JP2015221922A - Steel for nitriding - Google Patents

Steel for nitriding Download PDF

Info

Publication number
JP2015221922A
JP2015221922A JP2014106236A JP2014106236A JP2015221922A JP 2015221922 A JP2015221922 A JP 2015221922A JP 2014106236 A JP2014106236 A JP 2014106236A JP 2014106236 A JP2014106236 A JP 2014106236A JP 2015221922 A JP2015221922 A JP 2015221922A
Authority
JP
Japan
Prior art keywords
content
nitriding
hardness
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014106236A
Other languages
Japanese (ja)
Other versions
JP6375691B2 (en
Inventor
大藤 善弘
Yoshihiro Ofuji
善弘 大藤
徹志 千田
Tetsushi Senda
徹志 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014106236A priority Critical patent/JP6375691B2/en
Publication of JP2015221922A publication Critical patent/JP2015221922A/en
Application granted granted Critical
Publication of JP6375691B2 publication Critical patent/JP6375691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel for nitriding excellent in machinability before nitriding and capable of satisfactory fatigue strength after nitriding.SOLUTION: Provided is steel for nitriding including, by mass, 0.04 to 0.14% C, 0.02 to 0.50% Si, 1.0 to 2.0% Mn, 0.8 to 2.0% Cr, 0.10 to 0.30% V, 0.02 to 0.20% Ti, 0.01 to 0.05% Al and 0.005 to 0.05% S, in which Mo is limited to 0.04% or lower, P is limited to 0.03% or lower, N is limited to 0.010% or lower and O (oxygen) is limited to 0.002% or lower, and the balance Fe with impurities. Further, the steel may include 0.0003 to 0.003% B and 0.01 to 0.10% Nb.

Description

本発明は、窒化用鋼に関し、詳しくは、自動車や各種産業機械のミッション部品に用いられるシャフトや歯車やプーリーなど、窒化処理が施される部品(窒化部品)の素材として好適な窒化用鋼に関する。   TECHNICAL FIELD The present invention relates to a nitriding steel, and more particularly to a nitriding steel suitable as a material for a component (nitrided component) subjected to nitriding treatment such as a shaft, a gear or a pulley used for a mission component of an automobile or various industrial machines. .

自動車や各種産業機械のミッション部品に用いられるシャフト、歯車やプーリーなどの部品には、疲労強度が要求される。このため、従来は、JIS規格のSCr420、SCM420などの機械構造用合金鋼を素材とし、成形後、浸炭焼入れ処理を施して、所要の疲労強度が確保されていた。しかし、浸炭焼入れ処理では、通常、800℃以上という高い温度域に加熱され、オーステナイト組織からの急冷処理が施される。このため、部品には、熱歪みに起因して大きな変形が生じ、高い寸法精度の確保が困難になる場合がある。   Fatigue strength is required for parts such as shafts, gears, and pulleys used in mission parts for automobiles and various industrial machines. For this reason, conventionally, alloy steels for mechanical structures such as JIS standard SCr420 and SCM420 are used as raw materials, and carburizing and quenching is performed after forming to ensure the required fatigue strength. However, in the carburizing and quenching process, the steel is usually heated to a high temperature range of 800 ° C. or higher and subjected to a rapid cooling process from the austenite structure. For this reason, the parts are greatly deformed due to thermal distortion, and it may be difficult to ensure high dimensional accuracy.

部品の寸法精度の低下は、自動車や産業用機械の騒音の原因となる。このため、産業界には、自動車や各種産業機械のミッション部品のうちでも特に低騒音化が要求される部品については、高い寸法精度を有するものを確保したいとの要望が大きい。しかし、浸炭焼入れ部品の場合、高い寸法精度を確保することが困難である。そこで、低騒音化が達成可能な部品として、従来の浸炭焼入れ部品に代わって窒化部品が脚光を浴びている。   The reduction in the dimensional accuracy of parts causes noise in automobiles and industrial machines. For this reason, there is a great demand for the industry to secure components having high dimensional accuracy, especially for components that require low noise among mission components of automobiles and various industrial machines. However, in the case of carburized and quenched parts, it is difficult to ensure high dimensional accuracy. Therefore, as a part that can achieve low noise, a nitrided part is in the spotlight instead of a conventional carburized and quenched part.

これは、窒化処理の場合、一般的に加熱温度が600℃以下のフェライト域であるため、熱処理歪みを小さくすることができ、高い寸法精度を有する部品が得られるからである。しかし、窒化処理は、組織がオーステナイトに変態するA点よりも低い温度で行われる熱処理であるため、浸炭焼入れ処理よりも硬化層深さが浅く、マルテンサイト変態を利用できない。したがって、窒化処理では、部品芯部の硬さ上昇が期待できず、浸炭焼入れ処理よりも、疲労強度が劣る場合が多い。 This is because in the case of nitriding, since the heating temperature is generally in the ferrite region of 600 ° C. or less, the heat treatment distortion can be reduced, and a component having high dimensional accuracy can be obtained. However, since the nitriding treatment is a heat treatment performed at a temperature lower than the point A 1 where the structure transforms to austenite, the hardened layer depth is shallower than the carburizing and quenching treatment, and the martensitic transformation cannot be used. Therefore, the nitriding treatment cannot be expected to increase the hardness of the component core, and the fatigue strength is often inferior to the carburizing and quenching treatment.

このため、窒化部品において所望の良好な疲労強度を確保するためには、芯部となる部分を含めて硬さを高めた素材を、部品形状に切削加工し、より長時間の窒化処理を施す必要がある。しかし、この場合、従来の浸炭焼入れ処理を施す場合に比べて、素材が硬いために、切削加工時の工具寿命や切削効率の大幅な低下をきたす。また、窒化処理時間が長いために、コストの上昇や生産性の低下を招く。   For this reason, in order to ensure the desired good fatigue strength in the nitrided part, a material with increased hardness including the core part is cut into a part shape and subjected to a longer nitriding treatment. There is a need. However, in this case, since the material is harder than the case where the conventional carburizing and quenching process is performed, the tool life and the cutting efficiency during cutting are greatly reduced. Further, since the nitriding time is long, the cost increases and the productivity decreases.

そこで、適正量のC、Cr、Mo、VやNbなどを含有させて、更にベイナイトを主体とする組織にすることにより、窒化時に芯部硬さが向上する「窒化用鋼材及びこれを用いた窒化部材」が提案されている(例えば、特許文献1参照)。
また、適正量のC、TiやMoなどを含有させて、更にベイナイトを主体とする組織に粒径が10nm未満の微細析出物を分散させた「軟窒化用鋼」が提案されている(例えば、特許文献2参照)。
更に、適正量のC、CrやMoなどを含有させた「疲労強度の優れた迅速窒化用鋼」が提案されている(例えば、特許文献3参照)。
Therefore, by containing an appropriate amount of C, Cr, Mo, V, Nb or the like and further forming a structure mainly composed of bainite, the core hardness is improved during nitriding. A “nitriding member” has been proposed (see, for example, Patent Document 1).
Further, “steel for soft nitriding” is proposed in which an appropriate amount of C, Ti, Mo, or the like is contained and fine precipitates having a particle size of less than 10 nm are dispersed in a structure mainly composed of bainite (for example, , See Patent Document 2).
Furthermore, “rapid nitriding steel with excellent fatigue strength” containing an appropriate amount of C, Cr, Mo, or the like has been proposed (see, for example, Patent Document 3).

特開2013−166997号公報JP 2013-166997 A 特開2010−163671号公報JP 2010-163671 A 特開平4−45244号公報JP-A-4-45244

しかし、特許文献1〜3に記載の技術では、硬化層深さが浅いため、疲労強度が不十分な場合があった。具体的には、特許文献1で提案された技術では、Moを0.05%以上含有し、且つTiの含有量が0.010%未満のため、硬化層深さが浅くなる傾向がある。また、特許文献2の実施例に記載のVを含む鋼では、Vが0.10%未満のため、硬化層深さが浅くなる傾向がある。更に、特許文献3で提案された技術は、Moを0.10%以上含有するため、硬化層深さが浅くなる傾向がある。
また、特許文献3の実施例に記載の鋼では、C含有量が0.24%以上のため、芯部硬さが高くなって、被削性が不十分な場合があった。
However, in the techniques described in Patent Documents 1 to 3, since the hardened layer depth is shallow, the fatigue strength may be insufficient. Specifically, in the technique proposed in Patent Document 1, since the Mo content is 0.05% or more and the Ti content is less than 0.010%, the hardened layer depth tends to be shallow. Moreover, in the steel containing V described in the Example of patent document 2, since V is less than 0.10%, there exists a tendency for a hardened layer depth to become shallow. Furthermore, since the technique proposed in Patent Document 3 contains 0.10% or more of Mo, the hardened layer depth tends to be shallow.
Moreover, in steel described in the Example of patent document 3, since C content was 0.24% or more, core part hardness became high and machinability might be inadequate.

本発明の目的は、窒化処理前の所望の部品形状への切削加工が熱間鍛造のまま、又は、その後焼準したままで容易に行え、しかも、窒化処理後には良好な疲労強度を確保することが可能で、自動車や各種産業機械のミッション部品に用いられるシャフトや歯車やプーリーなどのうちでも特に低騒音化が要求される部品の素材として好適な窒化用鋼を提供することである。   The object of the present invention is to easily perform cutting into a desired part shape before nitriding as it is after hot forging or after normalization, and to ensure good fatigue strength after nitriding. It is possible to provide a nitriding steel suitable as a material for parts that require particularly low noise among shafts, gears, pulleys, and the like used for transmission parts of automobiles and various industrial machines.

本発明者らは、窒化処理前の硬さを過剰に高めることなく、疲労強度を向上させるために、表層部硬さの増加と硬化層深さの向上とを両立させることができる合金元素の組み合わせと、その含有量について、種々の調査及び研究を重ねた。その結果、下記(a)〜(d)の知見を得た。   In order to improve fatigue strength without excessively increasing the hardness before nitriding treatment, the present inventors have developed an alloy element that can achieve both an increase in the surface layer hardness and an improvement in the depth of the hardened layer. Various investigations and studies were repeated on the combination and its content. As a result, the following findings (a) to (d) were obtained.

(a)窒化時の表層部の硬さの増加、及び硬化層深さの向上に有効な元素として、従来から知られているVに加えて、Tiを組み合わせるとよい。さらに、窒化処理により表層部の硬さを増加させるために、Crを含有させるとよい。
(b)窒化処理による表層部の硬さの増加、及び硬化層深さの向上のために、窒化前にTiはマトリックス中に固溶しているか、微細な炭化物、炭窒化物として析出しておく必要がある。このため、CおよびTiの含有量の上限は、窒化用鋼を製造する過程において鋳造後に行う、熱間圧延や熱間鍛造などの高温での加熱を伴う工程において溶解できる量とするとよい。具体的には、高温での加熱を伴う工程における一般的な加熱温度である1200〜1250℃で、溶解できるC量とTi量を上限にするとよい。
(c)V、Tiに、Moを組み合わせると硬化層深さが浅くなる。
(d)窒化処理による表層部硬さの増加と、硬化層深さの向上に最も適した組織は、ベイナイト組織である。ベイナイト組織において、窒化処理を施す前の硬さが過剰に高くならないように、C量をあまり高くしない。また、ベイナイト組織を得やすくするために、Mn含有量を高めるのはよい。
(A) In addition to V conventionally known, Ti may be combined as an element effective for increasing the hardness of the surface layer during nitriding and improving the depth of the hardened layer. Furthermore, in order to increase the hardness of the surface layer portion by nitriding treatment, Cr may be contained.
(B) In order to increase the hardness of the surface layer part by nitriding and to improve the depth of the hardened layer, Ti is dissolved in the matrix before nitriding or precipitated as fine carbides or carbonitrides. It is necessary to keep. For this reason, the upper limit of the content of C and Ti is preferably an amount that can be dissolved in a process involving heating at a high temperature, such as hot rolling or hot forging, performed after casting in the process of manufacturing the nitriding steel. Specifically, the upper limit is the amount of C and Ti that can be dissolved at 1200 to 1250 ° C., which is a general heating temperature in a process involving heating at a high temperature.
(C) When Mo is combined with V and Ti, the hardened layer depth becomes shallow.
(D) The most suitable structure for increasing the surface layer hardness by nitriding and improving the hardened layer depth is a bainite structure. In the bainite structure, the amount of C is not so high that the hardness before nitriding is not excessively high. Moreover, in order to make a bainite structure easy to obtain, it is good to raise Mn content.

本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。   This invention is made | formed based on such knowledge, The summary is as follows.

[1]質量%で、
C:0.04〜0.14%、
Si:0.02〜0.50%、
Mn:1.0〜2.0%、
Cr:0.8〜2.0%、
V:0.10〜0.30%、
Ti:0.02〜0.20%、
Al:0.01〜0.05%、
S:0.005〜0.05%
を含有し、
Mo:0.04%以下、
P:0.03%以下、
N:0.010%以下、
O(酸素):0.002%以下
に制限し、残部はFe及び不純物からなることを特徴とする窒化用鋼。
[2]更に、質量%で、
B:0.0003〜0.003%
を含有することを特徴とする上記[1]に記載の窒化用鋼。
[3]更に、質量%で、
Nb:0.01〜0.10%
を含有することを特徴とする上記[1]又は上記[2]に記載の窒化用鋼。
[1] By mass%
C: 0.04 to 0.14%,
Si: 0.02 to 0.50%,
Mn: 1.0-2.0%,
Cr: 0.8 to 2.0%,
V: 0.10 to 0.30%,
Ti: 0.02 to 0.20%,
Al: 0.01 to 0.05%,
S: 0.005-0.05%
Containing
Mo: 0.04% or less,
P: 0.03% or less,
N: 0.010% or less,
O (oxygen): A nitriding steel characterized by being limited to 0.002% or less and the balance being Fe and impurities.
[2] Furthermore, in mass%,
B: 0.0003 to 0.003%
The nitriding steel as set forth in [1] above, which contains
[3] Furthermore, in mass%,
Nb: 0.01 to 0.10%
The nitriding steel according to [1] or [2] above, which contains

本発明の窒化用鋼は、窒化処理前の所望の部品形状への切削加工が熱間鍛造のまま、或いはその後焼準したままで容易に行える。しかも、本発明の窒化用鋼は、窒化処理後には良好な疲労強度を確保することが可能である。このため、本発明の窒化用鋼は、自動車や各種産業機械のミッション部品に用いられるシャフトや歯車、プーリーなどのうちでも特に低騒音化が要求される部品の素材として用いることができる。   The steel for nitriding of the present invention can be easily performed by cutting into a desired part shape before nitriding as hot forging or after normalizing. Moreover, the nitriding steel of the present invention can ensure good fatigue strength after nitriding. For this reason, the nitriding steel of the present invention can be used as a material for parts that require particularly low noise among shafts, gears, pulleys, etc. used for mission parts of automobiles and various industrial machines.

以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。
(A)化学組成
C:0.04〜0.14%
Cは、窒化処理前の硬さ確保のために、必須の元素である。また、Cは、窒化処理の温度域でV及びTiと結合して炭化物を形成して、部品芯部の硬さの向上によって、硬化層深さを増加させるために必須の元素である。しかし、その含有量が0.04%未満では、他の要件を満たしていても窒化処理後に所望の硬化層深さ(後述の方法で窒化処理した場合に、Hv硬さが400以上となる深さが0.30mm以上)が得られなくなる。一方、Cの含有量が0.14%を超えると、他の要件を満たしていても窒化処理前に所望の硬さ(270以下のHv硬さ)にすることが困難で、切削加工性が大きく低下する。したがって、Cの含有量を0.04〜0.14%とした。
なお、Cの含有量が0.11%以下であると、窒化処理前のHv硬さが240以下になりやすくなる。したがって、Cの含有量の上限は0.11%以下にすることが好ましい。また、Cの含有量が0.06%以上であると、窒化処理による硬化層深さをより一層向上させることができる。したがって、Cの含有量は0.06%以上であることが好ましい。
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.
(A) Chemical composition C: 0.04 to 0.14%
C is an essential element for securing hardness before nitriding. C is an essential element for increasing the depth of the hardened layer by bonding with V and Ti in the temperature range of nitriding to form carbides and improving the hardness of the component core. However, if the content is less than 0.04%, even if other requirements are satisfied, the desired hardened layer depth after nitriding treatment (the depth at which Hv hardness becomes 400 or more when nitriding treatment is performed by the method described later) Cannot be obtained). On the other hand, when the content of C exceeds 0.14%, it is difficult to obtain a desired hardness (Hv hardness of 270 or less) before nitriding even if other requirements are satisfied, and the machinability is low. Decrease significantly. Therefore, the content of C is set to 0.04 to 0.14%.
Note that if the C content is 0.11% or less, the Hv hardness before nitriding tends to be 240 or less. Therefore, the upper limit of the C content is preferably 0.11% or less. Further, when the C content is 0.06% or more, the depth of the hardened layer by nitriding treatment can be further improved. Therefore, the C content is preferably 0.06% or more.

Si:0.02〜0.50%
Siは、焼入れ性及び疲労強度を高める作用を有する。この効果を得るためには、Siは0.02%以上の含有量とする必要がある。一方、Siの含有量が0.50%を上回ると、切削加工性の低下が顕著になる。したがって、Siの含有量を0.02〜0.50%とした。なお、切削加工性がより重視される場合には、Siの含有量の上限を0.25%以下にすることが好ましい。また、Siの含有量は、焼入れ性及び疲労強度をより一層高めるために、0.15%以上とすることが好ましい。
Si: 0.02 to 0.50%
Si has the effect of increasing hardenability and fatigue strength. In order to acquire this effect, it is necessary to make Si content 0.02% or more. On the other hand, when the Si content exceeds 0.50%, the machinability deteriorates significantly. Therefore, the Si content is set to 0.02 to 0.50%. In addition, when cutting workability is more important, the upper limit of the Si content is preferably set to 0.25% or less. Further, the Si content is preferably 0.15% or more in order to further enhance the hardenability and fatigue strength.

Mn:1.0〜2.0%
Mnは、焼入れ性を高めて、ベイナイト組織を得やすくする作用を有する。しかしながら、その含有量が1.0%未満では、一般的な冷却方法である大気中での放冷や、空気による風冷でベイナイトを主体とする組織を得ることが難しい。このため、窒化処理後に所望の硬化層深さが得られなくなる。一方、Mnの含有量が2.0%を超えると、切削加工性の低下が顕著になる。したがって、Mnの含有量を1.0〜2.0%とした。なお、切削加工性がより重視される場合には、Mnの含有量の上限を1.6%以下にすることが好ましい。また、Mnの含有量は、より一層ベイナイト組織を得やすくするために、1.2%以上とすることが好ましい。
Mn: 1.0-2.0%
Mn has the effect | action which raises hardenability and makes it easy to obtain a bainite structure. However, if the content is less than 1.0%, it is difficult to obtain a structure mainly composed of bainite by cooling in the atmosphere, which is a general cooling method, or by air cooling with air. For this reason, a desired hardened layer depth cannot be obtained after nitriding. On the other hand, when the Mn content exceeds 2.0%, the machinability deteriorates significantly. Therefore, the Mn content is set to 1.0 to 2.0%. In addition, when cutting workability is more important, the upper limit of the Mn content is preferably 1.6% or less. Further, the Mn content is preferably 1.2% or more in order to make it easier to obtain a bainite structure.

Cr:0.8〜2.0%
Crは、焼入れ性を高めるとともに窒化処理による表層部の硬さを増加させる効果が大きい。しかし、Crの含有量が0.8%未満では、他の要件を満たしていても窒化処理後に所望の表層部硬さ(後述の方法で窒化処理した場合に、表面から50μmの位置のHv硬さが730以上)が得られなくなる。一方、Crの含有量が2.0%を超えると、硬化層深さの低下が顕著になる。したがって、Crの含有量を0.8〜2.0%とした。なお、硬化層深さがより重視される場合には、Crの含有量の上限を1.5%以下にすることが好ましい。また、Crの含有量が1.0%以上であると、窒化処理を行うことにより表層部の硬さを増加させる効果が、より一層向上する。したがって、Crの含有量は1.0%以上であることが好ましい。
Cr: 0.8 to 2.0%
Cr has a great effect of enhancing the hardenability and increasing the hardness of the surface layer portion by nitriding treatment. However, if the Cr content is less than 0.8%, even if other requirements are satisfied, the desired surface layer portion hardness after nitriding treatment (Hv hardness at a position of 50 μm from the surface when nitriding treatment is performed by the method described later) 730 or more) cannot be obtained. On the other hand, when the content of Cr exceeds 2.0%, the reduction of the hardened layer depth becomes remarkable. Therefore, the Cr content is set to 0.8 to 2.0%. When the hardened layer depth is more important, the upper limit of the Cr content is preferably 1.5% or less. Further, when the Cr content is 1.0% or more, the effect of increasing the hardness of the surface layer portion by performing nitriding is further improved. Therefore, the Cr content is preferably 1.0% or more.

V:0.10〜0.30%
Vは、窒化処理時に表層部ではNと結合して窒化物を形成し、内部ではCと結合して炭化物を形成し、表層部の硬さの増加と、硬化層深さの向上のために必須の元素である。特に同時にTiを含有する場合にその効果が大きくなる。しかし、その含有量が0.10%未満では他の要件を満たしていても、所望の表層部硬さや硬化層深さを確保できない。一方、Vの含有量が0.30%を超えると、窒化処理前に所望の硬さにすることが困難で、切削加工性が大きく低下する。したがって、Vの含有量を0.10〜0.30%とした。なお、Vの含有量が0.15%以上であれば、窒化処理後に表層部硬さ(表面から50μmの位置のHv硬さ)が750以上となるので、Vの含有量の下限は0.15%以上が好ましい。一方、Vの含有量が0.25%以下であると、窒化処理前のHv硬さが240以下になりやすくなる。このため、Vの含有量の上限を0.25%以下にすることが好ましい。
V: 0.10 to 0.30%
V forms a nitride by combining with N in the surface layer portion during nitriding treatment, and forms a carbide by combining with C inside to increase the hardness of the surface layer portion and improve the depth of the hardened layer. It is an essential element. In particular, when Ti is contained at the same time, the effect is increased. However, if the content is less than 0.10%, desired surface layer hardness or hardened layer depth cannot be ensured even if other requirements are satisfied. On the other hand, if the V content exceeds 0.30%, it is difficult to obtain a desired hardness before nitriding, and the machinability is greatly reduced. Therefore, the content of V is set to 0.10 to 0.30%. If the V content is 0.15% or more, the surface layer hardness (Hv hardness at a position of 50 μm from the surface) is 750 or more after nitriding, so the lower limit of the V content is 0.00. 15% or more is preferable. On the other hand, if the V content is 0.25% or less, the Hv hardness before nitriding tends to be 240 or less. For this reason, it is preferable to make the upper limit of V content 0.25% or less.

Ti:0.02〜0.20%
Tiは、窒化処理時に表層部ではNと結合して窒化物を形成し、内部ではCと結合して炭化物を形成し、表層部の硬さの増加と、硬化層深さの向上のために必須の元素である。特にTiと同時にVを含有する場合に、その効果が大きくなる。しかし、Tiの含有量が0.02%未満では、他の要件を満たしていても、所望の表層部硬さや硬化層深さを確保できない。一方、Tiの含有量が0.20%を超えると、窒化処理前に所望の硬さにすることが困難で、切削加工性が大きく低下する。したがって、Tiの含有量を0.02〜0.20%とした。なお、Tiの含有量が0.05%以上であれば、窒化処理後に表層部硬さ(表面から50μmの位置のHv硬さ)が750以上となるので、Tiの含有量の下限は0.05%以上が好ましい。一方、Tiの含有量が0.15%以下であると、窒化処理前のHv硬さが240以下になりやすくなる。このため、Tiの含有量の上限を0.15%以下にすることが好ましい。
Ti: 0.02 to 0.20%
Ti combines with N in the surface layer portion to form a nitride during nitriding treatment, and forms a carbide by combining with C inside to increase the hardness of the surface layer portion and improve the depth of the hardened layer. It is an essential element. In particular, when V is contained simultaneously with Ti, the effect is increased. However, if the Ti content is less than 0.02%, the desired surface layer hardness or hardened layer depth cannot be ensured even if other requirements are satisfied. On the other hand, if the Ti content exceeds 0.20%, it is difficult to obtain a desired hardness before nitriding, and the machinability is greatly reduced. Therefore, the content of Ti is set to 0.02 to 0.20%. If the Ti content is 0.05% or more, the surface layer hardness (Hv hardness at a position of 50 μm from the surface) after nitriding is 750 or more, so the lower limit of the Ti content is 0.00. 05% or more is preferable. On the other hand, if the Ti content is 0.15% or less, the Hv hardness before nitriding tends to be 240 or less. For this reason, it is preferable to make the upper limit of Ti content 0.15% or less.

更に、窒化処理によってTiの窒化物を効果的に形成させるため、熱間圧延や熱間鍛造での加熱によってTi化合物(炭化物、炭窒化物などの析出物)の大半が溶解するように、C量とTi量との関係を限定することが好ましい。本発明者らは、析出物の構成元素である鋼中のCおよびTiの含有量について検討を重ねた。その結果、Ti(%)×C(%)が0.020を超えると、表層部の硬さの増加、および硬化層深さの向上の効果が飽和しやすくなることを見出した。したがって、Ti(%)×C(%)は0.020以下にすることが好ましい。   Further, in order to effectively form Ti nitride by nitriding treatment, C is applied so that most of Ti compounds (precipitates such as carbide and carbonitride) are dissolved by heating in hot rolling or hot forging. It is preferable to limit the relationship between the amount and the Ti amount. The inventors have repeatedly studied the contents of C and Ti in steel, which is a constituent element of the precipitate. As a result, it was found that when Ti (%) × C (%) exceeds 0.020, the effect of increasing the hardness of the surface layer portion and improving the depth of the hardened layer tends to be saturated. Therefore, Ti (%) × C (%) is preferably 0.020 or less.

Al:0.01〜0.05%
Alは、脱酸作用を有する元素であり、鋼中の酸素量低減のために必要である。しかし、Al含有量が0.01%未満ではこの効果が得難い。一方で、Alは硬質な酸化物系介在物を形成しやすい。特に、Al含有量が0.05%を超えると、粗大な酸化物系介在物の形成が著しくなるので疲労強度の低下が顕著になる。したがって、Alの含有量を0.01〜0.05%とした。より好ましいAlの含有量の上限は0.04%以下である。また、Alの含有量は、鋼中の酸素量低減のために0.02%以上とすることが好ましい。
Al: 0.01 to 0.05%
Al is an element having a deoxidizing action and is necessary for reducing the amount of oxygen in the steel. However, this effect is difficult to obtain when the Al content is less than 0.01%. On the other hand, Al tends to form hard oxide inclusions. In particular, when the Al content exceeds 0.05%, the formation of coarse oxide inclusions becomes remarkable, so that the fatigue strength is significantly reduced. Therefore, the Al content is set to 0.01 to 0.05%. A more preferable upper limit of the Al content is 0.04% or less. Further, the Al content is preferably 0.02% or more in order to reduce the amount of oxygen in the steel.

S:0.005〜0.05%
Sは、Mnと結合してMnSを形成し、切削加工性を向上させる作用を有する。しかし、その含有量が0.005%未満では、前記の効果が得難い。一方、Sの含有量が多くなると、粗大なMnSが生成しやすくなる。特に、S含有量が0.05%を超えると、疲労強度の低下が顕著になる。したがって、Sの含有量を0.005〜0.05%とした。Sの含有量は、切削加工性を向上させるために、0.015%以上とすることが好ましい。また、Sの含有量は、粗大なMnSの生成による疲労強度の低下をより効果的に抑制するため0.03%以下とすることが好ましい。
S: 0.005-0.05%
S combines with Mn to form MnS and has an effect of improving the machinability. However, if the content is less than 0.005%, it is difficult to obtain the above effect. On the other hand, when the content of S increases, coarse MnS tends to be generated. In particular, when the S content exceeds 0.05%, the fatigue strength is significantly reduced. Therefore, the content of S is set to 0.005 to 0.05%. The S content is preferably 0.015% or more in order to improve the machinability. Further, the S content is preferably 0.03% or less in order to more effectively suppress a decrease in fatigue strength due to the generation of coarse MnS.

本発明においては、Mo、P、N、及びO(酸素)の含有量を下記のとおりに制限する。
Mo:0.04%以下
Vおよび/またはTiを、Moとともに含有すると、窒化処理時に表層部の硬さ増加量が小さくなってしまう。VおよびTiを含有する鋼にMoが含まれていることによる影響は、Mo含有量が0.04%を超えると顕著になる。したがって、Moの含有量を0.04%以下に制限する。Moの含有量は、VおよびTiによる表層部の硬さの増加効果を抑制しないように、0.03%未満とすることが好ましい。
In the present invention, the contents of Mo, P, N, and O (oxygen) are limited as follows.
Mo: 0.04% or less When V and / or Ti is contained together with Mo, the amount of increase in the hardness of the surface layer portion is reduced during nitriding. The effect of containing Mo in steel containing V and Ti becomes significant when the Mo content exceeds 0.04%. Therefore, the Mo content is limited to 0.04% or less. The Mo content is preferably less than 0.03% so as not to suppress the effect of increasing the hardness of the surface layer due to V and Ti.

P:0.03%以下
Pは、粒界に偏析して粒界を脆化させやすい元素で、疲労強度を低下させてしまう。特に、Pの含有量が0.03%を超えると、疲労強度の低下が著しくなる。したがって、不純物中のPの含有量を0.03%以下とし、0.02%以下にすることが好ましい。なお、不純物中のPの含有量はできる限り少なくすることが望ましいが、製鋼でのコストが増大する。
P: 0.03% or less P is an element that easily segregates at the grain boundaries and embrittles the grain boundaries, and reduces fatigue strength. In particular, when the P content exceeds 0.03%, the fatigue strength is significantly reduced. Therefore, the content of P in the impurities is preferably 0.03% or less and preferably 0.02% or less. In addition, although it is desirable to reduce the content of P in the impurities as much as possible, the cost in steelmaking increases.

N:0.010%以下
Nは、Tiと結合してTiNを形成しやすく、凝固時には粗大なTiNが生成しやすい。粗大なTiNが存在すると、疲労強度を低下させてしまう。特に、Nの含有量が0.010%を超えると、粗大なTiNを形成しやすくなって、疲労強度の低下が顕著になる。したがって、不純物中のNの含有量を0.010%以下とし、0.007%以下にすることが好ましい。なお不純物中のNの含有量はできるだけ少なくすることが望ましいが、製鋼でのコストが増大する。
N: 0.010% or less N is liable to form TiN by combining with Ti, and coarse TiN is likely to be generated during solidification. If coarse TiN is present, the fatigue strength is reduced. In particular, when the N content exceeds 0.010%, coarse TiN is easily formed, and the fatigue strength is significantly reduced. Therefore, the N content in the impurities is preferably 0.010% or less and preferably 0.007% or less. Although it is desirable to reduce the content of N in the impurities as much as possible, the cost in steelmaking increases.

O(酸素):0.002%以下
Oは、Alなどと結合して硬質な酸化物系介在物を形成しやすく、Oの含有量が多くなると、疲労強度を低下させてしまう。特に、O含有量が0.002%を超えると、粗大な酸化物系介在物の形成が著しくなるので疲労強度の低下が顕著になる。したがって、Oの含有量を0.002%以下とし、0.001%以下にすることが好ましい。なお不純物中のOの含有量はできるだけ少なくすることが望ましいが、製鋼でのコストが増大する。
O (oxygen): 0.002% or less O is liable to form hard oxide inclusions by bonding with Al or the like, and when the O content increases, the fatigue strength is lowered. In particular, when the O content exceeds 0.002%, the formation of coarse oxide inclusions becomes significant, and the fatigue strength is significantly reduced. Therefore, the O content is preferably 0.002% or less and preferably 0.001% or less. Although it is desirable to reduce the content of O in the impurities as much as possible, the cost in steelmaking increases.

更に、B、Nbを添加することができる。
B:0.0003〜0.003%
Bの添加は任意である。添加すれば、鋼中にフリーな状態で存在して焼き入れ性を高める効果を有するため、MnやCrなどの合金元素の含有量を低減することができる。この効果を得るためには、Bは0.0003%以上の含有量とすることが好ましい。一方、Bを、0.003%を超えて含有しても前記の効果は飽和し、コストが嵩むだけである。したがって、Bの含有量を0.0003〜0.003%とした。Bの含有量は、より一層、焼き入れ性を向上させるために、0.0008%以上とすることがより好ましい。
Furthermore, B and Nb can be added.
B: 0.0003 to 0.003%
The addition of B is optional. If added, it is present in the steel in a free state and has the effect of improving the hardenability, so the content of alloy elements such as Mn and Cr can be reduced. In order to obtain this effect, the B content is preferably 0.0003% or more. On the other hand, even if B is contained in excess of 0.003%, the above effect is saturated and only the cost is increased. Therefore, the content of B is set to 0.0003 to 0.003%. The B content is more preferably 0.0008% or more in order to further improve the hardenability.

Nb:0.01〜0.10%
Nbの添加は任意である。添加すれば、窒化処理時に表層部ではNと結合して窒化物を形成し、内部ではCと結合して炭化物を形成し、VとTiによる表層部硬さの増加と、硬化層深さの向上を補完できる。この効果を確実に得るには、Nbは0.01%以上の含有量にする必要がある。しかし、Nbの含有量が0.10%を超えてもその効果は飽和し、コストが嵩むだけである。したがって、Nbの含有量を0.01〜0.10%とした。Nbの含有量は、より一層の表層部の硬さの増加と硬化層深さの向上のために0.02%以上とすることがより好ましい。また、Nbの含有量は、0.07%以下であることがより好ましい。
Nb: 0.01 to 0.10%
Addition of Nb is optional. If it is added, nitride is formed by bonding with N in the surface layer portion during nitriding, and carbide is formed by combining with C inside, and the increase in the surface layer hardness due to V and Ti, and the depth of the hardened layer Complement the improvement. In order to reliably obtain this effect, the Nb content needs to be 0.01% or more. However, even if the Nb content exceeds 0.10%, the effect is saturated and only the cost is increased. Therefore, the Nb content is set to 0.01 to 0.10%. The Nb content is more preferably 0.02% or more in order to further increase the hardness of the surface layer portion and improve the depth of the hardened layer. The Nb content is more preferably 0.07% or less.

本発明で規定する窒化用鋼を用いて、窒化部品を得る方法の概略の一例を記載する。
本実施形態の窒化用鋼を製造するには、まず、上記の化学成分を有する溶鋼を鋳造して鋳片あるいはインゴットとする。次いで、鋳片あるいはインゴットに、熱間圧延および/または熱間鍛造を行なって窒化用鋼とする。その後、窒化用鋼を所定の形状に加工して粗成型品とする。そして、窒化用鋼からなる粗成型品を窒化処理して窒化部品とする。
An example of an outline of a method for obtaining a nitrided part using the nitriding steel defined in the present invention will be described.
In order to manufacture the nitriding steel of the present embodiment, first, molten steel having the above chemical components is cast into a slab or ingot. Next, the slab or ingot is hot-rolled and / or hot-forged to obtain a nitriding steel. Thereafter, the nitriding steel is processed into a predetermined shape to obtain a rough molded product. The rough molded product made of nitriding steel is subjected to nitriding treatment to obtain a nitriding part.

より詳細には、高炉、又は電気炉から得た溶銑を一般的な製鋼工程によって成分調整した後、連続鋳造によって鋳片を得る、あるいはインゴットへ鋳造することによって鋼塊を得る。次に必要に応じて分塊圧延によって鋼片とし、棒鋼、線材、薄板、鋼管などに熱間圧延を行う。鋳造、分塊圧延、熱間圧延は常法で行えばよく、製造条件は特に制限されるものではない。
得られた熱間圧延材を用いて、熱間鍛造、冷間鍛造、切削加工、研削加工によって部品形状に粗成型する。溶鋼を鋳造してインゴットとし、これを熱間鍛造して粗成型してもよい。必要に応じて、これらの工程の間に熱処理を行う場合がある。
More specifically, after the hot metal obtained from a blast furnace or an electric furnace is subjected to component adjustment by a general steelmaking process, a slab is obtained by continuous casting or a steel ingot is obtained by casting into an ingot. Next, it is made into a steel slab by partial rolling as necessary, and hot rolling is performed on a bar steel, a wire rod, a thin plate, a steel pipe, and the like. Casting, block rolling, and hot rolling may be performed by conventional methods, and the production conditions are not particularly limited.
Using the obtained hot-rolled material, it is roughly formed into a part shape by hot forging, cold forging, cutting and grinding. The molten steel may be cast into an ingot, which may be hot forged and roughly molded. If necessary, heat treatment may be performed between these steps.

このようにして得た窒化用鋼からなる粗成型品を窒化炉によって窒化処理を行い、更に必要に応じて、研削加工、ショットピーニングを付与して窒化部品とする。
窒化処理は、ガス窒化、ガス軟窒化、プラズマ窒化、プラズマ軟窒化、塩浴窒化などの何れでもよい。また、窒化処理の温度、雰囲気、処理時間などの条件は、窒化部品において要求される表層部の硬さと硬化層深さなどに応じて適宜決定でき、特に限定されない。例えば、窒化処理を行うことにより、表層部のHv硬さ730以上であって、Hv硬さ400以上である硬化層深さが0.30mm以上である窒化部品を製造する場合には、560〜590℃の温度、アンモニア、水素および窒素を含む雰囲気中で5〜6時間のガス窒化を行うことが好ましい。
なお、本発明の窒化用鋼を用いて、窒化部品を得る方法は、これに限られるものではない。
The rough molded product made of nitriding steel thus obtained is subjected to nitriding treatment in a nitriding furnace, and further subjected to grinding and shot peening as necessary to obtain a nitrided part.
The nitriding treatment may be any of gas nitriding, gas soft nitriding, plasma nitriding, plasma soft nitriding, salt bath nitriding and the like. The conditions such as the temperature, atmosphere, and processing time of the nitriding treatment can be appropriately determined according to the hardness of the surface layer portion and the depth of the hardened layer required for the nitrided part, and are not particularly limited. For example, in the case of producing a nitrided part having a Hv hardness of 730 or more and a Hv hardness of 400 or more and a hardened layer depth of 0.30 mm or more by performing nitriding, 560 to It is preferable to perform gas nitriding for 5 to 6 hours in an atmosphere containing a temperature of 590 ° C., ammonia, hydrogen and nitrogen.
The method for obtaining a nitrided part using the nitriding steel of the present invention is not limited to this.

本発明者らは、表1に示す化学組成を有する鋼A〜Z、AA〜AGを30kg真空溶解炉で溶解した後、インゴットに鋳造した。上記の各インゴットを1250℃で1時間加熱した後、仕上げ温度が950℃以上となるように直径15mmまで熱間鍛造し、送風によって室温まで加速冷却した。
得られた直径15mmの棒鋼を、熱間鍛造方向に垂直な方向で長さ10mmに切断した後、その切断面を鏡面研磨して、試験力98.07Nで10点ずつHv硬さを測定した。各10点の平均値をその試験片の窒化前のHv硬さ(窒化前硬さ)とした。
The present inventors melted steels A to Z and AA to AG having chemical compositions shown in Table 1 in a 30 kg vacuum melting furnace, and then cast them into ingots. Each of the above ingots was heated at 1250 ° C. for 1 hour, then hot forged to a diameter of 15 mm so that the finishing temperature was 950 ° C. or higher, and acceleratedly cooled to room temperature by blowing air.
The obtained steel bar having a diameter of 15 mm was cut into a length of 10 mm in a direction perpendicular to the hot forging direction, and then the cut surface was mirror-polished, and the Hv hardness was measured 10 points at a test force of 98.07 N. . The average value of each 10 points was taken as the Hv hardness before nitriding of the test piece (hardness before nitriding).

更に直径15mmの棒鋼から、機械加工によって10mm幅×50mm長さ×3mm厚さの試験片を採取し、ガス窒化炉を用いて、590℃で5時間、窒化処理した後、油冷した。なお窒化処理時には、アンモニアを4.0m/時間、窒素を1.0m/時間の流量で炉内にガスを導入した。 Further, from a steel bar having a diameter of 15 mm, a test piece having a width of 10 mm, a length of 50 mm, and a length of 3 mm was obtained by machining, and nitriding was performed at 590 ° C. for 5 hours using a gas nitriding furnace, followed by oil cooling. During the nitriding treatment, ammonia was introduced into the furnace at a flow rate of 4.0 m 3 / hour and nitrogen at a flow rate of 1.0 m 3 / hour.

このようにして得られた窒化処理後の試験片を、長さ方向に垂直な方向に切断した後、その切断面を鏡面研磨して、試験力19.61Nで表面から50μm、100μm、以降50μm毎に深さ700μmまで、各3点ずつHv硬さを測定した。表面から50μm位置の3点の平均値をその試験片の表層部のHv硬さ(表層部硬さ)とした。
また硬化層深さは、横軸を表面からの距離、縦軸をHv硬さにして、各3点の測定データの平均値をプロットして、各プロットを直線で結んだ時に、Hvが400となる深さとした。
各試験片の窒化前硬さ、表層部硬さ、硬化層深さの結果を表1に示す。
The thus obtained nitriding test piece was cut in a direction perpendicular to the length direction, and then the cut surface was mirror-polished to 50 μm, 100 μm from the surface with a test force of 19.61 N, and thereafter 50 μm. The Hv hardness was measured at three points each up to a depth of 700 μm. The average value of three points at 50 μm from the surface was taken as the Hv hardness (surface layer hardness) of the surface layer portion of the test piece.
The depth of the hardened layer is such that when the horizontal axis is the distance from the surface and the vertical axis is Hv hardness, the average value of the measurement data at each of the three points is plotted, and when each plot is connected by a straight line, the Hv is 400. It was the depth to become.
Table 1 shows the results of the pre-nitridation hardness, surface layer hardness, and hardened layer depth of each test piece.

Figure 2015221922
Figure 2015221922

本発明での目標は、(イ)〜(ハ)とした。
(イ)窒化前のHv硬さが270以下、望ましくは240以下。
(ロ)窒化後の表層部のHv硬さが730以上、望ましくは750以上。
(ハ)硬化層深さは、590℃で5時間の窒化処理時間の場合で、0.30mm以上。
The targets in the present invention were (i) to (c).
(A) Hv hardness before nitriding is 270 or less, desirably 240 or less.
(B) The Hv hardness of the surface layer portion after nitriding is 730 or more, preferably 750 or more.
(C) The depth of the hardened layer is 0.30 mm or more in the case of nitriding treatment time at 590 ° C. for 5 hours.

表1から、本発明で規定する条件から外れた試験番号、つまり、試験番号1、試験番号6、試験番号9〜11、試験番号15〜17、及び試験番号20〜26の場合には、前記した(イ)〜(ハ)の少なくとも1つの特性が目標とする値に達していないことが明らかである。   From Table 1, the test numbers deviating from the conditions defined in the present invention, that is, in the case of test number 1, test number 6, test numbers 9-11, test numbers 15-17, and test numbers 20-26, It is apparent that at least one of the characteristics (a) to (c) does not reach the target value.

試験番号1は、C含有量が少ないため、硬化層深さが浅いものであった。
試験番号6は、C含有量が多いため、窒化前硬さが高すぎるものであった。
試験番号9は、Cr含有量が少ないため、表層部硬さが低いものであった。
試験番号10は、Cr含有量が多いため、硬化層深さが浅いものであった。
試験番号11は、V含有量が少ないため、表層部硬さが低く、硬化層深さが浅いものであった。
試験番号15は、V含有量が多いため、窒化前硬さが高すぎるものであった。
試験番号16は、Ti含有量が少ないため、表層部硬さが低く、硬化層深さが浅いものであった。
試験番号17は、Ti含有量が少ないため、硬化層深さが浅いものであった。
試験番号20は、Ti含有量が多いため、窒化前硬さが高すぎるものであった。
試験番号21は、V含有量が少ないため、硬化層深さが浅いものであった。
試験番号22は、Mo含有量が多く、V含有量が少ないため、表層部硬さが低く、硬化層深さが浅いものであった。
試験番号23〜25は、Mo含有量が多いため、表層部硬さが低いものであった。
試験番号26は、Mn含有量が少ないため、硬化層深さが浅いものであった。
それに対し、本発明で規定する条件をすべて満たす試験番号は、前記した(イ)〜(ハ)のすべての特性が目標とする値に達していることが明らかである。
Since test number 1 had little C content, the hardened layer depth was a shallow thing.
In Test No. 6, since the C content was large, the hardness before nitriding was too high.
Since test number 9 had little Cr content, the surface layer part hardness was a low thing.
Since test number 10 had much Cr content, the hardened layer depth was a shallow thing.
Since test number 11 had little V content, surface layer part hardness was low and the hardened layer depth was shallow.
Since test number 15 had much V content, the hardness before nitriding was too high.
Since test number 16 had little Ti content, surface layer part hardness was low and the hardened layer depth was shallow.
Since test number 17 had little Ti content, the hardened layer depth was shallow.
In Test No. 20, since the Ti content was large, the hardness before nitriding was too high.
Since test number 21 had little V content, the hardened layer depth was shallow.
Test No. 22 had a high Mo content and a low V content, so the surface layer hardness was low and the hardened layer depth was shallow.
Since test numbers 23-25 had much Mo content, surface layer part hardness was low.
Since test number 26 had little Mn content, the hardened layer depth was shallow.
On the other hand, it is clear that the test numbers satisfying all the conditions defined in the present invention have reached the target values for all the characteristics (a) to (c).

Claims (3)

質量%で、
C:0.04〜0.14%、
Si:0.02〜0.50%、
Mn:1.0〜2.0%、
Cr:0.8〜2.0%、
V:0.10〜0.30%、
Ti:0.02〜0.20%、
Al:0.01〜0.05%、
S:0.005〜0.05%
を含有し、
Mo:0.04%以下、
P:0.03%以下、
N:0.010%以下、
O(酸素):0.002%以下
に制限し、残部はFe及び不純物からなることを特徴とする窒化用鋼。
% By mass
C: 0.04 to 0.14%,
Si: 0.02 to 0.50%,
Mn: 1.0-2.0%,
Cr: 0.8 to 2.0%,
V: 0.10 to 0.30%,
Ti: 0.02 to 0.20%,
Al: 0.01 to 0.05%,
S: 0.005-0.05%
Containing
Mo: 0.04% or less,
P: 0.03% or less,
N: 0.010% or less,
O (oxygen): A nitriding steel characterized by being limited to 0.002% or less and the balance being Fe and impurities.
更に、質量%で、
B:0.0003〜0.003%
を含有することを特徴とする請求項1に記載の窒化用鋼。
Furthermore, in mass%,
B: 0.0003 to 0.003%
The nitriding steel according to claim 1, comprising:
更に、質量%で、
Nb:0.01〜0.10%
を含有することを特徴とする請求項1又は請求項2に記載の窒化用鋼。
Furthermore, in mass%,
Nb: 0.01 to 0.10%
The nitriding steel according to claim 1 or 2, characterized by comprising:
JP2014106236A 2014-05-22 2014-05-22 Nitriding steel Active JP6375691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106236A JP6375691B2 (en) 2014-05-22 2014-05-22 Nitriding steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106236A JP6375691B2 (en) 2014-05-22 2014-05-22 Nitriding steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018107271A Division JP6583484B2 (en) 2018-06-04 2018-06-04 Nitriding steel

Publications (2)

Publication Number Publication Date
JP2015221922A true JP2015221922A (en) 2015-12-10
JP6375691B2 JP6375691B2 (en) 2018-08-22

Family

ID=54785098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106236A Active JP6375691B2 (en) 2014-05-22 2014-05-22 Nitriding steel

Country Status (1)

Country Link
JP (1) JP6375691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150628A (en) * 2018-06-04 2018-09-27 新日鐵住金株式会社 Steel for nitriding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853049A (en) * 1984-02-13 1989-08-01 Caterpillar Inc. Nitriding grade alloy steel article
WO2012067181A1 (en) * 2010-11-17 2012-05-24 新日本製鐵株式会社 Steel for nitriding purposes, and nitrided member
JP2012112024A (en) * 2010-11-26 2012-06-14 Kobe Steel Ltd Case hardening steel with little heat-treatment strain
JP2013213254A (en) * 2012-04-02 2013-10-17 Nippon Steel & Sumitomo Metal Corp Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold-forged/nitrided component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853049A (en) * 1984-02-13 1989-08-01 Caterpillar Inc. Nitriding grade alloy steel article
WO2012067181A1 (en) * 2010-11-17 2012-05-24 新日本製鐵株式会社 Steel for nitriding purposes, and nitrided member
JP2012112024A (en) * 2010-11-26 2012-06-14 Kobe Steel Ltd Case hardening steel with little heat-treatment strain
JP2013213254A (en) * 2012-04-02 2013-10-17 Nippon Steel & Sumitomo Metal Corp Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold-forged/nitrided component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150628A (en) * 2018-06-04 2018-09-27 新日鐵住金株式会社 Steel for nitriding

Also Published As

Publication number Publication date
JP6375691B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP5123335B2 (en) Crankshaft and manufacturing method thereof
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
JP5182067B2 (en) Steel for vacuum carburizing or carbonitriding
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP5333682B2 (en) Rolled steel bar or wire rod for hot forging
EP2444511A1 (en) Steel for nitriding and nitrided steel components
JP5821771B2 (en) Hot rolled steel bar or wire rod for cold forging
JPWO2019198415A1 (en) Steel for parts to be carburized
KR20190028781A (en) High frequency quenching steel
JP5649886B2 (en) Case-hardened steel and method for producing the same
JP2010189697A (en) Crankshaft and method for producing the same
JP4737601B2 (en) High temperature nitriding steel
JP2017106079A (en) Steel for machine structural use excellent in crystal grain coarsening resistance, bending fatigue-resistant strength and impact-resistant strength
JP5649887B2 (en) Case-hardened steel and method for producing the same
JP6583484B2 (en) Nitriding steel
JP4488228B2 (en) Induction hardening steel
JP6375691B2 (en) Nitriding steel
JP2012077333A (en) Nitriding steel excellent in machinability, and nitrided part
JP2016188421A (en) Carburized component
JP6447064B2 (en) Steel parts
JP2016084541A (en) Steel bar for case hardening and wire
JP5582296B2 (en) Iron-based material and manufacturing method thereof
JP2016074951A (en) Manufacturing method of case hardened steel
JP5440398B2 (en) Method for manufacturing nitrocarburized machine structural parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R151 Written notification of patent or utility model registration

Ref document number: 6375691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350