JP2015226062A - Zero-dimensional electron devices and methods of fabricating the same - Google Patents

Zero-dimensional electron devices and methods of fabricating the same Download PDF

Info

Publication number
JP2015226062A
JP2015226062A JP2015103847A JP2015103847A JP2015226062A JP 2015226062 A JP2015226062 A JP 2015226062A JP 2015103847 A JP2015103847 A JP 2015103847A JP 2015103847 A JP2015103847 A JP 2015103847A JP 2015226062 A JP2015226062 A JP 2015226062A
Authority
JP
Japan
Prior art keywords
periodic table
gaas
table group
growing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015103847A
Other languages
Japanese (ja)
Other versions
JP6208169B2 (en
Inventor
宇辰 張
Yu-Chen Chang
宇辰 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2015226062A publication Critical patent/JP2015226062A/en
Application granted granted Critical
Publication of JP6208169B2 publication Critical patent/JP6208169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/157Doping structures, e.g. doping superlattices, nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/305Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zero-dimensional electron devices and methods of fabricating the same.SOLUTION: A substrate 110 and quantum dots 150 are provided. A peak emission of the quantum dots 150 has a full width at half maximum FWHM of less than 20 meV when a semiconductor device is measured at a temperature of 4 Kelvin. The photoluminescence spectrum of the quantum dots 150 has more than two peaks within a red light range. A method for growing the quantum dots 150 includes: providing a substrate 110; supplying a group V material; growing a group III-V material buffer layer 120 above the substrate 110 at a growth temperature above 500°C; lowering the growth temperature to about 500°C; stopping the supply of the group V material; growing group III material droplets; lowering the growth temperature to less than about 400°C; growing more group III material droplets; and increasing the growth temperature to between 360°C and 450°C.

Description

本出願は2014年5月26日に提出された米国仮特許出願第62/002,997の権益を請求している。
本発明は、一般的にはゼロ次元電子デバイス及びこれを製造する方法に関する。本発明は、高均一量子ドット及び半導体デバイスに量子ドットを成長させる方法にも関する。
This application claims the benefit of US Provisional Patent Application No. 62 / 002,997, filed May 26, 2014.
The present invention relates generally to zero-dimensional electronic devices and methods of manufacturing the same. The present invention also relates to highly uniform quantum dots and methods for growing quantum dots on semiconductor devices.

量子ドット(QD:quantum dot)は、一点に効率的に集中される(すなわち、ゼロ次元)ほどに小さいごく小さな物質である。その結果、電気を搬送する量子ドット内部の粒子(電子及びホール)は、捕捉されるか、又は閉じ込められ、量子理論の法則に従って明確に定義されるエネルギー準位を有する。通常、QD(量子ドット)は数nm幅の結晶であり、したがって、原子数十個の幅であり、恐らく百個〜数千個の原子を含む。QDは、シリコン等の半導体から作られ、結晶であるが、むしろ個々の原子のように挙動する。   Quantum dots (QDs) are tiny materials that are so small that they are efficiently concentrated at one point (ie, zero dimension). As a result, the particles (electrons and holes) inside the quantum dots that carry electricity have trapped or confined energy levels that are well defined according to the laws of quantum theory. Usually, QDs (quantum dots) are crystals that are several nanometers wide and are therefore dozens of atoms wide and probably contain hundreds to thousands of atoms. QDs are made from semiconductors such as silicon and are crystals, but rather behave like individual atoms.

QDは、現実世界で幅広い用途を有するように精密に制御され得る。一般的な背景として、原子にエネルギーが与えられる場合、原子は励起する(すなわち、内部の電子をより高いエネルギー準位に引き上げる)ことができる。電子がより低いレベルに戻ると、原子は、同原子が元々吸収したエネルギーと同じエネルギーを有する光量子を放射する。原子が放射する光の色(すなわち、波長及び周波数)は、エネルギー準位が配置される方法により、原子が何であるかに依存する。一般的に言えば、異なる原子は異なる色の光を放つ。これは、原子内のエネルギー準位が設定値を有する(すなわち、量子化されている)ためである。   The QD can be precisely controlled to have a wide range of applications in the real world. As a general background, when an atom is energized, the atom can be excited (ie, pulling internal electrons to a higher energy level). When the electron returns to a lower level, the atom emits a photon having the same energy that the atom originally absorbed. The color of light emitted by an atom (ie, wavelength and frequency) depends on what the atom is, depending on how the energy levels are arranged. Generally speaking, different atoms emit different colors of light. This is because the energy level in the atom has a set value (that is, is quantized).

QDも量子化エネルギー準位を有するため、同じである。しかしながら、同じ材料から作られるQDは、大きさに応じて異なる色の光を放つ。小さなQDはより大きなバンドギャップを有し、バンドキャップは、大まかに言えば、電子を自由にし、それにより、電子が材料を通して電気を搬送するためにかかる最小エネルギーであり、したがって、小さなQDは励起により大きなエネルギーを必要とする。放射光の周波数はそのエネルギーに比例するため、より高いエネルギーを有する小さなQDほど、高い周波数及び低い波長を生成する。大きなQDほど、より離間されたエネルギー準位を有し、したがって、低い周波数及び高い波長を生成する。   QD is the same because it also has a quantization energy level. However, QDs made from the same material emit different colors of light depending on their size. A small QD has a larger bandgap, and a band cap is, roughly speaking, the minimum energy it takes to free an electron, thereby allowing the electron to carry electricity through the material, and thus a small QD is excited Requires more energy. Since the frequency of the emitted light is proportional to its energy, smaller QDs with higher energy produce higher frequencies and lower wavelengths. Larger QDs have more spaced energy levels and therefore produce lower frequencies and higher wavelengths.

その結果、最大のQDは最長波長(及び最低周波数)を生成し、一方、最小のQDは最短波長(及び最高周波数)を生成する。これは一般に、大きなQDが赤色光を生成し、小さなQDが青色を生成し、一方、中間サイズのQDが緑色光(及び他の色も)を生成することを意味する。   As a result, the largest QD produces the longest wavelength (and lowest frequency), while the smallest QD produces the shortest wavelength (and highest frequency). This generally means that large QDs produce red light and small QDs produce blue, while medium size QDs produce green light (and other colors).

最近、自己組織化QDの製造が、レーザ、太陽電池、及び発光ダイオード等の新規の光電子デバイス用途への潜在性により、集中的に研究されている。実際に、QDの光電子特性は、電子及びホールの閉じ込め潜在性を決めるサイズ、組成、歪み、及び形状等の物理的特性に強く関連付けられる。したがって、活性量子ナノ構造体を製造する成長メカニズムが重要になりつつある。   Recently, the manufacture of self-assembled QDs has been intensively studied due to its potential for new optoelectronic device applications such as lasers, solar cells, and light emitting diodes. In fact, the optoelectronic properties of QDs are strongly related to physical properties such as size, composition, strain, and shape that determine the confinement potential of electrons and holes. Therefore, the growth mechanism for producing active quantum nanostructures is becoming important.

様々な成長技法の中で最も一般的な手法は、自己組織化メカニズムに基づき、通常、InAs(インジウム砒素)/GaAs(ガリウム砒素)系等の格子不整合系で使用される島状と層状の混合(SK:Stranski−Krastanov)成長モードである。SK成長では、半導体の薄膜が半導体基板上で成長し、2つの材料の界面に格子不整合を生成する。エピタキシャル成長中、層間不整合歪みは部分的に緩和され、次に、三次元構造体が形成される。しかしながら、QDのモルフォロジー及び組成はキャッピング層の堆積中に大きく変わり、これは、設計された特性の達成を難しくする。さらに、この技法は、歪みがないことに起因して、GaAs/AlGaAs(アルミニウムガリウム砒素)系等の格子整合系では利用することができない。   The most common of the various growth techniques is based on the self-organization mechanism and is typically island-like and layer-like used in lattice mismatched systems such as InAs (indium arsenide) / GaAs (gallium arsenide) systems. It is a mixed (SK: Stranski-Krastanov) growth mode. In SK growth, a semiconductor thin film grows on a semiconductor substrate and creates a lattice mismatch at the interface between the two materials. During epitaxial growth, the interlayer mismatch strain is partially relaxed and then a three-dimensional structure is formed. However, the morphology and composition of QDs change significantly during capping layer deposition, which makes it difficult to achieve the designed properties. Furthermore, this technique cannot be used in lattice matching systems such as GaAs / AlGaAs (aluminum gallium arsenide) systems due to the absence of distortion.

歪みのないGaAs/AlGaAs QDを製造する代替の有望な技法は、1993年に小口及び石毛によって最初に示された液滴エピタキシー(DE:droplet epitaxy)成長モードである。SK技法と比較して、DE(液滴エピタキシー)技法は格子不整合系及び格子整合系の両方で使用することができ、したがって、高い設計柔軟性を有する。GaAs QDの場合、多くの金属Ga(ガリウム)液滴がまず、As(四砒素)気体がない状態で基板上に形成される。液滴は続けて、Asガスへの露出を通して結晶化され、GaAs QDを形成する。Ga液滴は通常、元々のモルフォロジーを維持するために、低温(約300℃)で形成される。しかしながら、そのような低温は多くの場合、AlGaAsキャッピング層の堆積中に結晶品質及び光学品質を低下させる。さらに、この低温周囲はまたは、炭素ドーパントを組み込む間のGaAs材料の形成に大きく影響する。 An alternative promising technique for producing unstrained GaAs / AlGaAs QDs is the droplet epitaxy (DE) growth mode first shown in 1993 by Koji and Ishige. Compared to the SK technique, the DE (droplet epitaxy) technique can be used in both lattice-mismatched and lattice-matched systems and thus has a high design flexibility. In the case of GaAs QD, many metal Ga (gallium) droplets are first formed on a substrate in the absence of As 4 (tetraarsenic) gas. The droplet is subsequently crystallized through exposure to As 4 gas to form a GaAs QD. Ga droplets are usually formed at low temperatures (about 300 ° C.) to maintain the original morphology. However, such low temperatures often degrade crystal quality and optical quality during the deposition of the AlGaAs capping layer. In addition, this low temperature ambient or greatly affects the formation of GaAs material during incorporation of carbon dopants.

As気体の濃度及び結晶化温度によって最終的なモルフォロジーが決まることが実証されている。例えば、一般に、GaAs QDは、炭素ドープされず、結晶化ステップで10−4〜10−5トール(1.33×10−1Pa〜1.33×10−2Pa)のAs気体を供給する場合に低温(約100℃〜200℃)で形成される。単一、二重、又は複数の量子リング(QR:quantum ring)が、結晶化ステップにおいて、200℃〜450℃の成長温度で10−6〜10−7トール(1.33×10−3Pa〜1.33×10−4Pa)のAs気体下で生成される。孔あきナノ構造体はより高い結晶化温度(T=450℃〜620℃)で成長する。 It has been demonstrated that the final morphology is determined by the concentration of As 4 gas and the crystallization temperature. For example, in general, GaAs QD is not carbon-doped and supplies As 4 gas at 10 −4 to 10 −5 Torr (1.33 × 10 −1 Pa to 1.33 × 10 −2 Pa) in the crystallization step. When it is formed, it is formed at a low temperature (about 100 to 200 ° C.) Single, dual, or multiple quantum ring (QR: quantum ring) is, in the crystallization step, at a growth temperature of 200 ℃ ~450 ℃ 10 -6 ~10 -7 Torr (1.33 × 10 -3 Pa To 1.33 × 10 −4 Pa) of As 4 gas. Perforated nanostructures grow at higher crystallization temperatures (T = 450 ° C. to 620 ° C.).

一連の従来の研究により、実験状況が最終的な構造体を決定し得ることが実証されてきた。しかしながら、いくつかの欠点がなお存在する。GaAs QD形成の場合、Ga液滴は、元々のモルフォロジーを維持するために低温で形成される。そのような低温成長プロセスは多くの場合、AlGaAsキャッピング層の堆積中に結晶品質及び光学品質を低下させる。したがって、高品質QDの製造にはさらなる研究が必要である。   A series of previous studies have demonstrated that experimental conditions can determine the final structure. However, there are still some drawbacks. In the case of GaAs QD formation, Ga droplets are formed at a low temperature to maintain the original morphology. Such low temperature growth processes often degrade crystal quality and optical quality during the deposition of the AlGaAs capping layer. Therefore, further research is needed to produce high quality QD.

加えて、アクセプタ不純物に結合した、閉じ込められた電子及び光励起ホールの再結合は、半導体ナノ構造体での新規物理現象の研究に対していくつかの利点を有する。結合ホールエネルギーは非常に明確に定義されるため、フォトルミネッセンス(PL)は、電子状態のエネルギースペクトルを直接測定する手段であり、ホールの局在化は、電子状態の全体電子密度を調べることができるようにk保存則を緩和する。この技法は、ランダウ(Landau)準位、シュブニコフ・ド・ハース(Shubnikov−de Haas)振動、分数量子ホール効果、及びウィグナー(Wigner)結晶化を光学的に調べることに繋がる、二次元(2D)電子系の物理学を調べるのに非常に首尾良く使用されていた。しかしながら、ゼロ次元(量子ドット)構造体に関わる同等の研究はないと考えられる。   In addition, the recombination of confined electrons and photoexcited holes coupled to acceptor impurities has several advantages for the study of new physical phenomena in semiconductor nanostructures. Since the coupled hole energy is very clearly defined, photoluminescence (PL) is a means of directly measuring the energy spectrum of the electronic state, and the localization of holes can examine the overall electron density of the electronic state. Relax the k-conservation law as much as possible. This technique leads to optical investigation of Landau levels, Shubnikov-De Haas oscillations, fractional quantum Hall effect, and Wigner crystallization. It has been used very successfully to study the physics of electronic systems. However, there appears to be no equivalent work involving zero-dimensional (quantum dot) structures.

T.Mano他、「GaAs/AlGaAs quantum dot laser fabricated on GaAs(311)A substrate by droplet epitaxy」、APPLIED PHYSICS LETTERS、93、203110(2008)T. T. et al. Mano et al., "GaAs / AlGaAs quantum laser fabricated on GaAs (311) A substrate by drupt epitaxy", APPLIED PHYSICS LETTERS, 93, 203110 (2008). D.Guimard他、「Ground state lasing at 1.34μm from InAs/GaAs quantum dots grown by antimony−mediated metal organic chemical vapor deposition」、APPLIED PHYSICS LETTERS、90、241110(2007)D. Guimard et al., “Ground state lasing at 1.34 μm from InAs / GaAs quantum dots grown by intermediate-medical organic chemical deposition ET110, LSI 90 LSI 90 LSI A.Marti他、「Production of Photocurrent due to Intermediate−to−Conduction−Band Transitions:A Demonstration of a Key Operating Principle of the Intermediate−Band Solar Cell」、PHYSICAL REVIEW LETTERS、PRL 97、247701(2006)A. Martin et al., “Production of Photocurrent due to Intermediate-to-Conduction-Band Transitions: A Demolition of a Key Operating Pr. Antonio Luque他、「Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels」、PHYSICAL REVIEW LETTERS、VOLUME 78、NUMBER 26(1997)Antonio Luque et al., “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermedial Levels, PHYSICAL REVIEW VERTE LEU VERTEL Il−Kyu Park他、「Ultraviolet light−emitting diodes with self−assembled InGaN quantum dots」、APPLIED PHYSICS LETTERS、90、111116(2007)Il-Kyu Park et al., “Ultraviolet light-emitting diodes with self-assembled InGaN quantum dots”, APPLIED PHYSICS LETTERS, 90, 111116 (2007) Jingbo Li他、「Shape Effects on Electronic States of Nanocrystals」、Nano Letters、Vol.3、No.10、2003Jingbo Li et al., “Shapes Effects on Electronic States of Nanocrystals”, Nano Letters, Vol. 3, no. 10, 2003 J.M.Moison他、「Self−organized growth of regular nanometer−scale InAs dots on GaAs」、Appl.Phys.Lett.64(2)、10 January 1994J. et al. M.M. Moison et al., “Self-organized growth of regular nanometer-scale InAs dots on GaAs”, Appl. Phys. Lett. 64 (2), 10 January 1994 G.Costantini他、「Interplay between Thermodynamics and Kinetics in the Capping of InAs/GaAs(001) Quantum Dots」、PHYSICAL REVIEW LETTERS、PRL 96、226106(2006)G. Costantini et al., "Interplay between Thermodynamics and Kinetics in the Capturing of InAs / GaAs (001) Quant Dots", PHYSICAL REVIEW LETTERS, 106 (PRL 200). K.Takehana他、「Controlling the shape of InAs self−assembled quantum dots by thin GaAs capping layers」、Journal of Crystal Growth 251(2003)155−160K. Takehana et al., "Controlling the shape of InAs self-assembled quantum dots by thin GaAs capping layers", Journal of Crystal Growth 251-160. Nobuyuki Koguchi他、「Growth of GaAs Epitaxial Microcrystals on an S−Terminated GaAs Substrate by Succesive Irradiation of Ga and As Molecular Beams」、Jpn.J.Appl.Phys.、Vol.32(1993)、pp.2052−2058Nobuyuki Koguchi et al., “Growth of GaAs Epitaxic Microcrystallines on an S-Terminated GaAs Substrate by Successful Irradiation of Ga and As Molecule. J. et al. Appl. Phys. Vol. 32 (1993), pp. 2052-2058 Takaaki Mano他、「Self−Assembly of Concentric Quantum Double Rings」、Nano Letters、Vol.5、No.3、2005Takaaki Mano et al., “Self-Assembly of Concentric Quantum Double Rings”, Nano Letters, Vol. 5, no. 3, 2005 S.Adorno他、「Annealing induced anisotropy in GaAs/AlGaAs quantum dots grown by droplet epitaxy」、Journal of Crystal Growth 378(2013)515−518S. Adonno et al., “Annealing Induced Anisotropy in GaAs / AlGaAs Quantum Dots Grown by Droplet Epitaxy”, Journal of Crystal Growth 378 (2013) 515-18. A.Nemcsics他、「Composition of the “GaAs” quantum dot,grown by droplet epitaxy」、Superlattices and Microstructures 48(2010)351−357A. Nemcics et al., “Composition of the“ GaAs ”quantum dot, grown by droplet epitaxy”, Superlattices and Microstructures 48 (2010) 351-357. S.Sanguinetti他、「Rapid thermal annealing effects on self−assembled quantum dot and quantum ring structures」、JOURNAL OF APPLIED PHYSICS、104、113519(2008)S. Sanguinetti et al., “Rapid thermal annealing effects on self-assembling quantum dots and quantum ring structures”, JOURNAL OF APPLIED PHYSICS, 104, 113519. J H Lee他、「Evolution between self−assembled single and double ring−like nanostructures」、Nanotechnology 17(2006)3973−3976J H Lee et al., "Evolution between self-assembled single and double ring-like nanostructures", Nanotechnology 17 (2006) 397-3976. C Z Tong他、「Investigation of the fabrication mechanism of self−assembled GaAs quantum rings grown by droplet epitaxy」、Nanotechnology 19(2008)365604(6pp)C Z Ton et al., “Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by drupt epitaxy”, Nanotechnology 36 (8), p. C.Somaschini他、「Concentric Multiple Rings by Droplet Epitaxy:Fabrication and Study of the Morphological Anisotropy」、Nanoscale Res Lett(2010)5:1865−1867C. Somaschini et al., “Concentric Multiple Rings by Driplet Epitaxy: Fabrication and Study of the Morphological Anisotropy”, Nanoscale Res Lett. (18:67) Zh.M.Wang他、「Nanoholes fabricated by self−assembled gallium nanodrill on GaAs(100)」、APPLIED PHYSICS LETTERS 90、113120(2007)Zh. M.M. Wang et al., “Nanoholes manufactured by self-assembled gallium nanodrill on GaAs (100)”, APPLIED PHYSICS LETTERS 90, 113120 (2007) Alvason Zhenhua Li他、「Evolution of Holed Nanostructures on GaAs (001)」、Crystal Growth & Design、Vol.9、No.6(2009)Alvason Zhenhua Li et al., “Evolution of Hold Nanostructures on GaAs (001)”, Crystal Growth & Design, Vol. 9, no. 6 (2009) Masafumi Jo他、「Unstrained GaAs Quantum Dashes Grown on GaAs(001) Substrates by Droplet Epitaxy」、Applied Physics Express、3(2010)045502Masafumi Jo et al., “Unstrained GaAs Quantum Growths on GaAs (001) Substrates by Droplet Express,” Applied Physics Express, 3 (2010) 0455502. Masafumi Jo他、「Effects of low−temperature capping on the optical properties of GaAs/AlGaAs quantum wells」、Nanoscale Research Letters、2011、6:76Masafumi Jo et al., “Effects of low-temperature capturing on the optical properties of GaAs / AlGaAs quantum wells”, Nanoscale Research Letters, 2011, 6:76. Katsuyuki WATANABE他、「Fabrication of GsAs Quantum Dots by Modified Droplet Epitaxy」、Jpn.J.Appl.Phys.、Vol.39(2000)pp.L79−L81Katsyuuki Watanabe et al., “Fabrication of GsAs Quantum Dots by Modified Droplet Epitaxy”, Jpn. J. et al. Appl. Phys. Vol. 39 (2000) pp. L79-L81 Masafumi Jo他、「Two−Step Formation of Gallium Droplets with High Controllability of Size and Density」、Cryst.Growth Des.、2011、11、4647−4651Masafumi Jo et al., “Two-Step Formation of Gallium Droplets with High Controllability of Size and Density”, Cryst. Growth Des. , 2011, 11, 4647-4651 I.V.Kukushkin他、「Radiative recombination of two−dimensional electrons in acceptor δ−doped GaAs−AlxGa1−x As single heterojnnctions」、PHYSICAL REVIEW B、Volume 40、No.11(1989)I. V. Kukushkin et al., “Radial recombination of two-dimensional electons in acceptor δ-doped GaAs-AlxGa1-x As single heterojunctions, PHYSICAL REV. 11 (1989) S.M.Wang他、「Growth of analog AlxGa1−x As/GaAs parabolic quantum wells by molecular beam epitaxy」、Appl.Phys.Lett.、62(1)、4 January,1993S. M.M. Wang et al., "Growth of analog AlxGa1-x As / GaAs parabolic quantum wells by molecular beam epitaxy", Appl. Phys. Lett. 62 (1), 4 January, 1993 J.Hegarty他、「Localized and delocalized two−dimensional excitons in GaAs−AlGaAs multiple−quantum−well structures」、PHYSICAL REVIEW B、Volume 30、No.12(1984)J. et al. Hegarty et al., “Localized and delocalized two-dimensional excitons in GaAs-AlGaAs multiple-quantum-well structures”, PHYSICAL REVIEW B, Volume 30. 12 (1984) I.V.KUKUSHKIN他、「Luminescence Experiments On Acceptor δ−doped GaAs−AlGaAs Single Heterojunctions With Optically Tunable Electron Concentration」、Surface Science 229(1990)447−451I. V. KUKUSHHKIN et al., “Luminescence Experiments On Acceptor δ-doped GaAs-AlGaAs Single Heterojunction With Optically Tunable Electron 29” (Surface 90) D.C.Tsui他、「Two−Dimensional Magnetotransport in the Extreme Quantum Limit」、PHYSICAL REVIEW LETTERS、Volume 48、No.22(1982)D. C. Tsui et al., “Two-Dimensional Magnetotransport in the Extreme Quantum Limit”, PHYSICAL REVIEW LETTERS, Volume 48, No. 48 22 (1982) R.B.Laughlin、「Anomalous Quantum Hall Effect:An Incompressible Quantum Fluid with Fractionally Charged Excitations」、PHYSICAL REVIEW LETTERS、Volume 50、No.I8、p.1395−1398(1983)R. B. Laughlin, “Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionated Charged Excitations”, PHYSICAL REVIEW LETTERS, Vol. 50 I8, p. 1395-1398 (1983) R.L.Willett他、「Quantitative experimental test for the theoretical gap egergies in the fractional quantum Hall effect」、PHYSICAL REVIEW B、Volume 37、No.14、p.8476−8479(1988)R. L. Willett et al., “Quantitative experimental test for the theoretical gaps in the fractional quantum Hall effect”, PHYSICAL REVIEW B, Volume. 14, p. 8476-8479 (1988) E.WIGNER、「On the Interaction of Electrons in Metals」、PHYSICAL REVIEW、Volume 46、p.1002−1011(1934)E. WIGNER, “On the Interaction of Electronics in Metals”, PHYSICAL REVIEW, Volume 46, p. 1002-1011 (1934) E.Y.Andrei他、「Observation of a Magnetically Induced Wigner Solid」、PHYSICAL REVIEW LETTERS、Volume 60、No.26(1988)E. Y. Andrew et al., “Observation of a Magnified Induced Widget Solid”, PHYSICAL REVIEW LETTERS, Volume 60, No. 5; 26 (1988) I.V.KUKUSHKIN他、「Magneto−optics of strongly correlated two−dimensional electrons in single heterojunctions」、ADVANCES IN PHYSICS、Vol.45、No.3、147−242(1996)I. V. KUKUSHKIN et al., “Magneto-optics of strong correlated two-dimensional components in single heterojunctions”, ADVANCES IN PHYSICS, Vol. 45, no. 3, 147-242 (1996) P.Offermans他、「Atomic−scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs」、PHYSICAL REVIEW B 72、165332(2005)P. Offermans et al., “Atomic-scale structure and photoluminescence of InAs quantum dots in GaAs and AlAs”, PHYSICAL REVIEW B 72, 165332 (2005). I.Vurgaftman他、「Band parameters for III−V compound semiconductors and their alloys」、JOURNAL OF APPLIED PHYSICS、Volume 89、No.11(2001)I. Vurgaftman et al., “Band parameters for III-V compound semiconductors and the alleys”, JOURNAL OF APPLIED PHYSICS, Volume 89, No. 209 11 (2001) Hiroshi Fushimi他、「Carbon−related defects in carbon−doped GaAs by high−temperature annealing」、J.Appl.Phys.82(3)、1997Hiroshi Fushimi et al., “Carbon-related defects in carbon-doped GaAs by high-temperature annealing”, J. Am. Appl. Phys. 82 (3), 1997 S Bietti他、「Crystallization kinetics of Ga metallic nano−droplets under As flux」、Nanotechnology 24(2013)205603(5pp)S Bietti et al., “Crystallization kinetics of Ga metallic nano-droplets under as flux”, Nanotechnology 24 (2013) 205603 (5pp) P.Atkinson他、「Independent wavelength and density control of uniform GaAs/AlGaAs quantum dots grown by infilling self−assembled nanoholes」、JOURNAL OF APPLIED PHYSICS 112、054303(2012)P. Atkinson et al., “Independent Wavelength and Density Control of Uniform GaAs / AlGaAs Quantum Grown by Infilling Self-Assembled Nanoholes,” Ch.Heyn他、「Mechanism and applications of local droplet etching」、Journal of Crystal Growth 323(2011)263−266Ch. Heyn et al., “Mechanism and applications of local droplet etching”, Journal of Crystal Growth 323 (2011) 263-266. C Somaschini他、「Coupled quantum dot−ring structures by droplet epitaxy」、Nanotechnology 22(2011)185602 (5pp)C. Somaschini et al., “Coupled quantum dot-ring structures by drought epitaxy”, Nanotechnology 22 (2011) 185602 (5pp) R.C.Miller他、「Extrinsic photoluminescence from GaAs quantum wells」、PHYSICAL REVIEW B、Volume 25、No.6(1982)R. C. Miller et al., “Extrinsic photoluminescence from GaAs quantum wells”, PHYSICAL REVIEW B, Volume 25, No. 5; 6 (1982)

したがって、高均一炭素ドープGaAs及び/又は高均一GaAsからなる新しいゼロ次元電子デバイスと、これを製造する方法とが必要とされる。この新しいゼロ次元電子デバイスは、QDレーザ、太陽電池、発光ダイオード、量子暗号法の単一光子光源、量子ビット、及び量子論理要素を含め、半導体分野で幅広い用途を有する。   Accordingly, there is a need for new zero-dimensional electronic devices made of highly uniform carbon doped GaAs and / or highly uniform GaAs and methods of manufacturing the same. This new zero-dimensional electronic device has a wide range of applications in the semiconductor field, including QD lasers, solar cells, light emitting diodes, quantum cryptography single photon light sources, qubits, and quantum logic elements.

本発明によれば、本明細書に開示される半導体デバイスは、基板と、量子ドットとを備え、量子ドットのフォトルミネッセンススペクトルのピーク放射は、半導体デバイスが温度4ケルビンで測定される場合、20meV未満の半値全幅(FWHM)を有する。   According to the present invention, the semiconductor device disclosed herein comprises a substrate and quantum dots, and the peak emission of the photoluminescence spectrum of the quantum dots is 20 meV when the semiconductor device is measured at a temperature of 4 Kelvin. With a full width at half maximum (FWHM) of less than

本発明によればまた、本明細書に開示される半導体デバイスは、基板と、量子ドットとを備える半導体デバイスであって、量子ドットのフォトルミネッセンススペクトルは、赤色光範囲内に3つ以上のピークを有する。   According to the present invention, a semiconductor device disclosed in the present specification is a semiconductor device including a substrate and a quantum dot, and the photoluminescence spectrum of the quantum dot has three or more peaks in the red light range. Have

本発明によればまた、半導体デバイスに量子ドットを成長させる方法が本明細書に開示される。本方法は、(a)基板を提供することと、(b)周期表V族材料を供給することと、(c)500℃を超える成長温度で前記基板の上に周期表III族−V族材料の緩衝層を成長させることと、(d)成長温度を約500℃に低下させることと、(e)周期表V族材料の供給を停止させることと、(f)周期表III族材料の液滴を成長させることと、(g)前記成長温度を約400℃未満に低下させることと、(h)より多くの周期表III族材料の液滴を成長させることと、(i)前記成長温度を360℃と450℃の間に増大させることとを含む。   In accordance with the present invention, a method for growing quantum dots in a semiconductor device is also disclosed herein. The method includes: (a) providing a substrate; (b) providing a periodic table group V material; and (c) a periodic table group III-V group on the substrate at a growth temperature greater than 500 ° C. Growing a buffer layer of material; (d) reducing the growth temperature to about 500 ° C .; (e) stopping the supply of the periodic table group V material; and (f) the periodic table group III material. Growing a droplet; (g) reducing the growth temperature to less than about 400 ° C .; (h) growing more droplets of a periodic group III material; and (i) the growth. Increasing the temperature between 360 ° C and 450 ° C.

さらに本発明によれば、半導体デバイスに量子ドットを成長させる方法が本明細書に開示される。本方法は、(a)基板を提供することと、(b)周期表V族材料を供給することと、(c)500℃を超える成長温度で前記基板の上に周期表III族−V族材料の緩衝層を成長させることと、(d)周期表V族材料の供給を停止させることと、(e)周期表II族材料又は周期表IV族材料を供給することと、(f)前記成長温度を約200℃未満に低下させることと、(g)周期表II族材料又は周期表IV族材料の供給を停止させることと、(h)周期表II族材料又は周期表IV族材料を有する周期表III族材料の液滴を成長させることとを含む。   Further in accordance with the present invention, a method for growing quantum dots on a semiconductor device is disclosed herein. The method includes: (a) providing a substrate; (b) providing a periodic table group V material; and (c) a periodic table group III-V group on the substrate at a growth temperature greater than 500 ° C. Growing a buffer layer of material; (d) stopping the supply of the periodic table group V material; (e) supplying the periodic table group II material or the periodic table group IV material; Reducing the growth temperature to less than about 200 ° C., (g) stopping the supply of the periodic table group II material or the periodic table group IV material, and (h) the periodic table group II material or the periodic table group IV material. Growing droplets of Group III material on the periodic table.

上記概説及び以下の詳細な説明の両方が単なる例示及び説明的なものであり、本発明に係る特許請求の範囲の限定ではないことを理解されたい。
本明細書に組み込まれ、本明細書の一部をなす添付図面はいくつかの実施形態を示す。
It should be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims of the invention.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments.

本発明によれば、ゼロ次元電子デバイスと、同デバイスを製造する方法が提供できた。   According to the present invention, a zero-dimensional electronic device and a method for manufacturing the device can be provided.

例示的なGaAs QD半導体デバイスを示す概略図である。1 is a schematic diagram illustrating an exemplary GaAs QD semiconductor device. FIG. スキャン面積5μm×5μmを有する成長温度360℃での、例示的なGaAs QDの表面モルフォロジーの原子間力顕微鏡(AFM:Atomic Force Microscopy)像である。4 is an atomic force microscopy (AFM) image of an exemplary GaAs QD surface morphology at a growth temperature of 360 ° C. with a scan area of 5 μm × 5 μm. スキャン面積1μm×1μmを用いる成長温度360℃での、例示的なGaAs QDの表面モルフォロジーのAFM像である。FIG. 6 is an AFM image of an exemplary GaAs QD surface morphology at a growth temperature of 360 ° C. using a scan area of 1 μm × 1 μm. 例示的なGaAs/AlGaAs QDの透過電子顕微鏡(TEM:Transmission Electoron Microscopy)像である。1 is an exemplary GaAs / AlGaAs QD transmission electron microscope (TEM) image. 温度4K(ケルビン)及び300Kで測定された、GaAs湿潤層に結合された例示的なGaAs/AlGaAs QDのPLスペクトルを示す。Figure 2 shows a PL spectrum of an exemplary GaAs / AlGaAs QD coupled to a GaAs wetting layer measured at temperatures of 4K (Kelvin) and 300K. 半導体デバイス上にQDを成長させる例示的な方法を示す。2 illustrates an exemplary method for growing a QD on a semiconductor device. 半導体デバイス上にQDを成長させる別の例示的な方法を示す。Fig. 4 illustrates another exemplary method for growing a QD on a semiconductor device. 半導体デバイス上にQDを成長させる別の例示的な方法を示す。Fig. 4 illustrates another exemplary method for growing a QD on a semiconductor device. 半導体デバイス上にQDを成長させる別の例示的な方法を示す。Fig. 4 illustrates another exemplary method for growing a QD on a semiconductor device. 例示的な炭素ドープGaAs QD半導体デバイスを示す概略図である。1 is a schematic diagram illustrating an exemplary carbon-doped GaAs QD semiconductor device. FIG. 1μm×1μmのスキャン面積を有する例示的な炭素ドープGaAs QDのAFM像である。2 is an AFM image of an exemplary carbon-doped GaAs QD having a scan area of 1 μm × 1 μm. 温度4.65Kで測定された例示的な炭素ドープGaAs QDのPLスペクトルを示す。Figure 3 shows a PL spectrum of an exemplary carbon doped GaAs QD measured at a temperature of 4.65K. 例示的な炭素ドープGaAs/AlGaAs QDの伝導帯と価電子帯との間の遷移エネルギーを示す概略図である。FIG. 6 is a schematic diagram illustrating the transition energy between the conduction band and valence band of an exemplary carbon-doped GaAs / AlGaAs QD. 1.74K〜21Kの範囲の温度での例示的な炭素ドープGaAs/AlGaAs QD構造体の伝導帯における閉じ込められた電子の遷移エネルギーを示す。FIG. 6 shows the transition energy of confined electrons in the conduction band of an exemplary carbon-doped GaAs / AlGaAs QD structure at temperatures ranging from 1.74 K to 21 K. FIG. 例示的な炭素ドープGaAs QDのPLスペクトルの温度依存性を示す。Figure 3 shows the temperature dependence of the PL spectrum of an exemplary carbon-doped GaAs QD. 半導体デバイスにQDを成長させる別の例示的な方法を示す。Fig. 4 illustrates another exemplary method for growing a QD in a semiconductor device. 半導体デバイス上に炭素ドープQDを成長させる更に別の例示的な方法を示す。6 illustrates yet another exemplary method for growing a carbon-doped QD on a semiconductor device. 半導体デバイス上に炭素ドープQDを成長させる更に別の例示的な方法を示す。6 illustrates yet another exemplary method for growing a carbon-doped QD on a semiconductor device.

これより、本発明による例示的な実施形態を詳細に参照し、実施形態の例は添付図面に示される。可能な場合は常に、図面全体を通して、同じ参照番号が同じ又は同様の部品を指すために使用される。説明は例示的な実施形態を含むが、他の実施形態も可能であり、本発明の趣旨及び範囲から逸脱せずに、説明された実施形態に変更を行い得る。以下の詳細な説明は本発明を限定しない。代わりに、本発明の範囲は、添付の特許請求の範囲及びそれらの均等物によって規定される。   Reference will now be made in detail to exemplary embodiments in accordance with the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Although the description includes exemplary embodiments, other embodiments are possible and modifications may be made to the described embodiments without departing from the spirit and scope of the invention. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims and their equivalents.

本発明の一実施形態によれば、基板と、QDとを備える半導体デバイスが開示され、QDのピーク放射は、半導体デバイスが温度4ケルビン(K)で測定される場合、20ミリ電子ボルト(meV)未満の半値全幅(FWHM)を有する。半導体デバイスは緩衝層を更に備え得、緩衝層は、周期表III族材料及び周期表V族材料からなる周期表III族−V族材料を含み、QDは周期表III族材料及び周期表V族材料を含む。例えば、緩衝層はGaAs緩衝層であり得、QDは、高均一GaAs/AlGaAs QD等のGaAsを含む。   According to one embodiment of the present invention, a semiconductor device comprising a substrate and a QD is disclosed, and the peak emission of the QD is 20 millieV (meV) when the semiconductor device is measured at a temperature of 4 Kelvin (K). ) With a full width at half maximum (FWHM) of less than The semiconductor device may further include a buffer layer, the buffer layer including a periodic table group III-V material composed of a periodic table group III material and a periodic table group V material, and QD is a periodic table group III material and a periodic table group V. Contains materials. For example, the buffer layer can be a GaAs buffer layer, and the QD includes GaAs such as highly uniform GaAs / AlGaAs QD.

図1は、本発明による例示的なGaAs QD半導体デバイスを示す概略図である。半導体デバイスは、基板110と、GaAs緩衝層120と、GaAs/AlAs超格子130と、GaAs QD150が埋め込まれるAlGaAs層140と、GaAs/AlAs超格子160と、GaAs QD170とを備える。   FIG. 1 is a schematic diagram illustrating an exemplary GaAs QD semiconductor device according to the present invention. The semiconductor device includes a substrate 110, a GaAs buffer layer 120, a GaAs / AlAs superlattice 130, an AlGaAs layer 140 in which a GaAs QD 150 is embedded, a GaAs / AlAs superlattice 160, and a GaAs QD 170.

本発明によれば、半導体デバイスがキャッピング層を備えてもよく、これらの層を繰り返してもよいことを当業者は想到できる。例えば、キャッピング層はAlGaAs層150であり得、層130とQDが埋め込まれた層140とを複数回繰り返して、より多くのGaAs QDを成長させる。   According to the present invention, those skilled in the art can conceive that the semiconductor device may comprise a capping layer and these layers may be repeated. For example, the capping layer can be an AlGaAs layer 150, and the layer 130 and the layer 140 with the embedded QD are repeated multiple times to grow more GaAs QDs.

GaAs緩衝層120は厚さ約200nmを有し得る。GaAs/AlAs超格子130及び160は、50〜150周期超格子であり得る。150周期超格子の場合、GaAsは厚さ約2.9nmを有し得、一方、AlAsは厚さ約2.7nmを有し得る。   The GaAs buffer layer 120 may have a thickness of about 200 nm. The GaAs / AlAs superlattices 130 and 160 can be 50-150 periodic superlattices. For a 150 period superlattice, GaAs can have a thickness of about 2.9 nm, while AlAs can have a thickness of about 2.7 nm.

AlGaAs層140は厚さ約100nmを有し得る。GaAs QD150はAlGaAs層140内に埋め込まれる。GaAs QD150及び170は高均一性を有する。GaAs QD170は、AFM像を介してこの高均一性をテストされる。   The AlGaAs layer 140 can have a thickness of about 100 nm. The GaAs QD 150 is embedded in the AlGaAs layer 140. GaAs QDs 150 and 170 have high uniformity. The GaAs QD 170 is tested for this high uniformity via AFM images.

図2Aは、スキャン面積5μm×5μmを有する成長温度360℃での表面からの、例示的なGaAs QD170の表面モルフォロジーのAFM像210である。示されるように、GaAs QD212は、高均一性及び丸い形状を有する。一例では、GaAs QD212の表面は、高均一性(99±3nm)及び面密度約10cm−2を有する。 FIG. 2A is an AFM image 210 of the surface morphology of an exemplary GaAs QD 170 from a surface at a growth temperature of 360 ° C. with a scan area of 5 μm × 5 μm. As shown, GaAs QD212 has a high uniformity and round shape. In one example, the surface of GaAs QD212 has a high uniformity (99 ± 3 nm) and an areal density of about 10 8 cm −2 .

図2Bは、スキャン面積1μm×1μmを有する成長温度360℃での表面からの、例示的なGaAs QD170の表面モルフォロジーのAFM像250である。AFM像250は、図2Aをより拡大した像であり、QD252に示されるように、GaAs QD170が高均一性を有することを確認する。   FIG. 2B is an AFM image 250 of the surface morphology of an exemplary GaAs QD 170 from a surface at a growth temperature of 360 ° C. with a scan area of 1 μm × 1 μm. The AFM image 250 is an enlarged image of FIG. 2A and confirms that the GaAs QD 170 has high uniformity, as indicated by the QD 252.

図3は、AlGaAs層340内に埋め込まれた例示的なGaAs/AlGaAs QD150のTEM像であり、AlGaAs層340それ自体は、GaAs/AlAs超格子330とGaAs/AlAs超格子350(部分的に示される)との間に埋め込まれる。QD320は、湿潤層310上に形成され、GaAs/AlAs超格子330内に埋め込まれる。QD下の連続湿潤層310がはっきりと観測される。   FIG. 3 is a TEM image of an exemplary GaAs / AlGaAs QD 150 embedded in an AlGaAs layer 340, which itself includes a GaAs / AlAs superlattice 330 and a GaAs / AlAs superlattice 350 (partially shown). Embedded). The QD 320 is formed on the wet layer 310 and embedded in the GaAs / AlAs superlattice 330. A continuous wetting layer 310 under QD is clearly observed.

図4は、GaAs/AlAs超格子構造体内のAlGaAs層内に埋め込まれたGaAs湿潤層に結合された例示的なGaAs/AlGaAs QD150のPLスペクトルを示す。PLスペクトル410は温度4Kで測定され、一方、PLスペクトル420は300Kで測定され、それぞれ低温及び室温を反映する。   FIG. 4 shows the PL spectrum of an exemplary GaAs / AlGaAs QD 150 coupled to a GaAs wetting layer embedded within an AlGaAs layer within a GaAs / AlAs superlattice structure. PL spectrum 410 is measured at a temperature of 4K, while PL spectrum 420 is measured at 300K, reflecting low temperature and room temperature, respectively.

図4では、20meV未満(この例では約14.87meV)の半値全幅(FWHM)を有する非常に狭いPL放射が、4KでのQD150(スペクトル410内)から観測され、これは約704nmを中心とする。これは、高い光学品質及び優れたドット均一性を示す。   In FIG. 4, a very narrow PL emission with a full width at half maximum (FWHM) of less than 20 meV (about 14.87 meV in this example) is observed from QD150 (in spectrum 410) at 4K, centered at about 704 nm. To do. This indicates high optical quality and excellent dot uniformity.

QDピークの、約10cm−2という低い面密度にもかかわらず、QDピークは強度上で、図1のGaAs緩衝層120のGaAsピークよりも強く、これは、超格子から湿潤層への、そして湿潤層からQDへのキャリアの効率的な転移に起因し得る。なお、GaAs量子ウェル(QW:quantum well)ピークは約689nmを中心とする。 Despite the low surface density of the QD peak of about 10 8 cm −2 , the QD peak is stronger in intensity than the GaAs peak of the GaAs buffer layer 120 of FIG. 1, which is from the superlattice to the wetting layer. And due to the efficient transfer of the carrier from the wetting layer to the QD. The GaAs quantum well (QW) peak is centered at about 689 nm.

室温(300K)において、PLスペクトル420は一連のサブピークを示し、これは、異なる量子閉じ込めドット状態に起因し得る。産業用途では、各サブピークを使用して、別個の各信号を表し得る。   At room temperature (300 K), PL spectrum 420 shows a series of sub-peaks, which can be attributed to different quantum confined dot states. In industrial applications, each subpeak may be used to represent each distinct signal.

本発明によれば、図5は、半導体デバイス上にQDを成長させる例示的な方法500を示す。方法500は、基板を提供すること(ステップ510)と、周期表V族材料シャッタ(shutter)を開くなどの周期表V族材料を供給すること(ステップ520)と、500℃を超える成長温度(例えば、580℃)で基板の上に周期表III族−V族材料緩衝層を成長させること(ステップ530)とを含む。方法500は、成長温度を約500℃に低下させること(ステップ540)と、周期表V族材料シャッタを閉じるなどの周期表V族材料の供給を停止させること(ステップ550)と、周期表III族材料の液滴を成長させること(ステップ560)とも含む。方法500は、成長温度を約400℃未満(例えば、200℃〜400℃の温度)に低下させること(ステップ570)と、より多くの周期表III族材料液滴を成長させること(ステップ580)と、成長温度を約450℃(例えば、360℃〜450℃の温度)までに増大させること(ステップ590)とを更に含む。   In accordance with the present invention, FIG. 5 illustrates an exemplary method 500 for growing a QD on a semiconductor device. The method 500 includes providing a substrate (step 510), supplying a periodic table group V material such as opening a periodic table group V material shutter (step 520), and a growth temperature above 500 ° C. (step 520). Growing a periodic group III-V material buffer layer (step 530) on the substrate at 580 ° C., for example. The method 500 reduces the growth temperature to about 500 ° C. (step 540), stops the supply of periodic table group V material, such as closing the periodic table group V material shutter (step 550), and the periodic table III. Growing a drop of group material (step 560). The method 500 reduces the growth temperature to less than about 400 ° C. (eg, a temperature between 200 ° C. and 400 ° C.) (step 570) and grows more periodic table group III material droplets (step 580). And increasing the growth temperature to about 450 ° C. (eg, a temperature of 360 ° C. to 450 ° C.) (step 590).

本発明によれば、周期表III族材料はB、Al、Ga、In、又はTlであり得る。周期表V族材料はN、P、As、Sb、又はBiであり得る。周期表III族−V族材料は、例えば、GaAs、GaSb、又はAlGaAsであり得る。   According to the present invention, the periodic table group III material can be B, Al, Ga, In, or Tl. The periodic table group V material may be N, P, As, Sb, or Bi. The periodic table group III-V material can be, for example, GaAs, GaSb, or AlGaAs.

一実施形態では、周期表III族材料、周期表V族材料、及び周期表III族−V族材料はそれぞれGa、As、及びGaAsである。方法500は、様々な段階において1つ又は複数の以下のステップを更に含み得る:GaAs/AlAs超格子を成長させること、GaAs/AlAs超格子の上にAlGaAs層を成長させること、Asシャッタを開くこと、及びGa液滴を結晶化してGaAs QDにすること。方法500は、AlGaAsキャッピング層を成長させることを更に含み得る。方法500内のこれらのステップのいくつかを繰り返して、より多くのQDを成長させ得る。   In one embodiment, the periodic table group III material, the periodic table group V material, and the periodic table group III-V material are Ga, As, and GaAs, respectively. The method 500 may further include one or more of the following steps at various stages: growing a GaAs / AlAs superlattice, growing an AlGaAs layer on the GaAs / AlAs superlattice, and opening an As shutter. And crystallizing Ga droplets into GaAs QDs. Method 500 may further include growing an AlGaAs capping layer. Some of these steps in method 500 may be repeated to grow more QDs.

図6A〜図6Cは、本発明により、半導体デバイス上にQDを成長させる別の例示的な方法600を示す。ここで、QDの液滴エピタキシーは、2つの主な段階、すなわち、液滴の形成及びその後の、As気体下での結晶化を含む。   6A-6C illustrate another exemplary method 600 for growing a QD on a semiconductor device in accordance with the present invention. Here, QD droplet epitaxy involves two main steps: droplet formation and subsequent crystallization under As gas.

まず、ステップ610において、半絶縁性GaAs基板が提供されて、分子ビームエピタキシーによってQDを成長させる。最適化された2段階成長方法を使用して、Ga液滴を準備する。ステップ612において、温度を約580℃に増大させる。次に、Asシャッタをステップ614において開く。次に、ステップ616において、GaAs緩衝層の成長を開始する。   First, in step 610, a semi-insulating GaAs substrate is provided and a QD is grown by molecular beam epitaxy. Ga droplets are prepared using an optimized two-step growth method. In step 612, the temperature is increased to about 580 ° C. Next, the As shutter is opened in step 614. Next, in step 616, growth of the GaAs buffer layer is started.

GaAsウェーハの表面上に580℃で200nm厚のGaAs緩衝層を成長させた後、ステップ620において、GaAs緩衝層の上に150周期GaAs/AlAs超格子の成長を開始する。GaAs/AlAs超格子も50〜150周期であり得る。ステップ622において2分〜4分間待った後、ステップ624において、AlGaAs層の成長を開始する。   After a 200 nm thick GaAs buffer layer is grown on the surface of the GaAs wafer at 580 ° C., in step 620, growth of a 150 period GaAs / AlAs superlattice is started on the GaAs buffer layer. The GaAs / AlAs superlattice can also be 50 to 150 periods. After waiting for 2 to 4 minutes in step 622, growth of the AlGaAs layer is started in step 624.

次に、ステップ626において、基板温度を約500℃に低下させ、Asシャッタを完全に閉じて、背景気体圧を6×10−10トール(8.00×10−8Pa)未満に維持する。C(4×4)表面再構築は、反射高エネルギー電子回折(RHEED:reflection high−energy electron diffraction)によってはっきりと観測された。次に、ステップ628において、Ga液滴が、まず、As気体なしで毎秒0.5単分子層(ML)の率で1単分子層形成される。 Next, in step 626, the substrate temperature is lowered to about 500 ° C., the As shutter is fully closed, and the background gas pressure is maintained below 6 × 10 −10 Torr (8.00 × 10 −8 Pa). C (4 × 4) surface reconstruction was clearly observed by reflection high-energy electron diffraction (RHEED). Next, in step 628, Ga droplets are first formed in a monolayer at a rate of 0.5 monolayer (ML) per second without As gas.

続けて、第2の段階のステップ630において、基板温度を約320℃に低下させ、ステップ632において、2単分子層(ML)のGaを毎秒0.5単分子層(ML)の率で堆積させた。液滴形成プロセスにわたり、背景気体圧は6×10−10トール(8.00×10−8Pa)未満に保持される。結晶化プロセスは、Ga液滴の形成後に実行される。結晶化ステップ634において、基板温度は約360℃〜450℃に増大される。ステップ636において、Asシャッタを開く。ステップ638において、Ga液滴を結晶化して、GaAs QDにする。結晶化プロセス中、約4×10−6トール(5.33×10−4Pa)の一定であるAs気体下で10分間、約360℃〜450℃で半導体を成長させる。 Subsequently, in step 630 of the second stage, the substrate temperature is reduced to about 320 ° C., and in step 632, two monolayers (ML) of Ga are deposited at a rate of 0.5 monolayer (ML) per second. I let you. Over the droplet formation process, the background gas pressure is kept below 6 × 10 −10 Torr (8.00 × 10 −8 Pa). The crystallization process is performed after the formation of Ga droplets. In the crystallization step 634, the substrate temperature is increased to about 360 ° C to 450 ° C. In step 636, the As shutter is opened. In step 638, the Ga droplet is crystallized to GaAs QD. During the crystallization process, the semiconductor is grown at about 360-450 ° C. for 10 minutes under an As 4 gas constant of about 4 × 10 −6 Torr (5.33 × 10 −4 Pa).

次に、別の50nm厚のAl0.35Ga0.65As層により、以下のようにQDをキャッピングする。ステップ640において、10nmのAlGaAsキャッピング層の成長を開始する。次に、ステップ642において、温度を約580℃に増大させ、それにより、ステップ644において、別の40nmのAlGaAsキャッピング層の成長を開始する。 Next, the QD is capped with another 50 nm thick Al 0.35 Ga 0.65 As layer as follows. In step 640, growth of a 10 nm AlGaAs capping layer is initiated. Next, in step 642, the temperature is increased to about 580 ° C., thereby starting another 40 nm AlGaAs capping layer growth in step 644.

図6A〜図6Cに示されるステップのいくつかを繰り返して、より多くのQD層を成長させ得る。AFMを使用して埋め込まれたQDの表面モルフォロジーを調べるために、例えば、150周期の別の超格子が形成された後、第2のQD層が、埋め込まれたQDと同じ条件下で、半導体デバイスの表面上に形成され、一方、TEMは、図2及び図3に示されるように、埋め込まれたQDの評価に使用される。マルチモード光ファイバを使用して4.2K〜300Kの温度でPL実験を実行して、532nmレーザ光を半導体デバイスに送り、PLを収集し、図4に示されるように、これを分光計及び電子倍増電荷結合素子(EMCCD:electron−multiplying charge−coupled device)によって分析する。   Some of the steps shown in FIGS. 6A-6C can be repeated to grow more QD layers. To investigate the surface morphology of an embedded QD using AFM, for example, after another superlattice of 150 periods has been formed, the second QD layer is subjected to the same conditions as the embedded QD under the same conditions. While formed on the surface of the device, TEM is used to evaluate the embedded QD, as shown in FIGS. A PL experiment was performed using a multimode optical fiber at a temperature of 4.2 K to 300 K, sending a 532 nm laser light to the semiconductor device, collecting the PL, and as shown in FIG. Analysis is performed by an electron-multiplied charge-coupled device (EMCDD).

本発明の別の実施形態により、別の半導体デバイスが本明細書に開示され、この半導体デバイスは、基板と、QDとを備え、QDのピーク放射は、半導体デバイスが温度4.65Kで測定される場合、8meV未満の半値全幅(FWHM)を有する。   According to another embodiment of the present invention, another semiconductor device is disclosed herein, the semiconductor device comprising a substrate and a QD, the peak emission of the QD being measured at a temperature of 4.65K at the semiconductor device. The full width at half maximum (FWHM) of less than 8 meV.

加えて、QDは、炭素等の周期表II族材料又は周期表IV族材料によってドープされる。QDに炭素を組み込むことにより、全ての電子閉じ込め段階への直接アクセスが可能になり、ゼロ次元系の物理学の研究への新しい可能性が開かれる。   In addition, the QD is doped with a periodic table group II material or a periodic table group IV material such as carbon. Incorporating carbon in the QD allows direct access to all electron confinement stages, opening up new possibilities for studying physics of zero-dimensional systems.

半導体デバイスは、緩衝層を更に備え得、緩衝層は、周期表III族材料及び周期表V族材料からなる周期表III族−V族材料を含み、QDは周期表III族材料及び周期表V族材料を含む。例えば、緩衝層はGaAs緩衝層であり得、QDは、高均一GaAs/AlGaAs QD等のGaAsを含む。GaAs/AlGaAs QDは、基板温度が約100℃〜200℃に低減される場合、非常に低いドーパント濃度を有する。   The semiconductor device may further include a buffer layer, wherein the buffer layer includes a periodic table group III-V material composed of a periodic table group III material and a periodic table group V material, and QD is a periodic table group III material and a periodic table V. Including family materials. For example, the buffer layer can be a GaAs buffer layer, and the QD includes GaAs such as highly uniform GaAs / AlGaAs QD. GaAs / AlGaAs QD has a very low dopant concentration when the substrate temperature is reduced to about 100-200 ° C.

図7は、本発明による、例示的な炭素ドープGaAs QD半導体デバイスを示す概略図である。半導体デバイスは、基板710と、GaAs緩衝層720と、GaAs/AlAs超格子730と、炭素ドープGaAs QD750が埋め込まれたAlGaAs層740と、GaAs/AlAs超格子760と、炭素ドープGaAs QD780が埋め込まれたAlGaAs層770と、炭素ドープGaAs QD790とを備える。   FIG. 7 is a schematic diagram illustrating an exemplary carbon-doped GaAs QD semiconductor device according to the present invention. The semiconductor device includes a substrate 710, a GaAs buffer layer 720, a GaAs / AlAs superlattice 730, an AlGaAs layer 740 embedded with a carbon-doped GaAs QD750, a GaAs / AlAs superlattice 760, and a carbon-doped GaAs QD780. And an AlGaAs layer 770 and a carbon-doped GaAs QD790.

本発明によれば、半導体デバイスがキャッピング層を備えてもよく、これらの層を繰り返してもよいことを当業者は想到できる。例えば、キャッピング層はAlGaAs層750であり得、層730及び、QDが埋め込まれた層740を複数回繰り返して、より多くのQDを成長させ得る。   According to the present invention, those skilled in the art can conceive that the semiconductor device may comprise a capping layer and these layers may be repeated. For example, the capping layer can be an AlGaAs layer 750, and the layer 730 and the layer 740 with embedded QDs can be repeated multiple times to grow more QDs.

GaAs緩衝層720は厚さ約200nmを有し得る。GaAs/AlAs超格子730及び760は50〜150周期超格子であり得る。150周期超格子の場合、GaAs及びAlAsはそれぞれ厚さ約3.3nmを有し得る。   The GaAs buffer layer 720 may have a thickness of about 200 nm. GaAs / AlAs superlattices 730 and 760 may be 50-150 periodic superlattices. For a 150 period superlattice, GaAs and AlAs can each have a thickness of about 3.3 nm.

AlGaAs層740及び770は厚さ約100nmを有し得る。層740及び770は、埋め込まれた炭素ドープGaAs QD750及び780を含む。GaAs QD750、780、及び790は高均一性を有する。   The AlGaAs layers 740 and 770 can have a thickness of about 100 nm. Layers 740 and 770 include embedded carbon-doped GaAs QDs 750 and 780. GaAs QDs 750, 780, and 790 have high uniformity.

本発明によれば、例示的な炭素ドープGaAs/AlGaAs QDの密度は、約5×10cm−2〜約5×10cm−2の範囲であり得、高さは約1nm〜約4nmの範囲であり得る。また、本発明によれば、AlGa1−xAs層740内のAlとGaとの比率xは約0.3〜0.35である。 In accordance with the present invention, the density of exemplary carbon-doped GaAs / AlGaAs QDs can range from about 5 × 10 8 cm −2 to about 5 × 10 9 cm −2 with a height of about 1 nm to about 4 nm. Range. According to the present invention, the ratio x between Al and Ga in the Al x Ga 1-x As layer 740 is about 0.3 to 0.35.

図8は、スキャン面積1μm×1μmを有する例示的な炭素ドープGaAs QD810のAFM像800である。示されるように、炭素ドープGaAs QD810は高均一性及び丸い形状を有する。一例では、炭素ドープGaAs QD810は平均高さ2.25±0.5nmを有し、リング形構造を示す。炭素ドープGaAs QDの平均ベース直径は50.3nmである。面密度は2.1×1010cm−2である。 FIG. 8 is an AFM image 800 of an exemplary carbon-doped GaAs QD810 having a scan area of 1 μm × 1 μm. As shown, the carbon doped GaAs QD810 has a high uniformity and round shape. In one example, carbon-doped GaAs QD810 has an average height of 2.25 ± 0.5 nm and exhibits a ring-shaped structure. The average base diameter of carbon-doped GaAs QD is 50.3 nm. The areal density is 2.1 × 10 10 cm −2 .

図9Aは、温度4.65Kで測定された図7の例示的な炭素ドープGaAs QD750及び780のPLスペクトル900を示す。示されるように、閉じ込められた電子と閉じ込められた重ホールとの再結合からのものであるピーク1でのFWHMは、8meV未満(この例では、約7.41meV)である。従来の研究と比較して、この値は現在、GaAs/AlGaAs QD構造では最も低く、高均一性GaAs QDをもたらすと考えられる。閉じ込められた電子と不純物結合ホールとの再結合についてのより詳細な説明について以下に考察する。   FIG. 9A shows the PL spectrum 900 of the exemplary carbon doped GaAs QD 750 and 780 of FIG. 7 measured at a temperature of 4.65K. As shown, the FWHM at peak 1, which is from recombination of confined electrons and confined heavy holes, is less than 8 meV (in this example about 7.41 meV). Compared to previous work, this value is currently lowest for GaAs / AlGaAs QD structures and is believed to result in highly uniform GaAs QDs. A more detailed description of the recombination between the confined electrons and the impurity bonded holes is discussed below.

本発明の更に別の実施形態によれば、基板と、QDとを備え、QDのPLスペクトルが赤色光範囲内に3つ以上のピークを有する半導体デバイスが本明細書に開示される。一例として、例示的なQD750及び780(図7参照)のPLスペクトルは、半導体デバイスが温度4.65Kで測定される場合、図9Aに示されるように、少なくとも5つのピークを有する。   According to yet another embodiment of the present invention, disclosed herein is a semiconductor device comprising a substrate and a QD, the PL spectrum of the QD having three or more peaks in the red light range. As an example, the PL spectra of exemplary QDs 750 and 780 (see FIG. 7) have at least five peaks, as shown in FIG. 9A, when the semiconductor device is measured at a temperature of 4.65K.

産業用途では、各ピークは独特な信号を表し得る。したがって、QD構造体が複数のピークを示す場合、複数の信号のために複数のQD構造体を製造する必要性が低減し、したがって、生産コストが低減する。   In industrial applications, each peak can represent a unique signal. Thus, if the QD structure exhibits multiple peaks, the need to manufacture multiple QD structures for multiple signals is reduced, thus reducing production costs.

半導体デバイスは緩衝層を更に備え得、緩衝層は、周期表III族材料及び周期表V族材料からなる周期表III族−V族材料を含み、QDはIII族材料及びV族材料を含む。例えば、緩衝層はGaAs緩衝層であり得、QDは、高均一GaAs/AlGaAs QD等のGaAsを含む。加えて、QDは、炭素等の周期表II族材料又は周期表IV族材料によってドープされる。   The semiconductor device may further comprise a buffer layer, wherein the buffer layer includes a periodic table group III-V material composed of a periodic table group III material and a periodic table group V material, and the QD includes a group III material and a group V material. For example, the buffer layer can be a GaAs buffer layer, and the QD includes GaAs such as highly uniform GaAs / AlGaAs QD. In addition, the QD is doped with a periodic table group II material or a periodic table group IV material such as carbon.

図9Aを再び参照すると、第1の赤色光は、約685nm〜約696nmの範囲のピーク(ピーク1)中心波長を有し、これらは電子ボルト(eV)単位での約1.81eV〜約1.78eVに対応する。第2の赤色光は、約702nm〜約715nmの範囲のピーク(ピーク2)中心波長を有し、これらは約1.77eV〜約1.73eVに対応する。第3の赤色光は、約716nm〜約725nmの範囲のピーク(ピーク3)中心波長を有し、これらは約1.72eV〜約1.71eVに対応する。第4の赤色光は、約726nm〜約731nmの範囲のピーク(ピーク4)中心波長を有し、これらは約1.70eV〜約1.69eVに対応する。最後に、第5の赤色光は、約740nm〜約750nmの範囲のピーク(ピーク5)中心波長を有し、これらは約1.68eV〜約1.65eVに対応する。   Referring again to FIG. 9A, the first red light has a peak (peak 1) center wavelength in the range of about 685 nm to about 696 nm, which is about 1.81 eV to about 1 in electron volt (eV) units. Corresponding to .78 eV. The second red light has a peak (peak 2) center wavelength in the range of about 702 nm to about 715 nm, which corresponds to about 1.77 eV to about 1.73 eV. The third red light has a peak (peak 3) center wavelength in the range of about 716 nm to about 725 nm, which corresponds to about 1.72 eV to about 1.71 eV. The fourth red light has a peak (peak 4) center wavelength in the range of about 726 nm to about 731 nm, which corresponds to about 1.70 eV to about 1.69 eV. Finally, the fifth red light has a peak (peak 5) center wavelength in the range of about 740 nm to about 750 nm, which corresponds to about 1.68 eV to about 1.65 eV.

一実施形態では、各赤色光は、約2nm〜約8nmの範囲の半値全幅(FWHM)を有するピーク放射を有し、これらは約7meV〜約20meVに対応する。
図9Bは、GaAs/AlAs超格子構造体内のAlGaAs層内に埋め込まれた例示的な炭素ドープGaAs/AlGaAs QD内の伝導帯と価電子帯との間の遷移エネルギーを示す概略図950である。ここに示されるように、この炭素ドープQD構造体には、伝導帯に閉じ込められた電子に4つの結合状態E4e、E3e、E2e、及びE1eと、重ホールに1つの結合状態(E1h)がある。ピーク1の遷移エネルギー(図9A参照)は、閉じ込められた電子(E4eでのエネルギー準位)と重ホール状態(E1hでのエネルギー準位)との間の帯間遷移に主に起因する。
In one embodiment, each red light has a peak emission with a full width at half maximum (FWHM) in the range of about 2 nm to about 8 nm, which corresponds to about 7 meV to about 20 meV.
FIG. 9B is a schematic diagram 950 illustrating the transition energy between the conduction and valence bands in an exemplary carbon-doped GaAs / AlGaAs QD embedded in an AlGaAs layer within a GaAs / AlAs superlattice structure. As shown here, this carbon-doped QD structure includes four bonded states E 4e , E 3e , E 2e , and E 1e for electrons confined in the conduction band and one bonded state for heavy holes ( E1h ). The transition energy of peak 1 (see FIG. 9A) is mainly due to the interband transition between the confined electron (energy level at E 4e ) and the heavy hole state (energy level at E 1h ). .

図9Bでは、Eの結合状態は、このQD構造体にアクセプタを生成する炭素不純物に主に起因する。ピーク2は、閉じ込められた電子(E4eでのエネルギー準位)と炭素アクセプタ(Eでのエネルギー準位)との間の遷移に主に起因する。ピーク3は、閉じ込められた電子(E3eでのエネルギー準位)と炭素アクセプタ(Eでのエネルギー準位)との間の遷移に主に起因する。ピーク4は、閉じ込められた電子(E2eでのエネルギー準位)と炭素アクセプタ(Eでのエネルギー準位)との間の遷移に主に起因する。ピーク5は、閉じ込められた電子(E1eでのエネルギー準位)と炭素アクセプタ(Eでのエネルギー準位)との間の遷移に主に起因する。 In FIG. 9B, the bonding state of Eb is mainly attributed to carbon impurities that generate acceptors in this QD structure. Peak 2 is mainly due to the transition between trapped electrons (energy level at E 4e ) and carbon acceptor (energy level at E b ). Peak 3 is mainly due to the transition between trapped electrons (energy level at E 3e ) and carbon acceptor (energy level at E b ). Peak 4 is mainly due to the transition between trapped electrons (energy level at E 2e ) and carbon acceptor (energy level at Eb ). Peak 5 is mainly due to the transition between the trapped electron (energy level at E 1e ) and the carbon acceptor (energy level at E b ).

図10は、1.74K〜21Kの範囲の温度での例示的な炭素ドープGaAs/AlGaAs QD構造体の伝導帯内の電子閉じ込めエネルギーと遷移エネルギーを示す。示されるように、ドット1040、1030、1020、1010は、1.74K〜21Kの範囲の異なる温度でのピーク2〜5のそれぞれの電子閉じ込めエネルギーと遷移エネルギーを示す。温度が増大するに従って、遷移エネルギー(又は電子閉じ込めエネルギー)が略同じ値に維持されることがはっきりと観測され、これは高い光学品質を示す。   FIG. 10 shows the electron confinement and transition energies within the conduction band of an exemplary carbon-doped GaAs / AlGaAs QD structure at temperatures ranging from 1.74K to 21K. As shown, dots 1040, 1030, 1020, 1010 show the respective electron confinement and transition energies for peaks 2-5 at different temperatures ranging from 1.74K to 21K. It is clearly observed that as the temperature increases, the transition energy (or electron confinement energy) is maintained at approximately the same value, indicating high optical quality.

図11は、例示的な炭素ドープGaAs QDのPLスペクトルの温度依存性を示す。ここで、PLスペクトル1100の温度依存性が観測される。下から上に、各線は、示されるように低温から高温まで様々なレベルで測定される温度を表す。   FIG. 11 shows the temperature dependence of the PL spectrum of an exemplary carbon-doped GaAs QD. Here, the temperature dependence of the PL spectrum 1100 is observed. From bottom to top, each line represents a temperature measured at various levels from low to high as shown.

図9A及び図9Bを再び参照すると、5.43mWで励起されたPLスペクトルと放射遷移が示される。バルクGaAs内の中性アクセプタ(E)の結合エネルギーが24meVであると推定される。異なる量子ウェルにおいて、閉じ込められた電子及び閉じ込められた重ホールのエネルギーはそれぞれEne及びEnhで示される。(ここで、nは異なるエネルギーを表す量子数である)。エネルギーが1.801eVであることに対応するピーク1は量子数n=1のエネルギーに位置する重ホールと量子数n=4のエネルギーに位置する電子が再結合することに起因すると仮定される。ピーク2(約1.754eV)、ピーク3(約1.725eV)、ピーク4(約1.705eV)、及びピーク5(約1.667eV)は量子数n=1〜4のエネルギーに位置する電子と中性アクセプタとの間の遷移に主に関わっている。 Referring again to FIGS. 9A and 9B, the PL spectrum and radiative transitions excited at 5.43 mW are shown. The binding energy of the neutral acceptor (E b ) in the bulk GaAs is estimated to be 24 meV. In different quantum wells, the energy of the confined electrons and the confined heavy holes are denoted E ne and E nh , respectively. (Where n is a quantum number representing different energies). It is assumed that peak 1 corresponding to an energy of 1.801 eV is due to recombination of a heavy hole located at energy of quantum number n = 1 and an electron located at energy of quantum number n = 4. Peak 2 (about 1.754 eV), peak 3 (about 1.725 eV), peak 4 (about 1.705 eV), and peak 5 (about 1.667 eV) are electrons located at energies of quantum number n = 1 to 4 It is mainly involved in the transition between and the neutral acceptor.

この情報を用いて、価電子帯ウェル内の量子数n=1の重ホールレベルのエネルギー準位が推定され、すなわち   Using this information, the energy level of the heavy hole level of quantum number n = 1 in the valence band well is estimated, that is,

である。量子数n=1〜4の電子のエネルギー準位は It is. The energy level of electrons with quantum number n = 1 to 4 is

として表すことができ、式中 In the formula

はバルクGaAsのバンドギャップエネルギーであり、約1.519eVに等しい。 Is the band gap energy of bulk GaAs, equal to about 1.519 eV.

この仮定を証明するために、GaAs QDの電子状態が、有効質量手法を使用して計算される。GaAs/AlGaAs QDの幾何学的形状は、AFM測定値から推定される。ここで、量子数n=1の重ホールのエネルギーのエネルギー準位は、PL実験結果(式1参照)から直接に得られる。この構造の分析及び所定の一つのバンドパラメータセットに基づいて、伝導帯ウェル内に閉じ込められた電子のエネルギー準位を計算することができる。   To prove this assumption, the electronic state of the GaAs QD is calculated using an effective mass approach. The GaAs / AlGaAs QD geometry is deduced from AFM measurements. Here, the energy level of the energy of the heavy hole with the quantum number n = 1 can be obtained directly from the PL experiment result (see Equation 1). Based on the analysis of this structure and a predetermined one band parameter set, the energy level of electrons confined in the conduction band well can be calculated.

伝導帯及び価電子帯は、GaAs及びAlGa1−xAsのΓ谷の中心を囲んでいる。Γ谷電子有効質量 The conduction band and valence band surround the center of the Γ valley of GaAs and Al x Ga 1-x As. Γ valley electron effective mass

は、バンドパラメータによって与えられる。 Is given by the band parameter.

式中、mは自由電子質量であり、Fはケインパラメータであり、Δsoはスピン軌道分割パラメータであり、Eはバンドパラメータであり、Eはバンドギャップエネルギーである。 Where m 0 is the free electron mass, F is the Kane parameter, Δ so is the spin-orbit splitting parameter, E p is the band parameter, and E g is the band gap energy.

計算で使用される全てのパラメータを以下の表1にまとめた。
表1:計算で使用するバンドパラメータ
All parameters used in the calculation are summarized in Table 1 below.
Table 1: Band parameters used in the calculation

伝導帯オフセットQ(ΔE=QΔE、式中、ΔE及びΔEは、GaAsとAl0.29Ga0.71Asとの間の伝導帯不連続値及びバンドギャップ不連続値である)について、広く許容される値は約0.62であり、次の式に繋がる。 Conduction band offset Q c (ΔE c = Q c ΔE g , where ΔE c and ΔE g are the conduction band discontinuity value and the band gap discontinuity value between GaAs and Al 0.29 Ga 0.71 As. ), The widely accepted value is about 0.62, which leads to the following equation:

この情報を用いて、伝導帯のポテンシャル障壁高さが254.8meVに等しいことが計算される。計算された量子数n=1〜4閉じ込め電子エネルギー準位はE1e=172meV、E2e=205meV、E3e=234meV、及びE4e=259meVであり、これらは観測されたPLピーク位置:ピーク1(約1.801eV)、ピーク2(約1.754eV)、ピーク3(約1.729eV)、ピーク4(約1.705eV)、及びピーク5(約1.667eV)に対応する。量子数n=4閉じ込め電子状態は、伝導帯の高さよりも4.2meV高く、これは、量子数n=4閉じ込め電子状態がGaAs/AlAs超格子内のミニバンド(miniband)のエッジに位置することに起因する。 Using this information, it is calculated that the potential barrier height of the conduction band is equal to 254.8 meV. The calculated quantum numbers n = 1 to 4 confined electron energy levels are E 1e = 172 meV, E 2e = 205 meV, E 3e = 234 meV, and E 4e = 259 meV, which are the observed PL peak positions: Peak 1 (About 1.801 eV), peak 2 (about 1.754 eV), peak 3 (about 1.729 eV), peak 4 (about 1.705 eV), and peak 5 (about 1.667 eV). The quantum number n = 4 confined electronic state is 4.2 meV higher than the conduction band height, which is located at the edge of the miniband in the GaAs / AlAs superlattice. Due to that.

したがって、低温PLスペクトルにおいて、4つの明確な閉じ込め電子状態が観測される。構造的結果に基づいて、量子数n=1〜4の閉じ込め電子状態は、有効質量手法を使用して計算することができる。GaAs/AlGaAs QDについて計算されたエネルギーは、PLにおいて観測されたエネルギーにかなり一致する。   Therefore, four distinct confined electronic states are observed in the low temperature PL spectrum. Based on structural results, confined electronic states with quantum numbers n = 1-4 can be calculated using effective mass techniques. The calculated energy for GaAs / AlGaAs QD is in good agreement with the energy observed in PL.

本発明によれば、図12は、半導体デバイスにQDを成長させる別の例示的な方法1200を示す。方法1200は、基板を提供すること(ステップ1210)と、周期表V族材料シャッタを開くなどの周期表V族材料を供給すること(ステップ1220)と、500℃を超える成長温度(例えば、580℃)で基板の上に周期表III族−V族材料の緩衝層を成長させること(ステップ1230)と、周期表V族材料の供給を停止すること(ステップ1240)とを含む。   In accordance with the present invention, FIG. 12 illustrates another exemplary method 1200 for growing a QD in a semiconductor device. The method 1200 provides a substrate (step 1210), supplies periodic table group V material, such as opening a periodic table group V material shutter (step 1220), and a growth temperature above 500 ° C. (eg, 580). And c) growing a buffer layer of periodic group III-V material on the substrate (step 1230) and stopping the supply of periodic table group V material (step 1240).

方法1200は、周期表II族材料又は周期表IV族材料シャッタを開くなど、周期表II族材料又は周期表IV族材料を供給すること(ステップ1250)と、成長温度を約200℃未満(例えば、100℃〜200℃の温度)に低下させること(ステップ1260)と、周期表II族材料又は周期表IV族材料シャッタを閉じるなど、周期表II族材料又は周期表IV族材料の供給を停止すること(ステップ1270)と、周期表II族材料又は周期表IV族材料を有する周期表III族材料の液滴を成長させること(ステップ1280)とも含む。   The method 1200 includes supplying a periodic table group II material or a periodic table group IV material (step 1250), such as opening a periodic table group II material or periodic table group IV material shutter, and a growth temperature of less than about 200 ° C. (eg, (Temperature of 100 ° C. to 200 ° C.) (Step 1260) and the supply of the periodic table group II material or the periodic table group IV material is stopped, such as closing the shutter of the periodic table group II material or the periodic table group IV material. (Step 1270) and growing droplets of the periodic table group III material having periodic table group II material or periodic table group IV material (step 1280).

周期表III族材料はB、Al、Ga、In、又はTlであり得る。周期表V族材料はN、P、As、Sb、又はBiであり得る。周期表III族−V族材料は、例えば、GaAs、GaSb、又はAlGaAsであり得る。周期表II族材料は、例えば、Zn、Cd、Hg、又はCnであり得る。周期表IV族材料は、例えば、C、Si、Ge、Sn、Pb、又はFl(Flerovium)であり得る。   The periodic table group III material may be B, Al, Ga, In, or Tl. The periodic table group V material may be N, P, As, Sb, or Bi. The periodic table group III-V material can be, for example, GaAs, GaSb, or AlGaAs. The periodic table group II material can be, for example, Zn, Cd, Hg, or Cn. The periodic table group IV material may be, for example, C, Si, Ge, Sn, Pb, or Fl (Fullerium).

一実施形態では、周期表III族材料、周期表V族材料、周期表III族−V族材料、及び周期表II族材料又は周期表IV族材料はそれぞれGa、As、GaAs、及びCである。方法1200は、様々な段階において1つ又は複数の以下のステップを更に含み得る:GaAs/AlAs超格子を成長させること、GaAs/AlAs超格子の上にAlGaAs層を成長させること、Asシャッタを開くこと、及びGa液滴を結晶化して炭素ドープGaAs QDにすること。方法1200は、AlGaAsキャッピング層を成長させることを更に含み得る。方法1200におけるステップのいくつかを繰り返して、より多くのQDを成長させ得る。   In one embodiment, the periodic table group III material, periodic table group V material, periodic table group III-V material, and periodic table group II material or periodic table group IV material are Ga, As, GaAs, and C, respectively. . The method 1200 may further include one or more of the following steps at various stages: growing a GaAs / AlAs superlattice, growing an AlGaAs layer on the GaAs / AlAs superlattice, opening an As shutter. And crystallizing Ga droplets into carbon-doped GaAs QD. The method 1200 can further include growing an AlGaAs capping layer. Some of the steps in method 1200 may be repeated to grow more QDs.

図13A及び図13Bは、半導体デバイスに炭素ドープQDを成長させる例示的な方法1300を示す。まず、ステップ1310において、半絶縁性GaAs基板が提供され、DE技法を使用して分子線エピタキシー(MBE)によってQDを成長させる。ステップ1312において、温度を約580℃に増大させる。次に、ステップ1314において、Asシャッタを開き、ステップ1316において、GaAs緩衝層の成長を開始する。   FIGS. 13A and 13B illustrate an exemplary method 1300 for growing a carbon-doped QD in a semiconductor device. First, in step 1310, a semi-insulating GaAs substrate is provided and a QD is grown by molecular beam epitaxy (MBE) using DE techniques. In step 1312, the temperature is increased to about 580 ° C. Next, in step 1314, the As shutter is opened, and in step 1316, growth of the GaAs buffer layer is started.

約580℃で200nm厚のGaAs緩衝層を成長させた後、ステップ1318において、Asシャッタが完全に閉じられて、背景気体圧2×10−10トール(2.67×10−8Pa)を維持する。C(4×4)表面再構築の構造がRHEEDによってはっきりと観測された。ステップ1320において、炭素シャッタが開かれる。 After growing a 200 nm thick GaAs buffer layer at about 580 ° C., the As shutter is fully closed in step 1318 to maintain a background gas pressure of 2 × 10 −10 Torr (2.67 × 10 −8 Pa). To do. The structure of C (4 × 4) surface reconstruction was clearly observed by RHEED. In step 1320, the carbon shutter is opened.

続けて、ステップ1322において、AlAs(3.3nm)とGaAs(3.3nm)が交互に成長し100周期である超格子(SL:superlattice)が形成される。ステップ1324において2〜4分間待った後、ステップ1326において、50nm厚Al0.35Ga0.65Asが約580℃で形成される。このステップ中、炭素源のシャッタが完全に開かれる。 Subsequently, in step 1322, AlAs (3.3 nm) and GaAs (3.3 nm) are alternately grown to form a superlattice (SL) having 100 periods. After waiting for 2-4 minutes in step 1324, in step 1326, a 50 nm thick Al 0.35 Ga 0.65 As is formed at about 580 ° C. During this step, the carbon source shutter is fully opened.

次に、ステップ1328において、基板温度は約100℃〜200℃に下げられ、炭素シャッタが即座に閉じられる。ステップ1330において、Ga液滴が、As気体なしで3単分子層のGaを毎秒0.5単分子層の率で供給することによって形成される。液滴形成プロセス全体にわたり、背景気体圧は2×10−9トール(2.67×10−7Pa)未満に維持される。 Next, in step 1328, the substrate temperature is lowered to about 100 ° C. to 200 ° C., and the carbon shutter is immediately closed. In step 1330, Ga droplets are formed by supplying three monolayers of Ga without As gas at a rate of 0.5 monolayer per second. The background gas pressure is maintained below 2 × 10 −9 Torr (2.67 × 10 −7 Pa) throughout the droplet formation process.

ステップ1332において、Asシャッタが開かれる。ステップ1334において、成長温度が約100℃〜200℃に維持され、As気体が4×10−6トール(5.33×10−4Pa)が維持され、結晶プロセスを10分間行うことによって、Ga液滴が結晶化されて、炭素ドープGaAs QDになる。次に、ステップ1336において、10nm厚Al0.35Ga0.65Asによって炭素ドープGaAs QDがキャッピングされる。次に、ステップ1338において、基板温度を約580℃に増大させる。ステップ1340において、別の40nm厚Al0.35Ga0.65Asキャッピング層が形成される。 In step 1332, the As shutter is opened. In step 1334, the growth temperature is maintained between about 100 ° C. and 200 ° C., the As 4 gas is maintained at 4 × 10 −6 Torr (5.33 × 10 −4 Pa), and the crystallization process is performed for 10 minutes, Ga droplets are crystallized into carbon-doped GaAs QD. Next, in step 1336, the carbon-doped GaAs QD is capped with 10 nm thick Al 0.35 Ga 0.65 As. Next, in step 1338, the substrate temperature is increased to about 580.degree. In step 1340, another 40 nm thick Al 0.35 Ga 0.65 As capping layer is formed.

図13A及び図13Bに示されるステップのいくつかを繰り返して、より多くのQD層を成長させてもよい。図8に示すようにAFMを使用して埋め込まれたQDの表面モルフォロジーを調べるために、例えば、第3の炭素ドープGaAs QD層が、埋め込まれたQDと同じ条件下で、半導体デバイスの表面上に形成される(図7参照)。PL実験は、マルチモード光ファイバを使用して温度4.2K〜300Kで実行されて、532nmレーザ光を半導体デバイスに送り、PLを収集し、図9A、図9B、図10、及び図11に示されるように、PLを分光計及び電子倍増電荷結合素子(EMCCD)によって分析する。   Some of the steps shown in FIGS. 13A and 13B may be repeated to grow more QD layers. To investigate the surface morphology of an embedded QD using AFM as shown in FIG. 8, for example, a third carbon doped GaAs QD layer is formed on the surface of a semiconductor device under the same conditions as the embedded QD. (See FIG. 7). The PL experiment was performed at a temperature of 4.2K to 300K using a multimode optical fiber, sending 532 nm laser light to the semiconductor device, collecting the PL, and FIG. 9A, FIG. 9B, FIG. As shown, PL is analyzed by a spectrometer and an electron doubled charge coupled device (EMCCD).

上記QD及びQDを成長させる方法は、光学用途、量子計算、生物学的用途、及び化学的用途を含むが、これらに限定されない多くの産業用途を有する。
光学用途に関しては、本発明によれば、QDは、発光の色の精密な制御が重要な用途として使用し得る。一例として、QDで作られた薄膜フィルタを蛍光灯又はLED灯のトップ部上に装着して、入射光を青みがかった色から、昔の様式の白熱灯によって生成される光に似たより赤みを帯びた色合いに変換し得る。QDは、顔料及び染料の代わりに使用することもできる。他の材料に埋め込まれて、QDはある色の入射光を吸収し、全く異なる色の光を生成する。QDの発光の色はまた、合成有機化学染料の発光の色よりも明るく、且つ制御し易い。
The QDs and methods for growing QDs have many industrial applications including but not limited to optical applications, quantum computing, biological applications, and chemical applications.
Regarding optical applications, according to the present invention, QDs can be used in applications where precise control of the color of the emitted light is important. As an example, a thin film filter made of QD is mounted on the top of a fluorescent or LED lamp to make the incident light more bluish, similar to the light produced by an old-style incandescent lamp from a bluish color. Can be converted into different shades. QD can also be used in place of pigments and dyes. Embedded in other materials, the QD absorbs one color of incident light and produces a completely different color of light. The emission color of QD is also brighter and easier to control than the emission color of synthetic organic chemical dyes.

本発明によれば、QDは、より効率的な太陽電池の開発に使用することもできる。従来の太陽電池では、日光の光子は電子を半導体から回路内に叩き出し、有用な電力を作るが、このプロセスの効率は極めて低い。QDは、衝突する光子毎により多くの電子(又はホール)を生成し、従来の半導体よりも高い効率の上昇を潜在的に提供する。   According to the present invention, QDs can also be used to develop more efficient solar cells. In conventional solar cells, sunlight photons knock electrons out of the semiconductor into the circuit, creating useful power, but the efficiency of this process is very low. QD generates more electrons (or holes) for each colliding photon, potentially providing a higher efficiency increase than conventional semiconductors.

また、本発明によれば、QDは、大きくて重い従来の電荷結合素子(CCD)の用途で、より小型でより効率的な電荷結合素子を製造するために使用することもできる。CCDは、デジタルカメラ及びウェブカム等の物内の画像検出チップであり、入射光を電気信号パターンに変換することにより、太陽電池と同様に機能する。   Also, according to the present invention, QDs can also be used to produce smaller and more efficient charge coupled devices for large and heavy conventional charge coupled device (CCD) applications. The CCD is an image detection chip in an object such as a digital camera and a web cam, and functions like a solar cell by converting incident light into an electric signal pattern.

また、本発明によれば、QDは、いくつかの利点により、コンピュータのディスプレイとモニタに使用し得る。第1に、典型的な液晶ディスプレイ(LCD)では、画像は、非常に明るいバックライトによって背後から液晶を照射して発される赤色光、青色光、及び緑色光の微細な組み合わせによって作られる。任意の色の光を発するようにQDを調整することができ、それにより、QDディスプレイはより忠実に色を再現する可能性が高い。第2に、QD自体が発光し、それにより、バックライトが必要なく、エネルギーをより効率的に利用でき、この点は、長い電池寿命が望まれる携帯電話等のポータブル装置での重要な考慮事項である。第3に、QDは液晶よりもはるかに小さく、それにより、より高い解像度の画像を生成することができる。   Also, according to the present invention, QD can be used in computer displays and monitors with several advantages. First, in a typical liquid crystal display (LCD), an image is created by a fine combination of red, blue, and green light emitted by illuminating the liquid crystal from behind with a very bright backlight. The QD can be adjusted to emit light of any color, so that the QD display is more likely to reproduce the color more faithfully. Second, the QD itself emits light, which eliminates the need for a backlight and allows more efficient use of energy, which is an important consideration in portable devices such as mobile phones where long battery life is desired It is. Third, the QD is much smaller than the liquid crystal, which can produce a higher resolution image.

量子計算に関しては、本発明によれば、QDを光学コンピュータで使用し得、電子の代わりに光を用いて情報の記憶及び伝送を行うことが可能になる。光学コンピュータは、電子コンピュータがトランジスタ(電子切り替えデバイス)を使用するのと同様にして、メモリチップ及び論理ゲート内の基本構成要素としてQDを使用し得る。   With regard to quantum computation, according to the present invention, QD can be used in an optical computer, and information can be stored and transmitted using light instead of electrons. Optical computers can use QDs as basic components in memory chips and logic gates, just as electronic computers use transistors (electronic switching devices).

量子コンピュータでは、ビット(二進数)は、トランジスタによってではなく、原子、イオン、電子、又は光子が互いにリンクされる(すなわち、「エンタングルされる」)ことによって記憶され、量子ビット(qubit)として表示する。これらの量子スケールの「スイッチ」は、複数の値を同時に記憶し、多種類の異なる問題に対して並列処理することができる。単独な原子等は、このように制御することは難しいが、QDは制御し易い。   In a quantum computer, bits (binary numbers) are stored not by transistors, but by atoms, ions, electrons, or photons linked together (ie, “entangled”) and displayed as qubits. To do. These quantum scale “switches” can store multiple values simultaneously and process them in parallel for many different problems. A single atom or the like is difficult to control in this way, but QD is easy to control.

生物学的用途及び化学的用途に関しては、本発明によれば、QDは、QDを人体の特定の部位に蓄積し、次に、QD内の抗がん薬を放出するように設計し得る。QDの利点は、従来の薬剤よりも精密に、肝臓等の単一の臓器をターゲットとすることができることであり、それにより、ターゲットのない従来の化学療法による副作用が低減される。   With respect to biological and chemical applications, according to the present invention, QDs can be designed to accumulate QDs at specific sites in the human body and then release anticancer drugs within the QDs. The advantage of QD is that it can target a single organ, such as the liver, more precisely than conventional drugs, thereby reducing the side effects of conventional chemotherapy without a target.

さらに本発明によれば、QDは、生物学的研究で有機染料として使用することもできる。例えば、顕微鏡下で研究する必要がある特定の細胞を照明し、特定の細胞を変色させるナノスケール電球として使用することができる。QDは炭疽菌等の生物兵器を検出するセンサとして使用することができる。限られた範囲の色を示し、比較的短期間に劣化する有機染料とは異なり、QD染料は非常に明るく、任意の色の可視光を生成することができ、より長持ちする。   Furthermore, according to the invention, QDs can also be used as organic dyes in biological research. For example, it can be used as a nanoscale bulb that illuminates specific cells that need to be studied under a microscope and discolors specific cells. QD can be used as a sensor for detecting biological weapons such as anthrax. Unlike organic dyes, which exhibit a limited range of colors and degrade over a relatively short period of time, QD dyes are very bright and can produce visible light of any color and are longer-lasting.

最後に、本発明の実施形態により、多くのタイプ及び性質のQDと、QDを成長させる方法を当業者は想到できる。
例えば、本発明に記載された実施形態は、周期表III族材料としてGaを使用するが、本発明によれば、Al、In、又はTl等の周期表III族の他の材料を使用してもよいことを当業者は想到できる。同様に、本発明に記載された実施形態は、周期表V族材料としてAsを使用するが、本発明により、N、P、Sb、又はBi等の周期表V族の他の材料を使用してもよいことを当業者は想到できる。
Finally, those skilled in the art can conceive of many types and properties of QDs and methods of growing QDs according to embodiments of the present invention.
For example, the embodiment described in the present invention uses Ga as the periodic table group III material, but according to the present invention, other materials in the periodic table group III such as Al, In, or Tl are used. One skilled in the art can conceive of this. Similarly, the embodiment described in the present invention uses As as the periodic table group V material, but according to the present invention, other materials in the periodic table group V such as N, P, Sb, or Bi are used. One skilled in the art can conceive that this is possible.

同様に、本発明に記載された実施形態は、周期表III族−V族材料としてGaAsを使用するが、本発明により、GaSb又はAlGaAs等の周期表III−V族の他の材料又はそれらの様々な組み合わせを使用してもよいことを当業者は想到できる。   Similarly, the embodiments described in the present invention use GaAs as the periodic table group III-V material, but according to the present invention other materials of the periodic table group III-V such as GaSb or AlGaAs or their One skilled in the art can appreciate that various combinations may be used.

さらに、本発明に記載された実施形態は、周期表II族材料又は周期表IV族材料として炭素を使用するが、本発明により、Zn、Cd、Hg、Cn等の他の周期表II族材料又は周期表IV族材料を使用してもよいことを当業者は想到できる。   Furthermore, although the embodiments described in the present invention use carbon as a periodic table group II material or periodic table group IV material, according to the present invention, other periodic table group II materials such as Zn, Cd, Hg, Cn, etc. Alternatively, those skilled in the art can conceive that periodic table group IV materials may be used.

別の例として、上述されたQDはリング形状を有する。本発明により、QDが二重リング及び半球等の他の形状を有してもよいことを当業者は想到できる。さらに、本発明は、QDを成長させる方法において、200℃、400℃、450℃、及び500℃等の様々な温度を記載したが、本発明によれば、これらの温度に限定されなく、他の適切な温度を使用してもよいことを当業者は想到できる。   As another example, the QD described above has a ring shape. One skilled in the art can conceive according to the invention that the QD may have other shapes, such as a double ring and a hemisphere. Furthermore, although the present invention describes various temperatures such as 200 ° C., 400 ° C., 450 ° C., and 500 ° C. in the method of growing QD, according to the present invention, the present invention is not limited to these temperatures. One skilled in the art can appreciate that any suitable temperature may be used.

さらに別の例として、本発明は、様々な実施形態において、GaAs緩衝層及びAlGaAs層を含む異なる層の厚さを記述している。本発明により、他の厚さを使用してもよいことを当業者は想到できる。   As yet another example, the present invention describes different layer thicknesses, including GaAs buffer layers and AlGaAs layers, in various embodiments. One skilled in the art can appreciate that other thicknesses may be used in accordance with the present invention.

本発明について様々な実施形態を通して説明したが、本発明の明細書と実施から、本発明の他の実施形態を当業者は想到できる。本明細書及び例が単なる例示として見なされ、本発明の真の請求の範囲及び趣旨が別紙の特許請求の範囲によって示される。   While the invention has been described through various embodiments, those skilled in the art will appreciate other embodiments of the invention from the specification and practice of the invention. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the appended claims.

Claims (24)

基板と、
量子ドットと、
を備える半導体デバイスであって、前記量子ドットのフォトルミネッセンススペクトルのピーク放射は、前記半導体デバイスが温度4ケルビンで測定される場合、20meV未満の半値全幅(FWHM)を有する、半導体デバイス。
A substrate,
Quantum dots,
Wherein the peak emission of the photoluminescence spectrum of the quantum dots has a full width at half maximum (FWHM) of less than 20 meV when the semiconductor device is measured at a temperature of 4 Kelvin.
緩衝層を更に備え、前記緩衝層は周期表III族材料及び周期表V族材料からなる周期表III族−V族材料を含み、前記量子ドットは、周期表III族材料及び周期表V族材料を含む、請求項1に記載の半導体デバイス。 The buffer layer further includes a periodic table group III-V material composed of a periodic table group III material and a periodic table group V material, and the quantum dots include the periodic table group III material and the periodic table group V material. The semiconductor device according to claim 1, comprising: 前記緩衝層はGaAs緩衝層であり、前記量子ドットはGaAsを含む、請求項2に記載の半導体デバイス。 The semiconductor device according to claim 2, wherein the buffer layer is a GaAs buffer layer, and the quantum dots include GaAs. 前記量子ドットは、周期表II族材料又は周期表IV族材料によってドープされる、請求項3に記載の半導体デバイス。 4. The semiconductor device of claim 3, wherein the quantum dots are doped with a periodic table group II material or a periodic table group IV material. 前記量子ドットは炭素ドープされる、請求項4に記載の半導体デバイス。 The semiconductor device of claim 4, wherein the quantum dots are carbon doped. 前記量子ドットの前記ピーク放射は、前記半導体デバイスが温度4.65ケルビンで測定される場合、8meV未満のFWHMを有する、請求項5に記載の半導体デバイス。 6. The semiconductor device of claim 5, wherein the peak emission of the quantum dots has a FWHM of less than 8 meV when the semiconductor device is measured at a temperature of 4.65 Kelvin. 基板と、
量子ドットと、
を備える半導体デバイスであって、前記量子ドットのフォトルミネッセンススペクトルは、赤色光範囲内に3つ以上のピークを有する、半導体デバイス。
A substrate,
Quantum dots,
A semiconductor device comprising: a quantum dot photoluminescence spectrum having three or more peaks in a red light range.
前記量子ドットのフォトルミネッセンススペクトルは、前記半導体デバイスが温度4.65ケルビンで測定される場合、少なくとも5つのピークを有する、請求項7に記載の半導体デバイス。 The semiconductor device of claim 7, wherein the photoluminescence spectrum of the quantum dot has at least five peaks when the semiconductor device is measured at a temperature of 4.65 Kelvin. 緩衝層を更に備え、前記緩衝層は周期表III族材料及び周期表V族材料からなる周期表III族−V族材料を含み、前記量子ドットは周期表III族材料及び周期表V族材料を含む、請求項8に記載の半導体デバイス。 The buffer layer further includes a periodic table group III-V material composed of a periodic table group III material and a periodic table group V material, and the quantum dot includes the periodic table group III material and the periodic table group V material. The semiconductor device according to claim 8, comprising: 前記緩衝層はGaAs緩衝層であり、前記量子ドットはGaAsを含む、請求項9に記載の半導体デバイス。 The semiconductor device according to claim 9, wherein the buffer layer is a GaAs buffer layer, and the quantum dots include GaAs. 前記量子ドットは周期表II族材料又は周期表IV族材料でドープされる、請求項10に記載の半導体デバイス。 11. The semiconductor device of claim 10, wherein the quantum dots are doped with a periodic table group II material or a periodic table group IV material. 前記量子ドットは炭素ドープされる、請求項11に記載の半導体デバイス。 The semiconductor device of claim 11, wherein the quantum dots are carbon doped. 半導体デバイスに量子ドットを成長させる方法であって、前記方法は、
(a)基板を提供することと、
(b)周期表V族材料を供給することと、
(c)500℃を超える成長温度で前記基板の上に周期表III族−V族材料の緩衝層を成長させることと、
(d)周期表V族材料の供給を停止させることと、
(e)周期表II族材料又は周期表IV族材料を供給することと、
(f)前記成長温度を200℃未満に低下させることと、
(g)周期表II族材料又は周期表IV族材料の供給を停止させることと、
(h)周期表II族材料又は周期表IV族材料を有する周期表III族材料の液滴を成長させることと、
を含む、方法。
A method of growing quantum dots on a semiconductor device, the method comprising:
(A) providing a substrate;
(B) supplying a periodic table group V material;
(C) growing a buffer layer of Group III-V material of the periodic table on the substrate at a growth temperature exceeding 500 ° C .;
(D) stopping the supply of Group V material of the periodic table;
(E) supplying a periodic table group II material or a periodic table group IV material;
(F) reducing the growth temperature below 200 ° C .;
(G) stopping the supply of periodic table group II material or periodic table group IV material;
(H) growing droplets of a periodic table group III material having a periodic table group II material or a periodic table group IV material;
Including a method.
ステップ(b)及びステップ(d)での前記周期表V族材料はAsであり、
ステップ(c)での前記周期表III族−V族材料はGaAsであり、
ステップ(h)での前記周期表III族材料はGaであり、
ステップ(e)、ステップ(g)及びステップ(h)において、前記周期表II族材料又は周期表IV族材料は炭素である、請求項13に記載の方法。
The periodic table group V material in step (b) and step (d) is As;
The Group III-V material of the periodic table in step (c) is GaAs;
The periodic table group III material in step (h) is Ga;
14. The method of claim 13, wherein in step (e), step (g), and step (h), the periodic table group II material or periodic table group IV material is carbon.
GaAs及びAlAs超格子を成長させることと、
前記GaAs及びAlAs超格子の上にAlGaAs層を成長させることと、
を更に含む、請求項14に記載の方法。
Growing GaAs and AlAs superlattices;
Growing an AlGaAs layer on the GaAs and AlAs superlattices;
15. The method of claim 14, further comprising:
前記As用のシャッタを開くことと、
前記Gaの液滴を結晶化して、炭素ドープされるGaAs量子ドットにすることと、
を更に含む、請求項15に記載の方法。
Opening the shutter for As,
Crystallization of the Ga droplet into a carbon-doped GaAs quantum dot;
16. The method of claim 15, further comprising:
AlGaAsキャッピング層を成長させることを更に含む、請求項16に記載の方法。 The method of claim 16, further comprising growing an AlGaAs capping layer. 前記AlGaAsキャッピング層を成長させることは、10ナノメートル厚の一方のAlGaAsキャッピング層を成長させることと、
温度を580℃に増大させることと、
40ナノメートル厚の他方のAlGaAsキャッピング層を成長させることとを含む、請求項17に記載の方法。
Growing the AlGaAs capping layer includes growing one AlGaAs capping layer that is 10 nanometers thick;
Increasing the temperature to 580 ° C .;
18. The method of claim 17, comprising growing a 40 nanometer thick other AlGaAs capping layer.
半導体デバイスに量子ドットを成長させる方法であって、前記方法は、
(a)基板を提供することと、
(b)周期表V族材料を供給することと、
(c)500℃を超える成長温度で前記基板の上に周期表III族−V族材料の緩衝層を成長させることと、
(d)前記成長温度を500℃に低下させることと、
(e)周期表V族材料の供給を停止させることと、
(f)周期表III族材料の液滴を成長させることと、
(g)前記成長温度を400℃未満に低下させることと、
(h)周期表III族材料のより多い液滴を成長させることと、
(i)前記成長温度を360℃と450℃の間に増大させることと、
を含む、方法。
A method of growing quantum dots on a semiconductor device, the method comprising:
(A) providing a substrate;
(B) supplying a periodic table group V material;
(C) growing a buffer layer of Group III-V material of the periodic table on the substrate at a growth temperature exceeding 500 ° C .;
(D) reducing the growth temperature to 500 ° C .;
(E) stopping the supply of Group V material of the periodic table;
(F) growing droplets of Group III material of the periodic table;
(G) reducing the growth temperature to less than 400 ° C .;
(H) growing more droplets of Group III material of the periodic table;
(I) increasing the growth temperature between 360 ° C. and 450 ° C .;
Including a method.
ステップ(b)及びステップ(e)での前記周期表V族材料はAsであり、
ステップ(c)での前記周期表III族−V族材料はGaAsであり、
ステップ(f)及びステップ(h)での前記周期表III族材料はGaである、
請求項19に記載の方法。
The periodic table group V material in step (b) and step (e) is As;
The Group III-V material of the periodic table in step (c) is GaAs;
The periodic table group III material in step (f) and step (h) is Ga.
The method of claim 19.
GaAs及びAlAs超格子を成長させることと、
前記GaAs及びAlAs超格子の上にAlGaAs層を成長させることと、
を更に含む、請求項20に記載の方法。
Growing GaAs and AlAs superlattices;
Growing an AlGaAs layer on the GaAs and AlAs superlattices;
21. The method of claim 20, further comprising:
前記As用のシャッタを開くことと、
前記Gaの液滴を結晶化させて、GaAs量子ドットにすることと、
を更に含む、請求項21に記載の方法。
Opening the shutter for As,
Crystallizing the Ga droplet into GaAs quantum dots;
The method of claim 21, further comprising:
AlGaAsキャッピング層を成長させることを更に含む、請求項22に記載の方法。 23. The method of claim 22, further comprising growing an AlGaAs capping layer. 前記AlGaAsキャッピング層を成長させることは、10ナノメートル厚の一方のAlGaAsキャッピング層を成長させることと、
温度を580℃に増大させることと、
40ナノメートル厚の他方のAlGaAsキャッピング層を成長させることとを含む、請求項23に記載の方法。
Growing the AlGaAs capping layer includes growing one AlGaAs capping layer that is 10 nanometers thick;
Increasing the temperature to 580 ° C .;
24. The method of claim 23, comprising growing a 40 nanometer thick other AlGaAs capping layer.
JP2015103847A 2014-05-26 2015-05-21 Zero-dimensional electronic device and manufacturing method thereof Expired - Fee Related JP6208169B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462002997P 2014-05-26 2014-05-26
US62/002,997 2014-05-26
US14/326,399 2014-07-08
US14/326,399 US9240449B2 (en) 2014-05-26 2014-07-08 Zero-dimensional electron devices and methods of fabricating the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017056771A Division JP2017188670A (en) 2014-05-26 2017-03-23 Zero dimensional electronic device and manufacturing method of the same

Publications (2)

Publication Number Publication Date
JP2015226062A true JP2015226062A (en) 2015-12-14
JP6208169B2 JP6208169B2 (en) 2017-10-04

Family

ID=53274377

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015103847A Expired - Fee Related JP6208169B2 (en) 2014-05-26 2015-05-21 Zero-dimensional electronic device and manufacturing method thereof
JP2017056771A Pending JP2017188670A (en) 2014-05-26 2017-03-23 Zero dimensional electronic device and manufacturing method of the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017056771A Pending JP2017188670A (en) 2014-05-26 2017-03-23 Zero dimensional electronic device and manufacturing method of the same

Country Status (5)

Country Link
US (2) US9240449B2 (en)
EP (1) EP2950327A3 (en)
JP (2) JP6208169B2 (en)
CN (1) CN105280760A (en)
TW (2) TWI623488B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188670A (en) * 2014-05-26 2017-10-12 宇辰 張 Zero dimensional electronic device and manufacturing method of the same
JP2018011076A (en) * 2014-10-22 2018-01-18 株式会社東芝 Optical device and method of manufacturing optical device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180308941A1 (en) * 2017-04-21 2018-10-25 Yu-chen Chang Two-dimensional electronic devices and related fabrication methods
CN106935721A (en) * 2017-04-27 2017-07-07 电子科技大学 A kind of quantum dot solar cell based on drop epitaxy technology and preparation method thereof
CN115036366A (en) * 2021-03-05 2022-09-09 联华电子股份有限公司 Semiconductor device and method for fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236447A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Molecular beam epitaxial device and manufacture of compound semiconductor thin film and compound semiconductor device using the epitaxial device
JP2001053014A (en) * 1999-05-31 2001-02-23 Natl Res Inst For Metals Preparation method of semiconductor super atom and its combination
JP2007311463A (en) * 2006-05-17 2007-11-29 Fujitsu Ltd Quantum dot semiconductor device
JP2009016710A (en) * 2007-07-09 2009-01-22 National Institute For Materials Science Laser oscillation element

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491175A (en) * 1977-12-28 1979-07-19 Fujitsu Ltd Vapour-phase growth method of compound semiconductor crystal
JPS61161696A (en) * 1985-01-10 1986-07-22 松下電工株式会社 Discharge lamp lighting apparatus
EP0665578B1 (en) * 1993-11-25 2002-02-20 Nippon Telegraph And Telephone Corporation Semiconductor structure and method of fabricating the same
US5614435A (en) * 1994-10-27 1997-03-25 The Regents Of The University Of California Quantum dot fabrication process using strained epitaxial growth
JP3866836B2 (en) * 1997-08-14 2007-01-10 富士通株式会社 Nonlinear optical device
KR100249774B1 (en) * 1997-11-25 2000-03-15 정선종 Growing method of high quality gaas quantum dots
JP3536056B2 (en) * 1999-04-30 2004-06-07 独立行政法人理化学研究所 Method for forming nitride semiconductor quantum dots by droplet epitaxy
KR100359739B1 (en) * 2000-12-28 2002-11-09 한국과학기술연구원 Method of fusion for heteroepitaxial layers and overgrowth thereon
JP5023419B2 (en) * 2001-07-10 2012-09-12 日本電気株式会社 Semiconductor quantum dot device
GB2388957A (en) * 2002-05-24 2003-11-26 Imp College Innovations Ltd Quantum dots for extended wavelength operation
CA2545276C (en) * 2003-11-05 2016-05-31 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Carbohydrate antigen-nanoparticle conjugates and uses thereof as antimetastatic agents in treating cancer
US7318651B2 (en) * 2003-12-18 2008-01-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Flash module with quantum dot light conversion
CN101505034B (en) * 2005-08-31 2010-12-08 中国科学院半导体研究所 InGaAs/GaAs quantum dot epitaxial structure in wave band between 1.02 to 1.08 micrometer and manufacturing method thereof
WO2009014707A2 (en) * 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
JP5187884B2 (en) * 2007-08-10 2013-04-24 国立大学法人名古屋大学 Quantum dot manufacturing method
GB2451884A (en) * 2007-08-16 2009-02-18 Sharp Kk A Semiconductor Device and a Method of Manufacture Thereof
JP2009076640A (en) * 2007-09-20 2009-04-09 Fujifilm Corp Semiconductor light emitting element
WO2010059132A1 (en) * 2008-11-21 2010-05-27 Agency For Science, Technology And Research A light emitting diode structure and a method of forming a light emitting diode structure
KR101767100B1 (en) * 2010-11-10 2017-08-10 삼성전자주식회사 Light emitting device and manufacturing method of the same
WO2013054431A1 (en) * 2011-10-14 2013-04-18 富士通株式会社 Semiconductor device, method for manufacturing same, and power supply apparatus
CN103194793B (en) * 2013-03-19 2016-04-13 中国科学院半导体研究所 A kind of molecular beam epitaxy accretion method of low density InAs quantum dot
US9240449B2 (en) * 2014-05-26 2016-01-19 Yu-chen Chang Zero-dimensional electron devices and methods of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236447A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Molecular beam epitaxial device and manufacture of compound semiconductor thin film and compound semiconductor device using the epitaxial device
JP2001053014A (en) * 1999-05-31 2001-02-23 Natl Res Inst For Metals Preparation method of semiconductor super atom and its combination
JP2007311463A (en) * 2006-05-17 2007-11-29 Fujitsu Ltd Quantum dot semiconductor device
JP2009016710A (en) * 2007-07-09 2009-01-22 National Institute For Materials Science Laser oscillation element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188670A (en) * 2014-05-26 2017-10-12 宇辰 張 Zero dimensional electronic device and manufacturing method of the same
JP2018011076A (en) * 2014-10-22 2018-01-18 株式会社東芝 Optical device and method of manufacturing optical device

Also Published As

Publication number Publication date
CN105280760A (en) 2016-01-27
TW201544448A (en) 2015-12-01
TW201643103A (en) 2016-12-16
JP2017188670A (en) 2017-10-12
TWI557063B (en) 2016-11-11
EP2950327A2 (en) 2015-12-02
TWI623488B (en) 2018-05-11
JP6208169B2 (en) 2017-10-04
EP2950327A3 (en) 2016-03-02
US20150340437A1 (en) 2015-11-26
US9240449B2 (en) 2016-01-19
US20160104777A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
Ning et al. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
JP2017188670A (en) Zero dimensional electronic device and manufacturing method of the same
Wang et al. GaN nanorod light emitting diode arrays with a nearly constant electroluminescent peak wavelength
Sarwar et al. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence
Wang et al. Metal–organic–vapor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes
Prete et al. Dilute nitride III-V nanowires for high-efficiency intermediate-band photovoltaic cells: Materials requirements, self-assembly methods and properties
Blumstengel et al. Electronic coupling of optical excitations in organic/inorganic semiconductor hybrid structures
Alam et al. InGaN/InGaN multiple-quantum-well grown on InGaN/GaN semi-bulk buffer for blue to cyan emission with improved optical emission and efficiency droop
Zheng et al. Effect of indium droplets on growth of InGaN film by molecular beam epitaxy
Yan et al. Realization of Stranski–Krastanow InAs quantum dots on nanowire-based InGaAs nanoshells
Jiang et al. Fabrication and photoluminescence study of large-area ordered and size-controlled GeSi multi-quantum-well nanopillar arrays
Dadgostar et al. GaAs/GaP quantum dots: Ensemble of direct and indirect heterostructures with room temperature optical emission
KR20160019037A (en) Zero-dimensional electron devices and methods of fabricating the same
KR101401924B1 (en) Nanowire/quantum dot heterostructures and method of manufacturing the same
Zhang et al. Triggered single photon emission up to 77K from ordered array of surface curvature-directed mesa-top GaAs/InGaAs single quantum dots
Vignesh et al. III-nitride nanowires for emissive display technology
Zhao et al. Cost-effective selective-area growth of GaN-based nanocolumns on silicon substrates by molecular-beam epitaxy
US11139280B2 (en) Light emitting device
Philip Epitaxial Growth of III-Nitride Nanostructures and Their Optoelectronic Applications
Lee et al. Size-dependent carrier dynamics and activation energy in CdTe/ZnTe quantum dots on Si substrates
Rajan Philip Epitaxial growth of iii-nitride nanostructures and their optoelectronic applications
Dai Optical and mechanical investigation of InAs/GaAs quantum dots solar cells and InAs nanowires for the application of photovoltaic device
CN100468802C (en) Indium arsenide and gallium arsenide nano structure and its manufacture method
Park et al. Influence of p-GaN shape on the light emission characteristics of InGaN nanodisk embedded pin GaN nanorods
Tex et al. Identification of trap states for two-step two-photon-absorption processes in InAs quantum structures for intermediate-band solar cells

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6208169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees