JP2015220792A - Power supply device and power supply device for welding - Google Patents

Power supply device and power supply device for welding Download PDF

Info

Publication number
JP2015220792A
JP2015220792A JP2014100776A JP2014100776A JP2015220792A JP 2015220792 A JP2015220792 A JP 2015220792A JP 2014100776 A JP2014100776 A JP 2014100776A JP 2014100776 A JP2014100776 A JP 2014100776A JP 2015220792 A JP2015220792 A JP 2015220792A
Authority
JP
Japan
Prior art keywords
current
control
power supply
output
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014100776A
Other languages
Japanese (ja)
Other versions
JP6317175B2 (en
Inventor
直也 小原
Naoya Ohara
直也 小原
一郎 梅澤
Ichiro Umezawa
一郎 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2014100776A priority Critical patent/JP6317175B2/en
Publication of JP2015220792A publication Critical patent/JP2015220792A/en
Application granted granted Critical
Publication of JP6317175B2 publication Critical patent/JP6317175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding Control (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device (power supply device for welding) capable of properly detecting output current value over a large current region and capable of performing proper output control in the whole region.SOLUTION: In a power supply device 10, a first current sensor ID1 having a specification of a large detectable current region and coarse resolution is selected when an output current value is large, a second current sensor ID2 having a specification of a small detectable current region and fine resolution is selected when the output current value is small, and output control (switching control of an inverter circuit 12) based on an output current value detected by each of the current sensors ID1 and ID2 is performed.

Description

本発明は、電流センサを用いた出力制御を行う電源装置及び溶接用電源装置に関する。   The present invention relates to a power supply device that performs output control using a current sensor and a welding power supply device.

特許文献1に開示の電源装置等、出力電流値を検出する電流センサを設置し、該電流センサにて検出した出力電流値に基づいてインバータ回路のスイッチング動作を制御し、所望の出力電力とする出力制御を行う構成となっている。   A current sensor that detects an output current value, such as the power supply device disclosed in Patent Document 1, is installed, and the switching operation of the inverter circuit is controlled based on the output current value detected by the current sensor to obtain a desired output power. It is configured to perform output control.

特開2009−131007号公報JP 2009-131007 A

ところで、電流センサは電流値の検出範囲が仕様毎に決まっているため、例えば出力電流値が数百[A]の大電流から数[A]の極小電流まで大きく変化するアーク溶接用電源装置等、出力電流値が大きく変化する電源装置では特に、全範囲を適切に検出可能な電流センサを選定するのが難しい。   By the way, since the detection range of the current value of the current sensor is determined for each specification, for example, an arc welding power supply device in which the output current value greatly changes from a large current of several hundreds [A] to a minimal current of several [A]. Especially, in a power supply device in which the output current value changes greatly, it is difficult to select a current sensor that can appropriately detect the entire range.

例えば、大電流から極小電流までの広い電流域を検出可能な電流センサを用いる場合、電流センサの分解能が粗い設定となっていることから、分解能の限界に近い数[A]程度の極小電流域での検出精度は低く、極小電流域では適切な出力制御が行えない。反対に、極小電流域に適した分解能の細かい電流センサでは検出可能な電流域が狭く、数百[A]の大電流域までは検出不能、つまり使用ができなかった。   For example, when using a current sensor capable of detecting a wide current range from a large current to a minimum current, the resolution of the current sensor is set to be coarse, so a minimum current range of about several [A] that is close to the resolution limit. The detection accuracy in is low, and appropriate output control cannot be performed in the minimum current region. On the other hand, a current sensor with a fine resolution suitable for a very small current region has a narrow detectable current range, and cannot detect a large current region of several hundreds [A], that is, cannot be used.

本発明は、上記課題を解決するためになされたものであって、その目的は、広い電流域に亘って出力電流値を適切に検出でき、全域で適切な出力制御を行うことができる電源装置及び溶接用電源装置を提供することにある。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a power supply apparatus that can appropriately detect an output current value over a wide current range and perform appropriate output control over the entire range. And a power supply device for welding.

上記課題を解決する電源装置は、出力電力を生成する電力生成回路と、出力電流値を検出する電流センサとを備えており、前記検出した出力電流値に基づいて前記電力生成回路を制御し所望の出力電力を得る出力制御を行う制御回路を備えた電源装置であって、前記電流センサには、検出可能な電流域と分解能とを含む仕様の異なるものが複数用いられ、前記出力電流値が大きい程、検出可能な電流域が広く分解能の粗い仕様の電流センサにて前記出力電流値の検出が行われ、前記出力電流値が小さい程、検出可能な電流域が狭く分解能の細かい仕様の電流センサにて前記出力電流値の検出が行われるように、前記出力電流値に対応して複数の電流センサの内の何れかを選択的に切り替えるセンサ切替手段を備える。   A power supply apparatus that solves the above-described problem includes a power generation circuit that generates output power and a current sensor that detects an output current value, and controls the power generation circuit based on the detected output current value to obtain a desired value. A power supply device having a control circuit for performing output control to obtain output power of a plurality of devices having different specifications including a detectable current range and resolution is used for the current sensor, and the output current value is The larger the value, the wider the detectable current range, and the output current value is detected by a current sensor with a coarse resolution. The smaller the output current value, the narrower the current range that can be detected and the finer resolution current. Sensor switching means is provided for selectively switching any one of the plurality of current sensors corresponding to the output current value so that the output current value is detected by the sensor.

この構成によれば、出力電流値が大きい程、検出可能な電流域が広く分解能の粗い仕様の電流センサが選択され、出力電流値が小さい程、検出可能な電流域が狭く分解能の細かい仕様の電流センサが選択されて、各電流センサにて検出した出力電流値に基づく出力制御が行われる。つまり、広い電流域を扱う電源装置においては特に、各電流域に適した電流センサが選択されることで各電流域の出力電流値を適切に検出でき、各電流域毎で適切な出力制御を行うことが可能となる。   According to this configuration, the larger the output current value, the wider the current range that can be detected and the lower the resolution of the current sensor selected. The smaller the output current value, the narrower the detectable current range and the finer the resolution. A current sensor is selected, and output control based on the output current value detected by each current sensor is performed. In other words, especially in power supply devices that handle a wide current range, by selecting a current sensor that is appropriate for each current range, the output current value in each current range can be detected appropriately, and appropriate output control can be performed for each current range. Can be done.

また上記の電源装置において、前記電力生成回路は、スイッチング素子のオンオフ動作により直流電力から高周波交流電力への電力変換を行うインバータ回路を含んで構成され、前記制御回路は、出力要求が大となる期間では前記インバータ回路のスイッチング素子のオンパルス幅を可変とするパルス幅変調制御を選択し、出力要求が小となる期間では同組で動作するスイッチング素子のオンパルス幅を所定幅に固定しつつ同組のオンパルスに位相差を生じさせる位相シフト制御に切り替える制御切替手段を備え、出力要求に応じたスイッチング制御を実施することが好ましい。   Further, in the above power supply device, the power generation circuit includes an inverter circuit that performs power conversion from DC power to high-frequency AC power by an on / off operation of a switching element, and the control circuit has a large output requirement. In the period, pulse width modulation control is selected to make the on-pulse width of the switching element of the inverter circuit variable, and in the period when the output request is small, the on-pulse width of the switching element that operates in the same group is fixed to a predetermined width. It is preferable to provide control switching means for switching to phase shift control that causes a phase difference in the ON pulse, and to perform switching control according to the output request.

この構成によれば、インバータ回路のスイッチング制御において、出力要求の大きい期間ではパルス幅変調制御(PWM制御)が実施され、出力要求が小さい期間になると位相シフト制御(PSM制御)に切り替えられる。つまり、出力要求の小さい期間でPWM制御を実施したとするとインバータ回路のスイッチング素子が十分にオンできない虞があるが、これに代わってPSM制御を用いることでスイッチング素子のオンパルス幅を十分オン可能な所定幅としつつも出力を下げることが可能である。これにより、PWM制御とPSM制御とを切り替えることで広い電流域での適切な出力制御が可能で、電流センサを切り替える上記構成との組み合わせによる相乗的効果が期待できる。   According to this configuration, in the switching control of the inverter circuit, the pulse width modulation control (PWM control) is performed during a period when the output request is large, and is switched to the phase shift control (PSM control) when the output request is small. In other words, if PWM control is performed in a period when the output request is small, there is a possibility that the switching element of the inverter circuit cannot be sufficiently turned on, but the on-pulse width of the switching element can be sufficiently turned on by using PSM control instead. It is possible to reduce the output while maintaining a predetermined width. Thereby, appropriate output control in a wide current range is possible by switching between PWM control and PSM control, and a synergistic effect can be expected by a combination with the above configuration for switching the current sensor.

また上記の電源装置において、前記制御回路は、前記制御の切り替えと前記電流センサの切り替えとを同期させて行うことが好ましい。
この構成によれば、PWM制御−PSM制御の切り替えと電流センサの切り替えとを同期させて行うようにすることで、簡易な切り替え制御とすることが可能となる。
In the power supply device described above, it is preferable that the control circuit synchronizes the switching of the control and the switching of the current sensor.
According to this configuration, the switching between the PWM control and the PSM control and the switching of the current sensor are performed in synchronization, so that simple switching control can be performed.

また上記の電源装置において、前記センサ切替手段は、複数の前記電流センサ毎の電路を並列接続し、何れの電路を選択的に接続するかで前記電流センサを切り替える回路を含んで構成されることが好ましい。   Further, in the above power supply device, the sensor switching means includes a circuit for connecting the electric circuits for each of the plurality of current sensors in parallel, and switching the current sensor depending on which electric circuit is selectively connected. Is preferred.

この構成によれば、電流センサを切り替える回路は、並列接続した電流センサ毎の電路を選択的に接続するかで切り替えを行う構成である。つまり、各電路上には各電流センサの耐性に合った電流が流れるため、電流センサの保護等の効果が期待できる。   According to this structure, the circuit which switches a current sensor is a structure which switches according to selectively connecting the electric circuit for every current sensor connected in parallel. That is, since a current that matches the resistance of each current sensor flows on each electric circuit, an effect such as protection of the current sensor can be expected.

また上記の電源装置において、前記センサ切替手段は、電源装置の動作開始時には常に、検出可能な電流域が広く分解能の粗い仕様の電流センサを選択するように構成されることが好ましい。   In the power supply apparatus described above, it is preferable that the sensor switching means is configured to always select a current sensor having a wide detectable current range and a coarse resolution at the start of operation of the power supply apparatus.

この構成によれば、電源装置の動作開始時には常に、検出可能な電流域が広く分解能の粗い仕様の電流センサが選択される構成、即ち耐性の高い電流センサが先に選択される構成としたため、電流センサの保護等の効果が期待できる。   According to this configuration, at the start of the operation of the power supply device, a configuration in which a current sensor having a wide detectable current range and a coarse resolution is selected, i.e., a configuration in which a highly durable current sensor is selected first, Effects such as protection of current sensors can be expected.

また上記課題を解決する溶接用電源装置は、上記の電源装置を用い、溶接用の出力電力を生成するように構成される。
この構成によれば、広い電流域に亘って適切な出力制御が可能な溶接用電源装置として提供できる。
Moreover, the welding power supply device which solves the said subject is comprised so that the output electric power for welding may be produced | generated using said power supply device.
According to this structure, it can provide as a power supply device for welding in which appropriate output control is possible over a wide electric current range.

本発明の電源装置及び溶接用電源装置によれば、広い電流域に亘って出力電流値を適切に検出でき、全域で適切な出力制御を行うことができる。   According to the power supply device and the welding power supply device of the present invention, the output current value can be appropriately detected over a wide current range, and appropriate output control can be performed over the entire range.

一実施形態における溶接用電源装置の構成図である。It is a block diagram of the power supply apparatus for welding in one Embodiment. 電源装置の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of a power supply device. 別例における電源装置の一部を示す構成図である。It is a block diagram which shows a part of power supply device in another example.

以下、電源装置(溶接用電源装置)の一実施形態について説明する。
図1に示すように、本実施形態の電源装置10は、一次側変換回路11、インバータ回路12、溶接トランスINT、二次側変換回路13を備えるアーク溶接用電源装置よりなり、商用電源から供給される三相の交流入力電力からアーク溶接に適した直流出力電力を生成する。
Hereinafter, an embodiment of a power supply device (welding power supply device) will be described.
As shown in FIG. 1, the power supply device 10 of the present embodiment includes an arc welding power supply device including a primary side conversion circuit 11, an inverter circuit 12, a welding transformer INT, and a secondary side conversion circuit 13, and is supplied from a commercial power source. DC output power suitable for arc welding is generated from the three-phase AC input power.

一次側変換回路11は、整流回路DR1及び平滑コンデンサC1を備え、交流入力電力を一旦直流電力に変換してインバータ回路12に出力する。インバータ回路12は、IGBT等の半導体スイッチング素子TR1〜TR4を用いたブリッジ回路にて構成され、スイッチング素子TR1〜TR4によるスイッチング動作にて直流電力を高周波交流電力に変換する。これらスイッチング素子TR1〜TR4に対しては、制御回路20による出力制御としてスイッチング制御(PWM制御及びPSM制御)が実施される。インバータ回路12は、生成した高周波交流電力を溶接トランスINTに出力する。   The primary side conversion circuit 11 includes a rectifier circuit DR1 and a smoothing capacitor C1, and once converts AC input power into DC power and outputs the DC power to the inverter circuit 12. The inverter circuit 12 is configured by a bridge circuit using semiconductor switching elements TR1 to TR4 such as IGBTs, and converts DC power into high frequency AC power by a switching operation by the switching elements TR1 to TR4. For these switching elements TR1 to TR4, switching control (PWM control and PSM control) is performed as output control by the control circuit 20. The inverter circuit 12 outputs the generated high-frequency AC power to the welding transformer INT.

溶接トランスINTは、インバータ回路12から出力される高周波交流電力を二次側交流電力に変換して二次側変換回路13に出力する。二次側変換回路13は、整流回路DR2及び直流リアクトルDCLを備え、二次側交流電力をアーク溶接に適した直流出力電力に変換する。そして、電源装置10のプラス側出力端子に溶接トーチTHを、マイナス側出力端子に溶接対象Mをそれぞれ接続し、電源装置10にて生成した出力電力に基づき溶接トーチTHの電極と溶接対象Mとの間にアークを生じさせ、溶接対象Mのアーク溶接が行われる。   The welding transformer INT converts the high-frequency AC power output from the inverter circuit 12 into secondary AC power and outputs the secondary AC power to the secondary conversion circuit 13. The secondary side conversion circuit 13 includes a rectifier circuit DR2 and a DC reactor DCL, and converts the secondary side AC power into DC output power suitable for arc welding. Then, the welding torch TH is connected to the plus side output terminal of the power supply device 10 and the welding object M is connected to the minus side output terminal, respectively, and the electrode of the welding torch TH and the welding object M based on the output power generated by the power supply device 10 An arc is generated between the two and arc welding of the welding object M is performed.

制御回路20は、アーク溶接を良好に行うべくその時々の出力電力を適正値とするための出力制御として、インバータ回路12のスイッチング素子TR1〜TR4に対してスイッチング制御を実施する。本実施形態の制御回路20は、スイッチング制御としてパルス幅変調制御(PWM制御)と位相シフト制御(PSM制御)とを適宜切り替えて行っている(制御切替部20a)。   The control circuit 20 performs switching control on the switching elements TR <b> 1 to TR <b> 4 of the inverter circuit 12 as output control for setting the output power at that time to an appropriate value in order to perform arc welding satisfactorily. The control circuit 20 of the present embodiment performs switching by appropriately switching between pulse width modulation control (PWM control) and phase shift control (PSM control) as switching control (control switching unit 20a).

制御回路20のスイッチング制御について、インバータ回路12のスイッチング素子TR1,TR4を組とし、スイッチング素子TR2,TR3を組として、各組を交互にオンオフ動作させる。例えば数百[A]の大電流から数[A]の極小電流までの出力電流を出力可能な電源装置10である場合、図2に示すように、出力大時から出力小時、即ち数百[A]から数十[A]の電流域ではPWM制御が選択され、出力極小時、即ち数[A]の極小電流域ではPSM制御が選択される。   Regarding the switching control of the control circuit 20, the switching elements TR1 and TR4 of the inverter circuit 12 are set as a set, and the switching elements TR2 and TR3 are set as a set, and each set is alternately turned on and off. For example, in the case of the power supply device 10 capable of outputting an output current from a large current of several hundred [A] to a minimal current of several [A], as shown in FIG. PWM control is selected in the current range from A] to several tens [A], and PSM control is selected in the minimum output range, that is, in the minimum current range of several [A].

PWM制御は、スイッチング素子TR1〜TR4のオンパルス幅を可変とする制御であるが、出力大時では、溶接トランスINT側に大きな電力伝達を行うためにスイッチング素子TR1〜TR4のオンパルス幅が幅広のパルス幅Wxに設定される。また、出力を小さくするのに伴い、溶接トランスINT側への電力伝達を小さくするためにスイッチング素子TR1〜TR4のオンパルス幅が次第に幅狭に設定される。オンパルス幅が極めて幅狭になると、スイッチング素子TR1〜TR4のオンへの切り替わりが不安定となって溶接トランスINTが偏磁へと進む虞があるのを懸念して、十分オン可能な最小のパルス幅W0に設定される出力小時がPWM制御を下限とし、それよりも小さい出力を行う出力極小時ではPSM制御とする。   The PWM control is a control that makes the on-pulse width of the switching elements TR1 to TR4 variable. However, when the output is large, the on-pulse width of the switching elements TR1 to TR4 is wide in order to transmit large power to the welding transformer INT side. The width Wx is set. As the output is reduced, the on-pulse widths of the switching elements TR1 to TR4 are gradually set to be narrower in order to reduce the power transmission to the welding transformer INT side. When the on-pulse width becomes very narrow, the switching of the switching elements TR1 to TR4 becomes unstable and the welding transformer INT may move to the demagnetization. When the output is set to the width W0, the PWM control is set as the lower limit, and when the output is minimum when the output is smaller than that, the PSM control is set.

PSM制御は、組をなすスイッチング素子TR1,TR4間、及びスイッチング素子TR2,TR3間のオンパルスの位相を可変とする制御である。つまり、出力小時よりも小さい出力を行う出力極小時では、PWM制御の臨界時であるその出力小時のオンパルス幅をパルス幅W0で固定した状態で、同組のスイッチング素子TR1,TR4間、及びスイッチング素子TR2,TR3間のオンパルスが位相α分ずらされる。この位相α(位相差)が大きいほど溶接トランスINT側への電力伝達が一層小さくなり、出力極小を達成しつつもスイッチング素子TR1〜TR4のオン動作の安定化が図られる。   The PSM control is a control in which the phase of the on-pulse between the switching elements TR1 and TR4 and the switching elements TR2 and TR3 forming a pair is variable. In other words, at the time of the output minimum when the output is smaller than when the output is small, the on-pulse width at the time when the output is small, which is the critical time of the PWM control, is fixed at the pulse width W0, and the switching elements TR1 and TR4 between The on-pulse between the elements TR2 and TR3 is shifted by the phase α. The larger the phase α (phase difference), the smaller the power transmission to the welding transformer INT side, and the on operation of the switching elements TR1 to TR4 can be stabilized while achieving the minimum output.

従って、制御回路20内部で次に設定すべきオンパルス幅の算出が行われた際、制御切替部20aは、その算出幅とPWM−PSM制御の臨界時点のパルス幅W0との比較を行い、算出幅がパルス幅W0よりも大であればPWM制御を選択する。そして、制御回路20は、その算出幅をそのままオンパルス幅としたPWM制御を実施する。一方、算出幅がパルス幅W0よりも小となった場合、制御切替部20aはPWM制御からPSM制御に切り替える。そして、制御回路20は、その算出幅ではなくパルス幅W0をオンパルス幅とし、同組のスイッチング素子TR1,TR4間、及びスイッチング素子TR2,TR3間のオンパルスの位相αを算出値に応じて調整するPSM制御を実施する。   Therefore, when the on-pulse width to be set next is calculated in the control circuit 20, the control switching unit 20a compares the calculated width with the pulse width W0 at the critical point of the PWM-PSM control to calculate If the width is larger than the pulse width W0, the PWM control is selected. Then, the control circuit 20 performs PWM control using the calculated width as it is as the on-pulse width. On the other hand, when the calculated width becomes smaller than the pulse width W0, the control switching unit 20a switches from PWM control to PSM control. Then, the control circuit 20 uses not the calculated width but the pulse width W0 as the on-pulse width, and adjusts the phase α of the on-pulse between the switching elements TR1 and TR4 and between the switching elements TR2 and TR3 according to the calculated value. Perform PSM control.

また、インバータ回路12のスイッチング制御(スイッチング素子TR1〜TR4のオンパルス幅の設定)を含む制御回路20の各種制御においては、出力電流値を把握する必要がある。   Further, in various controls of the control circuit 20 including switching control of the inverter circuit 12 (setting of on-pulse widths of the switching elements TR1 to TR4), it is necessary to grasp an output current value.

ここで、電源装置10の内部では、マイナス側出力端子に接続されるマイナス側電源線に出力電流が流れることから、このマイナス側電源線上に電流センサが設置、本実施形態では第1及び第2電流センサID1,ID2の2つの電流センサが設置されている。第1電流センサID1は、マイナス側電源線上に並列に設けた第1,第2電路の第1電路側に選択スイッチSW1と共に設置され、第2電流センサID2は、第2電路側に選択スイッチSW2と共に設置されている。因みに、第1及び第2電流センサID1,ID2は、例えばホール素子を用いるホール式電流センサであり、選択スイッチSW1,SW2はIGBT等の半導体スイッチである。   Here, since an output current flows through the negative power supply line connected to the negative output terminal inside the power supply apparatus 10, a current sensor is installed on the negative power supply line. In the present embodiment, the first and second current sensors are provided. Two current sensors ID1 and ID2 are installed. The first current sensor ID1 is installed together with the selection switch SW1 on the first electric circuit side of the first and second electric circuits provided in parallel on the negative power line, and the second current sensor ID2 is selected on the second electric circuit side. It is installed with. Incidentally, the first and second current sensors ID1, ID2 are, for example, Hall current sensors using Hall elements, and the selection switches SW1, SW2 are semiconductor switches such as IGBTs.

第1電流センサID1は、大電流から小電流域に合わせた広い電流域の検出が可能で分解能の粗い仕様の電流センサにて構成され、第2電流センサID2は、極小電流域に合わせた狭い電流域の検出が可能で分解能の細かい仕様の電流センサにて構成されている。例えば、出力電流500[A]仕様の電源装置10である場合、第1電流センサID1には500[A]仕様の電流センサが、第2電流センサID2には30[A]仕様の電流センサが用いられ、出力電流200[A]仕様の電源装置10である場合、第1電流センサID1には300[A]仕様の電流センサが、第2電流センサID2には30[A]仕様の電流センサが用いられるというように、仕様の異なる2つの電流センサID1,ID2が設置されている。第1及び第2電流センサID1,ID2は、制御回路20(センサ切替部20b)の制御に基づく選択スイッチSW1,SW2の相補の切り替え動作により、何れか一方がマイナス側電源線に接続されてその時々の出力電流の検出を行い、その検出信号を制御回路20に出力する。   The first current sensor ID1 is configured with a current sensor having a coarse resolution specification capable of detecting a wide current range from a large current to a small current range, and the second current sensor ID2 is narrow according to a minimum current range. It consists of a current sensor that can detect the current range and has a fine resolution. For example, in the case of the power supply device 10 having an output current of 500 [A], a current sensor of 500 [A] is specified for the first current sensor ID1, and a current sensor of 30 [A] is specified for the second current sensor ID2. In the case of the power supply device 10 having an output current of 200 [A] specification, a current sensor of 300 [A] specification is used for the first current sensor ID1, and a current sensor of 30 [A] specification is used for the second current sensor ID2. Are used, two current sensors ID1, ID2 having different specifications are installed. One of the first and second current sensors ID1 and ID2 is connected to the negative power supply line by the complementary switching operation of the selection switches SW1 and SW2 based on the control of the control circuit 20 (sensor switching unit 20b). The output current is detected from time to time, and the detection signal is output to the control circuit 20.

制御回路20のセンサ切替部20bは、大電流から小電流域では第1電流センサID1による電流検出を行わせるべく選択スイッチSW1をオン(閉路)、選択スイッチSW2をオフ(開路)し、極小電流域では第2電流センサID2による電流検出を行わせるべく選択スイッチSW1をオフ、選択スイッチSW2をオンする。つまり本実施形態では、大電流から小電流域で実施されるPWM制御時には第1電流センサID1による電流検出に基づく制御とし、極小電流域で実施されるPSM制御時には第2電流センサID2による電流検出に基づく制御とすべく、PWM制御とPSM制御との切り替えと同期して第1及び第2電流センサID1,ID2による検出態様が切り替えられている。   The sensor switching unit 20b of the control circuit 20 turns on the selection switch SW1 (closes) and turns off the selection switch SW2 (opens) to perform current detection by the first current sensor ID1 in the range from a large current to a small current. In the basin, the selection switch SW1 is turned off and the selection switch SW2 is turned on in order to perform current detection by the second current sensor ID2. That is, in the present embodiment, control based on current detection by the first current sensor ID1 is performed during PWM control performed from a large current to a small current range, and current detection by the second current sensor ID2 is performed during PSM control performed in a minimum current range. The detection mode by the first and second current sensors ID1, ID2 is switched in synchronization with switching between PWM control and PSM control.

次に、電源装置10の動作(作用)を説明する。
アーク溶接を行うべく溶接トーチTHに備えられるトーチスイッチTSがオンされると、制御回路20は、所望の出力電力を生成すべく出力制御としてインバータ回路12のスイッチング制御を開始する。溶接動作開始時の状態として、制御回路20の制御切替部20aはPWM制御を選択しており、センサ切替部20bは選択スイッチSW1をオン(選択スイッチSW2をオフ)として第1電流センサID1による電流検出態様としている。
Next, the operation (action) of the power supply device 10 will be described.
When the torch switch TS provided in the welding torch TH to perform arc welding is turned on, the control circuit 20 starts switching control of the inverter circuit 12 as output control so as to generate desired output power. As a state at the start of the welding operation, the control switching unit 20a of the control circuit 20 selects PWM control, and the sensor switching unit 20b turns on the selection switch SW1 (turns off the selection switch SW2), and the current by the first current sensor ID1. This is a detection mode.

スイッチング制御の開始に際し、制御回路20は、第1電流センサID1の検出に基づく出力電流値と電流設定器IRによる設定電流値とに基づいて、PWM制御とした場合のスイッチング素子TR1〜TR4のオンパルス幅の算出を行う。検出した出力電流値と設定電流値との差が大きいほど出力要求が大として、出力増大を図るべくオンパルス幅の算出値は大きくなる。オンパルス幅の算出値がパルス幅Wxからパルス幅W0の間、即ち出力大から出力小の電流域であれば、制御切替部20aはPWM制御を維持し、制御回路20は算出値をそのままオンパルス幅に設定するPWM制御を実施する。またセンサ切替部20bは、第1電流センサID1による検出態様を維持する。   When starting the switching control, the control circuit 20 turns on the pulses of the switching elements TR1 to TR4 when PWM control is performed based on the output current value based on the detection of the first current sensor ID1 and the set current value by the current setting unit IR. The width is calculated. The greater the difference between the detected output current value and the set current value, the greater the output request, and the calculated value of the on-pulse width increases to increase the output. If the calculated value of the on-pulse width is between the pulse width Wx and the pulse width W0, that is, the current range from the large output to the small output, the control switching unit 20a maintains the PWM control, and the control circuit 20 directly uses the calculated value as the on-pulse width. The PWM control set to is executed. Further, the sensor switching unit 20b maintains the detection mode by the first current sensor ID1.

一方、オンパルス幅の算出値がパルス幅W0より小さくなる、即ち出力極小の電流域になると、制御切替部20aはスイッチング制御をPWM制御からPSM制御に切り替え、制御回路20はオンパルス幅をパルス幅W0に固定すると共に算出値から位相αを算出してオンパルスに位相差を設定するPSM制御を実施する。またセンサ切替部20bは、選択スイッチSW2側をオン(選択スイッチSW1側をオフ)に切り替え、第2電流センサID2による検出態様に切り替える。そして、その時々のオンパルス幅の算出値に基づいて、制御回路20はPWM制御かPSM制御かを切り替えると共に、その制御の切り替えと同期させて電流検出態様を第1及び第2電流センサID1,ID2の何れかに切り替えている。   On the other hand, when the calculated value of the on-pulse width becomes smaller than the pulse width W0, that is, when the output current reaches a minimum current range, the control switching unit 20a switches the switching control from PWM control to PSM control, and the control circuit 20 sets the on-pulse width to the pulse width W0. PSM control is performed in which the phase α is calculated from the calculated value and the phase difference is set to the on-pulse. In addition, the sensor switching unit 20b switches the selection switch SW2 side on (selection switch SW1 side off), and switches to the detection mode by the second current sensor ID2. Then, based on the calculated value of the on-pulse width at that time, the control circuit 20 switches between PWM control and PSM control, and the current detection mode is changed to the first and second current sensors ID1, ID2 in synchronization with the control switching. It has switched to either.

このように本実施形態では、電源装置10が扱う大電流から極小電流までの広い電流域の中で各電流域に適した電流センサID1,ID2に切り替えることで、出力電流の全域で適切な電流検出が可能となり、この電流検出に基づく出力制御(スイッチング制御)は全域で適切な制御となる。また、電流センサID1,ID2の切り替えと同期して各電流域に適したPWM制御かPSM制御かが切り替えられるため、適切な出力制御が行われることの相乗的効果が得られるものとなっている。結果として、アーク溶接に品質向上が図られる。   As described above, in this embodiment, by switching to the current sensors ID1 and ID2 suitable for each current region in a wide current range from a large current to a very small current handled by the power supply device 10, an appropriate current can be obtained over the entire output current. Detection is possible, and output control (switching control) based on this current detection is appropriate control over the entire area. In addition, since the PWM control or the PSM control suitable for each current region is switched in synchronization with the switching of the current sensors ID1 and ID2, a synergistic effect that appropriate output control is performed is obtained. . As a result, quality improvement is achieved in arc welding.

次に、本実施形態の特徴的な効果を記載する。
(1)出力電流値が大きい側では、検出可能な電流域が広く分解能の粗い仕様の第1電流センサID1が選択され、出力電流値が小さい側では、検出可能な電流域が狭く分解能の細かい仕様の第2電流センサID2が選択されて、各電流センサID1,ID2にて検出した出力電流値に基づく出力制御(インバータ回路12のスイッチング制御)が行われる。つまり、広い電流域を扱う本実施形態の電源装置10においては特に、各電流域に適した電流センサID1,ID2が選択されることで各電流域の出力電流値を適切に検出でき、各電流域毎で適切な出力制御を行うことができる。
Next, characteristic effects of the present embodiment will be described.
(1) On the side where the output current value is large, the first current sensor ID1 having a wide detectable current range and a coarse resolution is selected, and on the side where the output current value is small, the detectable current range is narrow and the resolution is fine. The specification second current sensor ID2 is selected, and output control (switching control of the inverter circuit 12) based on the output current value detected by each of the current sensors ID1 and ID2 is performed. That is, in the power supply device 10 of this embodiment that handles a wide current range, the output current value of each current range can be appropriately detected by selecting the current sensors ID1 and ID2 that are appropriate for each current range, and Appropriate output control can be performed for each basin.

(2)インバータ回路12のスイッチング制御において、出力要求の大きい期間ではPWM制御が実施され、出力要求が小さい期間になるとPSM制御に切り替えられる。つまり、出力要求の小さい期間でPWM制御を実施したとするとインバータ回路12のスイッチング素子TR1〜TR4が十分にオンできない虞があるが、これに代わってPSM制御を用いることでスイッチング素子TR1〜TR4のオンパルス幅を十分オン可能な所定幅(幅W0)としつつも出力を下げることが可能である。これにより、PWM制御とPSM制御とを切り替えることで広い電流域での適切な出力制御が可能で、電流センサID1,ID2を切り替える構成との組み合わせによる相乗的効果が期待できる。   (2) In the switching control of the inverter circuit 12, the PWM control is performed during a period when the output request is large, and is switched to PSM control when the output request is small. In other words, if the PWM control is performed in a period when the output request is small, the switching elements TR1 to TR4 of the inverter circuit 12 may not be sufficiently turned on, but instead of this, the switching elements TR1 to TR4 are controlled by using the PSM control. The output can be lowered while the on-pulse width is set to a predetermined width (width W0) that can be sufficiently turned on. Accordingly, appropriate output control in a wide current range is possible by switching between PWM control and PSM control, and a synergistic effect can be expected by a combination with a configuration in which the current sensors ID1 and ID2 are switched.

(3)電流センサID1,ID2の切り替えやスイッチング制御の切り替えを行うことで、1つの電源装置10であっても複数の出力仕様の電源装置として使用することができる。   (3) By switching the current sensors ID1 and ID2 and switching control, even one power supply device 10 can be used as a power supply device having a plurality of output specifications.

(4)PWM制御−PSM制御の切り替えと電流センサID1,ID2の切り替えとを同期させて行うようにしたため、簡易な切り替え制御とすることができる。
(5)電流センサID1,ID2を切り替える回路は、並列接続した電流センサID1,ID2毎の電路を選択スイッチSW1,SW2にて選択的に接続するかで切り替えを行う構成である。つまり、各電路上には各電流センサID1,ID2の耐性に合った電流が流れるため、電流センサID1,ID2の保護等の効果が期待できる。
(4) Since switching between PWM control and PSM control and switching between current sensors ID1 and ID2 are performed in synchronization, simple switching control can be achieved.
(5) The circuit for switching the current sensors ID1 and ID2 is configured to perform switching depending on whether the electric circuits for the current sensors ID1 and ID2 connected in parallel are selectively connected by the selection switches SW1 and SW2. In other words, since currents that match the resistances of the current sensors ID1 and ID2 flow on the electric circuits, effects such as protection of the current sensors ID1 and ID2 can be expected.

(6)電源装置10の動作開始時には常に、検出可能な電流域が広く分解能の粗い仕様の第1電流センサID1が選択される構成、即ち耐性の高い電流センサID1が先に選択される構成としたため、電流センサID1,ID2の保護、特に耐性の低い第2電流センサID2の保護等の効果が期待できる。   (6) A configuration in which the first current sensor ID1 having a wide detectable current range and a coarse resolution is selected at the start of the operation of the power supply device 10, that is, a configuration in which the highly durable current sensor ID1 is selected first. Therefore, effects such as protection of the current sensors ID1 and ID2, particularly protection of the second current sensor ID2 having low resistance can be expected.

尚、上記実施形態は、以下のように変更してもよい。
・マイナス側電源線上に並列に設けた第1,第2電路に電流センサID1,ID2をそれぞれ1つずつ設置し、選択スイッチSW1,SW2にて電路を切り替えて電流センサID1,ID2を選択する構成としたが、これに限らず適宜変更してもよい。
In addition, you may change the said embodiment as follows.
A configuration in which one current sensor ID1, ID2 is installed in each of the first and second electric circuits provided in parallel on the negative power line, and the current sensors ID1, ID2 are selected by switching the electric circuit with the selection switches SW1, SW2. However, the present invention is not limited to this, and may be changed as appropriate.

例えば図3に示すように、マイナス側電源線上に2つの電流センサID1,ID2を並べて設置し、制御回路20への検出信号の入力を選択スイッチSW1,SW2にて選択する構成としてもよい。またこの場合、制御回路20の内部で電流センサID1,ID2からの検出信号の入力を選択できれば、選択スイッチSW1,SW2を省略することもできる。   For example, as shown in FIG. 3, two current sensors ID1 and ID2 may be arranged side by side on the negative power supply line, and the input of the detection signal to the control circuit 20 may be selected by the selection switches SW1 and SW2. In this case, if the detection signal input from the current sensors ID1 and ID2 can be selected in the control circuit 20, the selection switches SW1 and SW2 can be omitted.

・検出した出力電流値と設定電流値との差に基づくオンパルス幅の算出値から、電流センサID1,ID2の切り替えやPWM−PSM制御の切り替えを行ったが、これ以外のパラメータに基づいて切り替えるようにしてもよい。   ・ Switching of current sensors ID1 and ID2 and switching of PWM-PSM control were performed from the calculated value of the on-pulse width based on the difference between the detected output current value and the set current value, but switching is performed based on other parameters. It may be.

・電流センサID1,ID2の切り替えと、PWM−PSM制御の切り替えとを同期させたが、同期させなくてもよく、電流センサID1,ID2の切り替えと、PWM−PSM制御の切り替えとを個別に行うようにしてもよい。   Although the switching of the current sensors ID1 and ID2 and the switching of the PWM-PSM control are synchronized, it is not necessary to synchronize, and the switching of the current sensors ID1 and ID2 and the switching of the PWM-PSM control are performed individually. You may do it.

・電流センサID1,ID2の切り替えにヒステリシスを設定してもよい。
・仕様の異なる2つの電流センサID1,ID2を切り替える態様であったが、仕様の異なる3以上の電流センサを切り替える態様としてもよい。
A hysteresis may be set for switching between the current sensors ID1 and ID2.
-Although it was the aspect which switches two current sensor ID1, ID2 from which a specification differs, it is good also as an aspect which switches the 3 or more current sensors from which a specification differs.

・PWM制御とPSM制御の両制御を用いる態様であったが、PWM制御のみの出力制御、PSM制御のみの出力制御等、1つのスイッチング制御を行うものであってもよい。
・上記実施形態の電源装置10はTIG溶接用を想定しているが、その他のアーク溶接用の電源装置に適用してもよい。またアーク溶接以外の溶接用の電源装置や溶接以外の電源装置に適用してもよい。
-Although it was the aspect using both control of PWM control and PSM control, you may perform one switching control, such as output control only of PWM control, and output control only of PSM control.
-Although the power supply device 10 of the said embodiment assumes the object for TIG welding, you may apply to the power supply device for other arc welding. Moreover, you may apply to the power supply device for welding other than arc welding, and power supply devices other than welding.

10 溶接用電源装置(電源装置)
11 一次側変換回路(電力生成回路)
12 インバータ回路(電力生成回路)
13 二次側変換回路(電力生成回路)
INT 溶接トランス(電力生成回路)
20 制御回路
20a 制御切替部(制御切替手段)
20b センサ切替部(センサ切替手段)
SW1,SW2 選択スイッチ(センサ切替手段)
ID1,ID2 電流センサ
TR1〜TR4 スイッチング素子
10 Power supply for welding (Power supply)
11 Primary side conversion circuit (power generation circuit)
12 Inverter circuit (power generation circuit)
13 Secondary conversion circuit (power generation circuit)
INT welding transformer (power generation circuit)
20 control circuit 20a control switching unit (control switching means)
20b Sensor switching part (sensor switching means)
SW1, SW2 selection switch (sensor switching means)
ID1, ID2 Current sensor TR1-TR4 Switching element

Claims (6)

出力電力を生成する電力生成回路と、出力電流値を検出する電流センサとを備えており、前記検出した出力電流値に基づいて前記電力生成回路を制御し所望の出力電力を得る出力制御を行う制御回路を備えた電源装置であって、
前記電流センサには、検出可能な電流域と分解能とを含む仕様の異なるものが複数用いられ、
前記出力電流値が大きい程、検出可能な電流域が広く分解能の粗い仕様の電流センサにて前記出力電流値の検出が行われ、前記出力電流値が小さい程、検出可能な電流域が狭く分解能の細かい仕様の電流センサにて前記出力電流値の検出が行われるように、前記出力電流値に対応して複数の電流センサの内の何れかを選択的に切り替えるセンサ切替手段を備えたことを特徴とする電源装置。
A power generation circuit that generates output power and a current sensor that detects an output current value are provided, and output control is performed to control the power generation circuit based on the detected output current value to obtain desired output power. A power supply device including a control circuit,
The current sensor is used in a plurality of different specifications including a detectable current range and resolution,
The larger the output current value is, the wider the detectable current range is, and the detection of the output current value is performed by a current sensor having a rough resolution. The smaller the output current value, the narrower the detectable current range is. Sensor switching means for selectively switching one of a plurality of current sensors corresponding to the output current value so that the output current value is detected by a current sensor having a fine specification. A featured power supply.
請求項1に記載の電源装置において、
前記電力生成回路は、スイッチング素子のオンオフ動作により直流電力から高周波交流電力への電力変換を行うインバータ回路を含んで構成され、
前記制御回路は、出力要求が大となる期間では前記インバータ回路のスイッチング素子のオンパルス幅を可変とするパルス幅変調制御を選択し、出力要求が小となる期間では同組で動作するスイッチング素子のオンパルス幅を所定幅に固定しつつ同組のオンパルスに位相差を生じさせる位相シフト制御に切り替える制御切替手段を備え、出力要求に応じたスイッチング制御を実施することを特徴とする電源装置。
The power supply device according to claim 1,
The power generation circuit includes an inverter circuit that performs power conversion from DC power to high-frequency AC power by an on / off operation of a switching element,
The control circuit selects pulse width modulation control that makes the on-pulse width of the switching element of the inverter circuit variable during a period when the output request is large, and the switching circuit that operates in the same group during a period when the output request is small. A power supply apparatus comprising: control switching means for switching to phase shift control that causes a phase difference between the on-pulses of the same set while fixing the on-pulse width to a predetermined width, and performing switching control according to an output request.
請求項2に記載の電源装置において、
前記制御回路は、前記制御の切り替えと前記電流センサの切り替えとを同期させて行うことを特徴とする電源装置。
The power supply device according to claim 2,
The control circuit performs the switching of the control and the switching of the current sensor in synchronization with each other.
請求項1〜3の何れか1項に記載の電源装置において、
前記センサ切替手段は、複数の前記電流センサ毎の電路を並列接続し、何れの電路を選択的に接続するかで前記電流センサを切り替える回路を含んで構成されたことを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3,
The power supply apparatus according to claim 1, wherein the sensor switching means includes a circuit for connecting the electric circuits for each of the plurality of current sensors in parallel and switching the current sensor depending on which electric circuit is selectively connected.
請求項1〜4の何れか1項に記載の電源装置において、
前記センサ切替手段は、電源装置の動作開始時には常に、検出可能な電流域が広く分解能の粗い仕様の電流センサを選択するように構成されたことを特徴とする電源装置。
In the power supply device according to any one of claims 1 to 4,
The power supply apparatus according to claim 1, wherein the sensor switching means is configured to select a current sensor having a wide detectable current range and a coarse resolution whenever an operation of the power supply apparatus is started.
請求項1〜5の何れか1項に記載の電源装置を用い、溶接用の出力電力を生成するように構成されたことを特徴とする溶接用電源装置。   A welding power supply device configured to generate welding output power using the power supply device according to any one of claims 1 to 5.
JP2014100776A 2014-05-14 2014-05-14 Power supply for welding Active JP6317175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100776A JP6317175B2 (en) 2014-05-14 2014-05-14 Power supply for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100776A JP6317175B2 (en) 2014-05-14 2014-05-14 Power supply for welding

Publications (2)

Publication Number Publication Date
JP2015220792A true JP2015220792A (en) 2015-12-07
JP6317175B2 JP6317175B2 (en) 2018-04-25

Family

ID=54779793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100776A Active JP6317175B2 (en) 2014-05-14 2014-05-14 Power supply for welding

Country Status (1)

Country Link
JP (1) JP6317175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131096A1 (en) * 2016-01-29 2017-08-03 三菱電機株式会社 Power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025107A (en) * 1988-06-24 1990-01-10 Mitsubishi Electric Corp Regulated power unit for exciting electromagnet
JPH02125597U (en) * 1989-03-27 1990-10-16
US20120140524A1 (en) * 2010-12-01 2012-06-07 Daihen Corporation Power supply and arc processing power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025107A (en) * 1988-06-24 1990-01-10 Mitsubishi Electric Corp Regulated power unit for exciting electromagnet
JPH02125597U (en) * 1989-03-27 1990-10-16
US20120140524A1 (en) * 2010-12-01 2012-06-07 Daihen Corporation Power supply and arc processing power supply
JP2012135189A (en) * 2010-12-01 2012-07-12 Daihen Corp Power supply unit and arc processing power supply unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017131096A1 (en) * 2016-01-29 2017-08-03 三菱電機株式会社 Power converter
JP6218996B1 (en) * 2016-01-29 2017-10-25 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP6317175B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP5110189B2 (en) Inverter control device
JP5428660B2 (en) PWM inverter device
JP6161998B2 (en) Power supply device and power supply device for arc machining
JP6317175B2 (en) Power supply for welding
WO2015011882A1 (en) Welding device
JP2015174092A (en) Power supply device for welder
JP2010226871A (en) Power supply system
JP6345490B2 (en) Power supply for welding
JP6116920B2 (en) Arc machining power supply
KR101507412B1 (en) Power control system linked analog and digital feedback compensation scheme and power control method thereof
JP5429791B2 (en) Welding power supply
JP2012080740A (en) Inverter controller
JP6662226B2 (en) Welding prevention device
JP4877594B2 (en) Matrix converter device and control method thereof
JP6324836B2 (en) Power supply for plasma welding
JP5231614B2 (en) Induction melting furnace controller
JP2012095516A (en) Power supply device for welding
JP2017077582A (en) Power source device for arc welding
WO2017109954A1 (en) Load control device and current measurement method for load control device
JP5039458B2 (en) Power supply device and power supply device for arc machining
JP4659665B2 (en) AC TIG welding method and apparatus
JP2010213514A (en) Device for switching power supply
US10537953B2 (en) Arc welding control method and arc welding apparatus
JP2007104779A (en) Method for current offset adjustment and power conversion equipment using the same
JP6239361B2 (en) Power supply device and power supply device for welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180329

R150 Certificate of patent or registration of utility model

Ref document number: 6317175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250