並列回路3と送電線の正側100との接点側に位置し、半導体遮断器4のコレクタ端子が送電線の正側100と接続される。   That is, the semiconductor circuit breaker 4 and the H bridge 5 are arranged symmetrically in the parallel circuit 3 with one point 3a as the middle point 3a. Two sets of the semiconductor breaker 4 and the H bridge 5 are formed with the middle point 3a as a boundary. In each set, the semiconductor breaker 4 and the H bridge 5 are connected in series, and the semiconductor breaker 4 is connected to the parallel circuit 3. Located on the contact side with the positive side 100 of the electric wire, the collector terminal of the semiconductor circuit breaker 4 is connected to the positive side 100 of the transmission line.

実施形態の並列回路3は、2基の半導体遮断器4a、4bと2基のHブリッジ5a、5bを有する。半導体遮断器4aとHブリッジ5aとがペアとなって直列に連接し、半導体遮断器4bとHブリッジ5bとがペアとなって直列に連接している。両ペアは半導体遮断器4aと半導体遮断器4bが送電線の正側100と接続される。そして、半導体遮断器4aとHブリッジ5aのペアと半導体遮断器4bとHブリッジ5bのペアは直列に接続され、ペア間が中点3aとなる。   The parallel circuit 3 of the embodiment has two semiconductor circuit breakers 4a and 4b and two H bridges 5a and 5b. The semiconductor circuit breaker 4a and the H bridge 5a are connected in series as a pair, and the semiconductor circuit breaker 4b and the H bridge 5b are connected in series as a pair. In both pairs, the semiconductor breaker 4a and the semiconductor breaker 4b are connected to the positive side 100 of the transmission line. A pair of the semiconductor circuit breaker 4a and the H bridge 5a and a pair of the semiconductor circuit breaker 4b and the H bridge 5b are connected in series, and the middle point 3a is formed between the pair.

各半導体遮断器4は、1個以上のスイッチング素子41を直列に接続し、それぞれのスイッチング素子41に対してダイオード42を逆並列に接続した構成となっている。スイッチング素子41は、自己消弧能力を持つものが用いられる。この半導体遮断器4は、直流送電網A側にコレクタ端子を接続したものと、直流送電網B側にコレクタ端子を接続したものとがあるため、直流送電網AからB若しくはBからA、双方向の電流を通流および遮断可能となっている。   Each semiconductor circuit breaker 4 has a configuration in which one or more switching elements 41 are connected in series, and a diode 42 is connected in antiparallel to each switching element 41. As the switching element 41, one having a self-extinguishing capability is used. The semiconductor circuit breaker 4 includes a DC power transmission network A side connected to a collector terminal and a DC power transmission network B side connected to a collector terminal. It is possible to pass and block current in the direction.

半導体遮断器4はゲート信号の入力によって、導通状態であるオン状態と非導通状態であるオフ状態が切り換えられる。導通状態では、半導体遮断器4を介して直流送電系統から並列回路3へ電流が供給され、非導通状態では直流送電系統から並列回路3への電流は遮断される。   The semiconductor circuit breaker 4 is switched between an on state, which is a conducting state, and an off state, which is a non-conducting state, by the input of a gate signal. In the conductive state, current is supplied from the DC power transmission system to the parallel circuit 3 via the semiconductor circuit breaker 4, and in the non-conductive state, the current from the DC power transmission system to the parallel circuit 3 is interrupted.

半導体遮断器4には、一定電圧以上が印加されると導通する非線形素子からなるアレスタ43が並列に接続されている。アレスタ43は、半導体遮断器4がオフ状態に切り換えられたときに、サージ電圧を吸収して安全な電流遮断を可能とする。   The semiconductor circuit breaker 4 is connected in parallel with an arrester 43 made of a non-linear element that conducts when a certain voltage or more is applied. The arrester 43 absorbs the surge voltage and enables safe current interruption when the semiconductor circuit breaker 4 is switched to the off state.

Hブリッジ5は、スイッチング素子51を直列に2個接続した2つのレグ52を有する。スイッチング素子51は、それぞれ自己消弧能力を持つものが用いられる。各スイッチング素子51にはダイオードが並列に接続されている。これら2つのレグ52は並列に接続され、さらにコンデンサ53が2つのレグ52と並列接続されている。   The H-bridge 5 has two legs 52 in which two switching elements 51 are connected in series. As the switching element 51, one having a self-extinguishing capability is used. A diode is connected to each switching element 51 in parallel. These two legs 52 are connected in parallel, and a capacitor 53 is connected in parallel with the two legs 52.

抵抗7は、Hブリッジ5のコンデンサ53に対する充電用である。この並列回路3では、送電線の正側100から半導体遮断器4、Hブリッジ5、中点3a及び抵抗7を介して送電線の負側101へ接続する回路が形成され、送電線の直流系統からHブリッジ5のコンデンサ53へ電流を流して充電が可能となっている。   The resistor 7 is for charging the capacitor 53 of the H bridge 5. In this parallel circuit 3, a circuit is formed that connects from the positive side 100 of the transmission line to the negative side 101 of the transmission line via the semiconductor circuit breaker 4, the H bridge 5, the midpoint 3 a, and the resistor 7, and the DC system of the transmission line Thus, charging can be performed by supplying a current to the capacitor 53 of the H bridge 5.

事故時、半導体遮断器4をオン状態にして並列回路3に直流送電系統の電流を導通できる状態にし、あらかじめ抵抗7を介して充電されているHブリッジ5のコンデンサ53を急速放電して出力電圧を上げることで、送電線の正側100の電流をほぼ全て並列回路3に流れ込ませる。結果として機械式断路器2へ流れ込む電流を略ゼロにすることができる。なお、略ゼロとは、機械式断路器2の接点を切り離したときにアークが発生しない程度の電流の量を意味する。   In the event of an accident, the semiconductor circuit breaker 4 is turned on so that the current of the DC power transmission system can be conducted to the parallel circuit 3, and the capacitor 53 of the H bridge 5 charged in advance through the resistor 7 is rapidly discharged to output voltage. As a result, almost all the current on the positive side 100 of the transmission line flows into the parallel circuit 3. As a result, the current flowing into the mechanical disconnector 2 can be made substantially zero. Note that substantially zero means an amount of current that does not generate an arc when the contact of the mechanical disconnector 2 is disconnected.

(作用)
以上の構成を有する直流遮断装置1の動作を、図2に基づき、通常時と事故時に分けて説明する。通常時は、機械式断路器2をオン状態、半導体遮断器4およびHブリッジ5をオフ状態に制御する。直流送電網Aからの電流は、機械式断路器2のみを通過して直流送電網Bへ流れ、並列回路3には流れない。
(Function)
The operation of the DC interrupting device 1 having the above configuration will be described separately based on FIG. In the normal state, the mechanical disconnector 2 is controlled to be in an on state, and the semiconductor breaker 4 and the H bridge 5 are controlled to be in an off state. The current from the DC power transmission network A flows only through the mechanical disconnector 2 to the DC power transmission network B and does not flow through the parallel circuit 3.

事故時は、まず、半導体遮断器4をオフ状態からオン状態に切り換える。同時に、Hブリッジ5をオンにして出力電圧を制御する。すなわち、各コンデンサ53を急速放電して出力電圧を上げる。これによって、直流送電網Aからの電流はほぼ全て並列回路3に流れ込み、機械式断路器2を通過する電流は略ゼロになる。   In the event of an accident, first, the semiconductor circuit breaker 4 is switched from the off state to the on state. At the same time, the H bridge 5 is turned on to control the output voltage. That is, each capacitor 53 is rapidly discharged to increase the output voltage. As a result, almost all of the current from the DC power transmission network A flows into the parallel circuit 3, and the current passing through the mechanical disconnector 2 becomes substantially zero.

機械式断路器2を通過する電流は略ゼロになったところで、機械式断路器2をオフ状態に切り換える。機械式断路器2には電流が流れていないため、接点を切り離しの際にアークが生じて電流が流れ続けることはない。最後に、半導体遮断器4をオフ状態に切り換えて並列回路3に流れる電流を遮断する。このとき発生するサージ電圧はアレスタ43に吸収され、電流遮断が完了する。   When the current passing through the mechanical disconnector 2 becomes substantially zero, the mechanical disconnector 2 is switched to the OFF state. Since no current flows through the mechanical disconnector 2, an arc is not generated when the contact is disconnected, and the current does not continue to flow. Finally, the semiconductor circuit breaker 4 is switched to the OFF state to interrupt the current flowing through the parallel circuit 3. The surge voltage generated at this time is absorbed by the arrester 43, and the current interruption is completed.

(効果)
(1)以上のように、本実施形態では、直流遮断装置1に、送電線100に設けられる機械式断路器2と、機械式断路器2に並列に接続される並列回路3と、を備えた。並列回路3に、並列回路3への送電線100の電流の供給及び遮断を切り換える半導体遮断器4と、半導体遮断器4に直列に接続されるHブリッジ5を備えた。Hブリッジ5は、複数のスイッチング素子51及びコンデンサ53を有し、並列回路3に送電線100の電流が供給されると、出力電圧の制御により、機械式断路器2に流れる電流の量を制御する。
(effect)
(1) As described above, in this embodiment, the DC breaker 1 includes the mechanical disconnector 2 provided in the power transmission line 100 and the parallel circuit 3 connected in parallel to the mechanical disconnector 2. It was. The parallel circuit 3 includes a semiconductor circuit breaker 4 that switches between supply and interruption of the current of the transmission line 100 to the parallel circuit 3 and an H bridge 5 that is connected in series to the semiconductor circuit breaker 4. The H bridge 5 has a plurality of switching elements 51 and capacitors 53, and controls the amount of current flowing through the mechanical disconnector 2 by controlling the output voltage when the current of the transmission line 100 is supplied to the parallel circuit 3. To do.

このような構成とすることによって、通常時には、電流を機械式断路器2のみを通過させることができ、導通損失を低減させることができる。事故時には、Hブリッジ5を用いた出力電圧制御により、並列回路3に電流を誘導して機械式断路器2を流れる電流を、アークを生じさせずに回路の切り離しを行うことができる量、例えば略ゼロにすることで、電流遮断能力のない機械式断路器2であっても、安全に事故点の切り離しを行うことができる。さらに、並列回路3に設けた半導体遮断器4によって高速の電流遮断を実現することができる。このような効果によって、送電効率の向上、コスト低減及び直流送電における信頼性の向上に寄与することができる。   By adopting such a configuration, in normal times, current can be passed only through the mechanical disconnector 2, and conduction loss can be reduced. In the event of an accident, the output voltage control using the H-bridge 5 can induce a current in the parallel circuit 3 and the current flowing through the mechanical disconnector 2 can be disconnected without causing an arc, for example, By making it substantially zero, the fault point can be safely separated even with the mechanical disconnector 2 having no current interruption capability. Furthermore, high-speed current interruption can be realized by the semiconductor breaker 4 provided in the parallel circuit 3. Such an effect can contribute to improvement in power transmission efficiency, cost reduction, and improvement in reliability in DC power transmission.

(2)また、本実施形態では、並列回路3はHブリッジ5を複数直列に備えるようにした。Hブリッジ5の直列数の増加によりHブリッジ5全体での出力電圧が大きくなり、機械式遮断器2から並列回路3で電流を切り換える能力を高めることができる。 (2) In the present embodiment, the parallel circuit 3 includes a plurality of H bridges 5 in series. By increasing the number of H bridges 5 in series, the output voltage of the entire H bridge 5 increases, and the ability to switch current from the mechanical circuit breaker 2 to the parallel circuit 3 can be enhanced.

(3)機械式断路器2及び並列回路3は、直流送電系統の正側の送電線100に設けられ、並列回路3は、対称に直列接続される半導体遮断器4とHブリッジ5の並びの中点3aから送電線の負側101に抵抗7を介して接続され、Hブリッジ5のコンデンサ53は、直流系統の電力によって充電されるようにした。 (3) The mechanical disconnector 2 and the parallel circuit 3 are provided in the transmission line 100 on the positive side of the DC power transmission system, and the parallel circuit 3 is an array of semiconductor breakers 4 and H bridges 5 that are symmetrically connected in series. The middle point 3a is connected to the negative side 101 of the power transmission line through the resistor 7, and the capacitor 53 of the H bridge 5 is charged by the power of the DC system.

事故時に放電を行う為には、通常時にHブリッジ5のコンデンサ53を充電しておく必要がある。対称に直列接続される半導体遮断器4とHブリッジ5の並びの中点3aから送電線の負側101に抵抗7を介して接続するようにするだけで、直流系統の電圧を利用して常にHブリッジ5のコンデンサ53へ充電動作を実現することができる。これによって、交流系統等か充電用の電源を別途接続する必要がないため、設備コストを低減することができる。   In order to discharge in the event of an accident, it is necessary to charge the capacitor 53 of the H-bridge 5 at normal times. By simply connecting the semiconductor breaker 4 and the H bridge 5 symmetrically connected in series from the middle point 3a of the H bridge 5 to the negative side 101 of the transmission line via the resistor 7, the voltage of the DC system is always used. The charging operation can be realized for the capacitor 53 of the H bridge 5. Accordingly, it is not necessary to separately connect an AC system or a power source for charging, so that the equipment cost can be reduced.

(第2の実施形態)
第2の実施形態について、図3を用いて説明する。この第2の実施形態において、第1実施形態と同一構成及び同一機能については、同一符号を付して詳細な説明は省略する。
(Second Embodiment)
A second embodiment will be described with reference to FIG. In the second embodiment, the same configurations and functions as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態では、並列回路3は、抵抗7と開閉器8を介して中点3aから送電線の負側101へと接続されている。開閉器8は、遮断器又は断路器であり、抵抗7と負側の送電線101との間に、抵抗7と直列に接続されている。   In the present embodiment, the parallel circuit 3 is connected from the middle point 3a to the negative side 101 of the power transmission line via the resistor 7 and the switch 8. The switch 8 is a circuit breaker or disconnector, and is connected in series with the resistor 7 between the resistor 7 and the negative power transmission line 101.

第1の実施形態で述べたように、Hブリッジ5のコンデンサ53は、負側の送電線101からの電力によって充電されている。本実施形態では、コンデンサ53が満充電になった時点で開閉器8をオフにして、抵抗7を負側の送電線101から切り離す。これによって、負側の送電線101の電力を充電に必要な量だけ使うことができ、無駄な電力消費を低減することができる。   As described in the first embodiment, the capacitor 53 of the H bridge 5 is charged by the power from the negative-side power transmission line 101. In the present embodiment, when the capacitor 53 is fully charged, the switch 8 is turned off and the resistor 7 is disconnected from the negative power transmission line 101. As a result, only the amount of power necessary for charging can be used for the negative transmission line 101, and wasteful power consumption can be reduced.

(第3の実施形態)
第3の実施形態について、図4を用いて説明する。この第3の実施形態において、第1実施形態又は第2実施形態と同一構成及び同一機能については、同一符号を付して詳細な説明は省略する。
(Third embodiment)
A third embodiment will be described with reference to FIG. In the third embodiment, the same configurations and functions as those of the first embodiment or the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態では、Hブリッジ5及び半導体遮断器4のそれぞれに対して、並列接続された抵抗9を備えている。これらの抵抗9は分圧器として機能し、コンデンサ53への充電電圧を均一化することができる。   In this embodiment, each of the H bridge 5 and the semiconductor circuit breaker 4 includes a resistor 9 connected in parallel. These resistors 9 function as a voltage divider and can equalize the charging voltage to the capacitor 53.

また、図5に示すように、半導体遮断器4と並列な抵抗9は、複数設けられており、各抵抗9は直列となっている。また、この抵抗9間には、ゲート信号を増幅するゲートアンプ12の入力側端子が接続されている。ゲートアンプ12の出力側端子は、半導体遮断器4のスイッチング素子41のゲートと抵抗11を介して接続されている。この半導体遮断器4と並列な抵抗9は、半導体遮断器4のスイッチング素子41に対し、電圧を分圧してゲート駆動電力を供給する。ゲートアンプ12は、抵抗9が供給する電圧を利用してゲート信号を増幅する。これにより、半導体遮断器4は、ゲート駆動電力を並列の抵抗9により分圧された電圧から得ることができる。   In addition, as shown in FIG. 5, a plurality of resistors 9 in parallel with the semiconductor circuit breaker 4 are provided, and the resistors 9 are in series. Between the resistors 9, an input side terminal of a gate amplifier 12 for amplifying a gate signal is connected. The output side terminal of the gate amplifier 12 is connected to the gate of the switching element 41 of the semiconductor circuit breaker 4 via the resistor 11. The resistor 9 in parallel with the semiconductor circuit breaker 4 divides the voltage and supplies the gate driving power to the switching element 41 of the semiconductor circuit breaker 4. The gate amplifier 12 amplifies the gate signal using the voltage supplied from the resistor 9. As a result, the semiconductor circuit breaker 4 can obtain the gate drive power from the voltage divided by the parallel resistor 9.

(第4の実施形態)
第4の実施形態について、図6を用いて説明する。この第4の実施形態において、第1実施形態乃至第3実施形態の何れかと同一構成及び同一機能については、同一符号を付して詳細な説明は省略する。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. In the fourth embodiment, the same configurations and functions as those in any of the first to third embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態では、Hブリッジ5のコンデンサ53に対して並列に接続された抵抗10を設けている。これらの抵抗10は分圧器として機能し、コンデンサ53への充電電圧を均一化することができる。また、充電電圧の大きさを抵抗の値によって管理することが可能となる。   In the present embodiment, a resistor 10 connected in parallel to the capacitor 53 of the H bridge 5 is provided. These resistors 10 function as voltage dividers and can equalize the charging voltage to the capacitor 53. In addition, the magnitude of the charging voltage can be managed by the resistance value.

(その他の実施形態)
(1)上述の実施形態では、抵抗7を介して並列回路3を負側の送電線101に接続し、Hブリッジ5のコンデンサ53を負側の送電線101の電力によって充電したが、並列回路3を対地や、交流系統等の別の電源に接続して充電を行っても良い。
(Other embodiments)
(1) In the above-described embodiment, the parallel circuit 3 is connected to the negative power transmission line 101 via the resistor 7, and the capacitor 53 of the H bridge 5 is charged by the power of the negative power transmission line 101. 3 may be charged by connecting to another power source such as the ground or an AC system.

(2)本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 (2) The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1 直流遮断装置
2 機械式断路器
3 並列回路
3a 中点
4 半導体遮断器
5 Hブリッジ
7 抵抗
8 開閉器
9 抵抗
10 抵抗
11 抵抗
12 ゲートアンプ
41 スイッチング素子
42 整流ダイオード
43 アレスタ
51 スイッチング素子
52 レグ
53 コンデンサ
100 正側の送電線
101 負側の送電線
A,B 直流送電網
DESCRIPTION OF SYMBOLS 1 DC circuit breaker 2 Mechanical disconnector 3 Parallel circuit 3a Midpoint 4 Semiconductor circuit breaker 5 H bridge 7 Resistor 8 Switch 9 Resistor 10 Resistor 11 Resistor 12 Gate amplifier 41 Switching element 42 Rectifier diode 43 Arrester 51 Switching element 52 Leg 53 Capacitor 100 Positive transmission line 101 Negative transmission line A, B DC transmission network

Claims (6)

直流送電系統の正側に設けられる機械式断路器と、
前記機械式断路器に並列に接続される並列回路と、
前記並列回路の一点から直流送電系統の負側との間を接続する第1の抵抗と、
を備え、
前記並列回路は、
当該並列回路への前記直流送電系統の電流の供給及び遮断を切り換える複数の半導体遮断器と、
前記半導体遮断器に直列に接続され、複数のスイッチング素子及びコンデンサを有し、前記並列回路に前記直流送電系統の電流が供給されると、出力電圧の制御により、前記機械式断路器に流れる電流の量を制御する複数のHブリッジ回路と、
を備え、
前記半導体遮断器と前記Hブリッジ回路とを前記一点で対称となるように、前記一点を挟んで同数機ずつ直列配置すること、
を特徴とする直流遮断装置。
A mechanical disconnector provided on the positive side of the DC transmission system;
A parallel circuit connected in parallel to the mechanical disconnector;
A first resistor connecting between one point of the parallel circuit and the negative side of the DC power transmission system;
With
The parallel circuit is
A plurality of semiconductor circuit breakers that switch between supply and interruption of current of the DC power transmission system to the parallel circuit;
A plurality of switching elements and capacitors connected in series to the semiconductor circuit breaker, and when the current of the DC power transmission system is supplied to the parallel circuit, the current flowing through the mechanical disconnector by controlling the output voltage A plurality of H-bridge circuits for controlling the amount of
With
The semiconductor breaker and the H-bridge circuit are arranged in series with the same number of machines sandwiching the one point so as to be symmetrical at the one point,
DC breaker characterized by.
前記並列回路には、複数の前記Hブリッジ回路が直列に接続されていることを特徴とする請求項1記載の直流遮断装置。   2. The DC interrupter according to claim 1, wherein a plurality of the H bridge circuits are connected in series to the parallel circuit. 前記直流送電系統の負側と前記第1の抵抗との間に直列に接続される開閉器を更に備えること、
を特徴とする請求項1又は2に記載の直流遮断装置。
A switch further connected in series between the negative side of the DC power transmission system and the first resistor;
The direct current circuit breaker according to claim 1 or 2.
前記並列回路は、
前記Hブリッジ回路及び前記半導体遮断器に並列に接続される第2の抵抗を更に備えること、
を特徴とする請求項1乃至3の何れかに記載の直流遮断装置。
The parallel circuit is:
A second resistor connected in parallel to the H-bridge circuit and the semiconductor circuit breaker;
The direct current circuit breaker according to any one of claims 1 to 3.
前記Hブリッジ回路は、前記コンデンサに並列接続する第3の抵抗を有すること、
を特徴とする請求項1乃至4の何れかに記載の直流遮断装置。
The H-bridge circuit has a third resistor connected in parallel to the capacitor;
The DC circuit breaker according to any one of claims 1 to 4.
前記半導体遮断器の半導体素子は、前記第2の抵抗からゲート駆動に要する電力の供給を受けること、
を特徴とする請求項4記載の直流遮断装置。
The semiconductor element of the semiconductor breaker receives supply of electric power required for gate driving from the second resistor;
The direct current circuit breaker according to claim 4.
JP2014111562A 2014-05-29 2014-05-29 DC breaker Active JP6391993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111562A JP6391993B2 (en) 2014-05-29 2014-05-29 DC breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111562A JP6391993B2 (en) 2014-05-29 2014-05-29 DC breaker

Publications (2)

Publication Number Publication Date
JP2015226435A true JP2015226435A (en) 2015-12-14
JP6391993B2 JP6391993B2 (en) 2018-09-19

Family

ID=54842868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111562A Active JP6391993B2 (en) 2014-05-29 2014-05-29 DC breaker

Country Status (1)

Country Link
JP (1) JP6391993B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177877A (en) * 2019-04-23 2020-10-29 東芝三菱電機産業システム株式会社 DC cutoff device
JP7423567B2 (en) 2021-03-08 2024-01-29 株式会社東芝 DC current interrupter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450854A (en) * 1977-09-29 1979-04-21 Toshiba Corp Dc circuit breaker protector
JPH0256332U (en) * 1988-10-18 1990-04-24
WO2013131582A1 (en) * 2012-03-09 2013-09-12 Siemens Aktiengesellschaft Device for switching direct currents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450854A (en) * 1977-09-29 1979-04-21 Toshiba Corp Dc circuit breaker protector
JPH0256332U (en) * 1988-10-18 1990-04-24
WO2013131582A1 (en) * 2012-03-09 2013-09-12 Siemens Aktiengesellschaft Device for switching direct currents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020177877A (en) * 2019-04-23 2020-10-29 東芝三菱電機産業システム株式会社 DC cutoff device
JP7054601B2 (en) 2019-04-23 2022-04-14 東芝三菱電機産業システム株式会社 DC cutoff device
JP7423567B2 (en) 2021-03-08 2024-01-29 株式会社東芝 DC current interrupter

Also Published As

Publication number Publication date
JP6391993B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6430294B2 (en) DC breaker
KR101968459B1 (en) DC current interrupter and its control method
US9478974B2 (en) DC voltage circuit breaker
JP6297619B2 (en) DC circuit breaker
KR101522412B1 (en) Bi-directional DC interruption device
JP2018503952A (en) DC circuit breaker with opposite current generation
CN105659459A (en) High voltage dc breaker
US20150116881A1 (en) High voltage dc circuit breaker apparatus
JP6109649B2 (en) DC current interrupter
JP6517589B2 (en) DC power transmission system, central server thereof, and method for recovering DC power transmission path after accident
RU2014138818A (en) DC POWER SUPPLY SYSTEM WITH SYSTEM PROTECTION POSSIBILITY
KR101766229B1 (en) Apparatus and method for interrupting high voltage direct current using gap switch
JP6591204B2 (en) DC current interrupter
CN103928913A (en) High-voltage direct-current circuit breaker based on rapid repulsion force mechanism and insulating transformer
JP6462430B2 (en) DC current interrupter
WO2014117608A1 (en) Apparatus for breaking current of circuit and control method thereof
RU2695800C1 (en) Device for dc switching in dc pole of direct voltage network
JP6223803B2 (en) DC breaker
WO2015036457A1 (en) Voltage source converter
JP6391993B2 (en) DC breaker
US10333313B2 (en) Electrical assembly
JP2005295796A (en) Power generator having incorporated electric power switch
CN104364864A (en) Switching system
CN103650086A (en) Switching device
KR101802509B1 (en) Cascaded Half Bridge Solid State Circuit Breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171204

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180822

R150 Certificate of patent or registration of utility model

Ref document number: 6391993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150